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UAt), Ude) freestrcam velocities in the horizantal

and vertical directions in figure 4.1

Un constant portion of Uy
u,, U, U, velocity vector components in the ¢} , &, , e; system
Uy, Uy, Uy velocity vector components in the & , & , &, system
Uy constant portion of U}
\% velocity of the helicopter
vV, velocity of air due to inflow
Ve _ velocity of the blade elastic axis
w, diagonal weighting matrix
on vibrations
W, diagonal weighting matrix
on control amplitudes
Wae diagonal weighting

on control rate of change
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X,
Xy
Xi(1), Xy1)

Xrsi(1) ) Xrso(2)

v}
{Z(y¥)}

Z
Zy
(Z(t) ) aO ’ Aa(’)

coordinates of a point in the blade in the
e, e, , e, coordinate system

coordinates of a point in the rotating

hub coordinate system

coordinates of a point in the nonrotating
hub coordinate system

aerodynamic center offset from elastic axis
center of mass offset from elastic axis
augmented aerodynamic state variables
nondimensional augmented aerodynamic state
variables for a typical section

n x 1 vector of

vibration measurements

vector of generalized coordinates

vector containing nonhomogeneous terms
in the blade equations of motion

n x | vector of vibration amplitudes

n x 1 vector of baseline vibrations

angle of incidence of the airfoil at the
elastic axis a(t) = oy + Aa(¢)

rotor angle of attack

factor to implement cautious control

blade precone angle
2a,p,b R

blade Lock number = 7
b



I proportional factor between inertia
and aerodvnamic loads
) svmbolic term quantifving the

order of magnitude of blade slopes

0 m x 1 vector of HHC inputs

AB(i) 0()—6(i— 1)

0 total geometric pitch angle

8 n HHC control angle

By,0,,0, collective and cyclic pitch control inputs

6,86, .0, amplitudes of HHC input in collective, longitudinal,

and lateral control degrees of freedom
Bos s 0cs 5 O amplitudes of HHC sine input in collective,
longitudinal, and lateral control degrees of freedom
O » 0. 05 amplitudes of HHC cosine input in collective,

longitudinal, and lateral control degrees of freedom

Vsinoag+v
A inflow ratio = ——————
QR
A stability eigenvalue in hover
Ay characteristic exponent of transition
matrix in forward flight
d , V cosap
advance ratio = —————
s OR
v rotor induced velocity
p mass density of the blade
P4 density of air

¢ torsional elastic deformation of the blade



d)HH
‘bo * ¢c * ¢s

[P(2m)]*
v

Wy

general HHC phase angle

phases of HHC input in collective, longitudinal,
and lateral control degrees of frcedom

Floquet transition matrix at the end of one period
blade azimuth

HHC frequency

_rotor angular speed

rotor angular velocity vector

HHC frequency

imaginary part of hover stability eigenvalue
imaginary part of characteristic exponent
in forward flight

real part of hover stability eigenvalue

real part of characteristic exponent

in forward flight
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dx
a_
ar ' ar
i 7
oy oy

indicates nondimensional quantity
indicates normalized, nondimensioal hub loads
indicates incremental load at blade root

indicates integrated load at blade root
indicates expected value, accounting

for uncertainty in the system



SUMMARY

This report describes the development of an aeroelastic analysis of a heli-
copter rotor and its application to the simulation of hclicopter vibration re-
duction through higher harmonic control (HHC). An improved
implementation of a finite-state, time-domain model of unsteady aecrodynamics
is developed to capture high frequency aerodynamic effects. Helicopter trim
parameters are determined using an improved trim procedure accounting for
flap, lag, and torsional deformations of the blade. A procedure for calculating
4/rev rotor hub loads is developed and control algorithms are incorporated into
the analysis to determine the optimal HHC inputs necessary to minimize these
rotor hub loads.

Using this analysis, the cffect of unsteady aerodynamics on the aeroelastic
response and stability of a hingeless rotor blade is studied in detail. The effect
of time domain unsteady aerodynamics on blade aeroelastic stability and low
frequency response is found to be small. On the other hand, the influence of
unsteady aerodynamics on high frequency response, especially in the presence
of high frequency pitch excitations, is found to be significant. Furthermore,
the two aerodynamic formulations lead to significantly different response levels
in rotor hub vibrations as a result of phasing changes introduced in open-loop
HHC inputs.

Several different HHC algoritms are implemented on a hingeless rotor using
both quasisteady and unsteady aerodynamic models, and their effectiveness in
reducing rotor hub vibratory shears is compared. A number of closed loop
adaptive controllers are studied. All the controllers are found to be quite ef-
fective in reducing vibrations, but very differing HHC inputs are required de-
pending on the aerodynamic model used. Effects of HHC on rotor stability
and power requirements are found to be quite smalil. Simulations of roughly
equivalent articulated and hingeless rotors are carried out, and it is found that
hingeless rotors can require considerably larger HHC inputs to reduce rotor
vibratory shears. Additionally, hub moments for the hingeless rotor may in-
crease significantly while shears are being minimized. This implies that the
practical implementation of HHC on hingeless rotors might be considerably
more difficult than its implementation on articulated rotors. Finally, this
analysis is used to compare with some flight test results obtained on an OH6A

light helicopter.






Chapter I

INTRODUCTION

1.1 BACKGROUND

A major goal of current helicopter research is to reduce the vibration levels
cxperienced by crew, passengers or equipment during flight. This research has
been driven by both commercial and military requirements. Commercial pas-
senger acceptance would benefit greatly from the perception of the helicopter
as having a “jet smooth ride.” Furthermore high vibration levels lead directly
to higher maintenance costs. High vibration levels frequently cause problems
during high speed flight and also during transition flight at 60-80 mph. De-
creasing vibration levels and allowing higher cruise speeds would increase the
load utilization of helicopters and so decrease relative capital costs. From a
military point of view, increased speed leads to benefits in survivability and
deployment response times. The same maintenance and comfort benefits as
for civil operations apply. Reduction in vibration levels allows more accurate
weapons deployment and more effective intelligence gathering, therefore cur-
rent Army requirements specify vibration levels below 0.05 g.

The traditional approach to vibration reduction in helicopters has depended
on the use of passive means such as vibration absorbers or isolation devices.
A comprehensive review of helicopter vibration control by Reichert[55] de-

scribes many of these methods. The development of such methods has lead to



large decreases in vibration levels over the last thirty years and can now keep
them below 0.10 g. However in the last ten years the trend has been to reduce
acceptable vibration levels from 0.10 g to 0.05 g. This objective can be only

rarcly accomplished using a passive vibration control approach.

1.2 REDUCTION OF HELICOPTER VIBRATIONS

The desire to find methods to drastically reduce vibrations below the levels
recached by these traditional means has lead to research in new areas. Onec
promising approach is to design rotor blades which iﬁhercntly have low levels
of vibration. This may be done by applying optimum structural design to the
acroclastic tailoring of the blade. Geometry, mass, and stiffness distributions
may be optimized to give minimum vibration levels at the rotor hub or some-
where in the fuselage. The fuselage itself may also be tailored to reduce vi-
brations at various points of interest such as the pilot seat, passenger
compartment or the tail boom. Surveys of the application of structural opti-
mization to helicopter vibration problems have been presented by
Friedmann[20] and Miura[44]. Another approach is to optimize the use of
conventional devices, such as vibration absorbers or isolators, via conformal
mapping in order to reduce vibrations at critical points in the fuselage[1].

A different approach to vibration reduction, which is the subject matter of
this research, is to use active controllers to reduce vibrations by eliminating
them at their source, namely the aerodynamic excitation of the rotor. This

concept, referred to as Higher Harmonic Control (HHC), relies on the appli-



cation of higher harmonic (i.e. above the 1/rev. pitch changes used for direc-
tional control and trim) pitch changes to modify the blade airloads so as to
minimize harmonic blade loading. For an N bladed rotor the predominant
vibrations in the fusclage are at N/rev. These are normally alleviated by ap-
plying N/rev. pitch excitations superimposed on the collective (i.c. average),
lateral (i.c. 1/rev. sine), and longitudinal (i.e. 1/rev. cosine) pitch inputs used
to control the helicopter attitude and velocity. This may be done by applying
N/rev. harmonics to a standard helicopter swashplate through the use of hy-
draulic servo-actuators.  Aircraft flight tests[67,_68,43,53], wind tunnel
tests[45,28,59, 37], and analytical simulations[62,46,10,34,41]. have shown
that HHC is capable of substantial reduction in helicopter vibration levels en-
countered in forward flight.

The majority of all HHC studies, either analytical or experimental, have
been based on linear, quasi-static, frequency domain representations of the
helicopter response to control. Least-squares or Kalman filter type identifica-
tion of the helicopter control parameters has been used along with a minimum
variance or quadratic performance function type controller to determine opti-
mal control harmonics for vibration alleviation. An extensive review of previ-
ous work in this area is given in Ch. 6. The purpose of this research is not to
present advances in the area of control theory, but rather to investigate its in-
teraction with an aeroelastic model of the helicopter.

Previous analytical studies have generally relied on simple analog[41] or
frequency domain[10] models of the helicopter response. The helicopter ae-

roelastic problem is inherently non-linear, with design parameters interacting



in a complex manner. Thus simplistic models of the helicopter response can
be unreliable. Other studies[62,46] were based on using a fairly old aeroelastic
response code, the G400 code[2,3], for simulation purposes. The acroclastic
modcl in the G400 code docs not have a consistent representation of the ge-
ometrical nonlincarities due to moderate blade deflections. Other shortcom-
ings of this simulation capability consist of the lack of time domain
acrodynamics nceded for capturing high frequency unsteady acrodynamic ef-
fects combined with a step by step time integration solution technique which
does not enable one to obtain direct information on blade stability, which is
usually obtained by more recent methods such as numerical implementation
of Floquet theory.

Most previous studies involving HHC have been limited to conventional
rotors consisting of articulated blades. In recent years the desire to decrease
mechanical complexity and weight and minimize maintenance costs has lead
to the development of hingeless and bearingless rotor hubs. In hingeless rotors
the mechanical hinges in flap and lag present in articulated blades are replaced
by a flexible cantilevered blade, where blade flexibility provides for virtual
hinges. In such blades the mechanical pitch' bearing is retained. Bearingless
rotor blades are similar to hingeless blades except that the pitch bearing is
eliminated and the pitch input is introduced through a torsionally flexible
structural element. The mechanical simplicity and weight savings in hingeless
and bearingless rotors is generally accompanied by increased vibration levels.
The literature contains no aeroelastic simulation capability which is based on

a hingeless or bearingless blade model and includes the effects of HHC.



1.3 OBJECTIVES OF THE RESEARCH

This study has a number of objectives. The first group of objectives en-

compass the modification of an existing acroclastic analysis, and associated

computer code, to enable one to model HHC control effects with time domain

unsteady acrodynamics. This is a major extension of an cxisting analysis and

code because it requires the introduction of several new ingredients which are

listed below:

l.

Adaptation of the aeroclastic analysis of Ref. 8 to allow modeling of
rotor response to HHC. Coding must be provided for the application
of HHC root pitch changes in the inertia and acrodynamic portions of
the program. The Galerkin finite element portion of the program must
be modificd to allow the modeling of articulated rotors. An improved
procedure for calculating the N/rev. harmonics of the six hub forces
and moments to be used as objects of minimization must be developed.
Development of an improvement on the unsteady acrodynamic theory
of Ref. 13 overcoming its deficicncies. Algebraic manipulation soft-
ware is used to develop implicit expressions for the aerodynamic loads
which include previously neglected higher order terms including some
apparent mass terms which can be important in calculating accurate
helicopter response data. Methods for implementing these acrodyna-
mics in an implicit manner on the aeroelastic model of this study must
also be developed.

Development of an improved trim procedure accounting for flap, lag,

and torsional deformations of the blade and allowing modeling of real-



istic blade cross sectional property distributions. This procedure will
provide for full cquilibrium of the helicopter in forward flight.

Provision of appropriate means to implement closed-loop HHC on the
acroclastic model. This involves the coding of routines to calculate se-
veral types of control and to implement filters for identification of

problem parameters.

These four objectives, which constitute the development of a significantly

improved acroelastic model for the analytic study of the application of HHC

for helicopter vibration reduction, are covered in detail in Chs. 4 through 6 of

this research.

With the aeroclastic model developed, a second group of objectives was

undertaken. These objectives, consisting of various comparative studies which

are the ultimate aim of this research, are listed below:

1.

Determination of the importance of unsteady aerodynamic modecling on
the response and stability of hingeless rotor blades in forward flight.
Quasisteady aerodynamics, the unsteady aerodynamics of Ref. 13, and
the improved unsteady aerodynamics of this study are evaluated. This
will include an investigation of the importance of unsteady modeling
when simulating application of HHC to rotors. In this simulation dif-
ferences in high frequency response become important.

Implementation of several HHC algorithms and identification ap-
proaches in order to determine the effectiveness of different algorithms

in reducing hub vibrations in steady flight and when step changes are



made in the flight condition. Differences in simulation results using
quasisteady and unsteady aerodynamics will again be evaluated.
Investigation of the effects of HHC on rotor stability. This has not becn
previously done because of a lack of appropriate simulation capacity.
The solution procedure of this investigation is ideally suited to this since
the Floquet theory used provides direct stability information in forward
flight.

Studying the effect of HHC on power requirecments of the rotor. This
is particularly relevant since small decreases in rotor torque or power
requircment were observed in the first flight tests of an HHC
system[67]. Such a decrease in rotor power requirements could make
up for the power required for actuators to implement HHC. This small
decrease has not been investigated and may in fact be an anomaly un-
related to HHC.

Simulation of the application of HHC to roughly equivalent articulated
and hingeless rotors. Previous investigations have shown HHC to be
very effective when applied to articulated rotors but comparisons with
hingeless rotors have not been made. Hingeless rotors generally have
somewhat higher vibration levels than articulated rotors and if larger
HHC angles are needed to counter them this could decrease the attrac-
tiveness of HHC for vibration reduction.

Use of the aeroelastic model developed to simulate the application of
HHC to an actual rotor, that of the OH6-A light helicopter. These re-

sults will be compared with actual flight test data. Because of the limi-



tations of the model, particularly the lack of modecling of fuselage
degrees of freedom, comparison will be limited to general trends in rotor
response.

Results of investigations toward these six objectives arc given in Chs. 7

through 1 of this research.

1.4 THE AEROELASTIC MODEL

The rescarch conducted in this study is carried out using an analytical mo-
del which improves on some restrictions which were brescnt in previous mod-
els. A brief description of the aeroelastic model follows. A detailed description
is presented in Ch. 4.

The coupled flap-lag-torsional equations of motion which serve as the basis
of this analysis are similar to those derived in Ref. 57 and are based on a
structural model developed in Ref. 56. They contain geometrically nonlinear
terms due to moderate blade deflections as illustrated in Figs. 2.2-2.4. These
equations form the basis of an implicit flap-lag-torsional analysis[7,8] of a
flexible, isotropic blade, modeled as an Euler-Bernoulli beam undergoing small
strains and moderate deflections. Thus the equations contain geometrically
nonlinear terms in the structural, inertia, and aerodynamic operators associ-
ated with this aeroelastic problem. The spatial dependence in the equations is
eliminated by using a Galerkin finite element analysis developed by Straub
and Friedmann[61]. A modal coordinate transformation, using six rotating

coupled modes, is performed to reduce the number of degrees of freedom.



These modcs are calculated at a fixed valuc of collective pitch which depends
only on advance ratio. For the configurations considered, the six lowest modes
arc usually the first three flap, two lcad-lag, and one torsional modes. The
ordinary differential equations are solved using quasilincarization in an itera-
tive manner to obtain the periodic equilibrium position in forward flight, for
a propulsive trim type flight condition.

The inertia loads are determined by using D’Alembert’s principle. An im-
plicit formulation for the acrodynamic loads is used. At each itcration an ap-
proximation to the blade response is produced. This response is then used to
generate numerical values of the modeling quantitics needed in expressions for
the aerodynamic loads to be used in the next iteration. Derivatives of the
acrodynamic loads with respect to the generalized coordinates, required for
stability analysis, are computed using finite difference approximations[7]. The
equations are linearized by writing perturbation equations about the nonlinear
equilibrium position. Stability is determined by using Floquet theory.

Use of this model for the research of this study requires major modifications
and additions to the analysis of Ref. 8. The derivations required to make these

changes are described in Chs. 3 through 6.



Chapter 11
GEOMETRIC COORDINATES AND TRANSFORMATIONS

This chapter presents the coordinate systems and transformations used in
deriving the equations of motion for the blade and in determining the ex-
pressions for various forces and moments used in calculating the rotor hub

loads.

2.1 COORDINATE SYSTEMS

2.1.1 Nonrotating, Hub-fixed Coordinate System
This coordinate system, shown in Fig. 2.1, has its origin at the center of
rotation of the rotor. The axes are x,, pointing toward the helicopter tail, y,,
pointing to starboard, and z,, coinciding with the vector of rotor rotation. The
: . AA n
corresponding unit vectors are i, j,, and k,. Hub shears and moments are
defined in this coordinate system and are oriented along the coordinate axes

as shown in Fig. 2.1.
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2.1.2 Rotating, Hub-fixed Coordinate System

This coordinate system, shown in Fig. 2.2, has its origin at the center of
rotation of the rotor. The axes are x and y, which rotate in the x,,, y,, planc,
and z which is coincident with the z,, axis. The corresponding unit vectors arc
A " : - .
i,J,and k. The coordinate system rotates at constant angular velocity Qk

around the z axis.

2.1.3 Preconed, Undeformed Blade Coordinate System

This coordinate system, shown in Fig. 2.2, has its origin at the blade root,
offset from the center of rotation by a distance e, . The axes arc x; and z,, in
the x, z plane, and y, which is coincident with the y axis. The unit vectors 31,
éy, and e, are obtained by rotating the i ,jA', k system by a precone angle f3,
about the y axis. This is the global structural coordinate system used for the
finite element model. The x, axis represents the undeformed elastic axis of the
blade, where the elastic axis is defined as the line connecting the shear centers

of the blade cross-sections. A shear force applied at a point on the elastic axis

will not cause torsional deformations.
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2.1.4 Deformed Blade Coordinate System

This coordinate system, shown in Figs. 2.3 and 2.4, represents the orien-
tation of the local blade geometry after deformation. The unit vectors &}, &),
and e, are obtained by rotating the e, 3),, e, system around all three axes in

accordance with the deformation of the blade. The &, unit vector is always

parallel to the local deformed elastic axis.

2.1.5 Rotated, Deformed Blade Coordinate System

This coordinate system is the deformed blade coordinate system with the
torsional deformation removed. The unit vectors &, &), and & are obtained by
rotating the €}, &), &, system by an angle of — ¢&,. This coordinate system is

used in deriving the aerodynamic loads.

2.2 COORDINATE TRANSFORMATIONS

2.2.1 Rotating to Nonrotating Transformation

A A

¢ cosy siny @ i"’

j =] —siny cosy 0 Jnr 2.1)
A 0 o 1 A
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2.2.2 Coned to Unconed Transformation

: - ;
x cos ﬂp o Sin Bp 0
ey = 0 1 0 J (2.2)
— si 0 cosp A
92 sin ﬁp p ;
and its inverse:
A . 4
[ cosﬂp o — Sin ﬂp x
Jj = 0 1 0 e, (2.3)
i 0 cosp A
I? sin Bp b ‘.
2.2.3 Deformed to Undeformed Transformation
From Ref. 56:
A, A
€, 1 V‘x W'X €,
gp=| Wb +v 1 e, (2.4)
Ny - (wx - ¢vx) - (V,xw,x + d)) 1 A
eZ ' ' eZ
and its inverse:
A A,
N I~ ow,) —We—dv) | |5
e o= X 1 —(p+v ) e, (2.5)
A Wyx ¢ l /\I
ez e,

13



2.2.4 Deformed and Rotated to Deformed Transformation

Ny Ny
®x 1 0 0] {5
&g o=[0cosd —sing [{2 (2.6)
0 sing cos¢ A
g A
2.2.5 Undeformed to Deformed and Rotated Transformation
By sctting ¢ equal to zero in Eqn. 2.5 we obtain:
e e’
/\x . vl _v’x ____W'x ’\f
e, > = X 1 VW x e, 2.7)
A x 0 1 o
eZ zZ
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Chapter 111
METHOD OF SOLUTION OF EQUATIONS OF MOTION
3.1 FREE VIBRATION SOLUTION AND MODAL
TRANSFORMATION

The natural frequencies and modc shapes of the blade are calculated using
a local Galerkin Method of Weighted Residuals. The method, as presented in
Ref. 8, has been modified to allow for modeling of .articulated rotor blades.
The following description uses the notation of Ref. 8. The finite clement used
has 11 degrees of freedom: displacement and rotation in lag at the end nodes
(4), displacement and rotation in flap at the end nodes (4), and torsional rota-
tion at the end nodes and a mid-element node (3). Displacements inside the
element are in terms of cubic Hermitian interpolation polynomials for flap and
lag, and quadratic Hermitian interpolation polynomials for torsion. The axial
displacements are eliminated by making the assumption that the blade is in-
extensional. The Galerkin method requires that the sum of the weighted resi-
duals of both the differential equations and the natural boundary conditions
bc equal to zero. These calculations are based on the linear, homogeneous,
undamped equations of motion of the blade in a vacuum, which are obtained
from the nonlinear partial differential equations of motion given in Eqns. 4.3
through 4.6. The equations of motion for the elements used in modeling the
blade, where superscript e indicates the element number and subscript 1 indi-

cates that these are linear matrices, are:
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(/1@ + ([BY]+ K1+ [TiD@®y =0  e=12,..E (3.1)

The E equations 3.1 are assembled and root boundary conditions are imposed
by dropping the rows and columns of the system mass and stiffness matrices
corresponding to the degrees of freedom restrained at the root. These degrees
of freedom will vary depending on whether an articulated or hingeless blade
is being modeled.

In forward flight the blade root pitch varies periodically with azimuth. This
causes coupling between the modes and periodicity in the mode shapes. For
this study the modes do not vary with azimuth and are calculated for a con-
stant root pitch angle equal to the collective pitch. The coupled mode shapes
of the blade are normalized by dividing each mode shape by its maximum tip
displacement in either flap, lag, or torsion.

