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Abstract

An important part of building high fidelity mathematical models based on measured data is
calculating the accuracy associated with statistical estimates of the model parameters. Indeed,
without some idea of the accuracy of parameter estimates, the estimates themselves have limited
value. In this work, an expression based on theoretical analysis was developed to properly
compute parameter accuracy measures for maximum likelihood estimates with colored residuals.
This result is important because experience from the analysis of measured data reveals that the
residuals from maximum likelihood estimation are almost always colored. The calculations
involved can be appended to conventional maximum likelihood estimation algorithms. Simulated
data runs were used to show that the parameter accuracy measures computed with this technique
accurately reflect the quality of the parameter estimates from maximum likelihood estimation
without the need for analysis of the output residuals in the frequency domain or heuristically
determined multiplication factors. The result is general, although the application studied here is
maximum likelihood estimation of aerodynamic model parameters from flight test data.



Nomenclature

vertical acceleration, g units
D dispersion matrix
E{ -} expected value

g gravitational acceleration, 32.174 ft/sec?
J cost function
Ky upwash correction

L( - ) likelihood function

M information matrix

M body axis aerodynamic pitching moment, ft-1bf
ng number of control vector elements

n, number of output vector elements

np number of parameter vector elements

ng number of state vector elements

N total number of sample times

P( - ) probability distribution

q body axis pitch rate, rad/sec

rii ith diagonal element of R

R discrete noise covariance matrix

R,, autocorrelation matrix of v

S@) output sensitivity matrix at time (i—1)Az
t time, sec

T data record length, sec

u(® control vector

1% airspeed, ft/sec

v(i) output residual vector at time (i~1)At
x(1) state vector

y(®) output vector

y(i) output vector at time (i—1)A¢



z(i) measured output at time (i—1)At
4 body axis aecrodynamic vertical force, Ibf
V/ the set of N measured output vectors
o angle of attack, rad
0ij Kronecker delta
s stabilator deflection, rad
At sample time, sec
0 parameter vector
Ve gradient with respect to 0
0, Jt element of the parameter vector
o; Cramer-Rao lower bound for the standard error of the jth parameter
v(i) noise vector at time (i—1)As
0 Zero vector
superscripts
T transpose
A estimate
time derivative
-1 matrix inverse
subscripts
m measured
o nominal or trim value



I. Intr ti

An important part of building high fidelity mathematical models for physical systems is
estimating values for the model parameters based on measured data. For the case of aircraft
dynamic models, these model parameters generally arise in describing the dependence of
aerodynamic forces and moments on state and control variables. Of equal importance with the
estimated values of the parameters is their accuracy. This accuracy can be assessed using the
Cramer-Rao lower bounds!, which represent the theoretical minimum variance that is possible
for the parameter estimates using an asymptotically unbiased estimator, such as maximum
likelihood. Maximum likelihood estimation is also asymptotically efficient, meaning that
parameter variances computed for maximum likelihood estimates approach the Cramer-Rao
bounds as the number of measured data points increases. References [1]-[3] compare and
contrast the Cramer-Rao bound with other methods for assessing the accuracy of parameter
estimates. The present work adopts the viewpoint of reference [3] that the Cramer-Rao bound is
the best accuracy measure for maximum likelihood parameter estimates.

In this work, the output error formulation of maximum likelihood parameter estimation was
used with a fixed linear model structure. This formulation includes measurement noise, but no
process noise. The optimization procedure used to determine the maximum likelihood
parameter estimates was modified Newton-Raphson#. In this case, the Cramer-Rao bounds
are computed as part of the estimation procedure. It is well known, however, that the
Cramer-Rao bounds computed in this way are usually optimistic (too small) compared to the
scatter in the parameter estimates from repeated flight test maneuvers3. This prompted the
work of Maine, Iliff and Balakrishnan3:4.7-9 who traced the discrepancy to the fact that the
residuals are colored for real flight test data analysis because output error techniques lump the
(unavoidable) deterministic modeling error together with the incoherent part of a measured signal
and call this the measurement noise3. This results in the measurement noise being colored,
because the modeling error generally lies roughly in the same frequency band as the aircraft rigid
body dynamics and accounts for a large part of the total noise power. Colored measurement
noise impacts parametef estimate accuracy measures, as detailed in references [3],[4],[7]-[9].

The theory underlying the output error formulation of maximum likelihood estimation
assumes that the measurement noise is white Gaussian and band limited by the Nyquist
frequency. The band limit is the result of discrete measurements taken at the sampling
frequency, which is twice the Nyquist frequency. This measurement noise is broad band and
incoherent. The term incoherent is meant to imply amplitude discontinuity and a lack of
consistent phase-amplitude relationships, causing the autocorrelation function to be close to the
impulse function. Heuristically, this part of the residual would be commonly recognized as
having no deterministic component. If the structure of the model were correct, the residuals
could be expected to be reasonably close to this type of noise. In real flight test data analysis, the
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residuals inevitably contain deterministic components from such sources as approximations of
real aircraft acrodynamic dependencies, unmodeled dynamics such as structural modes, and
linearization of the nonlinear equations of motion. References [3], [4], [7]-[9] point out that
colored residuals violate the assumptions of conventional maximum likelihood theory and lead to
the aforementioned inaccuracy in the Cramer-Rao bounds.

In reference [3], several engineering solutions were proposed to correct for the discrepancy.
Each of these solutions was based on the fact that most of the residual power for real flight data
analysis is concentrated at relatively low frequencies and is due to deterministic modeling error.
This assumption is stretched when relatively high frequency structural modes appear in the data
or when the broad band random noise has a large enough magnitude to rival the power of the
band limited noise due to modeling error. The solutions offered in reference [3] depend on
knowing something about the bandwidth of the dominant source of power in the residuals.
Obtaining this information requires Fourier transforms of the residuals and analysis in the
frequency domain. The spectra of the residuals depend on the model, the flight condition, the
maneuver, and the instrumentation characteristics. All of these factors may change over the
course of a flight test program, requiring changes in the corrections for the Cramer-Rao bounds.
Finally, all the solutions offered in reference [3] require some engineering judgment, which
requires an experienced analyst and limits the quantitative accuracy of the results.

In the present work, a technique was developed which processes the residuals of a
conventional maximum likelihood estimation in order to compute quantitatively accurate
Cramer-Rao lower bounds for arbitrary residuals. The approach accounts for colored residuals
using a simple estimate of the residual correlation. Cramer-Rao lower bounds for the maximum
likelihood estimates can be determined automatically and accurately with no heuristic
multiplication factors. In addition, existing maximum likelihood estimation routines can be
easily upgraded because the technique can be considered a post-processing of the output

residuals in order to compute the appropriate Cramer-Rao lower bounds.

