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Abstract

An important part of building high fidelity mathematical models based on measured data is

calculating the accuracy associated with statistical estimates of the model parameters. Indeed,

without some idea of the accuracy of parameter estimates, the estimates themselves have limited

value. In this work, an expression based on theoretical analysis was developed to properly

compute parameter accuracy measures for maximum likelih6od estimates with colored residuals.

This result is important because experience from the analysis of measured data reveals that the

residuals from maximum likelihood estimation are almost always colored. The calculations

involved can be appended to conventional maximum likelihood estimation algorithms. Simulated

data runs were used to show that the parameter accuracy measures computed with this technique

accurately reflect the quality of the parameter estimates from maximum likelihood estimation

without the need for analysis of the output residuals in the frequency domain or heuristically

determined multiplication factors. The result is general, although the application studied here is

maximum likelihood estimation of aerodynamic model parameters from flight test data.
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Nomenclature

vertical acceleration, g units

dispersion matrix

expected value

gravitational acceleration, 32.174 ft/sec 2

cost function

upwash correction

likelihood function

information matrix

body axis aerodynamic pitching moment, fi-lbf

number of control vector elements

number of output vector elements

number of parameter vector elements

number of state vector elements

total number of sample times

probability distribution

body axis pitch rate, rad/sec

tah diagonal element of R

discrete noise covariance matrix

autocorrelation matrix of v

output sensitivity matrix at time (i-1)At

time, sec

data record length, sec

control vector

airspeed, ft/sec

output residual vector at time (i-1)At

state vector

output vector

output vector at time (i-1)At
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z(i)

Z

Z

t_

_q

At

0

Vo

oj

t_j

_(i)

0

measured output at time (i-1)At

body axis aerodynamic vertical force, lbf

the set of N measured output vectors

angle of attack, rad

Kronecker delta

stabilator deflection, rad

sample time, sec

parameter vector

gradient with respect to 0

j_h element of the parameter vector

Cramer-Rao lower bound for the standard error of thej _h parameter

noise vector at time (i-1)At

zero vector

superscripts

T transpose

^ estimate

time derivative

- 1 matrix inverse

subscripts

m measured

o nominal or trim value



I, Introduction

An important part of building high fidelity mathematical models for physical systems is

estimating values for the model parameters based on measured data. For the case of aircraft

dynamic models, these model parameters generally arise in describing the dependence of

aerodynamic forces and moments on state and control variables. Of equal importance with the

estimated values of the parameters is their accuracy. This a_uracy can be assessed using the

Cramer-Rao lower bounds 1, which represent the theoretical minimum variance that is possible

for the parameter estimates using an asymptotically unbiased estimator, such as maximum

likelihood. Maximum likelihood estimation is also asymptotically efficient, meaning that

parameter variances computed for maximum likelihood estimates approach the Cramer-Rao

bounds as the number of measured data points increases. References [1]-[3] compare and

contrast the Cramer-Rao bound with other methods for assessing the accuracy of parameter

estimates. The present work adopts the viewpoint of reference [3] that the Cramer-Rao bound is

the best accuracy measure for maximum likelihood parameter estimates.

In this work, the output error formulation of maximum likelihood parameter estimation was

used with a fixed linear model structure. This formulation includes measurement noise, but no

process noise 4. The optimization procedure used to determine the maximum likelihood

parameter estimates was modified Newton-Raphson4, 5. In this case, the Cramer-Rao bounds

are computed as part of the estimation procedure. It is well known, however, that the

Cramer-Rao bounds computed in this way are usually optimistic (too small) compared to the

scatter in the parameter estimates from repeated flight test maneuvers 3,6. This prompted the

work of Maine, Iliff and Balakrishnan3,4, 7-9 who traced the discrepancy to the fact that the

residuals are colored for real flight test data analysis because output error techniques lump the

(unavoidable) deterministic modeling error together with the incoherent part of a measured signal

and call this the measurement noise 3. This results in the measurement noise being colored,

because the modeling error generally lies roughly in the same frequency band as the aircraft rigid

body dynamics and accounts for a large part of the total noise power. Colored measurement

noise impacts parameter estimate accuracy measures, as detailed in references [3],[4],[7]-[9].

The theory underlying the output error formulation of maximum likelihood estimation

assumes that the measurement noise is white Gaussian and band limited by the Nyquist

frequency. The band limit is the result of discrete measurements taken at the sampling

frequency, which is twice the Nyquist frequency. This measurement noise is broad band and

incoherent. The term incoherent is meant to imply amplitude discontinuity and a lack of

consistent phase-amplitude relationships, causing the autocorrelation function to be close to the

impulse function. Heuristically, this part of the residual would be commonly recognized as

having no deterministic component. If the structure of the model were correct, the residuals

could be expected to be reasonably close to this type of noise. In real flight test data analysis, the
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residualsinevitablycontaindeterministiccomponentsfrom suchsourcesasapproximationsof

realaircraftaerodynamicdependencies,unmodeleddynamicssuchasstructuralmodes,and

linearizationof thenonlinearequationsof motion. References[3], [4], [7]-[9] point out that

coloredresidualsviolatetheassumptionsof conventionalmaximumlikelihoodtheoryandleadto
theaforementionedinaccuracyin theCramer-Raobounds.

In reference[3], severalengineeringsolutionswereproposedto correctfor thediscrepancy.
Eachof thesesolutionswasbasedon thefactthatmostof theresidualpowerfor realflight data

analysisisconcentratedatrelativelylow frequenciesandisdueto deterministicmodelingerror.

Thisassumptionis stretchedwhenrelativelyhighfrequencystructuralmodesappearin thedata

or whenthebroadbandrandomnoisehasalargeenoughmagnitudetorival thepowerof the

bandlimitednoisedueto modelingerror. Thesolutionsofferedin reference[3] dependon

knowing somethingaboutthebandwidthof thedominantsourceof powerin theresiduals.
Obtainingthis informationrequiresFouriertransformsof theresidualsandanalysisin the

frequencydomain.Thespectraof theresidualsdependon themodel,theflight condition,the

maneuver,andtheinstrumentationcharacteristics.All of thesefactorsmaychangeoverthe

courseof aflight testprogram,requiringchangesin thecorrectionsfor theCramer-Raobounds.

Finally, all thesolutionsofferedin reference[3] requiresomeengineeringjudgment,which

requiresanexperiencedanalystandlimits thequantitativeaccuracyof theresults.

In thepresentwork,atechniquewasdevelopedwhichprocessestheresidualsof a

conventionalmaximumlikelihoodestimationin ordertocomputequantitativelyaccurate
Cramer-Raolowerboundsfor arbitraryresiduals.Theapproachaccountsfor coloredresiduals

usingasimpleestimateof theresidualcorrelation.Cramer-Raolowerboundsfor themaximum

likelihoodestimatescanbedeterminedautomaticallyandaccuratelywithnoheuristic

multiplicationfactors. In addition,.existingmaximumlikelihoodestimationroutinescanbe

easilyupgradedbecausethetechniquecanbeconsideredapost-processingof theoutput
residualsin orderto computetheappropriateCramer-Raolowerbounds.