A modal coordinate transformation is introduced to reduce the number of
unknowns in the problem and to assemble the various element matrices into

the system matrices and load vectors. The modal transformation has the form:

{a%) = [Q°1{y) (3.2)

The vector {y} of generalized coordinates become the new problem unknowns.
If m modes are used to perform the modal coordinate transformation, then {y)
is of length /m. The matrix [Q¢] is of size 11 by m. The columns of this matrix
contain the portions of the normal mode cigenvectors corresponding to the

modal degrees of freedom for the given blade element.
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The stiffness matrix [K(y,y)] of the complete blade is assembled by sum-
ming the stiffness matrices of the individual blade elements, each of which has

had the modal coordinate transformation applied to it:

13
(K& .50 = Y [0IKG . ¥)IQ°) (3.3)

e=1

where [K4y,y)] is the stiffness matrix of the e-th finite clement in the local
coordinate system. The blade mass matrix [M(y,y)], damping matrix
[(C(y,7)], acrodynamic load vector {A(y,y)}, and nonhomogencous load vec-
tor {F}, which contains forcing terms independent of the gencralized coordi-
nates, are assembled similarly. This assembly results in the following set of
nonlinear, coupled, ordinary differential equations which, for the case of for-

ward flight, have periodic coefficients:

(MG, )10} + [CO LY} + [KY, ¥ + (4@, ¥+ {(F} =0 (3.4)

3.2 SOLUTION METHOD FOR HOVER

The solution method for the case of hover is similar to that of Ref. 8 but
has been modified so that the aeroelastic response and the rotor trim condition
are calculated simultaneously. For hover the nonlinear equations of motion
have constant coefficients. The generalized coordinate vector {y} is written as

the sum of a constant vector {y,} and a perturbation vector {Ay(¢)}:

o} = (o} + {AN(1)} (3.5)
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Substituting Eqn. 3.5 into Eqn. 3.4 results in a system of nonlinear algebraic

equations:

[KGig 0)){yg} + (4G, 0)} + {F} =0 (3.6)

and a system of small perturbation linear ordinary differential equations:

[ MGy, 0)YHAHD) + [CGip ONHAAD} + [RGp OHAMD) =0 (3.7)

where:

- - = 0{A} :
Clp, 0)]=[C(yy, 0 - 38
[C6p. 0)1 = [CG )J+[a{y}l (3.8)

y =.I)E),I).=O

. e & oKy .y
[K(yp, 0)] = [K(yp, 0)] + zinl:_[%] -
i=1 ! ;=;Or;=0

6{A}:|
+ B (3.9)
[a{y} 5 = 50,7 =0

Since the aerodynamic load vector {A(y,y)} is calculated numerically, the

d{4 a{A
aerodynamic stiffness and damping matrices l: (4} } and [L:l must be
o{y} a{y}
computed using a numerical finite difference approximation[8].
In this study an additional equation is appended to Eqn. 3.6 requiring that

the rotor be trimmed in the collective so that the rotor thrust equals the given

helicopter weight. The modified equation becomes:

[K'Gy'> 0)10vg’} + {4'Fy, 0)} + {F'} =0 (3.10)

where:
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I
U’o}—{ao} (3.11)

[K'(y,0)] = [’@8’ 0)} (3.12)
- A*',_d

(4G, 0)y = 4 00 (3.13)
C1(yp, 0)

F={_,) e

Equation 3.10 is solved for {)’y}, the static nonlinear blade equilibrium po-
sition, using a Newton-Raphson iterative procedure. The lincarized stability
is determined by solving the standard eigenvalue problem defined by the first-

order, state variable form of Eqn. 3.7:

{A_}_{ 0] B [N T
YU = MGy, 00110, 001 — (MG, 001 (K3, 001 |

= [S(g, 0)1{Ayy) (3.15)
where:
{Ayn} = {ﬁﬁg} (3.16)

Blade stability is determined by the eigenvalues of [S(y,, 6)]. The eigenva-
lues occur in complex congugate pairs. For m modes used in the modal coor-

dinate transformation:
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The blade is stable if all {;<0.

3.3 TRIM PROCEDURE

3.3.1 Introduction

A helicopter in straight and level flight, flying at a constant velocity, must
satisfy force and moment equilibrium. Determining the control inputs neces-
sary for this equilibrium condition is referred to as trim analysis. In this study
two trim procedures are used. The first is a flap trim procedure where the
blade flexibility included in the trim analysis is limited to the first flap mode
and all other blade deformations are neglected. This trim procedure is used
principally to compare with results of Ref. 8 which also used this procedure.
The second trim procedure was developed specifically for this study and in-
cludes the blade flap, lag, and torsional flexibility in the trim analysis and thus
enables one to have a much more general model for the blade. The results
from both these trim procedures are used subsequently as trim inputs to the
full aeroelastic model. The full model produces stability and response infor-
mation on the blade motions, including higher modes and higher harmonics

of the solution which were neglected in the trim procedure.
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3.3.2 Flap Trim

The flap trim analysis used in this study was developed in Ref. 19 and it

was used in generating all the results of Ref. 8. This flap trim is a propulsive

trim procedure bascd on the following assumptions:

I

Blade flexibility is modeled with a lincar flapping equation of motion for
the first flap mode.

The blade can have a precone angle f,, a constant offsct between the
clastic axis and aerodynamic center x,, and built-in twist with linear
spanwise variation 0.

Quasisteady aerodynamics including reverse flow are used. Stall and
compressibility effects are neglected.

Rotor shaft dynamics are neglected. Tail rotor and rotor spced vari-
ation effects are neglected and so yawing moment equilibrium and lat-
eral force equilibrium are not enforced.

Vertical force equilibrium, longitudinal inplane force equilibrium, rotor
pitch and roll moment equilibrium, and an inflow equation are enforced
by with appropriate settings of the collective pitch 6, cyclic pitch com-

ponents 8,; and 8, the inflow ratio 4, and the rotor angle of attack ap.
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3.3.3  Full Propulsive Trim

3.3.3.1 Assumptions

A helicopter in free flight has six degrees of translational and rotational
frecdom. Consequently equilibrium is guaranteed if three force and three
moment equilibrium equations are satisfied. In this trim procedure yawing
moment equilibrium and lateral inplane force equilibrium are not enforced and
consequently the tail rotor pitch setting and the main rotor shaft angle in the
lateral plane are not considered as trim variables. The helicopter is assumed
to be in straight, steady flight at constant speed. Dynamics of the rotor shaft

are neglected. Dectails of the blade modeling are given after the next section.

3.3.3.2 Trim Variables and Equilibrium Equations
The five trim variables are the inflow ratio 4, collective pitch angle 8,, cyclic
sine component 8, , cyclic cosine component 8,,, and the rotor angle of attack
o g
The five trim equilibrium equations are:
1. The inflow equation. This is a momentum theory relationship between
the inflow ratio 4, advance ratio g, rotor angle of attack o g, and thrust

coefficient Cy.

FT(1)= 0= Cp+2v/p? + 2% (utanag — 1) (3.18)
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The rolling moment equation. Since the tail rotor and the rotor angle
in the lateral plane are not modeled, the rotor rolling moment is just set

to zero.

FT(2)=0= M, (3.19)
The pitching moment equation. The rotor pitching moment is count-
cred by moments due to fuselage drag and the weight of the helicopter.

All moments are taken about the rotor hub. The drag of the fuseclage

is given by:
1 2
D= "p VS

where f is a parasite drag arca. In nondimensional form this is:

2/
CDf: l/zu -A—

where A is the rotor area. Typically T{;—:O.l. If the fuselage drag is
assumed to act a nondimensional distance # from the rotor hub, then

the drag causes a nose down moment of:
My =~ /zy2§}—1- cos ap

The weight of the helicopter, also assumed to act a distance & below the
hub, produces a nose up moment due to its horizantal offset from the
hub by a distance & sin az. The sum of these two moments and the ro-

tor moment, as shown in Fig. 3.1, must be zero.
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FT(3)=0= M, - 1/2u2_{75 cosap+ hCysinag (3.20)

4. The vertical force equation. The weight of the helicopter is in equilib-
rium with the components of the rotor thrust and rotor longitudinal in-

planc force vectors as shown in Fig. 3.1.

FT(4)=O=CTCOSQR+ C[_[SinaR‘—Cw (32])

5. The longitudinal force equation. The drag of the fusclage is countered
by components of the rotor thrust and rotor longitudinal inplane force

vectors as shown in Fig. 3.1.

FT(5)=0= Cysinag— Cycosag— '/zﬂz-AL (3.22)

3.3.3.3 Aeroelastic Model for Trim

The aeroelastic model used in the trim procedure is a simplified version of
the model used in the actual acroelastic model of this study. This simplified
model retains all the geometric, stiffness, mass, and aerodynamic modeling
capabilities of the main analysis however the number of modes used in the
analysis is reduced to four and furthermore only the constant and first and
‘second harmonics in the Fourier series representations of the generalized co-
ordinates are retained. In addition the mode shapes are calculated using only
two finite elements. This reduces the cost of a response calculation using
quasilincarization by more than an order of magnitude but retains the accu-

racy of the constant and one per rev portions of the solution which are re-
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quired for determining the trim state of the rotor. Harmonics of the solution
beyond the second are not modeled and so this simplified model is not suitable

for calculation of the vibratory loads.

3.3.3.4 Method for Determining the Trim State
In order to trim the rotor, values for the trim variables 4, 8, 0,;, 8,., and
xz must be found such that the five trim equations are simultaneously satis-

fied. The problem then is to solve the sct of nonlinear algebraic equations

FT(,00,0,, 0, 0g) =0 (3.23)

where FT is the vector of trim equations of length 5 each of the elements of
which is implicitly dependent on the trim variables. Equation 3.23 is solved
by a packaged IMSL procedure called ZSPOW using a modification of the
Powell Hybrid Method. This involves calculating the residual values of the
components of the vector FT due to an initial estimate of the response, and the
Jacobian of the system at this point, then using this information to make sub-
sequent moves toward a minimum of the residuals in the five trim equations.
The procedure ZSPOW calls an external subroutine written for this study
which, given the five trim variables, calculates the residuals in the five trim
equations. The computation of these five trim equations is described next.
1. ZSPOW provides a vector T containing the trim variables, either with
one element incremented when calculating the Jacobian (i.e. the matrix

of first derivatives of the vector FT with respect to the five trim vari-
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ables), or with all five elements changed when moving to a new solution
estimate.

2. The coupled mode shapes of the blade are dependent on the collective
angle 6, so if this angle has changed, the subroutine recalculates the
mode shapes.

3. The mode shapes and the trim settings are used to determine a con-
verged response for the blade using quasilincarization.

4. The new response is used to calculate the constant portion of the rotor
hub shears and moments as described in Ch. 5.'

5. The shears and moments are used in the trim equations to determine the
trim equation residuals for this trim condition.

6. The trim cquation residuals are returned to the algebraic equation sol-
ver which attempts to drive them all to zero.

A flow chart showing this procedure is given in Fig. 3.2.

Typically the algebraic equation solver calculates six responses to determine
the starting condition and the Jacobian of the system. Subsequently 5-10 ad-
ditional iterations are needed to obtain a trim solution which is accurate within

three significant figures in terms of each of the trim variables.
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3.4 SOLUTION METHOD FOR FORWARD FLIGHT

3.4.1 Quasilinearization
The quasilinearization procedure presented in Ref. 8 is used to determine
periodic response and stability in forward flight. The equations of motion are

written in first order form:

(@) = [ + {Nia) (@) )} +(ZW)) + {4(ta), (a3 0)}
= {Fni(tantay v)}

The state vector {q(y)} is defined by:

{y(llf)}} (3.25)

{aW)} = {{;(W}

and is of length n=2m where m is the number of modes used in the modal
coordinate transformation. The generalized coordinates {y{y)} represent the
time varying contributions of each of the n modes to the periodic motion sol-
ution. The matrix L contains the linear portions of the blade model, N con-
tains the nonlincar terms and Z contains the nonhomogeneous terms. All
aerodynamic contributions are contained in the vector A which is calculated
numerically.

Quasilinearization is based on a first-order Taylor series expansion of Eqn.

3.24 about an approximate solution {g(y)}*:

k
* * a F
@ =@+ [_;{%}Li] (g = (@)
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where:

[a{EVL}]k
3{q)

[GF
[5{1’/\/1‘} ]k _ [5{1\/} ]k+ [
d{q} {q)

{Fy)
d{q}

(g —a%

k BN k
] =[L(¢)J+[—] +

d{q}

Equation 3.26 can be written as:

where:

k N\ -1
(B = [0- [MJ - [ o) }
Hq) (g} |

and:

k= (m - [

i

k
d{N)
x<[mw]'*

O{N}

d{q}

|

{4}
3{q)

k
d{A)
[5M}}

@t = BuMay ! +

3{A4)
2{q}

4(q)

D{q}" - ([ all
d{q}
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(3.26)
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Equation 3.29 gives an iterative procedure, the sequence of solutions of
which converge to the solution of Eqn. 3.24. Again, since the aerodynamic
load vector A({q},{c}}; x//)} is calculated numerically, the derivatives

aar oAy | | o
——— | and | —— | must be computed using a numerical finite difference

o{q} a{q)
approximation[8].

The response solution determined by this quasilinearization procedure is
stored in the form of a constant and five sine and five cosine Fourier cocffi-
cients for each of the six generalized coordinates in the vector {y} . Wherever
in the program values of the components of {y} or {q} are nccded, these are
calcﬁlatcd for the given azimuth ¥ from this Fourier series.

In order to solve Eqn. 3.29, the state transition matrix [®(2n)]* of the ho-

mogencous system:

(@Y = (B gy (3.32)

at the end of one period is neceded. The matrix [®(2n)]* is computed using a
single pass version[8] of the n-pass algorithm[51] in which the columns of
[®(2r)]* are obtained by solving Eqn. 3.32 n times, with initial condition vec-
tors {g(0)}¥+' k = 1,2,...,n, which have all their elements equal to zero, except
for the i-th, which is equal to one.

The initial vector {g(0)}**! for Eqn. 3.29 is determined by requiring that the
solution be periodic with period 2r. The vector {g(0)}**+! is shown[8] to be the

solution of the linear algebraic system:

([ — [@Qm)T*) o) ! = (Gn) (3.33)
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where {1] is the identity matrix and {c?(Zn)}" is the solution vector of Eqn. 3.29
integrated from =0 to =27r with initial conditions {g(0)}* = {0}.

System stability, linearized about the time dependent equilibrium position
{q(¥)}*, is dctermined from Floquet theory[19]. The stability of the system is
governed by the characteristic exponents obtained from the transition matrix

[@(2n)]*. For the characteristic exponents

Aj=Lgtiwg j=12,..m (3.34)

the linearized system is stable if all {; < 0.

3.4.2 Convergence

A convergence criterion must be established to determine when the response
solution from one iteration of quasilinearization is sufficiently close to the sol-
ution obtained in the previous iteration so that the procedure can be termi-
nated. The response solution at the end of an iteration is saved in the form
of a Fourier series for each of the six generalized coordinates in the vector
{y}. The magnitude of the harmonic, i.e. the square root of the sum of the
squares of the sine and cosine conponents of that harmonic, can be calculated
for each harmonic. A 6x6 matrix, 'M can then be constructed having as its
six columns the magnitudes of the constant portion and first five harmonics for
each of the six generalized coordinates.

In Ref. 8 a convergence criterion is used which is based on a sum of the

absolute values of all the harmonics. From the response matrices 'M and M
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obtained for two consccutive response iterations, the following sums are cal-

culated:

6 6 6 6
S, = Z EYAE S, = Z ZI 2,1 (3.35)
=1j=1 i=1j=1
If S, is not zero, convergence is assumed to have occured when:
53— 5
*100 < DELTA (3.36)
2

If S, is equal to zero, convergence is assumed to have occured when:

|S,— S1*100 < DELTA (3.37)

In Ref. 8 the convergence control error parameter DELTA was set to 0.5. This
required that the change in the sum of the absolute value of the harmonics
from one iteration to the next be less than v:%.

The higher harmonics in an equilibrium solution have much smaller mag-
nitudes than the constant and lower harmonics. Therefore the convergence
criterion given above weighs more heavily the importance of the lower har-
monics. When convergence has been achieved by this criterion, there can in
fact still be large differences in higher harmonics of the solution. Another
problem with this criterion is that occasionally, purely by chance, the sum of
the harmonics from one iteration can be very near to that obtained from the
previous iteration, without true convergence being achieved. This can lead to

erroncous values for higher frequency phenomena such as vibratory hub shears
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and moments. Results illustrating these problems and their solution are de-
scribed in Ch. 7.

In this study a more stringent convergence criterion was developed based
on a norm of the absolute differences in harmonics between two successive it-
erations. The matrices 'M and 2M are calculated as before and a norm is

defined as:

6 6 "
NORM = Z Z(ZM:‘/' — a,)? (3.38)

i=1 i=j
This norm moves smoothly to its optimal value and has the additional advan-
tage that it cannot produce a small number by chance, but only when two so-
lutions are actually close in cach harmonic. Convergence has occurred when
NORM < N_, where N, can be varied to give different levels of accuracy in the
harmonics.

It is not sufficient just to have a valid convergence criterion if progress is
not being made toward convergence. If sufficiently tight error bounds are not
used to solve the differential equation in quasilinearization, the higher har-
monics of the solution will not converge and will instead vary from one iter-
ation to the next in an apparently random fashion. If a loose convergence
criterion is being used this can create the appearance of a spurious converged
solution.

In this study, tighter local error bounds were used than in Ref. 8 and in

addition bounds were always tightened systematically as the iterative process
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continued. This led to more consistent values for the hub shears and moments

used in the study.

33



Chapter 1V

INCORPORATION OF UNSTEADY AERODYNAMICS IN EQUATIONS
OF MOTION

4.1 EQUATIONS OF MOTION

In this study finite-state arbitrary-motion aerodynamics are incorporated in
the coupled flap-lag-torsional equations of motion which are presented in Ref.
57 and are also given in this section for the sake of complct’cncss. The geom-
etry of the problem is shown in Figs. 2.2, 2.3, and 2.4. The assumptions used
in deriving these equations are concisely summarized below.

The blade, in its undcformed state, is straight and has no angle of sweep or
droop and no torque offset. The blade is cantilevered or hinged at the hub and
has a blade root offset of e, from the axis of rotation. The feathering axis,
which coincides with the blade elastic axis, is preconed by an angle B, which
is assumed to be small. The blade has an angle of built in twist of §,(X) which
is assumed to occur about the undeformed elastic axis. Collective, cyclic, and
higher harmonic pitch controls also contribute to the total geometric pitch an-

gle which is given by:
GG(IIJ)=00+61CCOS l,[/+61s5in¢ +9HHdlp)+ Bb(f) (41)

The cross section of the blade is symmetrical with respect to its major prin-

cipal axis and the tension center and the elastic center are coincident. The
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cross scctional center of gravity, acrodynamic center, and elastic axis nced not
be coincident, and values of these parameters can change over the blade span.

The blade is made of a homogencous, isotropic, lincarly clastic material.
The Euler-Bernoulli assumption, that cross scctions remain plane and normal
to the deformed clastic axis during dcformation, is made. This neglects the
effects of shear deformation. The blade can bend in two mutually perpendic-
ular directions. Elastic torsional deformations occur about the deformed clas-
tic axis while additional dcformations due to the flexibility of the control
system occur about the frathering axis.

The blade is assumed to have modcrate deflections, which implies small
strains and finite rotations or slopes. The clastic rotations arc assumed to be
of the order ¢ where € < 0.20. Terms containing the squares of the slopes are

neglected when compared to terms of order one, i.e.

o)+ Oe%) = A1) (4.2)

Structural damping forces are assumed to be of a viscous type. This is a
reasonable assumption since modern rotor hubs are equipped with elastomeric
dampers. No coupling exists between the blade dynamics and a fuselage. The
rotor is rotating at a constant angular speed Q and the helicopter is in steady
trimmed level flight.

The final nonlinear partial differential equations of motion, including iner-
tia loads but with aerodynamic loads left in symbolic form, are given by Eqns.
53, 54, 55, and 56 of Ref. 57. These, with several typographical corrections,

are given below:
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Axial Equation

T'X+;X, =0 (4.3)

Lag Equation

[E(/, coszf)G +15 sin20G)v’xx +E(~13) sin 0 cos O (w , —2v \\P)

+E(1,— 13)¢w'xxc0526(;],xx + (GJd)yxw'xx)’x—(v,xT),x
+ [2(220G(lm2—1m3) sin 6 cos 0] ,— [szx,(xo +ep)cos 0]
+ mv + ZmQu—ZmQﬁPW—mx,QZBG sin 6 —mQ% - szxl cos 0

+qs1V —pyq =0 (4.4)

Flap Equation

[E(I; —13)sin 6 cos O (v ., +20w ) + E(I, =)y 0520
+E(lysin’0 +13 0050w 1] o — (GJ = WD)y

— [mx ©%(xg +ep)sin 6], + (2020 {1,y sin0 g +1,4 cos?0)]
+mx %9 cos B + muw + 2mQp i + mQp (xg +ey)

+qsW —pzq4=0 (4.5)

Torsion Equation
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[GHB o +V g )] 5 +E(ly =13 sin 0 cos 0(v4 —wy)

* % * %

¥ W 10 €08 2061 — 57 —Q¥ (L + 1,3X0 + )

+mx;cos O0gLw (xg +ep) — (xg +e v @ — d;{l* +ve + W

+ B x( +e)) +2\7(w,x + ﬁp)] +mxgsin 0G[ —v (xo +e}) — V4]
+1,00(1 + 25'x) sinfgcosbg+(— By, + 2\:’x¢ + ¢ +w,;vfx) c0526(;
+ (2w — @)sin%0G) +1,30 — (1 + 2v ) sin B cos 004 ¢ sin’0;

+ (20 W+ Vw20 268~ ¢+ B )cosT0G]} + Gyy =0 (4.6)

4.2 DERIVATION OF UNSTEADY AERODYNAMIC LOADS

4.2.1 Introduction

The finite-state arbitrary-motion aerodynamics used in this study were de-
veloped originally in Ref. 13. In that work a generalized version of
Greenberg’s unsteady aerodynamic theory[24] was developed for the unsteady
lift and moment on an airfoil undergoing arbitrary pitch and plunge motion
about a steady pitch angle in the presence of time-varing oncoming velocity
and variable inflow. Non-circulatory lift and moment were determined from

the unsteady linearized Bernoulli’s equation for the pressure on the surface of
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the airfoil. A circulatory flow is calculated to enforce the Kutta condition at
the trailing edge. After enforcing the Kutta condition, the circulatory lift is
calculated in the Laplace domain.

A gencralized Theodorsen lift deficiency function is found which acts as a
Laplace domain opcrator between the % chord downwash velocity and the
circulatory loads divided by the time-varing oncoming velocity. A second or-
der rational approximation for the gencralized Theodorsen lift deficiency
function is uscd to obtain a finite-state time-domain representation of the cir-
culatory loads. The time-domain circulatory loads are finally expressed in
terms of the airfoil degrees of freedom and two additional state variables de-
noted augmented states. The two state variables are governed by a system of

ordinary differential equations driven by the % chord downwash velocity.