The next section contains the theoretical analysis. Following this, the technique was applied
in a controlled situation using simulated data. A model of the longitudinal dynamics of a fighter
aircraft was used with the true parameter values known. The simulated outputs were corrupted
by discrete white Gaussian noise with zero mean. Using ten simulation runs with different
realizations of the noise process, it was shown that both the conventional method for computing
Cramer-Rao lower bounds and the new technique described in this work produced Cramer-Rao
lower bounds representative of the observed scatter in the parameter estimates. Implementation
of the new technique was in a subroutine which post-processed the output residuals from the
conventional maximum likelihood estimation. Next, the same simulated outputs were corrupted
with band limited white noise produced by passing zero mean discrete white Gaussian noise
through an 0.5 hz low pass filter and scaling the amplitudes to maintain the same signal to noise



ratio used for the wide band noise cases. Ten different noise sequences were used. In these
cases, the Cramer-Rao bounds computed using the conventional method produced optimistic
values of the Cramer-Rao lower bounds, in agreement with the results of previous
research3:4.6-9. The new technique, however, successfully accounted for the band limited
residuals and produced quantitatively correct values for the Cramer-Rao lower bounds. Finally,
ten different colored noise sequences comprised of a mixture of band limited and wide band
noise sequences were generated, again scaling the amplitudes to maintain signal to noise ratio.
These colored noise sequences were very similar to residuals observed when analyzing real flight
test data. Again, the conventional method gave optimistic Cramer-Rao lower bounds while the
new technique produced Cramer-Rao bounds which accurately characterized the scatter in the
parameter estimates. This analysis lends confidence in the new technique for future application
to determining appropriate Cramer-Rao lower bounds for parameters estimated from flight test
data.



II. Theoretical Development

A linear model structure for the aircraft dynamics was assumed a priori as a result of the
small perturbations assumption. The control inputs were considered perturbations about trim.
The model can be represented as

x(t) = A(B)x(+) + B(®)u(?) (1)
x(0)=0 2)

y(#) = C(8)x(#) + D(B)u(r) €)
z(i) = y(i) + v(i) i=12,. N 4)

where x is the n; x 1 state vector, u is the n. x 1 control vector, and y is the n, x 1 output
vector. The n, x 1 measured output vector is represented by z(i). The notation y(i) represents
the sampled value of y(¢) at #=(i—1)Ar. There are N sampled data points. For conventional
maximum likelihood, the discrete measurement noise vector v(i) is assumed to be zero mean

white Gaussian and band limited at the Nyquist frequency with

where R is the discrete noise covariance matrix, 5,-1- is the Kronecker delta, and E is the
expectation operator.

The maximum likelihood estimate of the parameter vector maximizes the conditional
probability of realizing the measurements45:

A

6 =arg mgx[P(ZIO)] (6)

where Z is the set of all measurement vectors, z(i) for i=1, 2, ..., N. The conditional
probability distribution, P(Z |8), is also known as the likelihood function, L(8), and is given

by



N
L(6)=P(Z|6)= ) exp{—%Z[z(i)—y(i)]TR"] [z(i)—y(i)]} (7)
i=1

ok IRI]

Maximizing the likelihood function in equation (7) is equivalent to minimizing its negative
logarithm, known as the log likelihood function,

N
~InL(8)= %Z [2)-yOI R [20)- y@)] + 3 /Ry ®)

n . . o .
where the added constant —2 (27) was omitted because it has no effect on the optimization.

When R is known, minimizing the log likelihood function in equation (8) is equivalent to
minimizing the cost function

N
50)= 3 [2(0) - y()] R [a(i) - y(0)] ©)
i=1

The cost in equation (9) can be minimized using a modified Newton-Raphson technique to
determine parameter updates3, starting from some initial guess of the parameter vector. The
initial guess for the parameter vector can be obtained from equation error methodsS. When the
parameter vector estimate, 6, is close to the true parameter vector, 6, the estimated output can be
linearized with respect to the parameter vector,

y(i) = (i) + LY (e-é) i=12,.,N (10)

a0 |y

where §(i) denotes the output vector computed using the estimated parameter vector 6 at time
(i-1)At. Defining the sensitivity matrix,

dy(i)

S(i)=
D=1,

i=12..,N (11)



equation (10) becomes

y(i)=§'(i)+S(i)(6—é) i=12,...N (12)

The j* column of the sensitivity matrix contains the output sensitivities for the jth parameter, 6;,

computed from

i ix__ = ii.é.x + A_qx__ +£U (13)
dt| do; |~ a6, 6, " de,
dx
—(0)=0 14
dﬂj( ) (14)
6,  de, 46, " de,

for j=1, 2, ..., np, where n,, is the number of parameters. Equations (13)-(15) follow from
differentiating equations (1)-(3) with respect to the 6;, along with the assumed analyticity of x.

To minimize the cost function, substitute for y(i) from equation (12) into equation (9) and

set the gradient of the cost function with respect to the parameter vector equal to zero,
N ~
VoJ(6)=-Y SR [z(i) ~ )~ S()(0 - 6) ] =0 (16)
i=l
Solving for the parameter update gives

N 1w
A6=0-6= {ZS(:’ JTR! sm} 2SR [2(i) - §(i)] (7

i=1 i=1



Equation (17) gives the modified Newton-Raphson step which is added to a current estimate
of the parameter vector in order to approach the true value of the parameter vector. The
"modified Newton-Raphson" name arises from the fact that equation (17) can also be found by
expanding the cost function to second order in terms of AH , and using a conventional
Newton-Raphson optimization with part of the second order gradient term dropped (see
reference [5] for details). In practice, there are times when the modified Newton-Raphson step
computed from equation (17) leads to an increase in the cost function or a divergence. This is
because the Newton-Raphson step assumes that the current estimate of the parameter vector is
near the true value. Using several iterations of a simplex algorithm!© when the
Newton-Raphson step produces an increase in the cost was found to be very effective. This
approach was followed in the present study and makes the optimization divergence proof. If
measured outputs are used instead of computed outputs to force the sensitivity equations in the
first calculation of the modified Newton-Raphson step (see reference [5] for details), the solution
of the maximum likelihood estimation problem becomes insensitive to initial parameter estimates
and it is not necessary to use equation error methods to determine good starting values for the
parameters. This technique was used for all maximum likelihood estimation in the present work.