Thenextsectioncontainsthetheoreticalanalysis.Followingthis,thetechniquewasapplied

in acontrolledsituationusingsimulateddata.A modelof the longitudinaldynamicsof afighter

aircraftwasusedwith thetrueparametervaluesknown. Thesimulatedoutputswerecorrupted
by discretewhiteGaussiannoisewith zeromean. Usingtensimulationrunswith different

realizationsof thenoiseprocess,it wasshownthatboththeconventionalmethodfor computing

Cramer-Raolowerboundsandthenewtechniquedescribedin thisworkproducedCramer-Rao

lowerboundsrepresentativeof theobservedscatterin theparameterestimates.Implementation

of thenewtechniquewasin asubroutinewhichpost-processedtheoutputresidualsfrom the

conventionalmaximumlikelihoodestimation.Next,thesamesimulatedoutputswerecorrupted

with bandlimitedwhitenoiseproducedby passingzeromeandiscretewhiteGaussiannoise

throughan0.5hz low passfilter andscalingtheamplitudesto maintainthesamesignalto noise
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ratiousedfor thewide band noise cases. Ten different noise sequences were used. In these

cases, the Cramer-Rao bounds computed using the conventional method produced optimistic

values of the Cramer-Rao lower bounds, in agreement with the results of previous

research 3,4,6-9. The new technique, however, successfully accounted for the band limited

residuals and produced quantitatively correct values for the Cramer-Rao lower bounds. Finally,

ten different colored noise sequences comprised of a mixture of band limited and wide band

noise sequences were generated, again scaling the amplitudes to maintain signal to noise ratio.

These colored noise sequences were very similar to residuals observed when analyzing real flight

test data. Again, the conventional method gave optimistic Crarner-Rao lower bounds while the

new technique produced Cramer-Rao bounds which accurately characterized the scatter in the

parameter estimates. This analysis lends confidence in the new technique for future application

to determining appropriate Cramer-Rao lower bounds for parameters estimated from flight test

data.



II. Theoretical Development

A linear model structure for the aircraft dynamics was assumed a priori as a result of the

small perturbations assumption. The control inputs were considered perturbations about trim.

The model can be represented as

x(t) = A(0)x(t) + B(0)u(t) (1)

x(0)=0 (2)

y(t) = C(0)x(t) + D(0)u(t) (3)

z(i) = y(i) + 1)(i) i = 1,2 ..... N (4)

where x is the ns x 1 state vector, u is the nc x 1 control vector, and y is the no x 1 output

vector. The no x 1 measured output vector is represented by z(i). The notation y(i) represents

the sampled value of y(t) at t=(i-1)At. There are N sampled data points. For conventional

maximum likelihood, the discrete measurement noise vector u(i) is assumed to be zero mean

white Gaussian and band limited at the Nyquist frequency with

E{,(.i)}=O E{ag(i)_ff (j)}=R_ij (5)

where R is the discrete noise covariance matrix, d_#is the Kronecker delta, and E is the

expectation operator.

The maximum likelihood estimate of the parameter vector maximizes the conditional

probability of realizing the measurements4.5:

0=arg m0ax[ P(ZI0 )] (6)

where Z is the set of all measurement vectors, z(i) for i= 1, 2, ..., N. The conditional

probability distribution, P( Z]0 ), is also known as the likelihood function, L( 0 ), and is given

by
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L(O)---P(ZIO)=
1

exp1-1' }[ 2/___ [z(i)-y(i)]rR-I [z(i)-y(i)]
(7)

Maximizing the likelihood function in equation (7) is equivalent to minimizing its negative

logarithm, known as the log likelihood function,

N
1

-InL(O)=2-Z
i=1

[z(i)- y(i)]T R-l [z(i)- y(i)] + N lnlR[
2

(8)

where the added constant n° N ln(27r) was omitted because it has no effect on the optimization.
2

When R is known, minimizing the log likelihood function in equation (8) is equivalent to

minimizing the cost function

N1

i=1

[z(i) - y(i)] T R -1 [z(i) - y(i)] (9)

The cost in equation (9) can be minimized using a modified Newton-Raphson technique to

determine parameter updates 5, starting from some initial guess of the parameter vector. The

initial guess for the parameter vector can be obtained from equation error methods 6. When the

parameter vector estimate, 0, is close to the true parameter vector, 0, the estimated output can be

linearized with respect to the parameter vector,

y(i)=_(i)+ ay(i)] (0-6)
O0 le=6

i=1,2 .... ,N (10)

where _(i) denotes the output vector computed using the estimated parameter vector 0 at time

(i-1)At. Defining the sensitivity matrix,

S(i) = by(i)

30 0=6
i=1,2 ..... N (11)

8



equation(10)becomes

y(i) = _(i)+ S(i)(O- O) i = 1,2 ..... N (12)

Thef h column of the sensitivity matrix contains the output sensitivities for theft h parameter, 0j,

computed from

d[dx] dA x AdX dB

-_LdO,j = cloy + dO, +_-_ju (13)

dx
_(0)= 0 (14)
dOj

dy dC c aX aD--= --x + + --u (15)
dOj dOj dOj dOj

forj=l, 2 ..... np, where np is the number of parameters. Equations (13)-(15) follow from

differentiating equations (1)-(3) with respect to the 0j, along with the assumed analyticity of x.

To minimize the cost function, substitute for y(i) from equation (12) into equation (9) and

set the gradient of the cost function with respect to the parameter vector equal to zero,

N

VeJ(O) =- 2 S(i)TR -1 [z(i)-_(i)-S(i)(O-O)1=0
i=l

(16)

Solving for the parameter update gives

Ate- O-O = S(i)rR-1S(i) S(i)rR -1 [z(i)-_r(i)]
i=1

(17)



Equation(17)givesthemodified Newton-Raphson step which is added to a current estimate

of the parameter vector in order to approach the true value of the parameter vector. The

"modified Newton-Raphson" name arises from the fact that equation (17) can also be found by

expanding the cost function to second order in terms of A0, and using a conventional

Newton-Raphson optimization with part of the second order gradient term dropped (see

reference [5] for details). In practice, there are times when the modified Newton-Raphson step

computed from equation (17) leads to an increase in the cost function or a divergence. This is

because the Newton-Raphson step assumes that the current estimate of the parameter vector is

near the true value. Using several iterations of a simplex algorithm l0 when the

Newton-Raphson step produces an increase in the cost was found to be very effective. This

approach was followed in the present study and makes the optimization divergence proof. If

measured outputs are used instead of computed outputs to force the sensitivity equations in the

first calculation of the modified Newton-Raphson step (see reference [5] for details), the solution

of the maximum likelihood estimation problem becomes insensitive to initial parameter estimates

and it is not necessary to use equation error methods to determine good starting values for the

parameters. This technique was used for all maximum likelihood estimation in the present work.

When repeated application of equation (17) converges, an estimate of the measurement noise

covariance matrix, R, can be obtained from the output residuals. The expression for the estimate

of R comes from taking the derivative of the right hand side of equation (8) with respect to R,

setting the result equal to zero, and solving for R,

= _ ___ [z(i)- y(i)][z(i)- y(i)] T
N i=l

(18)

Often only the diagonal elements of the R matrix are estimated from equation (18), enforcing

an assumption that the measurement noise sequences for the no measured outputs are

uncorrelated with one another. This assumption is generally a good one for real flight test data.

All estimates of the measurement noise covariance matrix in this work assume a diagonal l/

matrix. Retaining the full R matrix could have been done with little conceptual difficulty, but

the expected gains did not warrant the extra computation involved. The noise covariance matrix

estimate, R, was used in the cost function of equation (9), and the minimization process

described above for known R was repeated. Thus, the maximum likelihood estimation proceeds

by alternately estimating the noise covariance matrix from equation (18) and minimizing the cost

function using equation (17) with the latest value of the estimated noise covariance matrix.

Convergence is reached when the estimated parameter vector, 0, the estimated noise covariance

matrix, R, and the cost, J(0), reach nearly constant values. Since maximum likelihood

l0



estimationis asymptoticallyunbiased4,theestimatedparametervector, 0, should be close to the

true value, 0, and the gradient of the cost function with respect to the parameter vector should be

close to zero. From equation (16),

N

voJ(o)lo= --
i=1

S(i) TR -I [z(i) _- _(i)] = 0 (19)

For practical computation, simultaneous satisfaction of the numerical criteria given below

were used to define convergence of the maximum likelihood estimation:

[[/_Jlk--[/)J]k-I < 1.OxlO -5 V j, j=l, 2,...,np

<0.05 V i, i=1,2 ..... no

< 0.001

aJ(°) I < 0.05 V j, j=l,2 ..... np
-_J o--6

(20)

where k denotes the current estimate iteration number and Pii denotes the estimate of the i th

diagonal element of the discrete measurement noise covariance matrix. The approximate

expression for the cost gradient with respect to the parameters (equation (19)) was used for the

last criterion in (20).