4.2.2  General Arbitrary-Motion Lift and Moment Expressions
From Ref. 12, the general noncirculatory and circulatory arbitrary-motion

airloads on an airfoil, such as that shown in Fig. 4.1, are given by:

L,dt)= —é—p qafb R {AR(1) + Up(aa(r) + Up(t)ag + Aa(t)] -
- Up(z)— (@b R)A(t)) (4.7)

M, (1) = %p 4aib R2UL(DQ(t) + —;—p 4adB R (@ — )UpAi(r)

+ @[AR(t) — U 0] + ULy + Ax(r)] — BR(Ys + a2)au(r)) (4.8)
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- Uro 2 Uro
LAt) = p qafb RYU1(£)[0.006825(—LL)2X (£) + 0.10805(——=)X(1)]
bR bR
+ —é—-pAa,(b_ RWU4(6)t) (4.9)
M(t)=bR@ + )LL) — %p Lafb REUL(D1) (4.10)

where the two underlined terms cancel each other and Uy is the constant
portion of Ur. From Fig. 4.1 it can be scen that the Y chord downwash ve-
locity Q(t) will have contributions due to oncoming velocity U,(t), vertical ve-

locity Ah(t) —U,1), and angular rotation Aa(t):
Aty = Upt)lag + Ac()] + [AA(2) — Up(t)] + bR(V> — A1) 4.11)

The augmented states X, and X, are governed by a first order differential

cquation:

: 0 I

Xl(r)} Uro 2 Ut {X'(t)} 0

cnl = | —0.01365(—L2)2 —0.3455(——2 + (4.12)
{XZ(I) 1365( TR ) 3455 = ) | XA0) {Q(t)}

4.2.3 Lift and Moment in Terms of Local Blade Velocities

To apply Eqns. 4.7 through 4.10 to the present problem, it is convenient to
consider, as was donc in Ref. 57, a system of unit vectors &},¢,, and & ,
where the double prime system has been rotated by an angle of — $e. from the

deformed blade coordinate system. The transformation between the unit vec-
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tors is given by Eqn. 2.6. From this transformation the velocities in the two

systems arc related by:

Uy = Uj cos ¢ — Ul sin ¢

U’I

z

= U)',sin¢>+ Ul cos ¢ (4.13)

The velocities used in this derivation will be velocities of the elastic axis, as
were used in Ref. 12, rather than velocities relative to the elastic axis, as were

used in Ref. 57. With this convention, the following relations can be identified:
Ur=U;, ag+da=0g+¢, U,—Ah=U, (4.14)

By substituting the above velocity terms in Eqns. 4.7 through 4.10 and us-

ing the following notation:

0 0 X4 - 7 _ R
——::Q_—, _ = = iz ’ R:——,
ot oy AT TR © (Xq = 72) ¢
U U X
T y 5 z v _Q 2
Uy=§, U2= Q7 y X]—7Xl, XZZ—,
T Lp v M,
B 0 2’ Mhne = E R 0r2
a;p 4(b RXQ) app 4(b RY(Q)
_ L — M
= —— M, = ——— (4.15)
aip 4(b RXQ) a;p 4(b R ()

the noncirculatory lift and moment become:

Loc = 2T+ 6) ~ U~ BR(xy - veX6g+ #)+ T0G + 8))  (4.16)
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7 m — T p * — 1 _‘_m - % Ln
Mye= =554 =DUBG + ¢) = (X4 = Uz + (5 = 22)UH0G + ¢)

— bR(3/8 + X3 —JTA)(*(;G-FE)} | (4.17)

and the ¥ chord downwash velocity beccomes:

Q)= Uy + &)= U+ bR(1 — 4X06 + ¢) (4.18)
The circulatory lift and moment can be expressed as:

7 T < L—];O 2y 17.;0 v TI*"
L = T3[0.006825(—2)"X,(4) +0.1080(=)X50)] + % T30 (4.19)

M, =x,L, (4.20)

where the nondimensional augmented states are now governcd by:

[« ><|1»
—

0 I _

= Uso T {0010 (4.21)

| —0.01365(=2)% —0.3455(—2) |1 5,( T 1@ '
bR bR

e
[\

The circlatory lift can be written in a more convenient form if a quantity

associated with unsteady effects is defined as:

" L4

U 0 »— U 0 —
H = [0.006825(——)°X 0.10805(—=)X 4.22
[ (m) (¥)+ 0.1 (bR) A¥)] (4.22)

with this expression the circulatory lift becomes:

L.=UjH+ Q] (4.23)
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4.2.4 A Previous Formulation for the Circulatory Lift

In Ref. 12, the circulatory lift and moment were written in a different form.
As will be shown, this introduced a spurious instability at higher advance ra-
tios which was a consequence of the particular details of the formulation, and
was not an inherent property of the time domain acrodynamics. The circula-
tory lift and moment were expressed in terms of their quasisteady values mul-
tiplied by a time domain lift dcficiency function, leading to the following

expressions[127]:

L= _LC =[% +FI0;0 (4.24)
p 4a{b RO

— M.

M, = —C—— = 5,[% +F]U,0 (4.25)
p 4afb R) (Q{)

Where the function F was a lift deficiency function in the time domain cal-
culated using the % chord downwash velocity corresponding to a typical blade
section located at the three quarter span station of the blade. The quantity F

was assumed to be a function of time only, and valid for the entire blade span:

F(‘YTSU ;\_;Tsz’ QTS) =

TS 0 TS 0

[o. 006825( ¥1X7g, + [O. 10805(

Ors

)] Xrs2

(4.26)

where:

Xrs = nondimensional radial position of the typical section
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Q,s = Q cvaluated at X, = Xy
Um = Xr¢ + € = constant portion of U; cvaluated at the typical scction.

The differential equation governing the augmented states was given by:

X 0 ' X 0

Xrsi{ _ 7 U { TS]} {_ } |

. - TS0 .2 TS0 - + (4.27)
> —0.01365(—= —0.3455(—= . or

XTs2 ( bR ) ( bR V| sz rs

The purpose of this formulation for the lift and moment was to simplify the
solution of the acroclastic response and stability problem by having the aug-
mented states governing the unsteady acrodynamics be only functions of time.
Thus the augmented states were independent of the spanwise locations of the
cross scctions of the blade. While the formulation was successful in accom-
plishing this objective, it also introduced a spurious singularity in the circula-

tory loads at high advance ratios.

For typical rotor blades, the ¥ chord downwash velocity Q can become
zero on the advancing side of the rotor at sufficiently high advance ratios.
From Eqn. 4.26 it can be seen that when Qr approaches zero the lift deffici-
ency function F will approach infinity. If the circulatory lift is being calculated
at the typical section, this produces no algebraic problem becausc from Eqn.
4.24, F is multiplied by Q which cancels with the denominator in Eqn. 4.26.
If the circulatory lift is being calculated anywhere but at the typical scction,
0 and Q, do not cancel and as Qs approaches zcro the circulatory lift ap-

proaches infinity.
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This singularity in the circulatory lift Icads to a spurious instability in the
flap degree of freedom at an advance ratio of 0.45 in the flap-lag study pre-
sented in Ref. 12. When this version of the formulation of the unsteady loads
is used, the spurious instability is also reproduced in the present flap-lag-tor-
sional study. With the correct formulation of the circulatory loads, given in
Eqns. 4.18 through 4.23, no such instability is found. A comparison of results

due to the two formulations is given in Ch. 7.

4.2.5 General Expressions for Aerodynamic Forces and Moments

Forces and moments per unit span in the deformed blade coordinate system
must now be found. The loads will have components due to circulatory lift,
which is assumed to act perpendicular to the resultant velocity at the elastic
axis, noncirculatory lift, which is assumed to act pcerpendicular to the blade
chord, and an additional profile drag force which is parallel to the resultant
velocity of the elastic axis. These orientations are shown in figure 4.2. Drag

is calculated using:

D=p U%RCpy, where: U= U524 U7

- C — _
L _ D2, 7 (4.28)
p4ab R(Q) a

D=

Using these assumptions concerning the direction of the lift and drag forces

(per unit span), the loads per unit length in the double primed system become:
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L4

— _ U _
P.,= L.cos[ tan—l( 231 + L, cos(8g+ &) (4.29)

”

Y
Pla=— L, sin[ tan” (—=-)] — Lpsin(lg + ¢)— D (4.30)
Y
or:
I/ _
Po=L + L..cos(0.+ ¢) (4.31)
za c — 5 nc G
Uy + U

=, — U - R CDO T T2
Pla=—Lo——= 2 — — Lcsin(fg + ¢) - T,.(Uy2+ 772 (4.32)

Uy + U;
Gya= WC + an (4.33)

To obtain the forces and moments in the undeformed coned blade coordi-
nate system the transformations given by Eqn. 2.7 must be used. Using these

transformations the loads are:

Pra=— V,xP;za —W,xPZa Ixa=9xa
Fya = P;a “V,xw,x}_);a ‘—iya = v,xq;a (4.34)
P,,= —za 92a= W,xq;a

45



4.3 NUMERICAL IMPLEMENTATION OF AERODYNAMIC LOADS

4.3.1 Introduction

The valucs of the expressions for the acrodynamic loads given in Eqn. 4.34
must be calculated at various azimuthal positions and provided as input to the

acroclastic analysis.

In this study two approaches to the overall problem were implecmented. In
the first approach an algebraic manipulation program was used to derive al-
gebraic expressions for the local velocities. Numerical values for the loads were
then computed from these implicitly derived values for the local velocities.
This approach avoids the neccessity of introducing assumptions which would
allow one to neglect terms to simplify the expressions. In the second approach,
assumptions were made for the orders of magnitude of all quantities in the
expressions. Using these assumptions, higher order terms were systematically
neglected leading to explicit expressions for the aerodynamic loads. This sec-
ond approach is the same as was used in Refs. 57 and 8. It was implemented
for comparison with the implicit formulation to verify that the two approaches
gave similar results, which they did. These two approaches are described in
the following sections. In both cases the basic approach to finding the local
air velocities in terms of blade displacements and the other problem parame-

ters follows the approach used in Ref. 57.
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4.3.2  Implicit Implementation

To numerically calculate implicit values for the blade loads, values of the lift
and moment cxpressions in Eqns. 4.16 through 4.23 arc determined and then
these values are numerically substituted in Eqns. 4.31 through 4.33. Subse-
quently these results are then numerically substituted in Eqn. 4.34 to give the

final implicit loads.

The lift and moment quantitics in Eqns. 4.16 through 4.23 arc in terms of
local blade velocitics in the double primed coordinate system. Expressions for
these velocities in terms of blade slopes and displacements and other problem
paramcters must therefore be found. The local velocities are due to two com-
ponents, V., , the velocity of the elastic axis, and V, , the velocity of airflow

duc to inflow. The velocity of the elastic axis may be found from:

Viea=Rpg+ QxRpy (4.35)

where Rg, and  are given by:

Ry = eif + (xg +u)e, +ve, +we, (4.36)
A
Q = Qk (4.37)

Using the transformation of Eqn. 2.2, R;, and R, can be expressed in the ?,

A A
J , k coordinate system as:

A
Ry =[e) + (xg +u)cos ﬂp—wsin ﬂp]i
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I
+vf + [(xp +u)sin ﬂp +w cos ﬂp]k (4.38)
. N A A
R, = [ucos ﬂp— W sin Bp] i +vj + [usin [)’p+ W COS Bp]k (4.39)
The velocity due to inflow is given by:

A
V= uQRcosy i — uQRsiny | — QORAK (4.40)
With higher order terms included, the velocity expressions are as follows:

Veqd=Qw v~ vV W) sin ﬂp + {v {xp +u) — v} cos ﬂp + v (e + ;)
+u +w w)eL + Q[(¢v — w)sin Bp+{xg+u+ vw b +v )} cos B,

— (W b +v )+ dW + ¥ +¢,18 + Q[{v + W +v ,w )} sin B
X X i S XX P

+{w v — w, v (xg +u) - A(v v + u + xp)} cos ﬁp

—w v (0 =€) —w i+ PV it — ¥ —e)) + WIE, (4.41)

V,=QR[ - VM siny + (cos ﬁp —w . Sin p)u cos ¥
~ (sin B, + w , cos B RTe; + QR[ — psin y —{¢sin §,

+ (W@ +v,)cos flucos y +{(w, ¢ +v ) sin B, — ¢ cos Bp}l]%;

+ QR[w,v  + )usiny + { —sin Bp+ (Pv —W ) cos ﬁp}y cos Y

+{(wx — ¢v o) sin f, — cos B,}A1e, (4.42)
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From these velocities the total velocity of the clastic axis relative to the air can

be found from:
U=V —V,y=Use,+ U, + U, (4.43)
The velocities in the single primed system are:
= — [W, 7+ ¢]Rusiny
+ [sin B, + cos (W, — ¢V )R p cos ¢
+ [sin f( ~ W, + ¢v ) + cos ﬂp]ﬁ/l
+ sin ﬂp(fv“x\?,x\? + oW + V)
+COS B — W P — W K, + W, T — ¢V, — ¢ — $)
— W T W T8~ W+ T — ¢ — 68 + W (4.44)
U, = Rusiny + [¢ sin B, + cos ﬂp(W’x(# + ¥ JJRu cos ¢
+ [ —sin BW ¢ + 7 ,) + ¢ cos ﬁp]ﬁl
+ sin ﬁ,;q‘)v—w)+cos[3p(w ¢V + V.V + i + Xp)

— W Pl + W — T+ V8 (4.45)

Since apparent mass terms are retained in the expressions for the loads, the
derivatives of the velocities with respect to ¥ are also nceded. These are given

by the following expressions:
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Ué =[—sin ﬂp + Cos ﬂp( - W,x + ¢‘7,x)_ (W,xi*;,x + ‘_’,x‘%,x + d’)]ﬁﬂ sin
+ [ COSB(— &V = 7.6+ ,)— (W7, + ¢)]Ru cos y

+ [sin (% + 7 . — W JIRA

™
+Sin B (W W+ WV T+ pW+ T W+ G+ )
+COS P — W Tl — T 5 T~ Wb Ko+ W — 7,

* * * * * * *
+ VL BU— T WY — T W&+ W — bV — pE — Wit (4.46)
U}', =[—¢sinp,—cos f(w ¢ + v, )]Rusiny
+ [¢ sin ﬁp + cos Bp(»‘v'yxrj) + dn%’x + ‘%,x) + 1JRu cos y

+ [ - sin Bp(va(; + d)ﬁx + ‘%,x)+ J) oS ﬂpjﬁl
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Given the velocities in the single primed system, the velocitics in the double
primed system can be found by using Egn. 4.13. By diferentiating Eqn. 4.13
the following expressions for the ¢ dcerivatives of the velocities in the double

primed coordinatces are found.

Uj’,z-d)UJ;sinanL UJ’,cosd>—¢U;cos¢>— U, sin ¢ (4.48)
Uy, = ¢U,cos ¢ + U, sin ¢ — ¢U,sin ¢ + U}, cos ¢ (4.49)

In actual implecmentation, the axial displacement terms u , u, and u arc ne-
glected in calculating the aerodynamic loads. This is because with the implicit
nature of the acrodynamic formulation, there are no provisions for the calcu-
lation of axial displacements in the aerodynamic section of the program. In
fact these are quite small terms which should have little cffect on the aero-

dynamic loads.

4.3.3 Explicit Implementation

To determine explicit expressions for the aerodynamic loads, an ordering
scheme is adopted by which higher order terms are systematically neglected.
This ordering scheme is consistent with that used in deriving the equations of
motion given in Eqns. 4.3 through 4.6 and include additional assumptions on
the order of 56 which lead to the retention of some terms which may be im-
portant when high frequency excitations such as HHC are present.  Again,

following Eqn. 4.2, terms having an order of magnitude comparable to the
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square of the blade slopes, i.e. O(e2), are neglected when compared to terms of

order one.

The orders of magnitude assigned to various parameters in this study arc

given below:

* 3%k

0(8—%): 6(;
. -_% 5 R 0
O sing s ooy, To=70, R=Ghy S =( ),
d |1 0 .
1) W: ¥ T (cxcept when applied to 05)
O(El/z): OG’ sin OG’ GG
= X4 s _ b - € _ ow
s s ’{, ==, b=_7 == = )
;200 v o w X1 km kg
*0xy Z’ ¢’ bR ¢ T !
C
3/2 DO
o) 2
2y, - _u - X
(e”) u=7, X1=7

%

‘The main difference from Ref. 8 is in the magnitude assigned to . In this

study HHC inputs are included in 6 as shown in Eqn. 4.1. Because HHC is
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input at high frequencies, the angular accelerations due to it can be quite large
£t
and this is reflected in a larger assigned magnitude for 6, than would be oth-

crwise cxpected.

The forces and moments in the undeformed coned blade coordinate system
arc obtaincd by algebraically substituting the velocities given by Eqns. 4.44
through 4.47 in Eqn. 4.13 and substituting this result in the expressions for lift
and moment given by Eqns. 4.16 through 4.23. Using the ordering scheme
leads to the neglect of numerous higher order terms. With the use of a small

angle assumption, Eqns. 4.29 through 4.33 reduce to:

Pz'a = Lc + ch (4.50)
_ — | = = Cpo 72

P;az—L:(H+?Q)—L,,C(BG+¢)——[,’T—(U};) (4.51)
Gra= M.+ My, (4.52)

The simplified algebraic expressions for lift and moment are substituted in
Eqns. 4.50 through 4.52. Subsequently these expressions are further algebra-
ically substituted in the expressions for forces and moments in Eqn. 4.34.
Carrying out the various algebraic manipulations and applying the ordering

scheme produces the following final expressions for the forces and moments:
P= H{¥ + 7 Fy+ Fi} + %{FI(FIGG + Ffg— Fy)

— F\B7 + QF\Fy0G — FaF3)i , — FIFy o+ Fip — 7w,
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+ (F[ = F (0 +2F\F37 ¢ + (2F\0 — F3)b — Fyiv + F\Fy

F2F 68 — Py 5 — Fy7 v — ) + —”25—{6(;F1 —0F

+ BoFe+ 0GF3+ Fg¥ o+ Fyp — Fyv — W + F$} (4.53)
Pra=— H{Fy+ W+ V7 0+ 7% , + TP, + T2 Fy + W F3)

- %{(FIGG + Fiflg— F)Fy+ B{0GF, ~2F2)7 + 0GFsF>7 x

¥ FyF\BG+ FfG—2F2 . + F1Fyb + (F\fG —2F5 2B, Fy)iw
+ (OGF3 + FIFy) 8  — F3w%+ (Fif 7 + FyF37 o+ F\F3% )
+ (F\7  ~20)Fyis + (Fy7 + F37 )% 6 + F0G7

F(Fi0G + FG—2F ) + FoFup + (F G+ Fxp)

+(Fib + Fy0GF —2B,7 —2F5 ) + FyFyis b + Fypiw 3

T+ (F7  + FyT 0, 200 ) + 0G5 — w2+ Fywg + i)

= 0GR — Fhg+ FiPG)+ 0B, Fs + 06 Py — 0 GFel

+0GFeW o+ (0GF) — Fsfg +2F305 + BPF6)¢ + Fedw
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+ 3%+ 0867 + 0GFsF  — FOGW + 0GF1d + Fié

C /)0

- F3¢“iy,x— GG*M—‘; + 62;‘7 d)%} {Fl +”F1V +’)FIF3V }

Gyq= HI AV + 7 Fy+ Fi} 0+ Fif — F)

— FiB 7 + QF\Fy G — FoF3)i  — FiF3@  + Fip — Fiw
+(F} = FY9 7  +2F\Fy7 6 + QF\0G — F)f — Fii¥ + FiFy
+2F1q5v — Fyw v —Fyv W — LW} + = {(F3F56(~ + FSFéﬁp

— F\F0G — BRFBG)— (FsFg + FsFd I o + FsFei

+ F3Fs + FyFsv W — FsFgi b — (Fg + Fs, v — Fy Fi
- (F4J> + FsW v — F3F4V,x;S + (F\FsW « + FyFsp + FyFsfg)

+ (F\Fs? . — FyiF3F)W  — Fsw + Fs9Gw — bRFsp + Fs¢v }

where the quantities F, through F; arc defined by:

F, =2 + X, + Rusin y Fy=bR(X, — 1)
Fy=AR + uRp,cos y F,= Rusiny

F, = uR cos ¢ F,=bR(¥s + X2 — X,)
F,=bR(1 — x,)
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4.3.4  Solving Numerically for the Augmented States

The differential equation governing the augmented states, Eqn. 4.21, can

be rewritten as:

/%l 0 l ] X/-1 0
S A ee (50
a2
where:
A5 = —0.01365 U;O)z Ary = —0.345% _;0) ) (4.57)
21 : ﬁ ? 22 ° b——R- "

This equation is forced by the Y. chord downwash velocity Q. In quasili-
ncarization a time history for Q from the previous iteration is known and this

can be used to determine the augmented states for the current iteration.

A Fourier analysis may be applicd to the time history of O from the last

iteration of quasilinearization, then Q may be expressed as:
NH

0 =0Qy+ ) [DynSin ny + Opycos ny] (4.58)
n=1

where NH is the number of harmonics retained in the Fourier analysis. The
quantities X, and X, may then be solved for in terms of their Fourier cocffi-

cicnts.

NH
Y1=A7|0+ Z[z\_’lsnsinnt//+z\_’lcncosnxl/] (4.59)

n=1\
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Nl
Xo= Xy + Z[f;_m sin ny + X5, cos ny ] (4.60)

n=]1

Substituting Eqns. 4.58, 4.59, and 4.60 in Eqn. 4.56 and cquating coefficients
of sine and cosine leads to the following solution for the Fourier cocfficients

of the augmented states X, and X,

Xyg= I Xy =0

> — —_—
vl - (AZI +n )an - nAZZan

Xisn = 22 . 2.2
(Azl +n ) +n Azz
p— 2 J—
- ”AZZQm - (AZI +n )an
Yien = 22, 2.2
(A21 +n ) + n"A22
XZ.m = nchn ’ Xch = ”’?lm (4.61)

If Eqn. 4.57 is substituted in Eqn. 4.22, an expression for H in terms of

A,, and A,, can be found and is given below:

| - 2162 -
H=—~—4 - 4.62
> 21X co10 122X2 (4.62)

The quantity H is also assumed to have a Fourier series representation.
NH

H=Hy+ ) [Hysinn + H,cos ny] (4.63)

n=1

If Eqns. 4.59, 4.60, and 4.61 arc substituted in Eqn. 4.62 and this is sct equal

to Eqn. 4.63, the following Fourier coefficients for H are found.
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H, [ ]Qm + [ ]Qc,, (4.65)
[ ]Qs,, + [ ]Qc,, (4.66)

where the following abreviations have been used:

Bl = — 1294A21A22n + 2162/’122']3
Bz = 3455 421(/471 +n )+ 2]62A22ﬂ
By = 6910[(A,, +n2) +n%4]

For a given point along the blade, the augmented states are driven by the
time varying ¥ chord downwash at that point. To perform the Fourier anal-
ysis described above and solve for H every time the aerodynamic loads are re-
quired would use excessive amounts of computer time. However the Fourier
coefficients of H are independent of the azimuth and thus have to be deter-
mined only once for each radial coordinate where the airloads are required.
When implementing this procedure, the airloads are only solved for at a finite
number of radial stations where the airloads are needed for use in Gaussian
integration. Each time an airload at a given radius is needed, computer me-
mory is searched to see if the Fourier cocfficients for H at that radius have

already been computed. If this data is available it is read from memory. If it
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is not available it is calculated and stored for future use. Typically for a five
clement representation of the blade and eight point Gaussian integration this
will involve the storing of forty sets of Fourier coefficients for H. When H is
nceded for a particular value of ¥, the Fourier coefficicnts from Eqns. 4.64
through 4.66 arc substituted in Eqn. 4.63 to give the needed value of H at

that azimuth.
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Chapter V
CALCULATION OF HUB FORCES AND MOMENTS

5.1 INTRODUCTION

Hub forces and moments are calculated using a direct force integration
technique. A blade response in the form of a Fourier scries representation of
the generalized coordinates is assumed to be known and the hub loads are
calculated basced on this. The procedure used consists of three loops, onc over
the bladc azimuth, one over the four blades of the rotor, and one over the
blade radius. A description of the sequence of calculations is provided below:

1. For a given blade azimuth, the local acrodynamic and inertia loads are
calculated at a number of radial stations along the »bladc.