When repeated application of equation (17) converges, an estimate of the measurement noise
covariance matrix, R, can be obtained from the output residuals. The expression for the estimate
of R comes from taking the derivative of the right hand side of equation (8) with respect to R,
setting the result equal to zero, and solving for R,

N
R= 2 z(i) - y(i)][2(i) - y(i)]" (18)

Often only the diagonal elements of the R matrix are estimated from equation (18), enforcing
an assumption that the measurement noise sequences for the n, measured outputs are
uncorrelated with one another. This assumption is generally a good one for real flight test data.
All estimates of the measurement noise covariance matrix in this work assume a diagonal R
matrix. Retaining the full R matrix could have been done with little conceptual difficulty, but
the expected gains did not warrant the extra computation involved. The noise covariance matrix
estimate, ﬁ, was used in the cost function of equation (9), and the minimization process
described above for known R was repeated. Thus, the maximum likelihood estimation proceeds
by alternately estimating the noise covariance matrix from equation (18) and minimizing the cost
function using equation (17) with the latest value of the estimated noise covariance matrix.
Convergence is reached when the estimated parameter vector, 8, the estimated noise covariance
matrix, R , and the cost, J (é), reach nearly constant values. Since maximum likelihood
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estimation is asymptotically unbiased?, the estimated parameter vector, 6, should be close to the
true value, 6, and the gradient of the cost function with respect to the parameter vector should be
close to zero. From equation (16),

N
VoI (8)g_s =~ -2, S({)TR™ [2(i) - §(i)] = 0 (19)
i=]

For practical computation, simultaneous satisfaction of the numerical criteria given below
were used to define convergence of the maximum likelihood estimation:

[6,],-[6;],_,|<1ox10% v j=12..n,

b =lales | 05 wi iz12,.m

[;""]k—l

J(8¢)- (8,-1)

(¢4

— < 0.001
J(64) (20)
9(6) <005 Vj, j=12..n,
%, |,

where k denotes the current estimate iteration number and 7; denotes the estimate of the ith
diagonal element of the discrete measurement noise covariance matrix. The approximate
expression for the cost gradient with respect to the parameters (equation (19)) was used for the
last criterion in (20).

The minimum achievable parameter variances using an asymptotically unbiased and efficient
estimator, such as maximum likelihood, are called the Cramer-Rao lower bounds and are given
by the diagonal elements of the dispersion matrix, D 3-5. This dispersion matrix is defined as
the inverse of the information matrix M, the latter being a measure of the information contained
in the data from an experiment. The expressions for theses matrices are3.4

N
M=2 S(i)TR-1 S(i) 21)

i=1
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N -1
D=M"'= [2 S(i)TR! S(i )} (22)

i=1

The square root of the jih diagonal element of D, dj;, gives the Cramer-Rao lower bound for
the standard error of the jth parameter,

0; =\d; j=12...n, (23)

It can be seen from equations (17) and (22) that the dispersion matrix is computed when
determining the modified Newton-Raphson step as part of the conventional maximum likelihood
estimation . The assumption that the output residuals are white and therefore uncorrelated in time
is implicit in the algorithm and indicated in equation (5). The next section details the theory
involved in accounting for arbitrary colored output residuals, which are correlated in time.

When the conventional maximum likelihood estimation has converged, the estimated
parameter vector will be close to the true value and equation (17) holds. Define the residual
vector

v(i) =z(i) - y(i) i=12,..,N (24)

The estimated parameter covariance matrix can be expressed using equation (17) with
substitutions from the definitions in equations (22) and (24),

N N
E{(é -6)(6- e)T} = E{ > Y DS)TR v(i)v(j) R S(j) a)} 25)

i=1 j=1

The dispersion matrix, the discrete noise covariance matrix inverse and the sensitivities in
equation (25) are from the conventional maximum likelihood estimation. If it is assumed that
the dependence of these quantities on the parameter vector estimate is small at the maximum
likelihood solution, the estimated parameter covariance matrix can be written as

12



N N
E{(é -8)(6- e)T} =D [2 Y SGTRIE{viNVG)TIRTIS() | D (26)
i=1 j=1

When the output residuals are assumed to be zero mean white (see equation (5)), then
E{v(i)v(j)T}=R§; Q7

From equations (22), (26) and (27) it is easy to see that the parameter vector covariance matrix
reduces to the dispersion matrix, 2, when the output residuals are white. For colored residuals,

the estimated parameter covariance matrix can be computed from equation (26) using an
estimated value for E{v(i) v(Jj )T}. Define the discrete autocorrelation of the output residuals,

N
R,y (k) = —IIGZV(i) v(i+ k)T =R, (k) (28)
i=1

where v is assumed to be periodic, so that v(N+1)=v(1), v(N+2)=v(2), etc. It follows that
E{v(i)v(j)T} =Ry (i~ j) (29)

Substituting equation (29) into equation (26),

N N
Y SEHTRTY, Ry (i j)RTIS())

i=1 Jj=1

D (30)

£{(8-0)6-0)"} -2

Setting k = i — j, equation (30) can be written as

k=i-N

. . T N i—1
E{(B—G)(G—G) }=a){z S(i)TR-'[ py st(k)R-IS(i-k)HfD 31)
i=1
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Equation (31) was used to account for colored residuals, which are correlated in time. The
dispersion matrix, D), the estimated noise covariance matrix inverse, R-1, and the sensitivities,

S, are from the conventional maximum likelihood estimation. Equations (28) and (31) embody
the required post-processing applied to a conventional maximum likelihood solution to account
for colored residuals.

For unbiased parameter estimates, the Cramer-Rao inequality can be stated in general form as
E{(é—e)(é—e)T}Z[—E{Vg In P(ZIO)}]_I (32)

When the discrete measurement noise is white out to the Nyquist frequency with known
covariance, substituting for P(Z |6 ) from equation (7) makes the right side of inequality (32)

equal to the dispersion matrix (cf. equation (22)).

If the colored noise sequence representing the residuals is assumed to be caused by modeling
error, then the maximum likelihood parameter estimates are biased, so that

E{é } =0+b(0) (33)

where b(8) is a vector of bias errors which are unknown and unknowable in practice. For the
biased parameter estimates, the right side of inequality (32) will include additional terms where
the elements of the dispersion matrix will be multiplied by Vob(6) and [V4b(8)][Vob(8)] d
(see reference [3] for details). In the present analysis, the deterministic modeling error is
included in the measurement noise, making the residuals colored. The approach taken here for
arbitrary frequency content in the measurement noise could then be viewed as effectively
including the bias error due to deterministic modeling error as part of the parameter accuracy
measure which accounts for colored residuals.
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IV. Results

The longitudinal short period dynamics of the F-18 High Angle of Attack Research Vehicle
(HARV) fighter aircraft at approximately 20 degrees angle of attack and an altitude of
25,000 feet were simulated for this study. The model was

[d(t)} Zy 1+Z, [a(t)] Zs, Z, [és(t)}
= + (34)
4(t) M, Mq q(t) MEJ M, 1
oo
= (35)
q(0) 0
o.(t) K, 0 0 0
oft) S,(1)
gt) |=| 0 1 [()]+ 0 0 [ 1 ] (36)
q(t
az(t) Vo Za Vo Zq VO Z(Ss az
| g g | | s °

a,,(i) o, (i) V(i)
gm (i) |=| q(i) [+]| Uy(i) 37

a, ()| La )] [vs(i)

The input was symmetric stabilator deflection in radians (;), and the measured output

quantities were angle of attack in radians (¢,), pitch rate in radians per second (g,,), and vertical
acceleration in g units (azm ).