The minimum achievable parameter variances using an asymptotically unbiased and efficient

estimator, such as maximum likelihood, are called the Cramer-Rao lower bounds and are given

by the diagonal elements of the dispersion matrix, D 3-5. This dispersion matrix is defined as

the inverse of the information matrix M, the latter being a measure of the information contained

in the data from an experiment. The expressions for theses matrices are 3,4

N

M = _ S(i)TR -1 S(i) (21)
i=1
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]'D = M-l = S(i)rR -l S(i)

i=1

(22)

The square root of the flh diagonal element of D, djj, gives the Cramer-Rao lower bound for

the standard error of the flh parameter,

crj = ? j = 1,2 ..... np (23)

It can be seen from equations (17) and (22) that the dispersion matrix is computed when

determining the modified Newton-Raphson step as part of the conventional maximum likelihood

estimation. The assumption that the output residuals are white and therefore uncorrelated in time

is implicit in the algorithm and indicated in equation (5). The next section details the theory

involved in accounting for arbitrary colored output residuals, which are correlated in time.

When the conventional maximum likelihood estimation has converged, the estimated

parameter vector will be close to the true value and equation (17) holds. Define the residual

vector

v(i) - z(i) - _(i) i = 1, 2 ..... N (24)

The estimated parameter covariance matrix can be expressed using equation (17) with

substitutions from the definitions in equations (22) and (24),

- = E D S(i)TR -1 v(i)v(j)rR -l S(j) D (25)

The dispersion matrix, the discrete noise covariance matrix inverse and the sensitivities in

equation (25) are from the conventional maximum likelihood estimation. If it is assumed that

the dependence of these quantities on the parameter vector estimate is small at the maximum

likelihood solution, the estimated parameter covariance matrix can be written as

12



(26)

Whentheoutputresidualsareassumedto bezeromeanwhite(seeequation(5)), then

E{v(i)v(j)T} = RtSij (27)

From equations (22), (26) and (27) it is easy to see that the parameter vector covariance matrix

reduces to the dispersion matrix, D, when the output residuals are white. For colored residuals,

the estimated parameter covariance matrix can be computed from equation (26) using an

estimated value for E{v(i)v(j)r}. Define the discrete autocorrelation of the output residuals,

N

+ k)r = (28)

where v is assumed to be periodic, so that v(N+l)=v(1), v(N+2)=v(2), etc. It follows that

E{v(i)v(j)T} = 9_w(i- j) (29)

Substituting equation (29) into equation (26),

91vv(i- j) R-l S(j) J D
(30)

Setting k = i -j, equation (30) can be written as

(31)

13



Equation (31) was used to account for colored residuals, which are correlated in time. The

dispersion matrix, D, the estimated noise covariance matrix inverse, R -1, and the sensitivities,

S, are from the conventional maximum likelihood estimation. Equations (28) and (31) embody

the required post-processing applied to a conventional maximum likelihood solution to account

for colored residuals.

For unbiased parameter estimates, the Cramer-Rao inequality can be stated in general form as

-> lo,/z 0)t]' (32)

When the discrete measurement noise is white out to the Nyquist frequency with known

covariance, substituting for P( Z 10 ) from equation (7) makes the fight side of inequality (32)

equal to the dispersion matrix (cf. equation (22)).

If the colored noise sequence representing the residuals is assumed to be caused by modeling

error, then the maximum likelihood parameter estimates are biased, so that

E{0 }= 0+b(0) (33)

where b(0) is a vector of bias errors which are unknown and unknowable in practice. For the

biased parameter estimates, the fight side of inequality (32) will include additional terms where

the elements of the dispersion matrix will be multiplied by Vob(0 ) and [V0b(0)] [Vob(0)] r

(see reference [3] for details). In the present analysis, the deterministic modeling error is

included in the measurement noise, making the residuals colored. The approach taken here for

arbitrary frequency content in the measurement noise could then be viewed as effectively

including the bias error due to deterministic modeling error as part of the parameter accuracy

measure which accounts for colored residuals.

14



IV. Results

The longitudinal short period dynamics of the F- 18 High Angle of Attack Research Vehicle

(HARV) fighter aircraft at approximately 20 degrees angle of attack and an altitude of

25,000 feet were simulated for this study. The model was

,.zq]i t,l.rz zol[ :t ]
Lcj(t)J M a Mq , (t)_l [M6s Mo

(34)

Fol
Lqq ))j LoJ

(35)

Iota,,1 oq(t) | = 0 1
I VoZa VoZq

Laz(t)J g g "

otft) l
+

.qft)j

0 0

0 0

Vo Z_
az o

g

(36)

am(i) [a..(D

qm(i) [ = I art)
I

azm(i) j LaztOJ

vl(i)

+ / 1)2 (i)
/

L1)3(i)

(37)

The input was symmetric stabilator deflection in radians (Ss), and the measured output

quantities were angle of attack in radians (an), pitch rate in radians per second (qm), and vertical

acceleration in g units (azm).

To assess the performance of the new technique for computing Cramer-Rao bounds, thirty

simulation runs were made using various measurement noise processes. Maximum likelihood

estimation as described in the previous section was used to estimate the parameters. Since the

true parameter values were known for the simulation data, the true accuracy of the maximum

likelihood estimates could be compared to that indicated by the conventional calculation of the

Cramer-Rao bounds (equations (18) and (22)) and the alternate calculation accounting for

arbitrary frequency content in the residuals (equation (31)).
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To make the simulation runs realistic, the stabilator input was taken from measured data for

the F-18 HARV flying a maneuver designed specifically for accurate parameter estimation Il

The stabilator input is shown in figure 1. In addition, the true values of the parameters (given in

column 2 of Table 1) approximately reflect the short period dynamics of the F- 18 HARV at

20 degrees angle of attack and an altitude of 25,000 feet. The stabilator input and true parameter

values were the same for each simulated data run, so that the information in the data was

constant. The sampling rate was 50 hz and the time length was 14 seconds. Standard errors

from the Cramer-Rao bounds computed using the conventional computation come from the

square root of the diagonal elements of matrix D in equation (22), with R estimated from

equation (18). The standard errors based on the Cramer-Rao bounds corrected for colored

residuals are the square root of the diagonal elements of the matrix computed by equation (31).

Results from both the conventional computation and the corrected calculation were expressed in

terms of the ratio of the absolute deviation of each parameter estimate from its true value to the

stan a   ran orRao ouo , - forj= 1,2,...,np. For any

given maneuver, only the denominator of this ratio was different for the conventional versus

corrected calculations of the Cramer-Rao bounds. For a maximum likelihood estimator, the

probability distribution of the parameter estimates about their true value approaches a Gaussian

distribution as the number of data points gets large. Therefore, these ratios should be less than 3

almost all the time if the computed Cramer-Rao bounds reflect the true accuracy of the estimates.

For the first ten simulation runs, the added measurement noise was zero mean white

Gaussian, with standard deviations set to one fifth the root mean square of each uncorrupted

output. This made all signal to noise ratios approximately 5 to 1. Typical simulated measured

outputs are shown in figure 2, from run 1. Figure 3 shows a typical noise sequence. Noise

power was uniform over the entire frequency band out to the Nyquist frequency, 25 hz, as

shown in the noise power spectrum of figure 4.