2. The forces and moments at the blade root due to the local loads are then
calculated and are numecrically intcgrated along the blade to give the
root loads at a given azimuth.

3. The root blade loads due to the four blades are combined to give the
total rotor hub loads for a given azimuth.

4. A Fourier analysis of the total rotor hub loads around the blade azi-
muth is carried out.

From the resultant Fourier series, characteristics of the rotor hub loads may

be reconstructed. A flow chart showing this procedure is given in Fig. 5.1 and
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a dctailed mathematical trcatment of these calculations is provided in this

chapter.

Calculation of hub loads in this study differ from that in Ref. 8 principally
in that acrodynamic loads have been calculated in an implicit manner and the
blade modeling is more general. Implicit load calculations imply the retention
of various higher order terms which were previously neglected, and the elimi-
nation of the small angle assumption. The current study allows the inclusion
of HHC inputs in the computations of the hub loads and includes provisions
for the modeling of a control system stiffness and articulated blades with or

without spring restraints.

Details of the calculations are given in the following sections.

5.2 CALCULATION OF LOCAL LOADS

5.2.1 Local Aerodynamic Loads

Expressions for local aerodynamic forces and moments in the coned, unde-

formed coordinate system, as developed in Ch. 4, are used. These forces and

moments are: P, , Py, Py Gig 5 Gpa » and G, .
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5.2.2 Local Inertia Loads

Inertia loads per unit span of the blade are calculated using D’Alembert’s
principle and integrating over the cross section of the blade. Referring to the

geometry of the blade shown in Figs. 2.3 through 2.4, thesc loads can be ex-

pressed as:
= = = A = A —1
Pi: leé\x_{_ Pyiey + Pziez= 5 J‘ padAx (51)
mo§2° * A4,
_ _ A — —1 ‘
q; = qxlé\x + dyi€y + qziAz = —Tz_j pRandAx (5:2)
myQQL” A,

The acceleration of a point on the blade is given by:

a =R + 20xR + Qx(QxR) (5.3)

where the position vector of a point in the blade cross section, relative to the

axis of rotation is given by:

A
R=e¢eji +(xg+ u)é\x + vé\y +wé\z +y09}’, + zoé\; (5.4)
the rotor angular velocity vector is given by:

Q =0k (5.5)

and the position vector of a point in the blade cross section relative to the

clastic axis is given by:

4 AI
R, = 32, + 202} (5.6)
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Using the coordinate transformations given in Eqns. 2.3 through 2.4, these

vectors may be expressed in the coned undeformed coordinate system as:

R = [(xg +u) + ¢ cos ,Bp =V + W) — zow  — (;‘)v‘x)]?x

+ [v+yp —z(¢ +W,xv,x)]9y + [w — e sin ,Bp + yod + zo]é\z (5.7)
R, = [ —yy(v o+ dw ) — 20w, — ov )]e,

+ Dvg — 20l +v v )18, + [ygd +2)e; (5.8)

Q = Qsin B¢, + Q cos B e, (5.9)
The first and second time derivatives of R are then:

R = [~ yolV o + W o+ dW ) — Yo(v o + dw ) —2g(W . — ¥, — ¢V )

— 2w o — ¢V )Jex + [V + o — 2o + Wy +W 3 )

— 2(@ + w v )16, + [W + 9od + yod + Zple, (5.10)
R = [il — yofV o + W + 20w, + dw ) =250V , + dw . + ow )

— Fov x + dw ) — 2o - ¢V =20V, — Pv )

—25W — PV — BV ) — Zow , — d)v,x)]@x

+ [V + g — zo(p + W v H2W 0w )
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. y . . .. AN
=224 + WV et w,xv,x) —Zfd + w’xv,x)]e).
+ [+ Jigd + 2000 +ygd + £91e, (5.11)

To develop the inertia loads implicitly, Eqns. 5.7, 5.9, 5.10, and 5.11 are
substituted in Eqn. 5.3 and subsequently this result and Egn. 5.8 are substi-
tuted in Eqns. 5.1 and 5.2. The following quantitics arising from integration

over the blade cross section can be defined:

.
pyodd = mx; cos 8 (5.12)
Y4
J pzodA = mx;sin 0 (5.13)
A
f pyodA = —mxP; sin 0 (5.14)
A
f pzgdA = mx B ; cos Oq (5.15)
A
A
J-pZOdA =mx,(—626 sin GG+éG COSBG) (5]7)
A
2,, 2 . 2
f py(dA =1, ¢c08°0; + I,,3sin“f 5 (5.18)
A
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f [)vl"(}}"()dA = (1m3 — Imz)é(; sin BG coS OG (5]9)
A

J pygipdA = —1,,5 cos 66(9%; cos 0 + éG sin 0)
A

+ 1 3sin0(— 0% sin 0 + B cos 6) (5.20)
J‘ pyoz()dA = (Imz - Im3) sin 9(; COS HG (521)
A
A

J pyoodA = 1,5 cos O — 926 sin 6 + éG cos 0)
A

+ 1,380 005 cos 0 + O sin 6) (5.23)
C 2 . 2 2

pzydA = I,,5sin“0; + 1,5 c0s0 (5.24)
J4

pzozodA = (1,n — 1,30 sin 6 cos O (5.25)
4

pzoZgdA = 1, sin 0 — 926 sin 8 + 0 cos 0;)

YA

— 1,3 cos 90(6%; cos B + éG sin 0) (5.26)
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f peodA = —l0sin0; — 1,30 cosd, (5.27)
A

J. pzyiydA = —1, 5 sin BG(Gé cos O + 96 sin 6)

A

~ 1,,3€08 06 ~ B sin 6 + B, cos 6:) (5.28)

I

This proccdure leads to implicit expressions which would be extremely
lengthy if written out but which can be casily calculated by the numerical
program carrying out the analysis. In order to compare with Ref. 8 and verify
the implicit expressions, explicit incrtia loads were also derived using the or-
dering scheme detailed in Ch. 4. These cxpressions contain some previously
ncglected higher order terms which can be important when HHC is being ap-

plied. These expressions are given below:
Py = m[Xg + &) + 2V] (5.29)

Pyi=m[ —V =2l + 2B, + 7 + X cos 5 + x 9 sin 0+ dcosfi)] (5.30)

Pyi=— MW + 28,5 + B %+ &) + x B cos 0,;] (3-31)

=i

Gy; = — mXx;cos OG[;T; + 2/3’; + BXp + &) - bV + vp]
= 7%y sin 0600 ~ V1 = (p + L0 + ¢ + $%95]

= Lol(1 + 27 )sin 6 cos 05 + (267, — B ¢+ ) cos?;
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+ (20, — $)sin®0; +2i B sin 0 cos 0] — I 5[ sin%0,;

* . % _ 3 * . *x * * —
— (I +2v)sin 0 cos 0 + (W, 7, 20V WY 2w, —2¢v =29V,
* *
— ¢ —Ww,T,) cosz()G —2w,0;sinf;cos 05 —2v .0, COSZH(;] (5.32)

— [ -  E% — — — - x
qyi = — mXx;Cos 6(;[V,X(w + ﬂp(X(] + 6’1)) - (15()('0 + (] +2v )]

" *

— Lpal(67 , — d)‘VTx + V’x:;;)cosé +2(2¢ — W W sin O cos B;

+(V,— *frfx) sin 0 cos 8 + (W, + B, +2<;> — a_;,x) sinz()G +2éG sinZBG]

— -m3[ C()SZGG(ﬁp — ¢V, + W 2w,V +2\7‘xﬁ,x +2$5

+ :];ﬁx +2<2>5,x + ¢V~ W )+ (V. — 7,)sin 6 cos O

—202¢ — W ) sin 0 cos B +205 cos2 {1 + V] (5.33)
Gy = — mx;cos 06X + & +2v] + + X, sin 0 5[d(Xy + /)]

= Iolvy cos?0,; —256 sin 6; cos 8 + sin 6,5 cos G'G(;—‘;,x —2(?5 - B,)

+ 8 cos 02w —26)] — (I, + I .05]
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— Ia[205in 6 cos 6 — sin 8 cos 6w —2¢ — By +2405 c0526(;] (5.34)

To be consistent with the quasilincarization analysis, the axial displace-
ments # in these expressions were neglected in the actual numerical imple-

mcntation of the shear calculations.
5.3 CALCULATION OF ROOT LOADS

5.3.1 Summation of Local Aerodynamic and Inertia Loads

Acrodynamic and incrtia loads are combined at each local point of appli-
cation before any further calculations are performed. Because inertia and
acrodynamic loads have been nondimensionalized by different factors, a pro-

portionality constant must be used before they can be combined:

P=P,+TP,; §=gq;+bRIq, (5.35)

The proportionality constant is found from the ratio of the nondimensionali-

zation factors:

a,-pal;Rﬂzfz yib

I =
mQ’¢ 2R?

(5.36)

where it has been assumed that the blade semi-chord used in calculating the

Lock number y is cqual to the local blade semi-chord.
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5.3.2 Expressions for Local Contributions to Root Loads

The local forces and moments produce resultant forces and moments at the
blade axis of rotation. These loads must be found in the unconed hub coordi-
nate system. Using Eqn. 2.2 the blade root forces are found by transforming
the local aerodynamic and inertia forces which have been calculated in the
undcformed, coned blade coordinate system to the undcformed, unconed co-

ordinate system.

Ffz P, cos Bp— P, sin By

_R _ —_—
Py - Py
PR =P sinp,+ P,cos f, (5.37)

The blade root moments consist of contributions due to the local moments
transformed to the hub coordinate system and due to the local forces acting
through a moment arm from the blade center of rotation to a given point on
the blade. The local moments are transformed to the unconed coordinate sys-

tem in the same manner as the forces in Egn. 5.37.

—R1 _ — .
dx =dqxcosf,—q,sinf,

_Rl _ —
9 =9

Rl _ . _

g, =q,.sin ﬁp + g, cos Bp (5.38)

Moments due to the local forces can be calculated from:
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q"? = R xP® (5.39)

where R, is the position vector of a point on the clastic axis of the blade relative

to the center of rotation in the unconed coordinate system:
_ — — . AT - . _ N
R, = (e] + Xxcos ﬂp — W sin ﬂp)z + vj + (Xpsin ﬂp + W cos ﬂp)k (5.40)
and P® is the vector of local forces in the unconed coordinate system.
R_BRY _ BRY | R
P =Pri+Pj+P k (5.41)

Combining Eqns. 5.39 through 5.41 produccs the following expressions for

the total blade root moments:

qf = — Ff(fo sin Bp + W cos ﬂp) + FZRF + ifl (5.42)

~R__ pR - . — bR, = = — —R

4, = Py(Xgsin f,+ wcos f,) — P, (&) + X cos Bp,— wsinB,)+ 7, ! (5.43)
~R BpR- | R/~ - — —R1

4; = — Pxv+ P,(€ + Xy cos B, — W sin Bp)+a; (5.44)

These expressions are calculated based on an equilibrium blade response
which has been calculated using the mode shapes for a given blade and so are

valid for cither hingeless or articulated blades.
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5.3.3 Integration of Loads Over the Blade

The total blade root forces and moments are calculated by integrating the
expressions for the local blade root loads over the length of the blade. The

integrals for these expressions are given below:

_ R_ R

Pl = P yax 2w = | alw v (5.45)
€ €

Pl = [ " Pow. xar = [ e 5.46

¥ _.4— DA qy("b)'_ _ qy(xsl!/)dx (D )
€ e

BB\ [E—R_ = - _ (R R - <

Pz(lp)_ﬁ_ Pz(xvlj/)dx qz(‘ll)—'J_ qz(x"//)d-x (3'47)

These integrals are calculated by a spanwise integration using a 16 point

Gauss-Legendre integration formula.
5.4 CALCULATION OF TOTAL HUB FORCES AND MOMENTS

5.4.1 Transformation to the Nonrotating Hub Coordinate System

Using Eqn. 2.1, the loads in the rotating system can be converted to the
blade root loads in the nonrotating hub fixed coordinate system. The ex-
pressions for the various components of the hub shears and moments in the
nonrotating coordinate system arc presented below.

Vertical Shear:
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Sy = PRy (5.48)
Latcral Shear:

Siw) = PAw)sin § + PEy)cos y (5.49)
Longitudinal Shear:

Sia¥) = P2(w) cos ¢ — PE(y)sin v (5.50)
Pitching Moment:

Mytw) = g2w)sin ¢ + 7%p) cos v | (5.51)
Rolling Moment:

M) = W) cos v — 75W)sin g (5.52)
Yawing Moment:

M) = 2W) (5.53)

5.4.2 Summation Over the Blades

Since each individual blade undergoes the same periodic response around
the azimuth, the total hub loads for a given azimuth of the reference blade may
be found by summing the loads for a single blade calculated at azimuths ap-
propriately phased from that of the reference blade. This procedure is carried

out in the following manner:
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2n(i — 1)

5 (5.54)

NB
S, {¥)= Z §£(w,-) where ¢, =y +
i=1

where NB is the number of blades. Expressions for the other hub loads, S, ,

Sn*‘{

. My, and M, are found in a similar manner.

5.5 HARMONIC ANALYSIS OF THE HUB LOADS

The total hub loads are functions of blade azimuth and thus are expanded
into a Fourier series and stored in this form. For example the Fourier expan-
sion of S () is:

NHR

SV)= 50t Y (Sy0en €08 MY + 5,455 8in ) (5.55)

n=1

where the number of harmonics retained in the analysis is typically NHR =5

and the Fourier coefficients are given by:

1 2
Svi0 = 2 ), Sy )y
1 "27'[__
Svten = 1 i S, {Y) cos np dys
1 2r .
Sprsn = ?J-O S, Ay ) sin nydy (5.56)

These coefficients are calculated using a trapczoidal integration rule. The

constant portion of each load, required for the calculation of the trim state of
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the helicopter and for determining thrust and power coefficients, are just the

constant cocfficients in the Fourier series for each load.

5.6 PERFORMANCE COEFFICIENTS AND NORMALIZATION

The constant part of the rotor thrust, power, and inplane force are conven-

tionally expressed in nondimensional coefficient form as:

Fy
CT:_I_Z : CP=—£—3— D = —— (5.57)
p4AQR) P 4AQR) pLAQR)

where T, P, and Fj; arc average rotor thrust, power, and inplane force, and A
is the rotor arca. These coefficients may be expressed in terms of the nondi-

mensional loads as:

R < —4b 4bR =
Cr=2R3,; cp="2b37, . cy=2R3 (5.58)
1 1p vip

Hub shcar and moment results used in this study are normalized by the

nondimensional blade mass moment of inertia in flapping, I, . For example:

= §
S,d¥) = ) (5.59)
1y

where S,(y) has already been nondimensionalized by myQ??. The nondi-
mensional form of the sine and cosine components of the 4/rev. hub forces and

moments are used in the HHC calculations. They are represented by:

5vl.r4 ) fvtc4 > E1!:4 ; Eltc4 ’ §1m4 ; §1n04
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rTlp{.M; '_ﬁptc4; Mysas  Myjeas m_yws‘i; ﬁywc4 (5.60)

Referring to Fig. 2.1, the pitching, rolling, and yawing moments are as
shown, and the vertical, lateral, and longitudinal shears arc respectively in the

dircctions of the Z,,, Y,,, and X,, axcs.
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Chapter V1
HHC FOR VIBRATION REDUCTION

6.1 PREVIOUS WORK

In 1974 McCloud and Kretz[39] tested multicyclic control applied in the
rotating system on a wind tunnel model of a jet-flap rotor. They investigated
the effects of HHC on the rotor loads and blade stresses. The concept of a li-
near, quasi-static representation of the relationship between harmonics of the
rotor loads and harmonics of the HHC was developed. An offline weighted
least square error technique was used to calculate the transfer matrix relating
responsc harmonics to control harmonics and the notation “T” was introduced
for this matrix. Open-loop control needed to minimize a quadratic perform-
ancc function was calculated. Further open-loop studies using this method
were conducted on a Multicyclic Controllable Twist Rotor by McCloud and
Woeisbrich{40] and Brown and McCloud[5]. The control needed to reduce
both blade loads and test module accelerations was considered including the
influence of weights in the performance index. The effect of rotor lift, propul-

sive force and speed on open-loop control were also examined.

In 1974 Sissingh and Donham[60] conducted wind tunnel tests on a
hingeless rotor which had HHC introduced by oscillations of the swashplate.

Vibratory vertical shear and hub moment due to HHC were measured and



from this a transfer matrix was identificd off-line by a least square crror tech-
nique. The senscd vibrations and a transfer matrix calculated by dircect inver-

sion were used to calculate control to be applied to the rotor.

In 1980 Shaw and Albion[58] measured the response to HHC of a hingeless
rotor in a wind tunnel. The transfer matrix was identified using a Kalman
filter and was then inverted and used with feedback of mcasured vibrations to
reduce rotor loads. This controller worked very well at an advance ratio of
1 =0.1 but was less successful at other speeds because the required HHC ex-
ceeded an externally imposed limit of 1.5°. Shaw continued this rescarch in
1985[59]. Fixcd gain, scheduled gain, and adaptive controllers were cvaluated
with wind tunncl tests. Response to HHC was found to be cssentially linear
up to angles of + 3°. The most significant finding was that a fixed gain con-
troller provided 90% multi-axis vibration suppression over a wide range of

operating conditions from hover to 188 knots and at varying load factors.

In 1980 Taylor et al.[62,63] conducted numerical studies using the G400
nonlinear acroclastic h_clicopter simulation[2]. A Kalman filter was used for
on-line identification of the transfer matrix and deterministic closed-loop gains
were found to minimize a quadratic function of the vibrations and control in-
puts. Changes in the transfer matrix due to system nonlinearity and variation
in the flight condition were accounted for only by the Kalman filter identifi-
cation of the transfer matrix. The control system showed good convergence

and significantly reduced vibrations.
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In 1980 Hammond[30] conducted wind tunnel tests of an articualted rotor.
The vibratory hub moments and vertical shear due to HHC inputs were mea-
sured. Both a deterministic controller with external fatc limiting and a cau-
tious controller based on a global HHC model were considered. The transfer
matrix and the uncontrolled vibration level were identificd using a Kalman
filter. Fecedback of measured vibrations was used to minimize a quadratic
performance function. The cautious controller was found to be less erratic
than the deterministic controller. Vertical vibratory shears were reduced sig-
nificantly, however hub moment reductions were smaller. In 1981 Molusis,
Hammond, and Cline[45] extended this investigation with an analytical de-
velopment of six controllers, four of which were then tested in a wind tunnel.
Vertical, longitudinal, and lateral hub shears were used as feedback to reduce
a quadratic performance function. A cautious controller tested worked
smoothly and reduced vertical and longitudinal vibrations but actually led to
higher lateral vibrations at low speeds. A controller identifying only the un-
controlled vibration level was not successful when tested in the wind tunnel.
A dual controller incorporating probing terms designed to enhance system

identification was derived but not tested.

Since 1980 Wood et al.[67,68,25] have developed software and hardware
for HHC implementation on an OH6-A and have conducted the first success-
ful flight tests with active HHC. The cautious controller developed by
Molusis[45] was used in closed-loop studies and additionally, open-loop re-

sults showing phasing of HHC for shear minimization were presented. A
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Kalman filter was used to identify the transfer matrix and the uncontrolled
vibration level. This approach was successful in reducing fuselage vibrations

at low to modcrate speeds and during modcerate transient mancuvers.

In 1982 Johnson[36] wrote a comprehensive review including the analytical
development and cvaluation of essentially all the control algorithms used to
that date. The discussion of the algorithms was based on single-input single-

output system models and did not include actual helicopter simulations.

In 1983 Molusis[46] and Molusis, Mookerjee, and Bar-Shalom[47] per-
formed analytical studies of the effects of nonlinearity on controller perform-
ance. In Ref. 46 performance of a deterministic controller and a cautious
controller were compared using a simple, arbitrary nonlinear simulation model
not based on an actual helicopter analysis. Reference 47 used a nonlinear
Volterra scries analytical system model with paramcters derived from a non-
linear acroelastic vibration analysis using the G400 computer simulation. This
model was used to consider the effects of nonlinearity on controller perform-

ance and Kalman filter stability.

Ham([28,29] and McKillip[41,42] have developed the concept of Individual
Blade Control (IBC). The pitch of each blade is controlled individually, either
through swashplate actuators for three or less blades, or by individual actua-
tors in the rotating system for more than three blades. Blade mounted accel-
erometers are used to sense blade motion and feed this information back to the

controller. These references include analytical studies using simple models not

79



based on actual helicopter aeroclastic simulations, and limited wind tunnel
testing. Results indicate that IBC can be used to reduce helicopter vibrations
using relatively simple controllers at the expense of a more conplicated physical

implementation due to components in the rotating system.

[n 1983 Chopra and McCloud[10] developed a linear, quasi-static, fre-
quency-domain model for the response of a rotor to HHC. This model related
six harmonics of vibration to six harmonics of HHC input through use of a
transfer function based on experimental data. This model was used to evaluate
the performance of a deterministic controller for various flight speeds and in
the presence of simulated measurement noise and inaccurate initial estimates

of model parameters.

In 1983 Jacob and Lehmann[34] presented an analytical study of HHC.
Two simulations were used, one a rigid spring restrained blade, and one a fully
clastic blade with one mode modeled in each of flap, lag, and torsion. Simu-
lation was basically of an open-loop type but a static scarch algorithm was
used to find the HHC necessary to minimize a performance criterion. In 1985
Lehmann(37] continued this work with the wind tunnel testing of a four
bladed hingeless rotor. The effect of open-loop HHC consisting of 3, 4, and
5/rev pitch changes in the rotating system was investigated. In 1988 Lehmann
and Kube[38] successfully reduced 4/rev. hub vibrations using closed-loop
HHC applied to the same rotor. A frequency domain, minimum variance
controller based on a local HHC model and using Kalman filter identification

of the transfer matrix was used.
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Davis{11] in 1984 produccd a computer simulatio‘n using the G400 codc.
Deterministic, cautious, and dual controllers using both local and global HHC
modecls were investigated. These controllers employed Kalman filter identifi-
cation of the vibrations and,or transfer matrix. A general controller which can
be specialized to any of these cases by changing certain paramcters was pre-
sented. Vibration reductions of 75 to 95 percent were achicved with each of
the controllers when they were properly tuned. Control amplitudes of less than

one degree were needed for these reductions.

In 1986 Miao, Kottapalli, and Frye[43] and Waish[64] presented results
of HHC flight tests using an S-76A helicopter. Only open-loop HHC was im-
plemented. Substantial vibration reductions were achicved but at high speeds
these reductions were constrained by hardware limitations which would not
allow high enough HHC amplitudes. Various combinations of HHC inputs

were used to reduce combinations of several vibratory quantities.

In 1986 Polychroniadis and Achache[53] presented flight test results for
closed-loop HHC applied to an SA 349 Gazelle. One deterministic and two
stochastic controllers, each based on a global HHC model, were tested. All
three controllers gave good vibration reductions of up to 90% in steady state
flight and differed mainly in their self-adaptive performance. Since HHC
amplitudes in this study were limited to one degree, it was speculated that by
allowing higher values of HHC greater rcductiong in vibratory loads could be

obtained.
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In 1986 Jacklin[32,33] presented an analysis of system identification tech-
niques for HHC. Least squares and Kalman filter type identification tech-
niques were reviewed and a new mean least squares algorithm was developed.
Various aspects of these algorithms were compared. The mean lcast square
algorithm uses cquations similar to those of a Kalman filter however these
cquations turned out to be simpler. It was found that this algorithm converged
to the correct cstimaté only when a signal averaging method over several iter-

ations was employed.