To assess the performance of the new technique for computing Cramer-Rao bounds, thirty
simulation runs were made using various measurement noise processes. Maximum likelihood
estimation as described in the previous section was used to estimate the parameters. Since the
true parameter values were known for the simulation data, the true accuracy of the maximum
likelihood estimates could be compared to that indicated by the conventional calculation of the
Cramer-Rao bounds (equations (18) and (22)) and the alternate calculation accounting for
arbitrary frequency content in the residuals (equation (31)).
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To make the simulation runs realistic, the stabilator input was taken from measured data for
the F-18 HARV flying a maneuver designed specifically for accurate parameter estimation!!.
The stabilator input is shown in figure 1. In addition, the true values of the parameters (given in
column 2 of Table 1) approximately reflect the short period dynamics of the F-18 HARV at
20 degrees angle of attack and an altitude of 25,000 feet. The stabilator input and true parameter
values were the same for each simulated data run, so that the information in the data was
constant. The sampling rate was 50 hz and the time length was 14 seconds. Standard errors
from the Cramer-Rao bounds computed using the conventional computation come from the
square root of the diagonal elements of matrix 2 in equation (22), with R estimated from
equation (18). The standard errors based on the Cramer-Rao bounds corrected for colored
residuals are the square root of the diagonal elements of the matrix computed by equation (31).
Results from both the conventional computation and the corrected calculation were expressed in
terms of the ratio of the absolute deviation of each parameter estimate from its true value to the
computed standard error from the Cramer-Rao bound, Ié ;= 7] fl / o, for j=1 »2,...,np. For any

given maneuver, only the denominator of this ratio was different for the conventional versus
corrected calculations of the Cramer-Rao bounds. For a maximum likelihood estimator, the
probability distribution of the parameter estimates about their true value approaches a Gaussian
distribution as the number of data points gets large. Therefore, these ratios should be less than 3
almost all the time if the computed Cramer-Rao bounds reflect the true accuracy of the estimates.

For the first ten simulation runs, the added measurement noise was zero mean white
Gaussian, with standard deviations set to one fifth the root mean square of each uncorrupted
output. This made all signal to noise ratios approximately 5 to 1. Typical simulated measured
outputs are shown in figure 2, from run 1. Figure 3 shows a typical noise sequence. Noise
power was uniform over the entire frequency band out to the Nyquist frequency, 25 hz, as
shown in the noise power spectrum of figure 4.

Tables 1 through 10 contain the results from the maximum likelihood estimation using
simulated data runs 1 through 10, respectively. The values in the last two columns of each table
are the ratio of true parameter estimate accuracy to the computed Cramer-Rao bounds for the
standard errors. Measurement noise power was evenly distributed up to the Nyquist frequency
for each of these cases. Nearly all values in the last two columns of tables 1 through 10 were
less than 3, indicating that both the conventional and the corrected Cramer-Rao bounds
accurately reflected the true parameter estimation accuracy. Figures 5 and 6 depict typical results
for one parameter, Z, for these 10 runs. The error bars represent the Cramer-Rao bounds for
the standard errors computed using the conventional calculation for figure 5 and the corrected
calculation for figure 6. The error bars in both plots accurately reflect the scatter of the parameter
estimates. The harmony between the Cramer-Rao bounds and the scatter in the estimates
indicates that there is sufficient information in the data and that the length of the data records is
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sufficient for the true accuracy of the parameter estimates to closely approach the Cramer-Rao
bounds.

For simulation runs 11 through 20, the random measurement noise power was limited to
frequencies between 0 hz and 0.5 hz, inclusive. This frequency band corresponds roughly to the
bandwidth of the uncorrupted simulated outputs. Figure 7 shows typical simulated measured
outputs which have been corrupted by the band limited noise, from run 11. The noise sequence
was generated by passing zero mean white Gaussian noise through a fifth order Chebyshev low
pass filter with frequency cutoff set at 0.5 hz, then scaling the resulting band limited noise to
achieve the same 5 to 1 signal to noise ratio used for the other simulation runs. Figure 8 shows a
typical band limited noise sequence. Figure 9 is the corresponding power spectrum, showing

essentially no components above 0.5 hz.

Tables 11 through 20 contain the results from the maximum likelihood estimation using the
simulated data runs 11 through 20, respectively. The data in these tables show that the
conventional calculation for the Cramer-Rao bounds frequently gave values that were too small
(see the fourth column of each table). In contrast, the last column of each table indicates that the
corrected calculation for the Cramer-Rao bounds has properly accounted for the change in the
residual spectra, since these values rarely exceed 3.

Figures 10 and 11 depict the results for one parameter, Zg, for these 10 runs. The error bars
represent the Cramer-Rao bounds for the standard errors computed using the conventional
calculation for figure 10 and the corrected calculation for figure 11. These plots show that the
standard calculation for the Cramer-Rao bounds gave optimistic values, whereas the corrected
calculation for the Cramer-Rao bounds automatically produced Cramer-Rao bounds which
accurately reflect the scatter of the estimates. Results for other parameters were similar to those
plotted in figures 10 and 11 for Z,.

It was not necessary to supply information about the bandwidth of the dominant power in the
residuals to the algorithm for corrected Cramer-Rao bounds because this information was
incorporated automatically via the autocorrelation function appearing in equation (31). Thus, the
algorithm should work for arbitrary residual spectra. This attribute can be important when the
colored measurement noise includes significant power from unmodeled structural modes, whose
frequency content is generally higher than that of the rigid body dynamics.

For simulation runs 21 through 30, ten different colored noise sequences were used with the
same uncorrupted simulation outputs. Each noise sequence had 90% of its power in the
frequencies between 0 hz and 0.5 hz inclusive, with the remaining power taken by white
Gaussian noise out to the Nyquist frequency. The noise sequences were thus a combination of
the two types of noise used previously. Figure 12 shows typical simulated measured outputs
which have been corrupted by the colored noise, from run 21. This type of noise is quite close
to the residual sequences observed when analyzing real flight test data, and was chosen for that
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reason. The band limited part of the noise sequence was generated in the same manner as
before, and the resulting colored noise sequences were scaled to maintain the same 5 to 1 signal
to noise ratio used in the other simulation runs. Figure 13 shows a typical colored noise
sequence. Figure 14 is the colored noise power spectrum, showing most of the power below
0.5 hz, with some small components out to the Nyquist frequency, 25 hz. The vertical scale for
figure 14 is logarithmic so that the relatively small high frequency components can be seen.