Tables 1 through 10 contain the results from the maximum likelihood estimation using

simulated data runs 1 through 10, respectively. The values in the last two columns of each table

are the ratio of true parameter estimate accuracy to the computed Cramer-Rao bounds for the

standard errors_ Measurement noise power was evenly distributed up to the Nyquist frequency

for each of these cases. Nearly all values in the last two columns of tables 1 through 10 were

less than 3, indicating that both the conventional and the corrected Cramer-Rao bounds

accurately reflected the true parameter estimation accuracy. Figures 5 and 6 depict typical results

for one parameter, Za, for these 10 runs. The error bars represent the Cramer-Rao bounds for

the standard errors computed using the conventional calculation for figure 5 and the corrected

calculation for figure 6. The error bars in both plots accurately reflect the scatter of the parameter

estimates. The harmony between the Cramer-Rao bounds and the scatter in the estimates

indicates that there is sufficient information in the data and that the length of the data records is
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sufficientfor thetrueaccuracyof theparameterestimatesto closely approach the Cramer-Rao

bounds.

For simulation runs 11 through 20, the random measurement noise power was limited to

frequencies between 0 hz and 0.5 hz, inclusive. This frequency band corresponds roughly to the

bandwidth of the uncorrupted simulated outputs. Figure 7 shows typical simulated measured

outputs which have been corrupted by the band limited noise, from run 11. The noise sequence

was generated by passing zero mean white Gaussian noise through a fifth order Chebyshev low

pass filter with frequency cutoff set at 0.5 hz, then scaling the resulting band limited noise to

achieve the same 5 to 1 signal to noise ratio used for the other simulation runs. Figure 8 shows a

typical band limited noise sequence. Figure 9 is the corresponding power spectrum, showing

essentially no components above 0.5 hz.

Tables 11 through 20 contain the results from the maximum likelihood estimation using the

simulated data runs 11 through 20, respectively. The data in these tables show that the

conventional calculation for the Cramer-Rao bounds frequently gave values that were too small

(see the fourth column of each table). In contrast, the last column of each table indicates that the

corrected calculation for the Cramer-Rao bounds has properly accounted for the change in the

residual spectra, since these values rarely exceed 3.

Figures 10 and 11 depict the results for one parameter, Za, for these l0 runs. The error bars

represent the Cramer-Rao bounds for the standard errors computed using the conventional

calculation for figure 10 and the corrected calculation for figure 11. These plots show that the

standard calculation for the Cramer-Rao bounds gave optimistic values, whereas the corrected

calculation for the Cramer-Rao bounds automatically produced Cramer-Rao bounds which

accurately reflect the scatter of the estimates. Results for other parameters were similar to those

plotted in figures l0 and 11 for Zet.

It was not necessary to supply information about the bandwidth of the dominant power in the

residuals to the algorithm for corrected Cramer-Rao bounds because this information was

incorporated automatically via the autocorrelation function appearing in equation (31). Thus, the

algorithm should work for arbitrary residual spectra. This attribute can be important when the

colored measurement noise includes significant power from unmodeled structural modes, whose

frequency content is generally higher than that of the rigid body dynamics.

For simulation runs 21 through 30, ten different colored noise sequences were used with the

same uncorrupted simulation outputs. Each noise sequence had 90% of its power in the

frequencies between 0 hz and 0.5 hz inclusive, with the remaining power taken by white

Gaussian noise out to the Nyquist frequency. The noise sequences were thus a combination of

the two types of noise used previously. Figure 12 shows typical simulated measured outputs

which have been corrupted by the colored noise, from run 21. This type of noise is quite close

to the residual sequences observed when analyzing real flight test data, and was chosen for that
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reason.Thebandlimited part of the noise sequence was generated in the same manner as

before, and the resulting colored noise sequences were scaled to maintain the same 5 to 1 signal

to noise ratio used in the other simulation runs. Figure 13 shows a typical colored noise

sequence. Figure 14 is the colored noise power spectrum, showing most of the power below

0.5 hz, with some small components out to the Nyquist frequency, 25 hz. The vertical scale for

figure 14 is logarithmic so that the relatively small high frequency components can be seen.

Tables 21 through 30 contain the results from the maximum likelihood estimation using the

simulated data runs 21 through 30, respectively. As in the case of narrow band limited noise,

the data in these tables show that the conventional calculation for the Cramer-Rao bounds

frequently gave optimistic values for the parameter accuracies. The last column of each table

indicates that the corrected calculation for the Cramer-Rao bounds again properly accounted for

the change in the residual spectra. As before, the values in the last column of each table rarely

exceed 3. Additional runs (results not shown) were made with various residual power spectra,

including some runs where residuals from flight test data analysis were added to the uncorrupted

simulated outputs. Results from all these cases were very similar to those presented in tables 11-

30.

Figures 15 and 16 depict the results for one parameter, Za, for the 10 colored noise runs.

The error bars represent the Cramer-Rao bounds for the standard errors computed using the

conventional calculation for figure 15 and the corrected calculation for figure 16. Results for

other parameters were similar to those plotted in figures 15 and 16. From these plots, and in

general from the last two columns of tables 11-30, it is clear that the conventional calculation for

the Cramer-Rao bounds gave optimistic values for the Cramer-Rao bounds when the residual

spectrum was not white out to the Nyquist frequency. This is in agreement with previous

research 3,4,8,9. In addition, the extent to which the conventional Cramer-Rao bounds

misrepresented the true parameter accuracy was neither consistent nor predictable from parameter

to parameter or from run to run. This phenomena has been observed previously when analyzing

flight test data from repeated maneuvers 6. It follows that the common practice of applying a

fixed correction factor to the conventional calculation of the Cramer-Rao bounds is incorrect to a

varying and unpredictable degree in cases where the residual spectrum is colored by modeling

error in the frequency band of the system dynamics. The corrected calculation for the

Cramer-Rao bounds presented here produced consistently accurate measures of the scatter in the

parameter estimates, using an algorithm with moderate computational cost that can be applied as

a post-processing of the output residuals from a conventional maximum likelihood solution.
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V. Concluding Remarks

Algorithms for aircraft parameter estimation using the output error formulation of maximum

likelihood are in widespread use. Current practice for determining the accuracy of such estimates

calls for use of a correction factor to account for the fact that the output residuals from real flight

test data analysis are virtually never white out to the Nyquist frequency, as assumed in the

conventional theory, but rather are colored, with most of th_ power in a frequency band similar

to that of the system dynamics. Such an approach is shown here to be inadequate if a

quantitative measure of the accuracy of the parameter estimates is desired. In this work, an

expression based on theoretical analysis was developed to compute parameter accuracy measures

for maximum likelihood estimates with colored residuals. This result is important because the

residuals from maximum likelihood estimation are almost always colored in practice, due to

unmodeled dynamics in the real physical system. At a more general level, the utility of the

parameter estimates is limited when there is no f'm-n idea of the accuracy of the estimates.

The calculations involved in the algorithm for computing Cramer-Rao bounds that account

for colored residuals can be carried out in a short subroutine called at the conclusion of a

conventional maximum likelihood estimation algorithm. This approach was used to generate the

results in this report. Bandwidth of the dominant power in the residuals need not be known or

estimated, as it is accounted for automatically in the algorithm. In addition, there is no need for

heuristic correction factors. The algorithm works for arbitrary residual spectra and all

calculations are performed in the time domain. This obviates the need for any frequency domain

analysis of the residuals.