In 1986 Hanagud et al.[31] produced an analytical, coupled rotor-airframe
analysis of HHC using a one degree of freedom, flap only, rotor model. A
global HHC model was assumed and a deterministic control law was used.
The transfer matrix was calculated by a method which required the matrix to
be consistent with measured vibration data while at the same time being as
closc as possible to some a priori estimate of the transfer matrix. This ap-

proach led to reductions in vibration levels.

Gupta[26], Gupta and DuVal[27], and DuVal, Gregory, and Gupta[15]
have developed an extension of lincar-quadratic-Gaussian (LQG) design
methods using frequency-shaped cost functionals. A vibration controller was
obtained by minimizing a cost functional which places a large penalty on fu-
selage accelerations at set vibration frequencies. The optimal control solution
involved feedback of fuselage accelerations through undamped oscillators,
tuned to the frequency at which vibrations are to be suppressed. This ap-

proach has the advantage that on-line harmonic analysis of the vibrations is
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not required and the resultant controller is simple to implement because it is
a constant gain regulator with filters in the feedback loops. A dynamic model
of the rotor-fuselage combination is nceded in the LQG design procedure.
Since this model will change with flight condition, gain scheduling is required
to account for these different conditions. This control law was implemented
using a blade-clement simulation of the Rotor Systems Research Aircraft
(RSRA). Accelerations were reduced by at least 80% in all channcls except
the vertical, in which the initial vibration level was two orders of magnitude

below that of the other channels.

In the appendices to Murphy’'s 1987 report[48], Motyka et al. developed
an approach to HHC implementation using a Linear Quadratic Guassian with
Loop Transfer Recovery (LQG/LTR) design methodology. Baseline control-
lers for various operating conditions were designed using LQG/LTR to ensure
robustness. These model based compensators contained elements of a linear
system model of the helicopter and so had to be implemented with a gain
scheduling or table look-up approach for implementaion at different flight
conditions. Attempts were made to enhance these controllers using various
adaptive control techniques. Numerical simulations of the control algorithms
were carried out on an elastic model of a helicopter. The basic model based
compensators were very effective in reducing vibrations with vibration re-
ductions of 99% in vertical, 94% in lateral, and 68% in longitudinal directions.
Various adaptive enhancement approaches did not improve control perform-

ance.
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6.2 THE HHC MODELS

6.2.1 Linearity of HHC

It is generally assumed that the rclationship between the vector of HHC
input harmonics 8 and the vector of vibr‘ation output harmonics Z can be re-
presented by a lincar, quasi-static, frequency-domain model. A discrete time
model of the helicopter is assumed such that the sampling time step At is suf-
ficient for all transients to dic out and for the vibration harmonics to be mea-
sured. This time step would typically be one rotor revolution. The actual
helicopter being modeled, and the mechanisms being used to control it, are of
course complicated continuous time systems. A schematic of such a helicopter
model is shown in Fig. 6.1. This figure shows a helicopter, with given flight
conditions, which produces some time history of vibrations. A harmonic
analysis of these vibrations is carried out and a discrete set of vibration har-
monics is fed to the controller. These harmonics are used, typically in a Kal-
man filter, to identify problem parameters. From these parameters and stored
information from previous samplings, gain calculations are made and har-
monics of an HHC feedback to minimize vibrations are calculated. From these
harmonics a time history of HHC inputs is calculated and this is fed to elec-
tro-hydraulic servo-actuators in the helicopter which set the actual blade pitch
angles. These HHC inputs modify the helicopter dynamics producing new vi-

bration levels which are used to begin another iteration of the process.
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The baseline uncontrolled vibration level of the helicopter, Z,, is a nonlinear
function of the helicopter operating condition and is dependent on nonlinear
phenomena associated with aerodynamic, structural, and inertial aspects of the
helicopter dynamics. Lincarity is being assumed only in the response to HHC
inputs. Previous experimental studies[30,59] have indicated that only 0°-3°
of HHC inputs arc needed to alleviate vibration, so the assumption of linearity
is thought to be reasonable. Still, some studics[46,47] have found evidence of
nonlincar responsc to HHC over this amplitude range, in which case the locally

linearized model explained in the next section may be needed.

6.2.2 Global Model

The global 'model of the helicopter response to HHC assumes linearity over

the entire range of control application:

Z(i+ 1) = Zy+T6(i) (6.1)

The vibration vector Z at time step i + 1 is equal to the baseline vibration Z,
plus the product of the transfer matrix T and the HHC vector € at time step
i. This implies that T, the transfer matrix relating HHC input harmonics to
vibration output harmonics, is independent of 8(i). This concept of a linear
quasi-static representation of the relationship between harmonics of helicopter
response and harmonics of HHC was introduced in Ref. 39 where the notation

T for this matrix was first used.
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6.2.3 Local Model

The local model of the helicopter response to HHC is based on a lineari-
zation of the response about the response to the current value of the control

vector:
Z(i+ 1)y=Z())+ T[6(i + 1)— 6(1))] (6.2)

‘The vibration vector Z at time step i + | is equal to the vibration vector at
time step i plus the product of the transfer matrix and the difference in the
control vector from time step { to time step i + 1. The transfer matrix 7 now
relates changes in the HHC input harmonics to changes in the vibration output
harmonics. This allows for variation of the transfer matrix T with input 6(i).

Alternately this may be written as:

AZ(i+ 1)= TAOG + 1) (6.3)

6.3 IDENTIFICATION

6.3.1 Assumptions

In applying HHC algorithms for vibration reduction, it is assumed that the
HHC inputs 6(i) are known without error. Measurements (i) of the hub vi-
bratory loads Z(i) are made and are assumed to include zero mean white

Gaussian measurement noise V(i):
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W)= Z(i)+ V(i) - (64)

Based on the measurements (i), different parameters may be identified for the
following cases[36]:

1. Local Model, Identify transfer matrix T

2. Global Model, Identify baseline vibrations Z,, T assumed known

3. Global Modecl, Identify T, Z, assumed known

4. Global Model, Identify T and Z,
If the transfer matrix T or the baseline vibration vector Z, is to be identified,
it is assumed to vary with flight condition and is represented by a random walk

model[45]:
T+ 1)= T() + W) (6.5)
Z(i+ 1) = Zy(i) + Wi) (6.6)

where W(i) and W(i) are zero mean white Gaussian process noise.

6.3.2 Kalman Filter Identification

6.3.2.1 General Kalman Filter

A discrete Kalman filter[6] may be used to estimate a discrete random

process x which can be modeled in the form:
xk+l=¢kxk+wk (6.7)

Observation of the process occurs at discrete points in time according to:
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2= Hix, + v, (6.8)

where:

Xy = (n x 1) process state vector at time f,

D = (n x n) matrix relating x, to x,,,
in the absence of a forcing function

w,, = (n x 1) vector - white (uncorrelated) sequence
with known covariance structure

Z, = (m x 1) vector of measurements at time ¢,

H, = (m x n) matrix giving the idcal (noiseléss) connection between
the measurement and the state vector at time ¢,

Vi = (m x 1) vector of measurement errors

- white sequence with known covariance structure
and uncorrelated with the w, sequence

The covariance matrices for the w, and v, vectors are:

i=k
Elww]] = {%" ik (6.9)
R, i=k
Elvy]]= { o 2k (6.10)
Elwpwl1=0  for all i and (6.11)

The Kalman filter consists of the following algorithm to produce an updated
estimate of the state vector X with the assumption of some prior estimate X-.

Update equation:
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= %5 + Kz — HXY) (6.12)
Kalman gain equation:
K, = PrHI(HPLH] + Ry (6.13)
Error variance matrix cquation:
P,=(— K H )P, (6.14)
State vector projection equation:
Ser1 = 4 | (6.15)
Error variance matrix projection equation:

Pryr= SLPidr + Ox (6.16)

This algorithm is used to identify the transfer matrix T and/or the bascline
vibrations Z,. From the assumptions of Eqns. 6.5 and 6.6 the matrix ¢, will

always be the identity matrix /. Therefore Eqn. 6.15 becomes:
et = X (6.17)
and Eqn. 6.14 and 6.16 can be combined to give:

P =Py — KH Py + O (6.18)

If there are no process dynamics, i.e. @, =0, then the Kalman filter is
equivalent to a recursive weighted least-squares algorithm in which the

weighting on the measurement error is equal to —R}—
' k
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6.3.2.2 Kalman Filter for Case 1

For the local HHC model only T is identified. When Eqn. 6.5 is considered

onc row at a time, onc has for the jth row:
T(i+1)= Tj(i)+ w{i) (6.19)

From Eqns. 6.4 and 6.3 an observation equation for one row of the T matrix,

cquivalent to Eqn. 6.8, can be written as:
. T T, . .
ij(z) =A@ (z)Tj D+ wi) | (6.20)
where Ay(i) is the jth componemt of Ay{(i) and T{i) is the jth row of T(i).

By comparing Eqns. 6.20 and 6.5 with Eqns. 6.7 and 6.8, the Kalman filter

equations for one row of the T matrix can be obtained as:

I+ 1= 170 + ki + DIy + 1) - 267() 7T ()] (6.21)
K(i + 1) = P(0a6()[A87(1)PL)AB() + R(i)™! (6.22)
Pfi+ 1) = P{i)— K(i + 1)A8T()PLi) + Qi) (6.23)

If it is assumed that the ratio of parameter and measurement noise vari-
ances, Q(i)/R(i) is the same for every measurement, then Eqn. 6.21 can be

written[36] in matrix form as:

T+ 1) = T + [AWD) — T)AbIK TG + 1) (6.24)
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and K(i + 1) and P(i + 1) only have to be calculated once. There is no reason
to expect this assumption to be true, but a great reduction in computation is

gained by its acceptance[36].

6.3.2.3 Kalman Filter for Case 2

Using the global HHC model, identifying only the 7 matrix, and assuming
Z,; is known, requires only the substitution in Eqn. 6.21 of y{i + 1)— Z,; for

Ay{i+ 1) and 6(i) for A6(i), thus one obtains:

I+ D= T+ Ki+ DD+ ) —Zg - 0707 (0] (6.25)
K(i+ 1)= P00 (D[0" ()P(00(0) + R(i)) ™' (6.26)
Pli+ 1)= Pfi)— K(i + 107 (D)PL0) +QL0) (6.27)

and the matrix form of these equations may be written similarly to Eqn. 6.24.

6.3.2.4 Kalman Filter for Case 3

Using the global model, identifying only Z,, and assuming the T matrix is
known, requires an observer for Z, in the form of Eqn. 6.8. From Eqns. 6.1

and 6.4 this can be written as:

A = 07T (i) = Zofi) + i) (6.28)
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Comparing Eqns. 6.6 and 6.28 with Eqns. 6.8 and 6,7 the Kalman filter for

this case can be seen to be:

Zofi+ 1) = Zofi)+ K(i + 1 i + 1) = 67T () — Zy(0)] (6.29)
K(i+ 1)= PO[P{) + R ]! (6.30)
Pli+ 1)= P{i)~ K(i + DP() + @ (6.31)

where now all quantities are scalars. In vector form Eqn. 6.29 can be written

as:

Zoli + V)= Zo(i) + DA + 1) — TGO — Zo(i)]KG + 1) (6.32)

6.3.2.5 Kalman Filter for Case 4

Using the global HHC model and identifying both Z, and T requires that
clements of Z, and T be incorporated in a single vector. From Eqns. 6.1 and
6.4 an observation equation for an element of Z, and a row of the 7 matrix

may be written as:

ZodD)
. T,. 01( )
y=1[1 6 (l)][TjT(i)] + W(i) (6.33)

or by defining a new vector and matrix as:

00 =gy |; =240 0] (634)
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this becomes:

v =[0TG (91 + oo (6.35)

Comparing Eqns. 6.6, 6.5, and 6.33 with Eqns. 6.7 and 6.8 the Kalman fil-

ter for this case can be scen to be:

i+ n=Cl+ Ka+ Diygi+ 1) - 2ot - 07T (@) (6.36)
K(i + 1) = BT (0087 (R0 + R (637)
Pli+1)= P{i)— K(i + DAT(DPD) + i) (6.38)

where now P(i) is the covariance matrix for C'(i) and is composed in the fol-

lowing manner:

Pyij  Pry
P(i) = 6.39

where Py, is the covariance of Zy;, Py is the covariance of the jth row of the
T matrix, and P,y is the cross covariance of Zy and the jth row of the T ma-

trix.
Again Eqn. 6.36 may be written in matrix form as:
AP Ag . 5. A Y
Cli+ 1)=C()+ [Ai+ 1) = Z()) — TEPEOIK (i + 1) (6.40)

In summary the inputs to the Kalman filter given in Egns. 6.12 through 6.18

for the four cases are given in table 6.1.
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TABLE 6.1

Kalman Filter Inputs

Casc X z H

1 T; Ay; Af
]

4 [ZOj 7}] Yi [0

6.3.3 Least Mean Squares (LMS) Identification

Jacklin[32,33] has developed an extension of the LMS algorithm of Widrow
and Hoff[65,66] to handle multi-input, multi-output helicopter parameter
identification problems. He uses this approach with “inverse control,” i.e.
application of the inverse of the local transfer matrix as a controller to reduce
vibrations. Denoting the inverse of T by C , the vibration control commands

are produced by:
*AB(i)) = — CW(i) (6.41)
(i + 1)=03)+ *A8 (6.42)

The matrix C need not be a true inverse of 7 but is a general matrix which

performs the inverse function of the T matrix.

94



The LMS algorithm forms an adaptation error vector consisting of the dif-

ferences between the actual and estimated changes in HHC input harmonics.

Referring to Fig. 6.2:

e = AO— AB
_ A6 — CAZ
—AB — CTAB

(6.43)

If C were the exact inverse of T, the error vector would be zero. A steepest

descent method is used to update C:

Cli+ )= Cli)— K 0% ).
B \ 9C(i)

Here K, is a gain term governing the amount of correction being made.

The error squared term for one row of C is given by:
2 T T -~T
Expanding this and differentiating with respect to C/ leads to:

(381-2
== 2(CjAZ — ABj)AZ

6Cj

T

The update equation for a row of C then becomes:

Cli+ 1)= Cli) - 2k(CAZ ~ ronz’

All the row equations may be combined in matrix form to give:

Cli+ 1) = C(i) + 2[A8() — CHAZ()I[AZ ]
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(6.45)

(6.46)

(6.47)

(6.48)



where AZT is a matrix whose jth row is the AZ7(i) vector multiplied by &; :

FklAZT(i)
koA Z ()

N
N
I

(6.49)

kAZ (i)

In the investigations of Refs. 32 and 33 it was found that the values of ;

nceded to be tuned for optimal performance.

6.4 CONTROL ALGORITHMS

‘

6.4.1 Minimum Varaince Control Algorithms

The vast majority of all HHC investigations[67,68,53,45,59,37,62,10,34] to
date have used linear optimal control solutions based on a quadratic cost
functional. Minimum variance control is based on the minimization of a cost
functional which is the expected value of a weighted sum of the mean squares

of the control and vibration variables.

Minimum variance controllers are obtained by minimization of the cost

functional:
J= E{ZT(i)WZZ(i) +07()yWeb(i) + A67(0) WAGAG(i)} (6.50)

where:
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E{} = indicates expected value,
accounting for uncertainty in the system
AO(i) = 60(i))—0(i— 1)

W

z

diagonal weighting matrix on vibrations

W,

diagonal weighting on control amplitudes

Wag

diagonal weighting matrix on rate of change

of the control amplitudes

Typically Z, 6, and A8 consist of the sinc and cosinc components of the
N, rev vibrations and HHC inputs. The weightings of'each of these parameters

may be changed to make it more or less important than the other components.

The minimum variance controllers are obtained by taking the partial de-

rivative of J with respect to 6(i) and setting this equal to zero:

oJ
76'(3”0 (6.51)

The resulting set of equations may be solved for the optimal HHC input *6(i).

The form of the resulting algorithm will depend on whether the global or
local system model is used and on whether a deterministic, cautious, or dual
controller is desired. For the dual controller the cost functional must be mod-
ificd to include system probing terms. Detailed descriptions of these algo-
rithms including the terminology for deterministic, cautious, and dual

controllers are given in the following sections.
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6.4.1.1 Deterministic Controller

For deterministic control, uncertaintics in 7 and Z, are ignorcd and all
system parameters are assumed to be known cxactly. The cost functional then

becomes:

J=Z oW z(i) + 8T (i)W,8()) + A8 T()) W 006(0) (6.52)

For the local model Eqn. 6.2 is substituted for Z(i) and sctting the derivative
equal to zero in Eqn. 6.51 lcads to an expression for the optimal control. The
algebra involved is quite lengthy but will be outlined for this one case. First

substituting Eqn.6.2 in Eqn. 6.52 gives:
J=[2Z(i— 1)+ TO6() — 6 — D)) W,[Z(i — 1) + TG — 8(i — 1))]

+ 0T (OWy8(i) + [6(1) — 6(i — 11T Wy o[6(1) — 6(i — 1)] (6.53)
Expanding the transposes gives:

J=1Z"i - yw, T = 67— )TTw,T— 07(i — 1)W,16()

+ 07T W, 26— 1)~ TTW,T0(i — 1) — Wpgbli — 1)]

+ 01T W, T+ Wy +W,0100) + ZT(i — YW L2Z(i — 1) - TH(i — 1))

+ 07— DIWygb(i — 1) = TTWLZ(i — 1) — T~ 1))] (6.54)

Taking the derivative with respect to (i) gives:
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8J
30(i)

—z7i—nyw,m— 67— nyrTw,r— 67 - 1w,y

+[TTW Z(i— 1)~ TTW,T0(i — 1) = W, g0(i — 1)]
+2[TTW.T + Wy + Wypl0(1) =0 (6.55)

Solving for the optimal control *8(i) gives:

*0()= D[ —TT W Z(i) + W) + T"W,T0(0)] (6.56)
where:
D=[TTW,T+ Wy +Wyg|™ (6.57)

Subtracting 6(i) from both sides gives:

A0+ 1)= D[ ~TTW,Z(i) - Wob(i)| (6.58)

For the global model, using Eqn. 6.1, Z, + T6({) may be substituted for

Z(i) giving:
"0+ 1)= D[ —TTW,Zy+ Waghl0)] (6.59)
or:

"8+ 1)= D[ ~TTW,Zy+ W,()—T" W, T6(i)| (6.60)
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6.4.1.2 Cautious Controller

A cautious controller takes account for system paramecter uncertaintics by
taking the expected value of the cost functional. The control 8 is assumed to
be explicitly known so that all uncertainty is in the vibrations Z. The cost

functional then becomes:

J = E{szﬂzf(i)} + 0T ()Web(i) + A6 (i), pAB(0) (6.61)
)

For the local HHC model, Eqn. 6.2 is used for Z(i) and the covariance of
the jth row of the 7 matrix, P{i), is taken from the Kalman filter for the local

case, giving:

E{szjjzj.z(i)} = ZT(i)WzZ(i) + AGT(;')(Z szij(i)>A8(i) (6.62)
J J

The solution may be found by defining an effective W, as:

Wao,,= Wao+ ) WyPAi) (6.63)
j

and substituting in Eqn. 6.56. The optimal control is then:

0(i + 1) = D[ ~1Tw_z(i) + (WM +TTW, T+ 1CZ szij(i)>0(i):| (6.64)
j

*AB(i+ 1) = D[ -TTw Z(i) - W96(i)] (6.65)

where:
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D= [TTWZT + Wy + Wyp+ ACZufzijj(i)]“ (6.66)
j

The constant 4, has been introduced to allow modification of the amount
of caution in the controller. For A.= 0 this reduces to the deterministic con-
troller. This controller introduces a constraint on the rate of change of control
similar to W,,. This control is proportional to the uncertainty in the T matrix.
As the covariance of the 7 matrix increases, the rate of change allowed by the

cautious controller is reduced.

For the global HHC model, Eqn. 6.1 is used for Z(i). Uncertaintics in Z(i)

arc now duc to both Z;, and 7. This gives:
E{XWZJ-J-ZJ?(i)} = ZTw,z(i) + QT(”(Z WZJ.J-L’]([))Q(i) (6.67)
J J

where @ and P; are defined in Eqgns. 6.34 and 6.39. The optimal control is
found by using J as defined in Eqns. 6.61 and 6.67 in Eqn. 6.51. After al-
gebraic manipulations similar to Eqns. 6.53 through 6.55 the optimal solution

is:

*0(i + 1) = DI: ~TTW,Zy + Wpgh)— 4. sz-jPszj] (6.68)
j
where now:
T N -1
D= |:T W,T + W+ Wag+4.) szjpzzj(z)] (6.69)
j
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The constant 4. has been added in again as in the local cautious controller.
This controller introduces a constraint on the magnitude of the total control
angles proportional to the covariance of the T matrix. It also adds a constant

term to the solution which is proportional to the cross covariance P,,.

6.4.1.3 Dual Controller

A dual controller attempts to improve long term system identification by
actively probing the system while at the same time maintaining good control.
Optimal dual controllers generally are too conplex f.or practical implementa-
tion. the sub-optimal dual controller presented here is taken from Ref. 23 and
is presented in Refs. 36 and 11. In this approach, the cost functional J of Eqn.
6.52 is modified by having a term added which is a function of the estimation
error and acts to probe the system. The new cost functional is:

| P(0)

Jp=J - Ap——m—mm™
b DIP(i+l)|

(6.70)

Here || indicates the determinant of a matrix. The controller therefore at-
tempts to provide good control by minimizing J while furthermore attempting
to reduce P(i) in comparison to P(i + 1), i.e. improve identification, in order to
reduce the second term in Eqn. 6.70. The constant 1, allows tuning of the

degree of probing by the algorithm. In Ref. 23 it is shown that:

| P(i)| AeT(i)P(i)Ae(z‘)]
Ap————— = Anl 1 + local 6.71
Ay D[ A (local) (6.71)
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| P(i)] QT(i)P(i)Q(i) }
AN 2D lobal 6.72
DIP(1+1)| 1)[ R (global) (6.72)

Because this gives a quadratic term in J, it allows the minumum variance sol-

ution to be casily found.

For the local HHC model the cost functional is given by Eqns. 6.70 and
6.71. The dual control solution may be found by replacing W,, by an effective

W,e in Egns. 6.56 through 6.58.

WABejfz Wao — /IDL)(}{l | (6.73)
This leads to the following solution:
i+ 1)= D[ —TTw z(i) + (WAG +1Tw,r-2 D%)G(i):l (6.74)
where:
D= [TTWZT-i— Wy + Wap — AD-%Q:]“ (6.75)
Subtracting 6(:) from both sides gives:
A8+ 1)= D[ -TTw,z(i) - Web(0) ] (6.76)

The probing term in the local model control leads to a reduction in the
constraint on the rate of change of the control proportional to the covariance

of the T matrix.
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For the global HHC model the cost functional is given by Eqns. 6.70 and

6.72. This gives:
Joe 2T : T,. . T,. :
p = Z (OW_Z(i) + 6" ()Wgb(i) + AB (i)W, gAB(i)

- 10T g (6.77)

Comparing this with the cautious controller in Egns. 6.61, 6.62, and 6.64

through 6.66 lcads to the following dual controller:

T
P .
0+ 1)= Dl: —TTW,Zy+ Wpg00i) — 4 DTPJ (6.78)
where now;
T Py
D=|T'W,T +Wy+ Wag— A2 (6.79)

Again P, and P,, are as defined in Eqn. 6.39.