Tables 21 through 30 contain the results from the maximum likelihood estimation using the
simulated data runs 21 through 30, respectively. As in the case of narrow band limited noise,
the data in these tables show that the conventional calculation for the Cramer-Rao bounds
frequently gave optimistic values for the parameter accuracies. The last column of each table
indicates that the corrected calculation for the Cramer-Rao bounds again properly accounted for
the change in the residual spectra. As before, the values in the last column of each table rarely
exceed 3. Additional runs (results not shown) were made with various residual power spectra,
including some runs where residuals from flight test data analysis were added to the uncorrupted
simulated outputs. Results from all these cases were very similar to those presented in tables 11-
30.

Figures 15 and 16 depict the results for one parameter, Z, for the 10 colored noise runs.
The error bars represent the Cramer-Rao bounds for the standard errors computed using the
conventional calculation for figure 15 and the corrected calculation for figure 16. Results for
other parameters were similar to those plotted in figures 15 and 16. From these plots, and in
general from the last two columns of tables 11-30, it is clear that the conventional calculation for
the Cramer-Rao bounds gave optimistic values for the Cramer-Rao bounds when the residual
spectrum was not white out to the Nyquist frequency. This is in agreement with previous
research34.89. In addition, the extent to which the conventional Cramer-Rao bounds
misrepresented the true parameter accuracy was neither consistent nor predictable from parameter
to parameter or from run to run. This phenomena has been observed previously when analyzing
flight test data from repeated maneuversS. It follows that the common practice of applying a
fixed correction factor to the conventional calculation of the Cramer-Rao bounds is incorrect to a
varying and unpredictable degree in cases where the residual spectrum is colored by modeling
error in the frequency band of the system dynamics. The corrected calculation for the
Cramer-Rao bounds presented here produced consistently accurate measures of the scatter in the
parameter estimates, using an algorithm with moderate computational cost that can be applied as
a post-processing of the output residuals from a conventional maximum likelihood solution.
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V. Concluding Remarks

Algorithms for aircraft parameter estimation using the output error formulation of maximum
likelihood are in widespread use. Current practice for determining the accuracy of such estimates
calls for use of a correction factor to account for the fact that the output residuals from real flight
test data analysis are virtually never white out to the Nyquist frequency, as assumed in the
conventional theory, but rather are colored, with most of the power in a frequency band similar
to that of the system dynamics. Such an approach is shown here to be inadequate if a
quantitative measure of the accuracy of the parameter estimates is desired. In this work, an
expression based on theoretical analysis was developed to compute parameter accuracy measures
for maximum likelihood estimates with colored residuals. This result is important because the
residuals from maximum likelihood estimation are almost always colored in practice, due to
unmodeled dynamics in the real physical system. At a more general level, the utility of the
parameter estimates is limited when there is no firm idea of the accuracy of the estimates.

The calculations involved in the algorithm for computing Cramer-Rao bounds that account
for colored residuals can be carried out in a short subroutine called at the conclusion of a
conventional maximum likelihood estimation algorithm. This approach was used to generate the
results in this report. Bandwidth of the dominant power in the residuals need not be known or
estimated, as it is accounted for automatically in the algorithm. In addition, there is no need for
heuristic correction factors. The algorithm works for arbitrary residual spectra and all
calculations are performed in the time domain. This obviates the need for any frequency domain
analysis of the residuals.

Simulated data runs using various noise sequences were carried out to demonstrate the
performance of the algorithm in computing the Cramer-Rao bounds. This analysis showed that
the algorithm developed in this work is a simple, accurate, and generally applicable technique for
quantitative determination of the quality of parameter estimates for the output error formulation of

maximum likelihood estimation.
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Table 1 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 1 (white noise)

~

A

Parameter True Value, 6 Estimate, 6 6-6 6-6
standard o corrected &
Zo -0.1200 -0.1177 1.0548 1.4207
Z, —0.0600 -0.0611 0.7296 1.2435
Zss —0.0496 -0.0504 0.4106 0.4040
Z, 0.0000 0.0001 0.5446 0.5244
Mg -0.6600 -0.6539 0.7539 0.9211
M, —0.1400 -0.1447 0.7933 1.1264
M -1.3265 -1.3405 1.0528 1.4058
M, 0.0000 -0.0003 1.0208 1.4282
Kq 1.0000 0.9816 1.5406 2.5668
a, 0.0000 -0.0007 0.9368 1.5153

Table 2 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 2 (white noise)

A

-~

Parameter True Value, 6 Estimate, 6 6-6 6-6
standard & corrected o
Zy —0.1200 -0.1209 0.4131 0.3967
Z, -0.0600 -0.0585 1.0211 1.0842
Zss —0.0496 -0.0541 2.5239 2.0164
Z, 0.0000 0.0000 0.0664 0.1083
Mgy —0.6600 -0.6636 0.4567 0.4623
M, —0.1400 -0.1500 1.6872 1.6888
Mg -1.3265 -1.3275 0.0767 0.0677
M, 0.0000 0.0001 0.2690 0.3230
Ko 1.0000 1.0144 1.1990 1.0913
a,, 0.0000 -0.0001 0.1342 0.1777
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Table 3 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 3 (white noise)

Parameter True Value, 6 Estimate, 0 6-0 6-0
standard o corrected o
Zo —0.1200 -0.1221 0.9816 1.4478
Z, —0.0600 -0.0585 1.0225 2.1056
Zgs -0.0496 -0.0490 0.3159 0.4469
Z, 0.0000 0.0001 0.4658 0.9001
My —0.6600 -0.6673 0.9080 0.9536
M, —-0.1400 -0.1361 0.6594 0.9567
M —-1.3265 -1.3218 0.3490 0.4327
M, 0.0000 -0.0003 1.0256 1.2033
Kq 1.0000 0.9993 0.0597 0.0993
a, 0.0000 -0.0006 0.8730 1.4775

Table 4 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 4 (white noise)

Parameter True Value, 8 Estimate, 0 6-6 6-6
_ standard o corrected o
y -0.1200 -0.1202 0.0841 0.0959
Z, —0.0600 -0.0585 1.0499 1.8280
Zss -0.0496 -0.0484 0.6696 0.6834
Z, 0.0000 0.0000 0.0428 0.0442
My, ~0.6600 -0.6619 0.2438 0.2520
M, —0.1400 -0.1356 0.7730 1.1375
M —-1.3265 -1.3294 0.2257 0.2718
M, 0.0000 -0.0002 0.6695 0.7191
Ko 1.0000 0.9872 1.0725 1.4470
a, 0.0000 -0.0002 0.3259 0.4406