Simulated data runs using various noise sequences were carried out to demonstrate the

performance of the algorithm in computing the Cramer-Rao bounds. This analysis showed that

the algorithm developed in this work is a simple, accurate, and generally applicable technique for

quantitative determination of the quality of parameter estimates for the output error formulation of

maximum likelihood estimation.
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Table 1 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 1 (white noise)

Parameter

Z_

Z&

zo

Mot

Mq

M&

True Value, 0

-0.1200

-0.0600

-0.0496

0.0000

-0.6600

-0.1400

Estimate, 0

-0.1177

-0.0611

-0.0504

0.0001

-0.6539

0-0

standard o"

1.0548

0.7296

0.4106

0.5446

-0.1447

0.7539

0.7933

0-0

corrected o"

1.4207

1.2435

0.4040

0.5244

0.9211

1.1264

-1.3265 -1.3405 1.0528 1.4058

Mo 0.0000 -0.0003 1.0208 1.4282

Ku 1.0000 0.9816 1.5406 2.5668

a_o 0.0000 -0.0007 0.9368 1.5153

Table 2 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 2 (white noise)

Parameter

Zo_

Zq

Z&

Zo

Moc

M&

M o

True Value, 0

-0.1200

-0.0600

-0.0496

0.0000

-0.6600

-0.1400

-1.3265

0.0000

Estimate, 0

-0.1209

-0.0585

-0.0541

0.0000

-0.6636

-0.1500

-1.3275

standard o"

0.4131

1.0211

2.5239

0.0664

0.4567

1.6872

0.0001

0.0767

0.2690

Ka 1.0000 1.0144 1.1990

azo 0.0000 -0.0001 0.1342

0-0

corrected

0.3967

1.0842

2.0164

0.1083

0.4623

1.6888

0.0677

0.3230

1.0913

0.1777
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Table 3 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 3 (white noise)

Parameter

Za

zo

M_f

M&

Mo

True Value, 0

-4). 1200

-0.0600

-0.0496

0.0000

-0.6600

Estimate, b

-0.1221

-0.0585

-0.0490

0.0001

-0.6673

I I

-0.0003

standard tr corrected tr

0.9816 1.4478

1.0225

0.3159

0.4658

0.9080

-0.1400 -0.1361 0.6594

-1.3265 -1.3218 0.3490

0.0000 1.0256

2.1056

0.4469

0.9001

0.9536

0.9567

0.4327

1.2033

Ka 1.0000 0.9993 0.0597 0.0993

_o 0.0000 -0.0006 0.8730 1.4775

Table 4 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 4 white noise)

Parameter

Zig

Zq

Z&

True Value, 0

-0.1200

-0.0600

-0.0496

Estimate, _J

-0.1202

-O.O585

-0.0484

/J-0

standard tr

0.0841

1.0499

0.6696

Zo 0.0000 0.0000 0.0428

Ma -0.6600 -0.6619 0.2438

-0.1400 -0.1356

-1.3265 -1.3294M&

0.7730

0.2257

/J-0

correcmd

0.0959

1.8280

0.6834

0.0442

0.2520

1.1375

0.2718

M o

Ka

azo

0.0000 -0.0002 0.6695

1.0000 0.9872 1.0725

0.0000 -0.0002 0.3259

0.7191

1.4470

0.4406
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Table $ LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 5 (white noise)

Parameter True Value, 0

Zq

Z&

Estimate,

standard tr

Za -0.1200 -0.1227 1.2756 1.6603

-0.0600 -0.0592 0.5819

] b-o
corrected cr

0.7766

-0.0496 -0.0471 1.4643 1.6532

Zo 0.0000 0.0001 0.5712 0.8265

Ma -0.6600 -0.6638 0.4640 0.6219

0.1600-0.1400 -0.1410 0.1766

-1.3265 -1.3114 1.1265 1.2809

Mo 0.0000 -0.0003 1.0805 1.5154

Ka 1.0000 1.0137 1.0843 1.4075

a_o 0.0000 -0.0010 1.3312 2.2710

Table 6 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 6 (white noise)

Parameter True Value, 0

Zq

Z&

Estimate, /) 0-0

-0.0607

/)-0

0.4725

standard_ corrected

Za -0.1200 -0.1221 0.9482 1.4726

-0.0600 0.8838

-0.0496 -0.0509 0.6952 0.8868

Zo 0.0000 0.0000 0.1016 0.2306

Ma -0.6600 -0.6714 1.3503 1.7707

-0.1421 0.3458-0.1400

M&

0.5127

-1.3265 -1.2985 2.0312 2.8107

Mo 0.0000 -0.0003 0.8904 1.3496

Ka 1.0000 1.0071 0.5587 0.9856

ato 0.0000 0.0004 0.5209 1.0113
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Table 7

Parameter

Za

Zq
Z&

LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 7

True Value, 0

--0.1200

--0.0600

-0.0496

0.0000

-0.6600

Estimate,

-0.1230

-0.0594

-0.0475

-0.0002

-0.6599

-0.1434

white noise)

standard a

1.3563

0.3911

1.1131

0.9742

0.0086

0.5610-0.1400

corrected tr

1.8503

0.6524

1.4936

1.4870

0.0086

0.7487

-1.3265 -1.3175 0.6618 0.7779

Mo 0.0000 -0.0005 1.7136 1.7471

Ka 1.0000 1.0051 0.4151 0.4524

ato 0.0000 -0.0008 1.0277 1.5639

Table 8 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

Parameter

Z_

Zq

Z&

CRAMER-RAO BOUNDS - RUN 8

True Value, 0

-0.1200

-0.0600

Estimate,

-0.1189

-0.0608

white noise)

standard cr

0.5204

0.5574

] 0-0
co_ected

0.6378

0.7960

-0.0496 -0.0534 2.0626 2.1984

Zo 0.0000 0.0001 0.2962 0.6148

Ma -0.6600 -0.6591 0.1022 0.1091

-0.1400 1.4299

M&

-0.1488 1.5541

-1.3265 -1.3376 0.8098 0.9708

Mo 0.0000 -0.0002 0.7846 1.2381

Ka 1.0000 0.9856 1.1581 1.3866

ato 0.0000 0.0001 0.1900 0.3346
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Table 9 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

Parameter

Z_

Zq

Z&

Zo

M_

CRAMER-RAO BOUNDS - RUN 9

M&

True Value, 0

--0.1200

-0.0600

-0.0496

0.0000

-0.6600

-0.1400

Estimate, _J

-0.1176

-0.0618

-0.0491

-0.0001

-0.6697

-0.1377

white noise)

standard tr

1.1423

1.2403

0.2888

0.2937

1.2030

0.3846

0-0

corrected tr

1.5923

2.3168

0.3086

0.6062

1.2607

0.6424

-1.3265 -1.3222 0.3165 0.3578

Mo 0.0000 -0.0002 0.7802 1.0720

Ka 1.0000 0.9875 1.0244 1.4360

azo 0.0000 -0.0002 0.3095 0.5527

Table 10 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 10 (white noise)

Parameter

Zt_

Z&

Zo

Mt_

M&

True Value, 0

-0.1200

-0.0600

-0.0496

0.0000

-0.6600

-0.1400

Estimate,

-0.1196

-0.0616

-0.0516

0.0000

-0.6582

-0.1324

/J-0

standard tr

0.1822

1.0827

1.0752

0.1337

0.2270

1.2841

corrected ty

0.2446

1.6376

1.4153

0.3304

0.3590

1.6340

-1.3265 -1.3196 0.5162 0.6758

Mo 0.0000 0.0001 0.3587 0.7559

Ka 1.0000 1.0001 0.0083 0.0098

azo 0.0000 0.0006 0.7700 1.5711
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Table 11 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 11 (band limited noise)

Parameter

Z_

Zo

M_

Mo

Ka

azo

True Value, 0

-0.1200

-0.0600

-0.0496

0.0000

-0.6600

-0.1400

-1.3265

Estimate, /_

-0.1149

-0.0619

-0.0682

-0.0012

-0.7419

-0.0890

-1.2245

0-0

standard tr

2.8625

1.4836

12.367

5.1209

12.371

11.658

8.6593

corrected cr

0.5850

0.3219

1.5388

1.5395

2.3583

2.6873

1.6371

0.0000 -0.0029 10.913 2.2833

1.0000 0.8941 10.887 2.4662

0.0000 0.0022 3.4780 0.7790

Table 12 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 12 (band limited noise)

Parameter

Zct

Zq

Z&

Zo

M_

Mo

Koc

azo

True Value, 0

-0.1200

--0.0600

-0.0496

0.0000

-0.6600

-0.1400

-1.3265

Estimate,

-0.0994

-0.0707

-0.0544

0.0006

-0.6357

-0.2010

I I 0-o
standard tr

13.290

9.8702

3.7855

2.6205

3.1622

-1.4017

10.054

5.7487

co_ected o

2.6056

2.0558

0.5116

0.5521

0.5429

1.8170

1.0385

0.0000 -0.0013 4.4388 0.9535

1.0000 0.9231 6.7654 1.4972

0.0000 0.0025 4.3671 1.0023
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Table 19 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 13 (band limited noise

Parameter

Z_

Z&

Z o

Ma

Mq

M&

Tree Value, 0

-0.1200

-0.0600

Estimate, 0 0-0 [

-0.1099

-0.0621

standard o"

5.1625
!