The probing term in the global HHC model dual controller reduces the ef-
fective constraint on control magnitude in proportion to the covariance of the
T matrix. In addition a constant term is added to the control which is pro-

portional to the crosscovariance P,, .

6.4.1.4 General Minimum Variance Controller

Reference 11 suggests that the deterministic, cautious, and dual controllers

just outlined can be programmed into two combined algorithms, one for the
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local and one for the global HHC model. This form depends on the assump-
tion that the noise characteristics for each row of Z; and the T matrix are the
same so that P is the same for each row. In these algorithms the appropriate
controller can be implemented by changing the value of a parameter f. The

algorithms arc as follows:

Local Model

*AO(i + 1) = — D[ Wyb(i) + T'w,Z()| (6.80)

D= [TTWZT+ Wy + Wpp+ [MPZWZJ-]-]—I (6.81)
j

Global Model

*AB(i+ 1)=—D

x [( TTW,T+ Wy + APy szj>0(i)+TTWzZO +paPh)y’ szj] (6.82)

J J

D= [TTWZT+ Wo+ Wag+ ﬂlezz szj]“ (6.83)
j

In each case the value of f is given by:

Controller Value of 8

Deterministic 0

Cautious 1

Dual _:_l__
REWzl/

b
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6.4.2 LMS Direct Inverse Control

Dircct inverse control with LMS identification of the inverse matrix was
implemented by Jacklin[32,33]. From Eqn. 6.2, if TA@ is cqual to —Z(i) then
vibration will be eliminated. This leads to the inverse control A8 given by Eqn.
6.41. As in Eqns. 6.41 and 6.42, the optimal change in HHC, *A6(i), is found
by dircct multiplication of the C matrix and the total vibration vector wi) .
The C matrix performs the inverse of the operation carried out by the 7 matrix
however it does not have to be the formal inverse, in a math{:matical sensc, of
the 7 matrix. The inverse matrix C is identified using the LMS identification
algorithm explained previously. In Ref. 32 it was found that even when vi-
brations were nearly eliminated, a steady-state error in inverse matrix identifi-
cation remained because as vibrations went to zero the update term for the
inverse matrix also went to zero. To improve identification, a control relaxa-
tion parameter was used allowing the implemented control to be only a frac-

tion of commanded control:
0+ 1)=0(i) + KA (6.84)

The use of control relaxation was shown to produce lower steady-state iden-

tification errors at the expense of slower vibration reduction.
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6.5 HHC IMPLEMENTATION

6.5.1 HHC Input Formulation

Required HHC pitch commands arc introduced into the structural modcl
as time varying changes in the blade root pitch angle. Two mcthods of for-
mulating the HHC inputs will be presented. The first method cxpresses HHC
components in terms of the magnitude and phase of a sine input. This is uscful
when dealing with open loop applications of HHC but docs not allow cach
degree of freedom to be varied while all others remain zero. The second
method of formulation expresses HHC components in terms of the amplitudes
of sine and cosine inputs. This allows the degrees of freedom to be individually
incremented and lends itself to implementation of automatic controllers.

First Formulation

6[”[ = [60 sin(GHHVI -+ d)o)] + [GC Siﬂ(aHHW + (f)c)] cOS l//

+ [93 Sin((-,l)_HHlp + d’_‘.)] sin lll (685)

Dyy

where @y, = and 0,, 0., 65, ¢, , ., ¢,, and @y, are constant with

respect to .

In addition, expressions for the first and second derivatives of 8, with re-

spect to ¢ are needed. They are as follows.

01y = (000 cOS@pp¥ + ¢,)]
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+ (05011 cOS@ 1) + b)) —Ocsin@yypp + ¢ )] sin

+ [HCGHII COS(GHIIQII + d)c) +05 Sin(a[”[(// + ¢S)] (o{0 0 lﬁ (686)
01111 = [ — 60@71 Sin@ 10 + ¢,)]

+ (2050 11y cos(@ ¥ + &) =01 + Djygy) Sin(@ g + b )] cos P

+ [ =26 @1y cos@ph + b )~ 01 + By sin@ b + )] siny (6.87)

Second Formulation

0111 = [Bgs sin @y + Bgccos Dy ]
+ [BCS sin GHHW + OCC Ccos aHHl/I] Ccos W
+ [Osssin@yyd + 050 cos @y ] sin ¢ (6.88)

where Oyc, Oys, Ocs, Occ s 055, and O are constant with respect to .

The first and sccond derivatives of 6,,,, with respect to y are as follows.

O 111 = [80s@ b1 €OS Dy — B9 @ pypy sin @]
+ [(OCS(—U_HH +05C) cos GHHW + ( _BCC(jHH +GSS) sin GHHIII:] CoS Il/

+ [(6550)_[_1}[ - Gcc) cos GHH\b — (HSC(—U-HI{ + ecs) sin (—x)_HH'Iﬁ] sin W (6.89)

* %

2 . 2 _
Orig =1 — Ops@ypy sin Oppph — 00Dy cos @]

+ [ —{Gcs(a}zll_[ +1) + ZHSC(U_HH} sin &_)HH(,l/
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_ -2 _
{20550 111 =0 c@ypy +1)} cos @y ] cos ¥
+ {20 0oy —05(@ypy +1)} sin @y
- {29CS6()”” +65(,(wHH +1 )} Ccos G)IIHW] sSin lf/ (()90)

The two formulations can be made equivalent through the use of a trig-

onometric identity.
0 sin(wy + ¢) = 6(sin wy cos ¢ + cos wy sin @)

Using the above identity, the two formulations can be secn to be equivalent if:

GOSZO()CQS d)o OCCZ GcSin d)c
60C=905in¢0 HSS'_‘BSCOSd)s
GCSZGCCOSd)C GSC: Hssin d)x (691)

For the closed-loop HHC implementation, the control vector 8 will be defined

as:
02{60& OOC Ocs Hcc Gss OJ'C}T (6.92)

or an appropriate subset of this vector.
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6.5.2 Minimization Objectives

From the calculations described and presented in Ch. S, rotor hub forces
and moments are available in three orthogonal directions. In the absence of
any modcling of the fuselage dynamics, these give the best available indication
of helicopter vibration levels. Sine and cosine components of the 4/rev. forces
and moments arc available as well as their peak-to-peak values. Any.combi-
nation of these quantities could be used as an indication of vibration ievels and
therefore be chosen to be minimized. In this study the sine and cosine com-
ponents of the 4/rev. hub forces in the vertical, lateral, and longitudinal di-
rections are chosen to be minimized. Decreases in vibration levels will be given
in terms of the peak-to-peak values of these forces. For closed-loop HHC
studics, using the notation of Ch. 5, the vector of hub vibratory shears Z will

be defined as:

= = = = = = T
Z= {svts4 Svicd  Slisd  Shea  Sinsa slnc4} (6'93)

or an appropriate subset of this vector.
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Chapter VII

RESULTS SHOWING EFFECTS OF UNSTEADY AERODYNAMICS

7.1 BASELINE BLADE CONFIGURATIONS

The results presented in this chapter were calculated using two bascline
blade configurations. A soft-in-plane and a stiff-in-plane hingeless configura-
tion idertical to those used in Ref. 8 were used. All results in this chapter ex-
cept those comparing the trim procedures were calculated using the flap trim

procedure.

The baseline soft-in-plane blade has fundamental, rotating, uncoupled na-
tural frequencies in lag, flap, and torsion of 0.735/rev, 1.123/rev, and 3.17/rev
respectively. The rotor consists of four blades. The Lock number is y = 5.5,
the rotor solidity is ¢ = 0.07, and the rotor thrust coefficient is Cr= 0.005.
The blade has zero precone f,, zero root offset e, , and no built in twist. The
offset between the elastic axis and the center of gravity, x,, and the offset be-
tween the elastic axis and the aerodynamic center, x,, are both zero. All blade
properties are uniform across the span. The blade chord is ¢ = 0.055R , the lift

curve slope is a = 2m, and the profile drag coefficient is Cp, = 0.01.

The baseline stiff-in-plane blade is identical to the baseline soft-in-plane

blade except that the fundamental rotating lag frequency is 1.42/rev.
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7.2  COMPARISON WITH PREVIOUS UNSTEADY RESULTS

In Ref. 13 finite-state time-domain unsteady aerodynamics were incorpo-
rated in a simple rigid blade, offset hinged spring model of a blade with flap
and lag degrees of freedom. The intent of this study was to simulate the same
soft-in-plane blade described in the last section, except that the torsional de-
gree of freedom was not included. Unsteady effects were incorporated using
two augmented states governing the unsteady aerodynamics at a typical sec-
tion at 3/4R. These two augmented states were solved for as explicit state

variables along with those for flap and lag.

The present study uses an elastic hingeless blade with coupled flap-lag-tor-
sional degrees of freedom which is a much more realistic model of an actual
blade. The current model can be made to give results quite similar to the mo-
del of Ref. 13 by increasing the torsional stiffness of the blade so that it re-
sembles a torsionally rigid blade. With this in mind, a model identical to the
baseline soft-in-plane blade, but with a fundamental torsional frequency of
6.4/rev. was used to determine aeroelastic response and stability of the blade
using the unsteady aerodynamic formulation of Ref. 13. This blade will be

referred to as the baseline torsionally stiff blade.

Figure 7.1 presents the flap and lag blade tip responses as a function of
azimuth. Plots taken from Ref. 13 for the rigid offset hinged spring restrained
soft-in-plane blade are also included. The flap responses from Ref. 13 and for

the torsionally stiff blade are quite similar while the lag responses show the
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same variation with azimuth but differ considerably in magnitude. These dif-
ferences are recasonable since the structural models are completely different.
Deccreasing the torsional stiffness to a more realistic level, that of the soft-in-

plane blade, leads to a considerably different flap response.

Figure 7.2 prescnts the stability in the first flap and first lag modes for the
same three cascs. Basic stability trends are the same in all three cases and the
instability of Ref. 13 is present in the first flap mode for each model. Although
the first flap eigenvalue branch point for the soft-in-plane blade is at a slightly
higher advance ratio, all three cases become unstable at the same advance ratio

of u = 0.45.

As was explained in Chapt. 4, the instability of Ref. 13 was due to an error
in formulation which led to a singularity in flap loads at high advance ratios.
The formulation of this study eliminates this singularity and in addition ap-

plies the aerodynamics in a more realistic manner.

Figure 7.3 presents the blade tip response in flap, lag, and torsion, at an
advance ratio of u = 0.4 , for the soft-in-plane blade using the aerodynamic
formulation of Ref. 13 and the inproved formulation of this study. Becausc
the singularity of Ref. 13 was sharply localized at u = 0.45, even at an advance
ratio of u = 0.4 the vertical aerodynamic loads are rcasonable. Much of the
difference in response is due to the new formulation allowing the augmented

states to vary along the blade.
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Figure 7.4 shows the variation in first flap and first lag cigenvalues with
advance ratio. Lag stability differs very little for the two cases. The sudden

instability at y = 0.45 found using the acrodynamic formulation of Ref. 13 is

climinated using the formulation of this study.

7.3 COMPARISON OF QUASISTEADY AND UNSTEADY RESULTS

7.3.1 Response and Stability

Response and stability calculations were carried out for the bascline soft-
in-planc and stiff-in-plane blades using the quasisteady acrodynamics of Ref.
8 and the unsteady formulation of this study. Blade tip response in flap, lag,
and torsion have been plotted for the two cases at advance ratios of u=0.2
and u = 0.4. Figures 7.5 and 7.6 show the responses for the soft-in-plane blade
at 4= 0.2 and u =0.4. Figures 7.7 and 7.8 show the same responses for the

stiff-in-plane blade.

It can bee seen that the unsteady effects produce only moderate differences
in the flap and lag responses. The response in the presense of the unsteady
loads tends to lag behind that with quasisteady loads due to the phase lag and
amplitude modulation associated with the unsteady aerbdynamics[l3]. As is
evident from Figs. 7.6 and 7.8, the influence of the unsteady aerodynamics on
the torsional response is more pronounced. This is due in part to the inclusion

of several higher order apparent mass terms in Eqn. 4.17,-the expression for
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the noncirculatory acrodynamic moment in the unsteady acrodynamic formu-

lation, which were not included in the quasistcady formulation.

In order to determine the importance of these terms, response calculations
were carried out at an advance ratio of g = 0.4 using a quasisteady aerodyna-
mic formulation which included these apparent mass terms. Figures 7.9 and
7.10 show the flap, lag, and torsional response using quasisteady aerodynamics
without the apparent mass terms, quasisteady aerodynamics with the apparent
mass terms, and unsteady acrodynamics. It can be scen that the apparent
mass terms cffect all three responses to some degree, But that there is a signif-
icant changc in the torsional response. This indicates that these apparent mass
terms can be important and should not be neglected as they have been in may

previous acrodynamic formulations.

For the case of hover, there is no unsteadiness in the aecrodynamics and the
apparent mass terms are zero. The response therefore is identical to that of the
quasistcady acrodynamics of Ref. 8. There are slight differences in hover sta-

bility due to the unsteady effects on time derivatives in hover.

Stability plots for the soft and stiff-in-plane blades are shown in Figs. 7.11
through 7.14. The variation with advance ratio of the real part of the charac-
teristic exponent associated with each mode is plotted. The influence of time
domain unsteady aerodynamics on lag and torsional mode stability is small.
This is reasonable since the primary correction in the unsteady aerodynamics

theory is to the lift. The influence of the unsteadiness on the drag, which in-
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fluences the lead lag motion, is small. There is however a noticcable effect of
unsteady acrodynamics on the flap modes, particularly at higher advance ra-

tios and with the soft-in-planc blade.

7.3.2 Hub Vibratory Loads

In Ref. 8, 4/rev. vertical hub shears were calculated using quasistcady
acrodynamics. The blade structure was then optimized to reduce these shears.
As described in Ch. 3, Ref. 8 used a less precise convergence criterion than the
convergence control parameter used in this study when determining whether
convergence of quasilinearization had occured. Furthermore, less stringent
local error bounds were used when solving the differential equation associated
with quasilinearization. The procedure employed in Ref. 8 was adequate for
determining the low frequency response and stability of the blade, but led to
response solutions which were not actually converged in the higher harmonics.
This led to incorrect values of the 4/rev. shears which may have contributed

to the inconsistent behavior of the optimization results.

As an example, Fig. 7.15 shows the variation with advance ratio of the
4/rev. vertical and lateral hub shears for the soft-in-plane blade as calculated
in Ref. 8 and their comparison to the response solution obtained in this study.
In both cases the same quasisteady aerodynamic formulation was used. The
response solution obtained in this study was calculated by carrying out one

additional iteration of quasilinearization beyond that used in Ref. 8 with in
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addition much tighter local error bounds. From Fig. 7.15 it can be seen that
the not completely converged response solution produces substantially differ-
cnt vertical hub shears. With the converged response of this study, the pecul-
iar dip in vertical hub shears at an advance ratio of u = 0.3 complctely
disappcared. The cffect of this convergence problem on the lateral hub shear

is much less severe, as is evident from Fig. 7.15.

Hub shear and moment calculations were carried out for the baseline soft-
in-planc and stiff-in-planc blades using the quasistcady acrodynamics of Ref.
8 and the unsteady formulation of this study. Figures 7.16 through 7.21 plot
the variation with advance ratio of the six different 4/rev. hub shears and
moments. All shears and moments vary somewhat depending on the aero-
dynamics used. The most significant variation is in vertical shecars which show
a large difference in magnitude which increases with advance ratio. This is
rcasonable since the primary correction in the unsteady acrodynamic theory is

that due to the lift.

7.4 COMPARISON OF OLD AND NEW TRIM RESULTS

The flap trim and full trim procedures described in Ch. 3 were used to de-
termine the collective pitch 8,, cyclic pitch 8,, and 8,., inflow ratio 4, and rotor

angle of attack a, which are required to trim the rotor.

With the full trim procedure, essentially identical results were found using

quasisteady and unsteady aerodynamics. At hover, the quasisteady and un-
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stcady acrodynamic models give identical air loads and so the trim conditions
arc identical. With the simplified aeroelastic model used in the full trim aﬁal-
ysis, only the constant and 1/rev components of cach generalized coordinate
are retained in forward flight. The high frequency motions which contribute
to unsteady airloads arc therefore not modeled and it is to be expected that
ncarly identical trim states should result. Furthermore it should be noted that
the flap trim procedure does not have the provision for incorporating the un-

steady aerodynamics.

Figures 7.22 and 7.23 depict changes in the trim parameters with advance
ratio for the flap trim and full trim procedures using the baseline soft-in-plane
blade. From Fig. 7.22 the value of the collective pitch t, can be seen to differ
most at hover and to become essentially identical at 4 = 0.3 or above. Con-
versely the value of the inflow ratio A is nearly identical up to u = 0.1 and then
the difference increases somewhat at higher advance ratios. The rotor angle
of attack o, varies considerably above hover, but since ®p 1S not an explicit
variable in the quasilinearization routine, this does not directly effect the rotor
response. From Fig. 7.23 the cosine cyclic 8, varies only slightly between the
two procedures while the sine cyclic 6,, differs somewhat at advance ratios

above u = 0.2.

Overall the two trim procedures produce quite similar results for the soft-
in-plane blade. It is expected that more realistic blades, having for instance

cross-sectional offsets and non-uniform properties, which cannot be modeled
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by the flap trim procedure, will show more significant differences between the

two pI'OCCd ures.

Figure 7.24 shows blade tip response for the flap trim and full trim proce-
dures applied to the soft-in-plane blade. In each case the trim values deter-
mined from the trim procedure were used in the full aeroelastic model with
unsteady aerodynamics at an advance ratio of 4 =0.3. The nonlinear response
solution was determined and the nondimensional tip displacements in flap, lag,
and torsion are plotted versus blade azimuth. Lag and torsional response vary
little between the two cases, however the flap rcsponge changes considcrably.
The change in magnitude of the flap response is due primarily to the change
in the inflow ratio A at this advance ratio, while the different value of the sine

cyclic pitch 8, changes the phase of the response somewhat.

The two trim procedures led to almost identical stability eigenvalues for the
blade. The largest difference in value of the real part of the cigenvalue for any
mode at any advance ratio was less than 2%. Therefore these results are not

presented here.

The 4/rev. hub shears and moments were calculated for the soft-in-plane
blade using the response solution obtained with both the flap trim and the full
trim. Figures 7.25 through 7.27 dipict of the variation, with advance ratio, of
the six shears and moments. Application of the coupled trim procedure re-
sulted in somewhat higher hub shears and somewhat lower hub moments than

those due to flap trim. The largest difference was in the vertical hub shears.
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This behavior is reasonable since the vertical hub shears are dependent on the

flapping response which was shown to differ considerably for the two trim

formulations.
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Chapter VIII

OPEN LOOP RESULTS

8.1 INTRODUCTION

This section presents the results obtained during the open-loop application
of HHC. The primary objective here is to gain an understanding of basic
trends in rotor response to HHC and to provide initial estimates of the HHC
transfer matrix 7 which is required for starting the closed-loop HHC algo-
rithms. The bascline soft-in-planc blade, as described in Ch. 7, was used in

all these calculations. Trim was calculated using the full trim procedure.

8.2 HUB LOAD VARIATION WITH HHC PHASE

As shown in Ch. 6, the HHC inputs can be expressed as a sine function with
a phase offsct, applicd to each of the collective, lateral, and longitudinal con-

trol channels. A 1/3° HHC pitch input of the form:
Oppy = 1/3°sin(y — dypp) (8.1)

was applied to ecach of the three control channels with the phase ¢, being
allowed to vary from 0° to 360° in 90° increments. These calculations were

carricd out for both the quasisteady and the unsteady aerodynamic models.
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Figures 8.1 through 8.9 present the variation in hub shears and moments
with HHC phase angle in the three control channels for quasisteady and un-
stecady acrodynamics. Generally for a given shear or moment, if HHC in any
of the three control channels is phased correctly, a minimum valuc of the shear
or moment can be obtained. Except for the case of yawing moments, and
vertical shears with collective or lateral inputs, this minimum is below the

baseline value.

The major difference in responses to HHC between quasisteady and un-
stcady acrodynamics are in the vertical shears. For all the control channels,
the HHC phase at which minimum vertical shears with unstcady acrodyna-
mics are¢ obtained, leads the value calculated with quasistcady aerodynamics
by about 90°. In the case of collective and lateral HHC input, the unsteady
formulation shows shears above the bascline values for any phasing, while the
quasistcady formulation indicates a minimum below the baseline value. With
longitudinal input both the aerodynamic models show substantial decreases
below the baseline for vertical shears with correct HHC phasing. In actual
flights tests[67] also, longitudinal control has been shown to be most effective

in alleviating vertical shears.

Rolling and pitching moments show similar behavior of the responses with
both aerodynamic formulations and for control inputs in all three channels.
Lateral and longitudinal shears show similar response patterns for the two

formulations. The responses have similar phases and magnitudes of excursion
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from the bascline but are offset by the difference in baseline pcak-to-peak

shecar values.

8.3 LINEARITY OF RESPONSE TO HHC

Lincar optimal control theory assumes lincar response to control input. It
is therefore important that actual response of the model be at least fairly lincar
over some reasonable range for the HHC to be most effective. The assumption
used in the control formulation is that the 4/rev. sine.and cosine harmonics of
the hub shears vary linearly with the 4/rev. sine and cosine HHC harmonic
inputs. To verify this assumption, HHC inputs of -1/3° through 3° in 2/3° in-
crements were applied to the 6 .. HHC degree of frecdom, i.e. the cosine com-
ponent in the longitudinal control channel. The calculations were carried out

for quasistcady and unsteady aerodynamics at an advance ratio of u=0.3.

The variations in the sine and cosine harmonics of the 4/rev. hub shears
with HHC input pitch magnitude are shown in Figs. 8.10 and 8.11. The re-
lationship between control harmonics can be seen to be quitc linear over this
range for both aerodynamic formulations. The difference in response between
the two acrodynamic models can be seen to vary from slight offsets to sub-
stantially different slopes and intercepts. Thus the transfer matrices needed
for control implementation can be expected to differ greatly for the two for-
mulations. The variation of peak-to-peak hub shears with HHC magnitude

are shown in Fig. 8.12. The peak-to-pecak shears are a function of the squares
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of the sinc and cosine harmonics and thus are not linear with HHC magnitude.
As can be scen, they show distinct minima, with HHC magnitudes above or

below this value giving higher shears.

8.4 TRANSFER MATRIX CALCULATION

Initial estimates for the HHC transfer matrix at the baseline were calculated
by incrementing each of the six control degrees of freedom by 1/3°. From Eqn.
6.1 and 6.2 it can be seen that at the baseline, with no initial HHC input, both

the local and the global HHC models reduce to:
AZ = TA@ (8.2)

From this it can be scen that, assuming low process and measurement noise,
the columns of the T matrix can be calculated by incrementing each element
of 6 individually, calculating the changes in hub shears due to this increment,
and dividing their values by the magnitude of the control increment. For in-
stance setting the first clement of 8 to one and all other elements to zero, and
multiplying this vector times the T matrix, will result in a vector identical to
the first column of the T matrix. Baseline transfer matrices were calculated
using quasistecady and unsteady acrodynamics and are given in tables 8.1 and

8.2.