22




Table 5§ LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN § (white noise)

A

-~

~

Parameter True Value, 6 Estimate, 0 0-6 6-0
) ) standard o J‘ corrected &
Zg —-0.1200 -0.1227 1.2756 1.6603
Z, -0.0600 -0.0592 0.5819 0.7766
L -0.0496 -0.0471 1.4643 1.6532
Z, 0.0000 0.0001 0.5712 0.8265
My -0.6600 -0.6638 0.4640 0.6219
M, —0.1400 -0.1410 0.1600 0.1766
Mg —-1.3265 -1.3114 1.1265 1.2809
M, 0.0000 -0.0003 1.0805 1.5154
Ko 1.0000 1.0137 1.0843 1.4075
a, 0.0000 -0.0010 1.3312 2.2710

Table 6 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 6 (white noise)

A

A

~

Parameter True Value, 6 Estimate, 6 6-6 6-6
standard o corrected o
Zy —-0.1200 -0.1221 0.9482 1.4726
Z, ~-0.0600 -0.0607 0.4725 0.8838
Zss —0.0496 -0.0509 0.6952 0.8868
Z, 0.0000 0.0000 0.1016 0.2306
Mg —0.6600 -0.6714 1.3503 1.7707
M, —0.1400 -0.1421 0.3458 0.5127
Mg -1.3265 -1.2985 2.0312 2.8107
M, 0.0000 -0.0003 0.8904 1.3496
Ko 1.0000 1.0071 0.5587 0.9856
a, 0.0000 0.0004 0.5209 1.0113
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Table 7 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND
CRAMER-RAO BOUNDS - RUN 7 (white noise)

Parameter

True Value, 8

Estimate, 0

6-6

standard o corrected o
Za -0.1200 -0.1230 1.3563 1.8503

0-0

Z, -0.0600 -0.0594 0.3911 0.6524
Zss —0.0496 -0.0475 1.1131 1.4936
Z, 0.0000 -0.0002 0.9742 1.4870
M, —0.6600 -0.6599 0.0086 0.0086
M, -0.1400 -0.1434 0.5610 0.7487
Mg -1.3265 -1.3175 0.6618 0.7779
M, 0.0000 -0.0005 1.7136 1.7471
Ky 1.0000 1.0051 0.4151 0.4524
a, 0.0000 -0.0008 1.0277 1.5639

T'able 8 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND
CRAMER-RAO BOUNDS - RUN 8 (white noise)

a

A

Parameter True Value, @ Estimate, 0 6-6 0-06
standard o corrected o
Zy -0.1200 -0.1189 0.5204 0.6378
Z, —0.0600 -0.0608 0.5574 0.7960
Zss —-0.0496 -0.0534 2.0626 2.1984
Z, 0.0000 0.0001 0.2962 0.6148
Mg, —0.6600 -0.6591 0.1022 0.1091
M, —0.1400 -0.1488 1.4299 1.5541
Mg —1.3265 -1.3376 0.8098 0.9708
M, 0.0000 -0.0002 0.7846 1.2381
Kq 1.0000 0.9856 1.1581 1.3866
a, 0.0000 0.0001 0.1900 0.3346
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Table 9 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 9 (white noise)

~

-

Parameter True Value, 8 Estimate, @ 6-6 6-6
standard o corrected &
Zg -0.1200 -0.1176 1.1423 1.5923
Z, —0.0600 -0.0618 1.2403 2.3168
s —0.0496 -0.0491 0.2888 0.3086
Z, 0.0000 -0.0001 0.2937 0.6062
Mgy -0.6600 -0.6697 1.2030 1.2607
M, -0.1400 -0.1377 0.3846 0.6424
M —-1.3265 -1.3222 0.3165 0.3578
M, 0.0000 -0.0002 0.7802 1.0720
Ko 1.0000 0.9875 1.0244 1.4360
a, 0.0000 -0.0002 0.3095 0.5527

Table 10 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 10 (white noise)

A

~

-

Parameter True Value, 6 Estimate, 6 6-06 0-6
standard o corrected &
Zg -0.1200 -0.1196 0.1822 0.2446
Z, —-0.0600 -0.0616 1.0827 1.6376
Zss —0.0496 -0.0516 1.0752 1.4153
Z, 0.0000 0.0000 0.1337 0.3304
Mg -0.6600 -0.6582 0.2270 0.3590
M, -0.1400 -0.1324 1.2841 1.6340
Mg -1.3265 -1.3196 0.5162 0.6758
M, 0.0000 0.0001 0.3587 0.7559
Kq 1.0000 1.0001 0.0083 0.0098
a,, 0.0000 0.0006 0.7700 1.5711
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Table 11 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND
CRAMER-RAQO BOUNDS - RUN 11 (band limited noise)

Parameter True Value, 6 Estimate, § 6-6 6-0
standard 0'= corrected o
Zy —0.1200 -0.1149 2.8625 0.5850
Z, —0.0600 -0.0619 1.4836 0.3219
Zss —0.0496 -0.0682 12.367 1.5388
Z, 0.0000 -0.0012 5.1209 1.5395
Mg -0.6600 -0.7419 12.371 2.3583
M, —-0.1400 -0.0890 11.658 2.6873
M -1.3265 -1.2245 8.6593 1.6371
M, 0.0000 -0.0029 10.913 2.2833
Ky 1.0000 0.8941 10.887 2.4662
a, 0.0000 0.0022 3.4780 0.7790

Table 12 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 12 (band limited noise)

Parameter True Value, 6 Estimate, 6 6-6 6-6
standard o corrected ¢
|
Zy —0.1200 -0.0994 13.290 2.6056
Z, -0.0600 -0.0707 9.8702 2.0558
Zgs —0.0496 -0.0544 3.7855 0.5116
Z, 0.0000 0.0006 2.6205 0.5521
M, —0.6600 -0.6357 3.1622 0.5429
M, —0.1400 -0.2010 10.054 1.8170
Mg -1.3265 -1.4017 5.7487 1.0385
M, 0.0000 -0.0013 4.4388 0.9535
Ko 1.0000 0.9231 6.7654 1.4972
a,, 0.0000 0.0025 4.3671 1.0023
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Table 13 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 13 (band limited noise)