1.4541

-0.0496 -0.0699 11.311

0.0000 0.0033 16.282

-0.5983-0.6600

-0.1400 -0.1512

8.099

1.9002

corrected cr

0.9119

0.2987

1.8446

1.9158

1.3766

0.3340

-1.3265 -1.3681 3.6237 0.5943

Mo 0.0000 0.0003 1.2479 0.2248

Ka 1.0000 0.8803 12.575 2.4115

azo 0.0000 0.0008 1.0877 0.2456

Table 14 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 14 (band limited noise)

Parameter True Value, 0

z.

Z&

Estimate, /9 0-0

standard ty corrected cr

Za -0.1200 -0.1081 8.3870 1.3979

-0.0600 -0.0731 12.996 2.3744

-0.0496 -0.0615 9.1655 1.2917

Zo 0.0000 0.0000 0.1282 0.0286

Ma -0.6600 -0.5681 17.640 2.6978

-0.1400 -0.1354

M&

0.9946 0.1601

-1.3265 -1.5225 19.407 2.6978

Mo 0.0000 0.0024 12.510 2.0434

Ka 1.0000 0.9276 8.2949 1.3658

azo 0.0000 -0.0050 9.2577 1.8631
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Table 15 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS -RUN 15 band limitednoise)

Parameter

Z_

Zq
Z&

zo

Mot

M&

True Value, 0

-0.1200

-0.0600

-0.0496

0.0000

-0.6600

-0.1400

Estimate,

-0.1045

-0.0679

-0.0598

0.0014

-0.5980

-0.1786

0-0

istandard tr _corrected tr

8.3263 1.6232

5.7664

5.8118

6.5776

8.3445

6.7034

1.4616

1.0155

0.7742

1.3884

1.1026

-1.3265 -1.4396 9.5540 1.5099

Mo 0.0000 -0.0014 5.5733 0.9312

Ka 1.0000 0.8851 11.832 2.3743

a_o 0.0000 -0.0039 5.3693 1.1936

Table 16 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 16 (band limited noise

Parameter

Z_

Z&

Zo

M_

M&

True Value, 0

-0.1200

-0.0600

-0.0496

0.0000

-0.6600

-0.1400

Estimate,

-0.1124

-0.0563

-0.0610

0.0017

-0.6657

0-0

standard tr

4.6543

3.3345

7.9378

7.5169

0.8029

-0.1300 1.9607

corrected

0.9482

0.7702

1.0951

2.6730

0.1566

0.4864

-1.3265 -1.3777 4.2624 0.8354

Mo 0.0000 -0.0032 11.224 2.3899

Ka 1.0000 0.8907 10.786 2.7068

a_. 0.0000 0.0010 1.5965 0.3650
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Table 17 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 17 (band limited noise

Parameter

Zot

Zq

Z&

Z o

M_

M&

True Value, 0

-0.1200

-0.0600

-0.0496

0.0000

-0.6600

-0.1400

Estimate, /_

-0.1330

-0.0559

-0.0446

-0.0008

-0.6674

-0.1669

standard cr

6.1532

2.8302

2.8864

3.1786

0.9175

4.3509

corrected (r

1.2228

0.6600

0.4214

0.7223

0.1392

0.6964

-1.3265 -1.3144 0.9017 0.1410

Mo 0.0000 0.0006 2.1354 0.4174

Ka 1.0000 0.9871 1.0957 0.2132

ato 0.0000 -0.0063 8.9763 2.1863

Table 18 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 18 (band limited noise)

Parameter

Zot

Z&

Z o

Mot

M o

got

az o

True Value, 0

-0.1200"

-0.0600

-0.0496

0.0000

-0.6600

Estimate, b 0- 0

standard cr

0-0

corrected cr

-0.1258 3.3745 0.7023

-0.0616 1.4015 0.3568

-0.0394 7.2608

1.8180

9.6633

-0.0004

-0.7327

1.3276

0.3257

1.4463

-0.1400 -0.1669 5.2334 1.0887

-1.3265 -1.2966 2.4478 0.4103

-0.0027 9.9423

5.7806

1.5384

1.0656

0.0009

0.0000

1.0000

0.0000

1.6606

1.1744

0.3534
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Table 19 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 19 (band limited noise)

Parameter

Z_

Zq
Z&

Zq

Ma

M&

True Value, 0

-0.1200

-0.0600

-0.0496

0.0000

-0.6600

-0.1400

Estimate,

-0.1087

-0.0721

-0.0751

-0.0007

-0.6194

-0.2087

/J-0

standardcr

6.2247

9.2315

16.660

3.0161

5.2636

10.602

corrected cr

1.0573

1.5896

2.1714

0.9104

0.7920

2.0165

-1.3265 -1.4105 6.1350 0.9313

Mo 0.0000 0.0009 3.5568 0.6639

Ka 1.0000 0.9515 4.3324 0.7987

ato 0.0000 0.0016 2.5690 0.5834

Table 20 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 20 (band limited noise)

Parameter

Z_

Z&

True Value, 0

-0.1200

-0.0600

Estimate, _J

-0.1383

-0.0738

I
standard o"

nl

8.2762

8.8645

corrected cr

1.6074

1.6306

-0.0496 -0.0535 2.2699 0.3648

Zo 0.0000 -0.0010 4.7563 0.9479

Ma -0.6600 -0.6931 4.7258 0.9052

4.2280-0.1400 -0.1183 0.8128

M& -1.3265 -1.1958 11.693 2.5125

Mo 0.0000 0.0016 7.6997 1.8215

Ka 1.0000 1.1679 13.186 3.2653

ato 0.0000 0.0050 7.6176 1.9777
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Table 21 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 21 (colored noise)

Parameter

Za

Zq
Z&

True Value, 0

--0.1200

-0.0600

-0.0496

Estimate,

-0.1061

-0.0533

-0.0545

standard tr

7.5168

4.9643

2.6371

corrected tr

1.3607

1.1594

0.4190

Zo 0.0000 0.0011 4.7742 1.4312

Ma -0.6600 -0.6146 5.6133 0.9139

M&

-0.1400 10.611-0.2056 1.8809

-1.3265 -1.5247 14.548 2.2400

Mo 0.0000 -0.0003 1.1757 0.2369

Ka 1.0000 0.8501 15.686 3.2294

azo 0.0000 0.0051 6.8756 1.6655

Table 22 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 22 (colored noise)

Parameter True Value, 0

Zq
Z&

Estimate, /9

0.3084

standard a corrected _i

Za -0.1200 -0.0980 12.151 2.4711

-0.0600 -0.0596 0.0843

-0.0496 -0.0727 13.159 2.3480

Zo 0.0000 0.0025 11.567 2.1292

Ma -0.6600 -0.6460 1.9121 0.2917

-0.1039

M&

-0.1400 7.1132 1.2110

-1.3265 -1.3936 5.6630 0.9275

Mo 0.0000 -0.0001 0.3830 0.0599

Ka 1.0000 0.8992 9.6421 1.7422

azo 0.0000 0.0031 4.4546 1.0164
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Table 23 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 23 (colored noise)

Parameter

Z_

Z&

True Value, 0

Mq
M&

-0.1200

-0.0600

Estimate, _J /J - 0

-0.1392

-0.0618

standard o"