The calculated baseline transfer matrices for the quasisteady and unsteady
aerodynamic cases differ greatly. In order to see basic trends for the two cases,

the bar chart given in Fig. 8.13 has been constructed showing the proportional
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TABLE 8.1

Quasisteady HHC Transfer Matrix

0.3145325 -0.2224358 -0.0447006 0.0600985 -0.1066384 -0.2511157
-0.2216286 -0.3188984 0.0572526 0.0441021 -0.2526287 0.1064007
-0.0680207 -0.0575412 0.0156767 0.0122215 -0.0879807 0.0091254
-0.0569284  0.0649546 0.0097563 -0.0127674 0.0093927 0.0814574
0.0041394  0.0806664 -0.0532560 0.0065953 -0.0125365 -0.0249821
0.0734329 -0.0100913 0.0120377 0.0480450 -0.0136280 0.0000364
TABLE 8.2
Unsteady HHC Transfer Matrix
0.3975075 -0.0000851 -0.0326116 0.0052673 0.0276221 -0.2291952
0.0018428 -0.3944278 0.0092679 0.0358874 -0.2285797 -0.0251755
-0.0298565 -0.0405612 -0.0071383 0.0244647 -0.0822938 0.0075192
-0.0408923  0.0294869 0.0244328 0.0068263 0.0067259 0.0820623
-0.0094324  0.0419992 -0.0516340 0.0210999 0.0071792 -0.0322283
0.0422244 0.0102764 0.0220154 0.0528939 -0.0321438 -0.0064157
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changes in shears due to cach of the 1;3° HHC incrementations. From this
chart some general observations can be made. The vertical shears are effected
much morc by HHC than the lateral or longitudinal shears. The difference in
response with quasisteady and unstcady acrodynamics is greatest for vertical
shears which are most directly dependent on the acrodynamic lift where the
two formulations differ. Collective and longitudinal HHC inputs have a

greater relative effect on shears than lateral HHC inputs.
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Chapter 1X
CLOSED-LOOP CONTROL RESULTS

9.1 INTRODUCTION

Onc of the main objectives of this study was to reduce the vertical, lateral,
and longitudinal 4/rev. hub shears. Sine and cosine components of each of
these three shears were to be minimized by the control algorithms. In applying
the control algorithms to the quasilincarization model, a control vector was
first calculated using the baseline response. The vibratory response of the ro-
tor with this control was then found and this information was used in calcu-
lating an improved control vector. Physically this is equivalent to allowing all
transients to die out between control changes. The response due to the new
control values was then calculated and the process was continued for a given

number of iterations or until no further decrease in shears was observed.

The baseline soft-in-plane blade described in Ch. 7 was used in all these
studies. Unless otherwise stated, all the control calculations were done at an
advance ratio of g = 0.3. Trim was calculated using the full trim procedure.
The initial bascline transfer matrices for the quasistcady and unsteady acro-

dynamic models at this advance ratio were those calculated in Ch. 8.
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9.2 FIXED GAIN CONTROL

The bascline HHC transfer matrices were used to construct fixed gain con-
trollers.  For thesce controllers, there was no identification of control paramc-
ters and the hub shears were assumed known exactly. Control was therefore

determined by a simple inverse relation:
oG+ 1)= T~ 'z0) (9.1)

This assumes the local HHC model for multistep application. The first step is
the same as a global controller, which is a one step process when parameters

cannot change through identification.

With quasisteady aerodynamic modeling the HHC input angles, as shown
in Fig. 9.1, moved smoothly to their optimums with almost no overshoot or
oscillation. The peak-to-peak values of the three shears were reduced smoothly
to less than 2% of their baseline values within five iterations as shown in Fig.
9.2. With unsteady aerodynamic modeling the HHC input angles also moved
smoothly to their optimums, as shown in Fig. 9.3. With unstcady acrodynamic
modeling the hub shears were reduced to less than 5% of their baseline values
in two iterations but the vertical shear had risen to 10% of its baseline value

by the fifth iteration.

These results indicate that both transfer matrices were quite good estimates
of the actual relationship between HHC input and hub shear harmonics at the

optimal HHC angles. The increase in vertical shear with continued iterations
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for the unsteady casc indicates that this transfer matrix was not quite as good

an cstimate as the quasisteady transfer matrix.

9.3 ADAPTIVE CONTROL AT DESIGN FLIGHT CONDITION

The minimum variance controller described in Ch. 6 provides for one local
and three global controller designs using different Kalman identification
schemes. These were referred to as controllers 1, 2, 3, and 4. Each of these
controllers may be implemented as a deterministic, cautious, or dual controller.
Throughout this study equal weighting was given to the different shear com-
ponents and no weighting was applied to the control input magnitudes or rates
of change. It should be stressed that in these simulations a change in step in-
dex from i to i + 1 indicates an iteration of quasilinearization rather than any
real time increment. Also the Kalman filter identifies computer code output
parameters which move in an unpredictable manner but does not have to deal

with any articficially introduced noise.

In the initial phase of this investigation the deterministic versions of the four
controllers were were implemented for the quasisteady and unsteady aeroelas-
tic models. For these calculations the Kalman filters were initialized by as-
suming the variances W, and W, and the initial values of the elements of the
covariance matrix P, to be equal with a value of 0.5:10-2, and assuming the

variance V to have a value of 0.3-10-7.
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Figures 9.5 through 9.7 give the iteration history for the threc hub shear
conponents for the four controllers applicd to the quasisteady model. In each
case the first step is identical for deterministic control. The results for cases |
and 2 arc quite similar as are the results for cases 3 and 4. When these con-
trollers were applied to the unsteady model, all four controllers produced al-
most identical hub shear histories with only vertical shear showing some
spread in the responses. All four controllers gave staisfactory results and of
the global controllers, controller 4 appeared to give the best results after sévcral
iterations. It was decided therefore to continue with more extensive studies
using the deterministic and cautious versions of just two controllers, controller
I, a local controller with identification of only the HHC transfer matrix, and
controller 4, a global controller with identification of the bascline vibrations
and the HHC transfer matrix. In these additional studies the Kalman filter
was initialized by assuming the variances ¥, W, and W, to be eqhal with a
value of 0.3x10-7 and by initializing the elements of the covariance matrix P

as 0.3x10-5,

With quasisteady aerodynamics the difference in control sequence between
the deterministic and cautious controllers was relatively small, reflecting the
excellent initial transfer matrix. Figures 9.8, 9.9, and 9.10 show the iteration
history of the six HHC inputs and the three hub shears for deterministic and
cautious versions of the local controller. Figures 9.11 through 9.13 show the
same iteration histories for the global controller. All four controllers led to the

same control solution for hub shear minimization.
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With unsteady acrodynamics the cautious and dcterministic controllers
show more difference in control values initially but all four quickly converge
to the same control values. The deterministic controller tends to slightly over-
shoot the optimal control on the first iteration. Figures 9.14, through 9.19
show the iteration historics of the HHC inputs and hub shears for the local

and global controllers with unsteady aerodynamics.

When applied to either the quasisteady or unsteady model, HHC was able
to climinate essentially all the 4/rev. hub shears. With local control applied to
the unsteady model, the vertical shears rise slowly after the second iteration
indicating that the transfer matrix identification has not been ideal. Since the
control input is changing only slowly and identification of the local 7 matrix

is based on changes in control, this result can be easily anticipated.

Figures 9.20 and 9.21 compare the final hub shear values after five iter-
ations for the four control cases as a percentage of their bascline values. When
unsteady acrodynamic effects are included the vertical shear becomes the crit-
ical component, being decreased much less than the lateral and longitudinal
shears. With quasisteady acrodynamics there is no discernible pattern of one
shear being reduced more than another. The unsteady bascline vertical shear
started at 1/3 the level of the quasisteady baseline, so in absolute terms rather
than as percentages of the baseline, the global controllers produced similar
vertical shear magnitudes using the two aerodynamic formulations. The local
controllers however were much less successful when used with the unsteady

model than they were with the quasisteady model. Figure 9.22 compares the
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optimal HHC inputs after five itcrations of the local controller using quasis-
teady versus unsteady aerodynamics. Completely different, but similarly ef-
fective, control inputs are needed for hub shear reductions depending on the

type of aerodynamic representation used in the aeroelastic model.

The LMS Direct Inverse Control algorithm described in Ch. 6 providés a
simple alternative method of determining HHC inputs for hub shear minimi-
zation. This algorithm was implemented using the unsteady aerodynamic
model. [n Ref. 32, values of the gain term K, of between 0 and 5 were used.
A very simple matrix representation of rotor response to HHC was used, and
often on the order of 100 or more iterations were carried out for convergence.
When a value of K; = 0.3 was used to implement this control, the results in
terms of HHC angle and shear minimization iteration historics were essentially
identical to those results already presented for fixed gain HHC calculations
and shown in Figs. 9.3 and 9.4. This was because changes in the identified C
matrix were too slow to be detectable within five iterations. It was necessary
to increase K, far beyond the range in which stability problems were found in
Ref. 32 before appreciable changes in convergence within five iterations were
found. Unfortunately the high computational cost of the aeroelastic analysis
used here precludes the investigation of convergence characteristics much be-

yond the fifth HHC iteration.

In order to determine the effect of HHC on overall blade response, the
clastic tip deformations in flap, lag, and torsion were plotted for the baseline

response and for the optimal response for the case of controller 4, the global
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cautious controlier. From Fig. 9.23 it can be scen that the principal differences
in clastic response are in the flap and torsional degrees of freedom. The tor-
sional response is somewhat missleading in that the actual tip angular de-
flection includes also a rigid body rotation due to the total blade root angle
associated with trim and HHC, and a rotation of the form w,v, duc to the
bending of the blade. When these gcometric rotations are added to the tip
elastic torsional deflection, the total tip angular displacement shown in Fig.
9.24 results. The term w,v, accounts for less than 2% of this total angular
displacement. This plot indicates that vibration reduction through HHC is
achieved not by reducing overall blade response, but by introducing modified

airloads on the blade which cancel out the vibratory hub loads.

9.4 CONTROL WITH STEP CHANGE IN FLIGHT CONDITION

A practical controller must be able to adapt to changing flight conditions.
As a test of this ability a step change in flight condition from u = 0.3 to
1 = 0.35 was applied to the deterministic and cautious versions of the local and
global controllers. This was done by starting with the converged optimal sol-
ution and its response at u = 0.3, changing the propulsive trim values to those
for u = 0.35, and proceeding with iterative control calculations and quasili-

nearization solutions.

When this procedure was applied to the local controller there were large

oscillations in the calculated control inputs and the resultant hub shears. As
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can be seen from Figs. 9.25 and 9.26, these oscillations had damped out con-
siderably by the sixth iteration and all the shears were considerably below the

bascline values for this advance ratio.

When this step change in 4 was applied to the global controller, there was
little oscillation in the required control inputs and the controller moved fairly
smoothly from an initial large increase in shears toward a minimum. Figures
9.27 and 9.28 show the iteration history of the HHC inputs and hub shears for
this case. The procedure was stopped at five itcrations but the shears were

continuing to decrease at that point.

A comparison of the three shear components and their bascline values for
the local and global controllers is given in Fig. 9.29. As can be scen, the global
controller has been more successful in reducing shears. Additional iterations
of the analysis would be expected to reduce the shears to lower levels. The less
effective performance exhibited by the local controllers is attributed to the
method employed for the calculation of the transfer matrices, which is based
on changes in control input rather than the total control magnitudes. Since the
controllers quickly reached minimum shear levels from the baseline, changes
in control became very small and the transfer matrices were not completely
identified. When a sudden change in flight condition occurred this uncertainty

degraded the controller performance.

134



Chapter X

HHC FOR ARTICULATED VERSUS HINGELESS ROTORS
10.1 INTRODUCTION

In this chapter the cffects of HHC on a hingeless rotor and a roughly
equivalent articulated rotor are investigated. This includes comparisons of re-
quired control angles, shear minimization, accompanying changes in hub mo-
ments, attempts at shear and moment minimization, changes in rotating blade

loads, changes in blade stability, and changes in power requirements.

The hingeless rotor used in the study is the same as the basecline soft-in-
plane rotor described in Ch. 4 except that a blade root offset from the center
of rotation of 5% of the blade clastic length has been introduced. The artic-
ulated rotor used was produced from this rotor by introducing hinges in flap
and lag at the same 5% blade root offset. Additionally a rotational damper
was applied to the articulated blade root lag hinge as is generally required to
maintain stability in articulated rotors. This was a viscous damper and gave

a nondimensional damping coefficient of:

C
myQf

C =

=0.02 (10.1)

The value 0.02 was chosen as being approximately the value of the damper on

an OHG6A helicopter rotor blade.
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The hingeless blade had fundamental uncoupled rotating natural frequen-
cies in lag, flap, and torsion of 0.783/rev., 1.158/rev., and 3.176/rev. The ar-
ticulated blade had natural frequencics in lag, flap, and torsion of 0.274/rev.,
1.037/rev., and 3.176/rev. Mode shapes for the first six modes were very sim-
ilar for the two blades except in the arca of the blade root where the two

structural boundary conditions were different.

Trim calculations were carried out for the hingeless and articulated blades
at an advance ratio of x=0.3 using the full trim procedure. The required col-
lective and sine cyclic angles were almost identical for the two rotors. The
hingeless rotor required a rotor shaft angle 1% higher and a cosine cyclic angle

10% lower than that of the articulated rotor.

Using these trim values, baseline response and stability were calculated for
the articulated and hingeless blades at an advance ratio of £ =0.3. Subsequent
HHC calculations were carried out from these baselines. All calculations in

this chapter were carried using unsteady aerodynamics.

10.2 REDUCTION OF HUB SHEARS

From the bascline flight condition at an advance ratio of u=0.3, initial es-
timates of the HHC transfer matrices for the hingeless and articulated rotors
were calculated using the method described in Ch. 8. Using these initial
transfer matrices, controller 4, the cautious global controller of Ch. 6, was ap-

plicd to reduce 4/rev. vibratory hub shears. Five iterations of the shear min-
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imization procedure using HHC were performed for each rotor. All results in

this chapter used this same HHC algorithm.

Figure 10.1 shows the iteration history of the HHC angles required to re-
duce hub shears for the hingeless rotor. The maximum HHC angle required
was 4°. By the second iteration the HHC angles had essentially reached their
optimum values. Figure 10.2 shows the itcration history of the 4,/rev. hub
shears being minimized. All three hub shears were greatly reduced. The lat-
cral and longitudinal hub shears were reduced to less than 2% of their baseline
values by the fifth iteration. The vertical shear, which started at one fifth the
level of the inplane shears, was reduced to 13% of its baseline value. While
the shcars were being minimized, the hub vibratory moments increased greatly.
Figure 10.3 shows the iteration history of these moments. The rolling moment
and pitching moment rose to respectively 6 times and 4 times their baseline
values when HHC was applied. The yawing moment started at a very small
value and rose to 250 times its bascline value. The yawing moment does not
act directly on the fusclage but acts indirectly through the helicopter power-
plant. Typically rotor torque is developed through complicated fluid forces
acting on the power turbine of a gas turbine powerplant. Therefore the sig-
nificance of this large increase in yawing vibratory moment is not at all obvi-

ous.

Figure 10.4 shows the iteration history of the HHC angles required to re-
duce hub shears for the articulated rotor. The maximum HHC angle required

to minimize the hub shears was 0.9° but intermediate values of up to 1.1° were
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used. By the second iteration the HHC angles had essentially rcached their
optimum values. The HHC angles required for hub shear reduction with the
articulated blade were much lower than those required with the hingeless
blade. Figure 10.5 shows the itcration history of the 4/rev. hub shears being
minimized for the articulated blade. The lateral and longitudinal shears were
reduced to less than 0.4% of their baseline values. The vertical shear was ini-

tially much lower and was reduced to 9% of its baseline value.

Figure 10.6 shows the iteration history of the 4/rev. hub vibratory moments
as the shears were being minimized. For the articuiated rotor, the zero mo-
ment condition at the blade root flap hinge and the low vibratory moment
transmitted by the rotational damper at the lag hinge kept the vibratory
pitching and rolling hub moments from rising greatly as they had for the
hingeless blade. The greatest increases in moment were when HHC was first
applied. At the first iteration of HHC the hub rolling, pitching, and yawing
moments rose respectively to 1.6, 3.4, and 4.0 times their bascline values.
These values for the pitching and rolling moments were still only slightly above
the baseline values for the hingeless rotor. From the second HHC iteration
onward the hub rolling, pitching, and yawing moments were 1.3, 0.8, and 2.2
times their baseline values. These values were an order of magnitude lower
that those for the hingeless rotor. The moderate peaks in moment on the first
HHC iteration were associated with the first, poor approximation to the opti-
mum HHC angles and it is felt they could be avoided by tuning the controller

to give a more cautious first estimate of HHC requirements.
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10.3 REDUCTION OF SHEARS AND MOMENTS

Vibrations at a point in a helicopter fuselage will depend on both the hub
shecars and the hub moments being fed from the rotor into the fuselage. In
actual implementation[68], the quantities being minimized by the HHC algo-
rithm would normally be three linear orthogonal acceleration components at
some point in the fusclage such as the pilot’s seat. Due to the offset of this
point from the rotor hub, angular accelerations are transformed into lincar
accelerations, and thercfore hub vibratory moments also contribute to the ac-
celerations experienced at the pilot’s seat. The dyna‘mic properties of the fu-
sclage will also act as a filter changing the phase and magnitude of the forces
and moments felt at this point due to the hub loads. Because of these factors,
minimizing vibrations at a specific point in the fuselage may actually increase
some loads at the rotor hub. Conversely, trying to reduce all hub loads may
not be the most effective way to reduce vibrations at a specific point in the
fusclage. The model used in this study is only capable of modeling hub shears

and moments and has no provision for calculating fuselage vibrations.

[n the last section it was scen that minimizing hub shears could lead to
greatly increased hub moments, particul'arly for the hingeless blade rotor. It
is therefore interesting to attempt to minimize both the hub shears and the hub
moments simultaneously. The same cautious global HHC algorithm is used

to reduce the hub loads, however now the problem is slightly redefined:

Z(i + 1) = Zy + TO(i) (10.2)
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Where the vibration vector Z is now of length 12 and consists of the sine and
cosinec harmonics of the three 4,rev. hub shears and the three 4/rev. hub mo-
ments. The transfer matrix T is therefore redefined to be a 12x6 matrix re-
lating these 12 hub load harmonics to the 6 HHC input harmonics. There are
now 12 hub load harmonics being minimized using only 6 HHC harmonics as
input, so the number of quantitics being minimized is larger than the number

of input variables.

Figure 10.7 shows the iteration history of the HHC angles required by the
12x6 HHC algorithm applied to the hingeless blade. As with the 6x6 algo-
rithm, the optimum HHC angles were essentially reached by the second iter-
ation. The maximum HHC angle was 0.7°, which was much smaller than the
4° commanded by the 6x6 algorithm. Figure 10.8 shows the itcration history
of the hub vibratory shears. With the 6x12 algorithm, there was no minimi-
zation of the vertical shear and the lateral and longitudinal shears were only
reduced by 20% to 30%. Figure 10.9 shows the iteration history of the hub
vibratory moments. The pitching and rolling moments were reduced to about
40% of their baseline values and the yawing moment increased to about 24

times its baseline value.

The results for the 6x6 and 6x12 HHC algorithms are summarized in Fig.
10.10 where they are compared to the baseline values for the hingeless blade.
It can be seen that including the requirement for hub moment minimizations
in the HHC algorithm climinated the high hub moments of the 6x6 controller,

but at the expense of very poor hub shear reductions. As was said earlier, this
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does not necessarily mean vibrations cannot be minimized in some area of the
fuselage, but the implication is that this may be more difficult with a hingeless
rotor than with an articulated rotor for which vibratory hub moments are in-

herently smaller.

Figure 10.11 shows the iteration history of the HHC angles commanded by
the 6x12 control algorithm for the articulated blade. By the sccond iteration
the angles had essentially reached their optimum values. The maximum HHC
angle commanded was 0.8°. Comparing Figs. 10.4 and 10.11 it can be seen
that almost the same HHC input was commanded by the 6x6 and 6x12 con-
trollers. Figure 10.12 shows the iteration history of the hub vibratory shears.
The lateral and longitudinal shears were reduced to about 5% of their bascline
values while the vertical shear was reduced to a similar numerical value but
only 30% of its baseline value. Figure 10.13 shows the itcration history of the
hub moments. Again there were moderate peaks in the pitching and yawing
moments at the first HHC iteration. The hub moments then secttled at nearly
the same values as with the 6x6 algorithm. The pitching moment was 60%,

the rolling moment 130%, and the yawing 170% of its baseline value.

The results for the 6x6 and 6x12 HHC algorithms applied to the articulated
rotor are summarized in Fig. 10.14. For the articulated rotor, the increases in
hub moments associated with the 6x6 algorithm were small. Including mo-
ment minimization in the control algorithm had relatively small effects, leading

to slightly poorer shear reductions but slightly lower hub moments. For the
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articulated rotor, the large trade off between shear and moment reductions

obscrved in the hingeless rotor was not evident.

10.4 ROTATING BLADE ROOT LOADS

In the last two sections, changes in vibratory hub loads in a fixed, non-ro-
tating reference frame were investigated as HHC was applied. It is important
to determine whether minimization of non-rotating loads was attained at the
expense of higher vibratory loads in the rotating system. Higher rotating
peak-to-peak loads could lead to fatigue problems while higher maximum ro-
tating loads could cause Bladc failure. With an articulated blade, the flap and
lag hinges reduce blade bending moments to zero at the blade root. With a
hingeless blade however, these moments could become undesirably large.
Large increases in peak-to-peak blade root shears or feathering moment would

also be undesirable.

In order to investigate rotating blade root loads, the procedure described in
Ch. 5 for calculating hub forces and moments was modified. A Fourier anal-
ysis of blade root loads was carried out in the rotating system calculating forces
and moments at the blade root offset rather than at the center of rotation, and
the summation process over the four blades was deleted. This analysis pro-
vided a constant component and sine and cosine components in the first five

harmonics for axial, cordwise, and vertical blade root shear and feathering,
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flapping, and lagging blade root moments. The maximum peak-to-peak value

and maximum absolute value of ecach load were also calculated.

Figure 10.15 shows the variation with iteration number of peak-to-peak vi-
bratory blade root shears for the hingeless blade. The vertical peak-to-peak
shear increased by 40% as HHC was applied while the cordwise and axial
shears increased by about 25%. Figure 10.16 shows the variation in blade root
moments as HHC was applied. The peak-to-peak feathering moment in-
creascd to 10 times its bascline value while the flapping moment increased to
1.7 times its baselinc valuc and the lagging momcnt'to 1.5 times its baseline

value.

Similar calculations were carried out for the articulated blade. For this case
blade root shears increased by less than 5%. The blade root feathering mo-
ment increascd to 2.5 times its basecline value. For the hingeless and to a lesser
degree the articulated blade, the increases in peak-to-peak blade root feather-
ing moment would need to be accounted for when determining the fatigue life
estimates of the rotor blade on which HHC is applied. Furthermore, the
moderate increases in peak-to-peak blade root bending moments and shears

encountered for the hingeless blade could lead to fatigue problems.