Parameter True Value, 8 Estimate, 6 6-0 6-6
standard o corrected o
Zg —0.1200 -0.1099 5.1625 0.9119
Z, —0.0600 -0.0621 1.4541 0.2987
Zss —0.0496 -0.0699 11.311 1.8446
Z, 0.0000 0.0033 16.282 1.9158
Mg —0.6600 -0.5983 8.099 1.3766
M, -0.1400 -0.1512 1.9002 0.3340
M, —-1.3265 -1.3681 3.6237 0.5943
M, 0.0000 0.0003 1.2479 0.2248
Kq 1.0000 0.8803 12.575 24115
a,, 0.0000 0.0008 1.0877 0.2456

Table 14 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 14 (band limited noise)

~

A

A

Parameter True Value, 6 Estimate, 0 6-0 6-6
standard & corrected &
Zy -0.1200 -0.1081 8.3870 1.3979
Z, —0.0600 -0.0731 12.996 2.3744
Zss —-0.0496 -0.0615 9.1655 1.2917
Z, 0.0000 0.0000 0.1282 0.0286
M, -0.6600 -0.5681 17.640 2.6978
M, —0.1400 -0.1354 0.9946 0.1601
Mg, -1.3265 -1.5225 19.407 2.6978
M, 0.0000 0.0024 12.510 2.0434
Ky 1.0000 0.9276 8.2949 1.3658
a, 0.0000 -0.0050 9.2577 1.8631
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Table 15 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 15 (band limited noise)
Parameter True Value, 6 Estimate, 0 | 6-0 I l 6-6 I
Istandard o‘l lcorrected Gl
Zy -0.1200 -0.1045 8.3263 1.6232
Z, -0.0600 -0.0679 5.7664 1.4616
Zgs -0.0496 -0.0598 5.8118 1.0155
Z, 0.0000 0.0014 6.5776 0.7742
Mgy -0.6600 -0.5980 8.3445 1.3884
M, -0.1400 -0.1786 6.7034 1.1026
M -1.3265 -1.4396 9.5540 1.5099
M, 0.0000 -0.0014 5.5733 0.9312
Ky 1.0000 0.8851 11.832 2.3743
a, 0.0000 -0.0039 5.3693 1.1936

Table 16 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 16 (band limited noise)

Parameter True Value, 8 Estimate, 0 6-0 6-0
standard o
Zy -0.1200 -0.1124 4.6543 0.9482
Z, —0.0600 -0.0563 3.3345 0.7702
Zss -0.0496 -0.0610 7.9378 1.0951
Z, 0.0000 0.0017 7.5169 2.6730
M, —0.6600 -0.6657 0.8029 0.1566
M, -0.1400 -0.1300 1.9607 0.4864
M, -1.3265 -1.3777 4.2624 0.8354
M, 0.0000 -0.0032 11.224 2.3899
Ky 1.0000 0.8907 10.786 2.7068
a, 0.0000 0.0010 1.5965 0.3650
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Table 17 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 17 (band limited noise)

Parameter True Value, 6 Estimate, 6 6-0 6-6
standard o corrected o
Zo —-0.1200 -0.1330 6.1532 1.2228
Z, —0.0600 -0.0559 2.8302 0.6600
Zss —0.0496 -0.0446 2.8864 0.4214
Z, 0.0000 -0.0008 3.1786 0.7223
My —0.6600 -0.6674 0.9175 0.1392
M, -0.1400 -0.1669 4.3509 0.6964
M, —-1.3265 -1.3144 0.9017 0.1410
M, 0.0000 0.0006 2.1354 0.4174
Kq 1.0000 0.9871 1.0957 0.2132
a, 0.0000 -0.0063 8.9763 2.1863

Table 18 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 18 (band limited noise)

Parameter True Value, 0 Estimate, 6 6-6 6-6
standard o corrected o
Zy —0.1200° -0.1258 3.3745 0.7023
Z, -0.0600 -0.0616 1.4015 0.3568
Zss —0.0496 -0.0394 7.2608 1.3276
Zy 0.0000 -0.0004 1.8180 0.3257
Mg —0.6600 -0.7327 9.6633 1.4463
M, —-0.1400 -0.1669 5.2334 1.0887
Mg -1.3265 -1.2966 2.4478 0.4103
M, 0.0000 -0.0027 9.9423 1.6606
Ko 1.0000 1.0656 5.7806 1.1744
a,, 0.0000 0.0009 1.5384 0.3534
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Table 19 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND
CRAMER-RAO BOUNDS - RUN 19 (band limited noise)

Parameter True Value, 6 Estimate, 6 6-6 6-6
standard ¢ corrected ¢
##= S
Y -0.1200 -0.1087 6.2247 1.0573
Zy -0.0600 -0.0721 9.2315 1.5896
Zss —0.0496 -0.0751 16.660 2.1714
Z, 0.0000 -0.0007 3.0161 0.9104
Mgy —0.6600 -0.6194 5.2636 0.7920
M, —-0.1400 -0.2087 10.602 2.0165
M -1.3265 -1.4105 6.1350 0.9313
M, 0.0000 0.0009 3.5568 0.6639
Kq 1.0000 0.9515 4.3324 0.7987
a, 0.0000 0.0016 2.5690 0.5834

Table 20 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND
CRAMER-RAO BOUNDS - RUN 20 (band limited noise)

A

Parameter True Value, 6 Estimate, 0 6-6 6-0
standard o corrected o
Zy -0.1200 -0.1383 8.2762 1.6074
Z, -0.0600 -0.0738 8.8645 1.6306
Zss -0.0496 -0.0535 2.2699 0.3648
Z, 0.0000 -0.0010 4.7563 0.9479
My —0.6600 -0.6931 4.7258 0.9052
M, —0.1400 -0.1183 4.2280 0.8128
M -1.3265 -1.1958 11.693 2.5125
M, 0.0000 0.0016 7.6997 1.8215
Ko 1.0000 1.1679 13.186 3.2653
a, 0.0000 0.0050 7.6176 1.9777
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Table 21 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 21 (colored noise)

~

A

A

Parameter True Value, @ Estimate, 8 0-0 6-0
standard o corrected &
Zo -0.1200 -0.1061 7.5168 1.3607
Zg —0.0600 -0.0533 4.9643 1.1594
Zss —0.0496 -0.0545 2.6371 0.4190
Z, 0.0000 0.0011 4.7742 1.4312
My —0.6600 -0.6146 5.6133 0.9139
M, —-0.1400 -0.2056 10.611 1.8809
M —-1.3265 -1.5247 14.548 2.2400
M, 0.0000 -0.0003 1.1757 0.2369
Ko 1.0000 0.8501 15.686 3.2294
a, 0.0000 0.0051 6.8756 1.6655

Table 22 L.ONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAQO BOUNDS - RUN 22 (colored noise)