-0.0535

9.4275

1.3040

/J-0

20.405

corrected or

1.8622

0.3227

-0.0496 -0.0379 7.2643 1.1618

Zo 0.0000 0.0016 8.0830 1.0965

Ma -0.6600 -0.8052 19.129 2.9224

-0.1400 3.1831

-1.3265 -1.1171 18.589 2.9508

Mo 0.0000 -0.0036 13.580 2.0105

Ka 1.0000 1.1461 12.255 1.8967

azo 0.0000 -0.0114 16.743 3.4106

Table 24 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 24 (colored noise)

Parameter

Z_

Z&

True Value, 0

-0.1200

-0.0600

Estimate,

-0.1027

-0.0704

-0.0496 -0.0603

Zo 0.0000 0.0019

Ma -0.6600 -0.6089

-0.1400 -0.1711

M&

/J-0

standard or

9.8009

8.1676

/J-0

corrected

2.0916

2.1834

6.5715 1.2755

8.7375 2.8303

6.6303 1.1690

5.1944 0.9892

-1.3265 -1.4595 10.420 1.7979

Mo 0.0000 0.0025 10.118 1.9189

Ka 1.0000 0.9955 0.3821 0.0893

10.434azo 0.00660.0000 2.7255
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Table 25 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 25 (colored noise)

Parameter True Value, 0

Zq
Z&

Estimate, /) 0-0

standard tr corrected o"

Za --0.1200 -0.1257 3.0188 0.5376

--0.0600 -0.0580 1.5276 0.2589

-0.0496

Zo 0.0000

-0.6600

-0.0407 5.3341 0.7403

-0.0017 7.3544 1.5254

MR -0.5431

-0.2109-0.1400

16.323

10.844

2.9242

M&

1.7878

-1.3265 -1.5004 13.443 2.2870

Mo 0.0000 0.0028 12.062 2.2904

Ka 1.0000 0.9085 8.8839 1.5744

az,, 0.0000 -0.0061 8.8680 2.0119

Table 26 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 26 (colored noise)

Parameter True Value, 0

Z&

Estimate,

standard ff corrected

Za -0.1200 -0.1403 10.344 2.1157

-0.0600 -0.0491 8.6461 2.2289

-0.0496 -0.0293 13.587 3.2656

Zo 0.0000 -0.0027 10.554 2.8641

MR -0.6600 -0.6383 3.0224 0.4923

Mq -0.1400 -0.1871 7.5879 1.2408

M& -1.3265 -1.3930 4.7080 0.7781

Mo 0.0000 0.0023 9.1923 1.5604

Ka 1.0000 1.0088 0.7208 0.1160

az,, 0.0000 -0.0060 9.4544 2.1602
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Table 27 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 27 (colored noise)

Parameter

Z_

Z&

Z¢

Ma

True Value, 0

-0.1200

-0.0600

-0.0496

0.0000

-0.6600

-0.1400

Estimate, /_

-0.1282

-0.0637

-0.0569

-0.0021

-0.5912

-0.2033

standard a

3.8259

2.4450

4.3716

8.9336

8.7992

9.2512

] b-O acorrected

0.7433

0.4965

0.6075

2.8628

1.5334

1.7920

-1.3265 -1.3229 0.2754 0.0477

Mo 0.0000 0.0005 2.1958 0.4992

Ka 1.0000 1.0787 6.0239 1.1390

a,o 0.0000 -0.0062 8.7125 2.1701

Table 28 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 28 (colored noise)

Parameter True Value, 0

Zq

Z&

Estimate, /) /)-0 0-0

standard a co_ected

Za -0.1200 -0.1018 9.7989 1.8491

-0.0600 -0.0602 0.1275 0.0231

-0.0496

0.0000

-0.6600

-0.0709

0.0010

-0.6244

-0.I187

13.386

3.8657

4.7377

3.5376-0.1400

zo

Ma

1.9596

M&

1.4456

0.8179

0.7562

-1.3265 -1.3361 0.7291 0.1450

Mo 0.0000 -0.0017 5.9438 1.4466

Ka 1.0000 0.8465 13.959 3.0485

a,o 0.0000 -0.0005 0.7315 0.1856
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Table 29 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 29 (colored noise)

Parameter

Zt_

Zq

Z&

Zo

M_

M&

True Value, 0

-0.1200

-0.0600

-0.0496

0.0000

-0.6600

Estimate, t)

-0.1053

-0.0527

-0.0594

0.0022

-0.6366

0-0

standard cr

7.9948

5.4278

5.4603

10.157

-0.1400 -0.1020

3.5389

7.6247

0-0

corrected cr

1.1955

1.5089

0.9909

1.7000

0.6381

1.4104

-1.3265 -1.3994 6.0895 1.1411

Mo 0.0000 0.0015 6.6273 1.2007

Ka 1.0000 0.9739 2.5720 0.4449

a_, 0.0000 0.0035 5.1899 1.0830

Table 30 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 30 (colored noise)

Parameter

Zt_

Z o

Mol

M&

M o

Ka

az o

True Value, 0

-0.1200

-0.0600

-0.0496

0.0000

--0.6600

-0.1400

-1.3265

0.0000

1.0000

0.0000

Estimate,

-0.1303

-0.0619

-0.0602

-0.0012

-0.7208

-0.1472

-1.2376

-0.0051

0.9600

0-0

standard tr

4.8615

1.2497

6.0041

5.3350

8.0705

1.3693

7.3530

18.109

-0.0026

3.8148

3.2722

0-0

corrected cr

0.8891

0.3016

0.9943

1.0467

1.2027

0.2678

1.2539

2.6469

0.7254

0.6512

35



0.06

0.04

0.02

_s 0

(rad)

-0.02

-0.04

-0.06

-0.08 I I I i I I I I I I I [ I I I i i i i I I I [ i i i

0 2 4 6 8 10 12 14

time (sec)

Eiggr.g_l. Stabilator input

0.05

0

-0.05

-0.1

' ' ' I ' ' ' I ' ' ' i ' ' ' i .........

' , J , i i [ i i i i i i l t i i i i , I n ,

0 2 4 6 8 10 12 14

time (see)

irF._lgl!Ee._gt_ Simulated angle of attack with white measurement noise

36



0.1

0.05

qm 0

(rad/sec)

-0.05

-0.1

...... I ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' '

0 2 4 6 8 10 12 14

time (sec)

Figure 2(b) Simulated pitch rate with white measurement noise

0.2

0.15

0.1

0.05

az ,,, 0

(g)
-0.05

-0.1

i , , , , , , , , , , , I ' ' i ' ' ' I ' ' '

7.................r.............................................................i....................i.....................i................
................... i................ i...................._.................................... _......................

.................. a ..................... i .................... :..................... i ......................................... _ ..................

o,_.......................................i..........................................i....................T.....................i..................
-0.2 ,,, I,,, I , , , ,,, I,,, t,,, J i , ,

0 2 4 6 8 10 12 14

time (see)

Figure 2(c) Simulated vertical acceleration with white measurement noise

37



0.03

0.02

0.01

vl 0
(rad)

-0.01

-0.02

-0.03 , ,, I , , ,
0 2 4 6 8 10 12 14

time (sec)

Figure 3 White noise sequence added to angle of attack

0.0005

0.0004 i _ i

0.0003 ....................] ...................................................................................
/

0.0001

o
0

.... I .... I .... I ....

5 10

......................... I ...........................

15 20 25

frequency (hz)

Figure 4 Power spectrum of white noise added to angle of attack

38



Z_

(1/sec)

-0.11

-0.115

-0.12

-0.125

-0.13

I I I I I I I I I I

I I I I I I I I I I

1 2 3 4 5 6 7 8 9 10

run number

Figure 5 Za parameter estimates with standard Cramer-Rao bounds for white noise

Z_

(1/sec)

-0.11

-0.115

-0.12

-0.125

-0.13

T I I I I I I I I I

I I I I I I I I I I

1 2 3 4 5 6 7 8 9 10

run number

Figure 6 Za parameter estimates with corrected Cramer-Rao bounds for white noise

39



Obm

(rad)

0.05

0

-0.05

-0.1

I r ! i i i ! ! ! [ i i i ! i i ! I i ! i I

!

i

2 4 6 8 10 12 14

time (see)

F_igl!r_g.7__ Simulated angle of attack with band limited measurement noise

0.1

0.08

0.06

0.04

qm 0.02

(rad/see) 0

-0.02

-0.04

-0.06

' ' ' I ' ' ' I ............ I ' ' '

..................i....................................i....................i....................i....................i..................

.................. _."............................... _..................... _.............. i..................... _...................

.................. t ....................... _..................... i.... _..................... _................

"i................. t .............. 4-................. _ ................... _.................... _.................

0 2 4 6 8 10 12 14

time (sec)

Simulated pitch rate with band limited measurement noise

40



0.15
fl_ i_ i_1 fllllijillj Iii

0.05

az m 0

(g) -0.05

-0.1

-0.15 ......................................................................................................i

-0.2 ,,,r,l,l,, ....... Ill,Ill+

0 2 4 6 8 10 12 14

time (see)

Fi_.nare 7(e) Simulated vertical acceleration with band limited measurement noise

1) 1

(rad)

0.025

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

............ I ' ' ' I ' ' ' I ' ' '
i : i

..................i....................i....................r....................i....................i....................i............

.................. ".'..................... i .................... +..................... +.................... +..................... ._.......

.................._........................................... i...................._....................._................

................. i ........................ _. ._..................

I i i I , i ....... I I I i I i I i I i i i

0 2 4 6 8 10 12 14

time (see)

Figure 8 Band limited noise sequence added to angle of attack

41



0.005

0.004

0.003

0.002

0.001

0

-0.001
0 25

Power spectrum of band limited noise added to angle of attack

Z a

(l/sec)

-0.08
I I I I I I I I I I

-0.09 ...............................................................................................................................................

-0.I ......................_......................................................................................................................

-0.II ...................................._ .........._................................................................._ ......................

-0.12 ................................................................................................................................................

-0.13
................................................................................................................................................

-0.14 ...................................................................................................................................ff .........

-0.15 ................................................................................................................................................

-0.16 I I 1 I I I I I I I

11 12 13 14 15 16 17 18 19 20

mnnum_r

Za parameter estimates with standard Cramer-Rao bounds for band limited noise

42



Zo_

(1/sec)

-0.08
I I I I I I I I I I

-0.09 ................................................................................................................................................

-0.1 1

-0.12 .........................................................................................................................

-0.13

-0.14

-0.15

-0.16 l J I i I I i l i

11 12 13 14 15. 16 17 18 19 20

run number

Figure 11 Za parameter estimates with corrected Cramer-Rao bounds for band limited noise

_m

(rad)

0.05
...... i ' ' ' i ' ' ' I ' ' ' I ......

' i i!

0

-0.05

-0.1 ............................................................................................................................i ..................

i i [ i i i [ i i I I I I I l , i , i i , l ,

0 2 4 6 8 10 12 14

time (see)

Figure 12(a) Simulated angle of attack with colored measurement noise

43



0.I

0.05

qm 0

(rad/sec)

-0.05

-0.I
0

i I i 1 i i ! i i i I i I ! i i I i ! ! !

.................. _ .............................. _ .................... , .......... _.......................................

I I ' I i i I I i i i I I I I I i i , I i i i I , i i

2 4 6 8 10 12 14

time (sec)

Simulated pitch rate with colored measurement noise

az
m

(g)

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

I I i I I I I I I I I I [ 1 I I I I I I I i I

..................T..............................................................i.........................................i..................
,,,I,,, ,,, ,,,I,,, ,,,i, ,,

0 2 4 6 8 10 12 14

time (sec)

Simulated vertical acceleration with colored measurement noise

44



0.03

0.02

0.01

Figure 13 Colored noise sequence added to angle of attack

0.01

0.001

0.0001

Pvlv I 10s

10 -6

10 -7

. I I I I i I I I I I i I I I I I I I I I

1o-_............................T................................i...............................................................................................
lO -9 .... 1 J , , , I * , , , , , , , I , , , ,

0 5 10 15 20 25

frequency (hz)

Figure 14 Power spectrum of colored noise added to angle of attack

45



Z G

(l/sec)

-0.08

-0.09

-0.I

-0.11

-0.12

-0.13

-0.14

-0.15

-0.16

I I I I I I I I I I

...................... .f_ ...................................................... _ ...................... _ ....................................

..................................................................................................................................

.................................... _ ..................................... _. ...............................................................

................................................................................................................................................

I J J I I I I I I I

21 22 23 24 25. 26 27 28 29 30

run number

Za parameter estimates with standard Cramer-Rao bounds for colored noise

Z_t

(l/sec)

-0.08

-0.09

-0.1

-0.II

-0.12

-0.13

-0.14

-0.15

-0.16

1 I I I I I I I I 1

I I I I I I I I I I

21 22 23 24 25 26 27 28 29 30

run number

F.Jgl!F.g__ Za parameter estimates with corrected Cramer-Rao bounds for colored noise

46





REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Pul_ic reporting burden for _ collection of Information is esliml_KI Io overage 1 hour per responN, In_ the time for revi_ Instructions. searching existing data souroos,

gatheringand malnta;_ngthe dataneeded,and¢omplet_gand re_ew_g the collectionofinformation.Sendcommentsregardingthisburden estimateor anyotheraspectof this
coitectlon of Information, including suggestions fix reducing this burden, to Wash_w_gton Heado_ Servioes, DIrectomta fix Information Operations and Reports, 1215 Jefferson Davis

H_hway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Mamlgement and Budget. Paperwork Reduction Project (0704..0188). Washington, OC 20503.

1. AGENCY USE ONLY ( Lwve blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED
I

I September 1994 Contractor Report
4. TITLE AND SUBTaTLE 5. FUNDING NUMBERS

Determining the Accuracy of Maximum LikelihoodParameter Estimates
with Colored Residuals

6. AUTHOR(S)

Eugene A. Morelli and Vladislav Klein

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lockheed Engineedng & Sciences Company
Hampton, VA 23666 and
The George Washington University, JIAFS
Langley Research Center, Hampton, VA 23681-0001

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

NAS1-19000
NCC1-29

505-64-30-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-194893

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Claude R. Keckler

12a. DISTRIBUTION I AVAILABlUTY STATEMENT

Unclassified - unlimited

Subject category - 08

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

An important part of building highfidelity mathematical models based on measured data is calculating the
accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of the
accuracy of parameter estimates, the estimates themselves have limited value. In this work, an expression
based on theoretical analysis was developed to properlycompute parameter accuracy measures for maximum
likelihoodestimates with colored residuals. This result is important because experience from the analysis of
measured data reveals that the residuals from maximum likelihoodestimation are almost always colored. The
calculations involved can be appended to conventional maximum likelihood estimation algorithms. Simulated
data runs were used to show that the parameter accuracy measures computed with this technique accurately
reflect the quality of the parameter estimates from maximum likelihood estimation withoutthe need for analysis
of the output residuals in the frequency domain or heuristicallydetermined multiplicationfactors. The result is
general, although the application studied here is maximum likelihoodestimation of aerodynamic model
parameters from flighttest data.

14. SUBJECT TERMS

Parameter accuracy, maximum likelihood, Cramer-Rao bound, parameter
estimation, colored noise

17. SECURITY CLASSIFICATION
OF REPORT

unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

unclassified

15. NUMBER OF PAGES

47

16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standlrd Form 298 (Rev. 2-8g)
Prescribed by ANSI Std. Z39-18

296-102