~

A

Parameter True Value, 8 Estimate, 0 6-0 6-06
standard o corrected ¢
Zy —0.1200 -0.0980 12.151 24711
Z, -0.0600 -0.0596 0.3084 0.0843
Zss —0.0496 -0.0727 13.159 2.3480
Z, 0.0000 0.0025 11.567 2.1292
Mg —0.6600 -0.6460 1.9121 0.2917
M, -0.1400 -0.1039 7.1132 1.2110
M -1.3265 -1.3936 5.6630 0.9275
M, 0.0000 -0.0001 0.3830 0.0599
Kq 1.0000 0.8992 9.6421 1.7422
a, 0.0000 0.0031 4.4546 1.0164
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Table 23 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND
CRAMER-RAOQ BOUNDS - RUN 23 (colored noise)

Parameter True Value, 6 Estimate, 6 6-6 6-6
standard o corrected o
Zy —0.1200 -0.1392 9.4275 1.8622
Z, -0.0600 -0.0618 1.3040 0.3227
Zss —0.0496 -0.0379 7.2643 1.1618
Z, 0.0000 0.0016 8.0830 1.0965
Mg —0.6600 -0.8052 19.129 2.9224
M, -0.1400 -0.0535 20.405 3.1831
M s -1.3265 -1.1171 18.589 2.9508
M, 0.0000 -0.0036 13.580 2.0105
Ko 1.0000 1.1461 12.255 1.8967
a, 0.0000 -0.0114 16.743 3.4106

Table 24 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 24 (colored noise)

Parameter True Value, 6 Estimate, 0 6-6 6-0
standard=0' corrected ¢
Zy -0.1200 -0.1027 9.8009 2.0916
Z, —0.0600 -0.0704 8.1676 2.1834
Zss -0.0496 -0.0603 6.5715 1.2755
Z, 0.0000 0.0019 8.7375 2.8303
Mg —0.6600 -0.6089 6.6303 1.1690
M, -0.1400 -0.1711 5.1944 0.9892
Mg -1.3265 -1.4595 10.420 1.7979
M, 0.0000 0.0025 10.118 1.9189
Ko 1.0000 0.9955 0.3821 0.0893
a, 0.0000 0.0066 10.434 2.7255
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Table 25 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 25 (colored noise)

~

A

Parameter True Value, 6 Estimate, 6 6-6 6-6
standard o corrected o
Zo —0.1200 -0.1257 3.0188 0.5376
Z, —0.0600 -0.0580 1.5276 0.2589
Zss —0.0496 -0.0407 5.3341 0.7403
Z, 0.0000 -0.0017 7.3544 1.5254
Mgy -0.6600 -0.5431 16.323 2.9242
M, -0.1400 -0.2109 10.844 1.7878
Mg —-1.3265 -1.5004 13.443 2.2870
M, 0.0000 0.0028 12.062 2.2904
Kq 1.0000 0.9085 8.8839 1.5744
a, 0.0000 -0.0061 8.8680 2.0119

Table 26 .ONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAQO BOUNDS - RUN 26 (colored noise)

A

~

Parameter True Value, 0 Estimate, @ 6-6 6-06
standard o corrected ¢
Zgy -0.1200 -0.1403 10.344 2.1157
Z, -0.0600 -0.0491 8.6461 2.2289
L -0.0496 -0.0293 13.587 3.2656
Z, 0.0000 -0.0027 10.554 2.8641
M, -0.6600 -0.6383 3.0224 0.4923
M, -0.1400 -0.1871 7.5879 1.2408
M, —1.3265 -1.3930 4.7080 0.7781
M, 0.0000 0.0023 9.1923 1.5604
Kg 1.0000 1.0088 0.7208 0.1160
a, 0.0000 -0.0060 9.4544 2.1602
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Table 27 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 27 (colored noise)

~

~

Parameter True Value, 6 Estimate, 0 6-6 -6
standard & corrected o
======——___ﬁ—i____—____——.—.=m
Zy -0.1200 -0.1282 3.8259 0.7433
Z, —0.0600 -0.0637 2.4450 0.4965
Zss -0.0496 -0.0569 4.3716 0.6075
Z, 0.0000 -0.0021 8.9336 2.8628
My —0.6600 -0.5912 8.7992 1.5334
M, —0.1400 -0.2033 9.2512 1.7920
Mg -1.3265 -1.3229 0.2754 0.0477
M, 0.0000 0.0005 2.1958 0.4992
Kg 1.0000 1.0787 6.0239 1.1390
a, 0.0000 -0.0062 8.7125 2.1701

Table 28 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 28 (colored noise)

Parameter True Value, @ Estimate, 0 6-6 6-0
standard & corrected o
Za —0.1200 -0.1018 9.7989 1.8491
Z, —-0.0600 -0.0602 0.1275 0.0231
Zss —0.0496 -0.0709 13.386 1.9596
Z, 0.0000 0.0010 3.8657 1.4456
M, —0.6600 -0.6244 4.7377 0.8179
M, -0.1400 -0.1187 3.5376 0.7562
Ms; —-1.3265 -1.3361 0.7291 0.1450
M, 0.0000 -0.0017 5.9438 1.4466
Kq 1.0000 0.8465 13.959 3.0485
a, 0.0000 -0.0005 0.7315 0.1856
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Table 29 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAO BOUNDS - RUN 29 (colored noise)

A

~

~

Parameter True Value, 6 Estimate, 6 06-6 6-6
standard o corrected o
Zy —0.1200 -0.1053 7.9948 1.1955
Z, —0.0600 -0.0527 5.4278 1.5089
Zss -0.0496 -0.0594 5.4603 0.9909
Z, 0.0000 0.0022 10.157 1.7000
My —0.6600 -0.6366 3.5389 0.6381
M, —0.1400 -0.1020 7.6247 1.4104
M, —-1.3265 -1.3994 6.0895 1.1411
M, 0.0000 0.0015 6.6273 1.2007
Kq 1.0000 0.9739 2.5720 0.4449
a,, 0.0000 0.0035 5.1899 1.0830

Table 30 LONGITUDINAL DYNAMIC MODEL PARAMETER ESTIMATES AND

CRAMER-RAQO BOUNDS - RUN 30 (colored noise)

~

~

~

Parameter True Value, 6 Estimate, 6 6-0 0-6
standard o corrected o

Zy —0.1200 -0.1303 4.8615 0.8891
Z, -0.0600 -0.0619 1.2497 0.3016
Zss -0.0496 -0.0602 6.0041 0.9943
Z, 0.0000 -0.0012 5.3350 1.0467
M, -0.6600 -0.7208 8.0705 1.2027
M, -0.1400 -0.1472 1.3693 0.2678
M, —-1.3265 -1.2376 7.3530 1.2539
M, 0.0000 -0.0051 18.109 2.6469
Kq 1.0000 0.9600 3.8148 0.7254
a, 0.0000 -0.0026 3.2722 0.6512
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