Figure 10.17 shows the variation in the maximum absolute value of the
blade root moments as HHC was applied to the hingeless blade. The maxi-
mum feathering moment increased to 4 times its baseline value while the lag-

ging moment increased by 50% and the flapping moment increased by 15%.
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For the articulated blade again there were essentially no increases in maximum
blade root shears while the feathering moment increased by 50%. These in-
crcased maximum absolute blade root loads, particularly for the hingeless
blade, may imply the need for increased blade strength and causc wceight pen-

alties.

10.5 POWER REQUIREMENTS AND STABILITY

Operating the electro-hydraulic actuators needed .to implement HHC will
of course require power from the helicopter powerplant. In addition, the heli-
copter rotor may require more or less power than at the baseline condition
because of the additional aerodynamic loads which are imposed on it by the
HHC inputs. In the flight tests of Ref. 67 a small decrease in rotor power re-
quired was observed when HHC was applied. If any such decrease in required
power could be relied on, it could compensate somewhat for the additional

power required to run the HHC servo-actuators.

When HHC was applied to the hingeless rotor, power required increased
by 0.58% at the first iteration and remained between 0.90% and 1.03% above
the bascline from the second through the fifth HHC iteration. This increase
in required power was accompanied by a 0.2% increase in rotor thrust. In
actual flight the pilot would retrim the helicopter after the application of HHC
by decreasing the collective angle slightly to return to the baseline thrust value.

This would alleviate part of the rise in required power seen in this simulation.
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When HHC was applied to the articulated rotor, the rotor power required in-
creased by 0.19% on the first iteration and then remained constant at 0.15%
above the bascline for iterations two through five. The increase in required
power was accompanicd by a 0.06% dccrease in rotor thrust, meaning that
when the rotor was retrimmed the increasc in required power would be some-
what greater. The hingeless rotor therefore had a six times greater increase in
power required with application of HHC than the articulated rotor, but this
differcnce was somewhat mitigated by the increase in thrust of the hingeless
rotor and decrease in thrust for the articulated rotor. In both cases the in-
crease in required power was less than 1%. There was no indication of any

decrease in power requirements when HHC was applied.

Another possible problem area with the application of HHC would be any
substantial decrease in the blade aeroelastic stability margins. With this in
mind, the real parts of the characteristic exponents for the six generalized co-
ordinates, which determine the stability of the six blade modes, were calculated
at the baseline and at each iteration of the shear minimization process. The
characteristic exponents for the articulated blade were all very insecnsitive to
HHC application. The maximum changes in the real part of the characteristic
exponent values were from -0.05% to +0.04%. For the hingeless blade all but
the second lag mode characteristic exponent had changes of between -0.34%
and +0.58%. The real part of the characteristic exponent for the second lag
mode, which was the closest to its stability margin, had an increase in stability

of between 27% and 30%. Thus one can conclude that overall stability mar-
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gins were not adverscly effected by the application of HHC to either hingeless

or articulated blades.
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Chapter XI

MODELING THE OH6A HELICOPTER
11.1 INTRODUCTION

This chapter presents the results of a simulation aimed at modeling the re-
sponse to HHC of an OHG6A light helicopter rotor. This helicopter was used
for extensive flight testing of open-loop and closed-loop HHC by the McDon-
nell Douglas Helicopter Company (MDHC, then Hughes Helicopters). The
acroclastic simulation employed in this study has certain limitations in its
ability to model the OH6A rotor as will be discussed later. However another
a fundamental limitation of this aeroelastic analysis is the lack of any repre-
sentation of the fuselage dynamics. Vibration data for the OH6A flight tests
were recorded as accelerations at a particular point in the fuselage, namely the
pilot’s seat, therefore finding close correlation between the flight test data and
the hub loads calculated in this study is not anticipated. The main objective
of the simulations conducted was to identify similar trends, to those observed

during the flight tests, when HHC was used.

The OH6A is a light turbine powered helicopter with a fully articulated four
bladed rotor. Basic descriptive data for the helicopter and its rotor are given
in Table 11.1. Geometric, structural, and mass propertics for the OH6A rotor

were provided by MDHC along with information on usual methods used in
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TABLE 11.1

OH®6A Basic Data

Gross Weight 2550 Ibs
Equivalent Flat Plate Area 5.0 ft?
Rotor Diamecter 26.33 ft
Blade Chord 6.75 in
Blade Twist -9° (linear)
Flap Hinge Offset 5.51in

Lag Hinge Offset 16.19 in .
Rotor RPM 483

Lock Number 4919
Precone 0°

modeling the rotor. An illustration of the OH6A rotor hub is given in Fig.
11.1. Plots were provided by- MDHC for the cordwise position of the blade
center of mass, shear center, and feathering axis. Additional data in the form
of plots for the values of the blade chordwise, flapwise, and torsional stiff-
nesses as a function of blade span together with the radial distribution of
lumped blade mass and lumped blade chordwise mass moment, were also
provided by MDHC. Several important aspects of the modeling process for

this rotor configuration are presented below:
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Control system stiffness is modeled by a torsional spring acting on the
pitch case about the feathering axis.

The Icad-lag friction damper is usually modcled by a torsional dashpot
acting between the blade root and the pitch case about the vertical axis
with an cquivalent viscous damping cocfficient of 1016 in-lbf-
sec/radian.

The pitchcase/strap pack chordwise eclastic bending stiffness is modeled
as an 884,800 in-lbf/radian torsional spring acting about the vertical
axis between the root and flap/feather bearing.

The pitch case flapwise elastic bending stiffness is considered infinite.
The masses of the strap pack, pitch link, pitchcase, and damper are
lumped at the lag hinge to give an equivalent first mass moment about

the center of rotation.

Natural rotating frequencies and mode shapes were provided for model

verification. These were calculated at a collective angle such that the 3/4 ra-

dius collective angle was zero.

The acroelastic simulation used in this study has two main limitations in its

ability to model this rotor:

l.

The feathering and elastic axis are required to be coincident whereas for '
the OHG6A blade the elastic axis is 1.2 inches (0.178xchord) ahead of the
feathering axis.

Non-coincident flap and lag hinges cannot be modeled whercas the lag

hinge is 10.69 inches outboard of the flap hinge for the OH6A.
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11.2 SIMPLIFIED OH6A BLADE

In this study, a simplified model of the OH6A blade was developed. The
objective here was to model the basic design characteristics of the blade as
closely as possible within the constraints imposed by limitations of the analysis.
In general, blade properties and their distributions were used as given. The
major compromises made in the modeling are listed below:

1. Since non-coincident elastic and feathering axes could not be modeled,

these were assumed to be coincident at the elastic axis.

2. Flap and lag hinges were assumed to be coiﬁcidcnt at the flap hinge
offset of 5.5 inches as given. Changes in the lag mode characteristics
were minimized by tuning the torsional spring representing the strap
pack cordwise flexibility so as to give thp best possible first lag fre-
quency.

3. The torsional spring representing control system stiffness was tuned to

give the best possible first torsional frequency.

Other than these compromises, the data on the OH6A blade was used as
given. Using this simplified model of the OH6A blade, natural rotating fre-
quencies and mode shapes were calculated. Table 11.2 compares the first six
rotating natural frequencies obtained from model of this study and the actual

OHO6A blade.

The first mode in each of flap, lag, and torsion for the simplified model

closely matched the frequencies and mode shapes provided for the OH6A. The
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OH6A

1L, 0.442,rev.
IF, 1.028/rev.
2F, 2.701/rev.
IT, 3.143/rev.
3F, 4.645,rev.

2L, 4.809/rev.

TABLE 11.2

OH6A Rotating Natural Frequencies
Simplified Model
1L, 0.441/rev.
IF, 1.028/rev.
2F, 2.389/rev.
IT, 3.144/rev.
2L, 4.442/rev.

3F, 4.687/rcv.

torsional components of the last three modes differed substantially from those
given in the OH6A modal data. Furthermore, the last two modal natural fre-
quencics appear in a reversed order. Within the constraints of the aeroclastic

model used, it was felt that the representation of the modal characteristics

provided above, was adequate.

11.3 OPEN-LOOP HHC FOR THE OH6A

In Ref. 67 open and closed-loop HHC flight tests were carried out at flight
speeds of 60, 70, 80, and 100 knots. It was decided to do simulations at the
highest of these speeds, where vibrations were most severe. The speed of 100

knots is equivalent for the OH6A to an advance ratio of 4 =0.253. Plots of the
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variation in vertical and lateral vibrations at the pilots seat, given in g’s, with
the phasing of a 1/3° amplitude lateral HHC input were given in Ref. 67. The
plot of vertical and lateral vibrations for the 100 knot flight condition is re-
produced in Fig. 11.2. Calculations were made for the model of this study to
produce similar plots of the changes in vertical, lateral, and longitudinal hub
shears with changes in the phase of collective, lateral, and longitudinal HHC

inputs. These plots are presented in Figs. 11.3, 11.4, and 11.5

Thesce plots show that lateral and longitudinal shears respond fairly well to
reduction through HHC inputs. Some phasing of HHC input in any one of the
three control channels is capable of reducing either the lateral or longitudinal
shear considerably below its bascline value with just this 1/3° of HHC ampli-
tude. Vertical shear on the other hand, responds very well to lateral or longi-
tudinal HHC but for collective HHC gives values well above the baseline for
any phasing of a, 1/3° input. Comparing the results for lateral HHC input
from Ref. 67 and this study, the phasing for minimum vertical and lateral
shears are coincident at 320° for Fig. 11.2, the plot from Ref. 67, while from
the plot of this study, Fig. 11.4, the minimum for lateral shears is at 140° and
that for vertical shears is at 85°. For both the lateral and the longitudinal
control channels, there is an HHC phasing which reduces all three shears be-

low the baseline for this 1/3° input.

There is little correlation between the fuselage vibrations reported in Ref.
67 and the hub loads determined in this study. For instance Ref. 67 reported

the baseline vertical vibration level as being 2.5 times the bascline lateral vi-
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bration level. Conversely the vertical hub shear of this study was found to be
only 30% of the lateral or longitudinal hub shear. In fact this is not unrea-
sonablc. In Ref. 62 an analytical analysis of HHC was donc on a model which
provided both hub loads and loads at the pilot’s seat. Exactly this same in-
version was scen with lateral and longitudinal vibrations being predominant
at the hub and vertical vibrations being predominant at the pilot’s seat. In an
actual helicopter, the vibrations at a point in the fusclage due to rotor hub
loads will be changed in phase and magnitude due to the dynamic character-
istics of the fuselage. In addition, vibrations due to the powerplant, the tail
rotor, impingement of the rotor wake on the empennage, and other factors will
contribute to fusclage vibrations. Therefore it remains to be shown what lo-
cations for vibration sensors will be most effective in minimizing overall vi-

brations.

11.4 CLOSED-LOOP HHC FOR THE OH6A

The HHC algorithm used for closed-loop flight tests in Ref. 67 was the
cautious, global controller referred to as controller 4 in Ch. 6. This same con-
troller was used to apply HHC to the simplified model of the OH6A rotor at
a 100 knot or u=0.253 flight condition. Five iterations of HHC were carried
out. Figure 11.6 shows the iteration history of the HHC input angles com-
manded by the controller. By the second iteration HHC angles are very close

to their optimums. The collective channel was shown in the last section to be
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quitc ineffective in reducing vertical hub shears, and this is reflected in the two

collective HHC inputs being essentially zero.

Figure 11.7 shows the iteration history of the hub shears being minimized
by HHC. The shears are essentially totally suppressed, being less than 1% of
their baseline values, in all three directions. In Ref. 67 the vertical, lateral, and
longitudinal pilot’s seat vibrations were reduced to respectively 7%, 23%, and
77% of their bascline values at 100 knots. Figure 11.8 shows the iteration
history of the hub vibratory moments as HHC is applied. There is no increase
in the yawing moment but substantial changes in the 'pitching and rolling mo-
ments which increase respectively to 5.3 and 2.4 times their bascline values.
Again the significance of any increase in moments as shears are reduced is

dependent on actual fuselage dynamics, which are not included in this model.

1.5 POWER REQUIREMENTS AND STABILITY

When HHC was applied to the simplified model of the OH6A rotor, the
required rotor power increased by ¥:%. There was no indication of a decrease
in required rotor power as was reported in Ref. 67. This small increase in re-
quired power would present no problem in itself, but in any actual prediction
of required power for HHC implementation, the power requirements of the
servo-actuators used to produce the HHC pitch changes would also have to
be taken into account. There were no appreciable negative effects on aeroe-

lastic stability when HHC was applied to this rotor. The real part of the
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characteristic exponent associated with the second lag mode, which was closest
to its stability margin, increased in stability by 18% while the other modes had

changes in stability of 4% or less.
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Chapter XII

CONCLUDING REMARKS

This study has presented a rotor aeroclastic analysis capable of modecling
the effects of HHC in forward flight. This is a major extension of an existing
analysis which includes several features which make it a superior model for
HHC studies. The original analysis incorporates structural nonlinearities in a
consistent manner and prqvidcs direct stability information. An improved,
implicitly derived, implementation of a finite-state, time-domain unstcady
acrodynamic formulation has been incorporated in the model to capture high
frequency aerodynamic effects due to HHC pitch changes. Trim values re-
quired for the analysis have been calculated using an improved helicopter trim
proccdure which accounts for flap, lag, and torsional blade deformations. This
complete analysis has then been coupled with a procedure for determining the
rotor vibratory hub loads and a set of control routines used to calculate the

HHC inputs needed to minimize these vibratory loads.

Using this model, a study of the effect$ of unsteady, as opposed to quasis-
teady, acrodynamics on a hingeless rotor was carried out. The unsteady
aerodynamic formulation, which also included several apparent mass terms
which had been neglected in the quasisteady formulation, was found to have
moderate effects on the stability and low frequency response of the blade. In

order to compare high frequency response, the 4/rev. rotor hub shears were
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compared for the two acrodynamic formulations. It was found that there can
be large differences in high frequency response between the two aerodynamic
formulations cspecially at higher advance ratios. This difference is noticcable
particularly in the vertical hub shear response which is primarily affected by
the changes in lift due to the unsteady acrodynamics. The differences were
pronounced when the blade was excited at high frequencies in pitch, as is the
casc with HHC. These results indicate that high frequency unstcady acro-
dynamic cffects should be included when modeling HHC. A flap trim and an
improved full trim procedure were compared. The principal differences in trim
values were in the collective at low advance ratios and in the cosine cyclic and
angle of attack at high advance ratios. The new trim values gave a consider-
able difference in low frequency flap response and also led to moderate
changes in vertical hub shears at advance ratios above u=0.3. Blade stability
was not appreciably affected by the new trim solution. The convergence cri-
terion used for quasilinearization in this study was more precise than that of
Ref. 8 and results were shown indicating that an improper convergence crite-
rion could lead to poorly converged higher harmonics of the response solution.
This led to erroneous values for the vertical hub shears which may have con-

tributed to inconsistent optimization results in Ref. 8.

A preliminary study of the effects of open-loop HHC was carried out on a
hingeless rotor. HHC inputs of 1/3° in the collective, lateral, and longitudinal
control channels were phased at 90° intervals between 0° and 360° and the

corresponding changes in vibratory hub shears and moments were calculated.
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With appropriatc phasing, lateral and longitudinal shears could be driven be-
low the baseline with control input in any channel using either acrodynamic
modecl. Vertical shears could only be reduced below the bascline by longitudi-
nal input for the unstcady acrodynamic model however they could be reduced
below the bascline by any channel of input with the quasistcady acrodynamic
modecl. Similar phasing for minimums of lateral and longitudinal shears were
found for the two acrodynamic models but the phases for vertical shear min-
imization differed greatly. Calculations were made to show the variation in
4/rev. harmonics of hub shears as the HHC input angle magnitude was varied
for a sct phase angle. The relationships were found to be quite lincar over the

range 0° to 3° of amplitude for both the quasistéady and the unsteady modecls.

In order to initiate closed-loop studies of HHC, initial estimates of HHC
transfer matrices relating HHC inputs to changes in hub vibratory shears were
calculated at an advance ratio of u=0.3. This was done by individually in-
crementing each HHC degree of freedom by 1/3° and measuring the resultant
changes in hub shears. These transfer matrices were then used to implement
fixed gain closed-loop control on both the quasisteady and unsteady aero-
dynamic models. In both cases shears were very successfully reduced, indi-
cating that the off-line estimates of the transfer matrices were quite accurate.
With the unsteady model there was a tendency for the vertical shears to drift
upward after minimization. The quasisteady model was next used to compare
the performance of a local and three global HHC algorithms. Based on these

results, it was decided to conduct the rest of the investigation using two con-
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trollers, a local controller using Kalman filter identification of only the transfer
matrix, and a global controller using Kalman identification of the transfer

matrix and the baseline vibration level.

Next cautious and deterministic versions of these two controllers were im-
plemented for the quasisteady and unsteady acrodynamic models. With qua-
sistcady acrodynamics there were very small differences in control sequence
and shear minimizations. With unsteady acrodynamics the dctérministic con-
troller tended to slightly overshoot the optimum control values and the local
controller was not as effective in holding the vertical shear to its minimum.
This was attributed to the identification process of the transfer matrix for the
local controller which was based on changes in the HHC inputs, rather than
the total magnitude of the HHC inputs in the global case. Thus when the
minimum was quickly reached changes in HHC input became essentially zero
and identification to improve the transfer matrix estimate stopped. In order
to gauge the ability of the controllers to respond to changing flight conditions,
calculations were carried out wherein a step change in flight condition from
u=0.3 to u=0.35 was applied from the optimal HHC solution at =0.3. The
local controller responded with large oscillations in commanded control inputs
and resultant shear minimizations however by the sixth iteration the hub
shears were reduced considerably below the baseline for this advance ratio.
Under the same conditions, the global controller responded quite smoothly and

only small oscillations were observed. The reduced performance of the local
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controller was again attributed to poor transfer matrix identification at the

original bascline.

In order to compare the differences in effects of HHC on articulated and
hingeless rotors, HHC simulations were carried out on two roughly equivalent
rotors, one with a hingeless and one with an articulated hub. It was found that
in order to achieve a similar reduction in hub shears, the hingeless rotor re-
quired HHC angle magnitudes which were four times larger than those for the
articulated rotor. This implies that considerably morc power might be needed
to drive the HHC servo-actuators for a hingeless rotor. While hub shears were
being reduced, hub pitching and rolling moments for the hingcless blade rose
to four and six times their baseline values while for the articulated rotor they
increase to only 1.3 and 0.8 times their baseline values. Moments for the ar-
ticulated rotor remained low due to the flap and lag hinges which keep mo-
ment transfer from the rotor to the non-rotating system to a minimum, and
were an order of magnitude less than those for the hingeless blade. Subse-
quently HHC was uscd to attempt to suppress simultaneously both the hub
shears and the hub moments. For the hingeless blade this led to pitching and
rolling moments which became half the baseline values, however this decrease
was accomplished only at the expense of shear reductions of less than 30%.
For the articulated blade, a small decrease in the moments, which were already
small, was accompanied by a minor increase in shears. This shows that overall

vibration reductions may be more difficult to achieve with HHC when applied
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to hingeless rotors because the simultancous minimization of both hub shears

and moments could be difficult to accomplish.

Rotating blade root loads were also calculated for the hingeless and artic-
ulated blades as HHC was applicd. Both pcak-to-pcak and absolute blade
root bending moments increased significantly with HHC application for the
hingeless blade, and fcathering moment increased substantially for both
blades. These increases need to be taken into accounted when designing the
strength and fatigue properties of rotor blades on which one intends to usc
HHC. Application of HHC led to increases in required rotor power of less
than 1% for both blades. Acroclastic stability margins for the two blades
changed by less than 1% except for the stability of the sccond lag mode of the

hingeless blade, for which the stability margin increased by 30%.

A simulation of application of HHC to the rotor of an OH6A helicopter
was conducted and the results were compared to actual flight test data. The
model used was somewhat limited due to the inability to model the noncoinci-
dent flap and lag hinges and noncoincident elastic and feathering blade axes
of the OH6A rotor blade. Within these limitations, the model was designed
so as to have similar geometric, structural, and mass properties to the actual
rotor blade. Using this model, open-loop HHC simulations were carried out.
Phasing or the HHC for shear minimization did not correlate well between the
model and actual flight tests, but this may have been caused by the differences
in the objective functions being minimized. In the flight tests vibratory accel-

crations at the pilot’s seat were minimized whereas in the simulation hub vi-
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bratory shears were minimized. Due to fuselage dynamics and vibrations from
sources other than the rotor, vibration minimization at a given point in the
fusclage need not correspond to hub shear minimization, and in fact might lead
to increcases in some hub load components. Lateral and longitudinal HHC in-
puts were found to be the most effective in reducing hub shcars. When
closed-loop HHC was applicd to this model, all shears were suppressed to less
than 1% of their baseline values at a spced of 100 knots. Concurrently,
pitching and rolling hub vibratory moments increased to respectively 5.3 and
2.4 times their bascline values. As HHC was applied, rotor requircd power
increased by “2%. The small decrease in rotor power reported in Ref. 67 was
not reproduced by the simulation. Acroclastic stability was not adversely af-
fected by the application of HHC. Because of the lack of fusclage dynamics
in the model, these results cannot be construed as any sort of prediction of
actual OH6A response to HHC, but scrve to show the ability of the analysis

to model more realistic rotor configurations.
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Figure 3.1: Forces and moments on the helicopter in straight and level
flight.
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Figure 4.2: Various components of the unsteady loads acting on the airfoil.
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vance ratio, soft-in-plane blade, quasisteady and unsteady
aerodynamics.

196



0.021 A
quasisteady
! T unsteady
0.018 4
] a lateral shear
N : 0 pitching moment ,p
00.015 -
N |
D 4
|
M ]
£0.012 A
M 4
S
|
0 ]
N0.009 -
A ]
L
v )
AQ0.006 -+
L p
U
E
0.003 -
0.000 -
0.

ADVANCE RATIO

Figure 7.17: Variation of 4/rev. lateral shear and pitching moment with ad-
vance ratio, soft-in-plane blade, quasisteady and unsteady
aerodynamics.
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Figure 7.19: Variation of 4 rev. vertical shear and yawing moment with ad-
vance ratio, stiff-in-plane blade, quasisteady and unsteady
acrodynamics.
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Figure 7.20: Variation of 4/rev. lateral shear and pitching moment with ad-
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ministic versus cautious global control, unsteady aerodynamics,
u=0.3.

238



deterministic

cautious

0.0024 ~

rF>»2Z0 - nNLEMII—-0Z20Z
o
o
o
0]
1

mocr»>» <
(@]
o
o
N
1

1
0.0006 -

0.0000

"l'llllT'lV'lll"lrll‘r‘l'Illll'l“f"ll‘ll'!'ll

0 1 2 3 4 5

ITERATION NUMBER

Figure 9.19: Iteration history of longitudinal hub shears for deterministic
versus cautious global control, unsteady acrodynamics, p =0.3.

239



Q.S. local deterministic

|§0S. local cautious

200+
[1]QS. global deterministic
1.80- :
~ B Q5. global cautious
]
£ 18- —
&
814
©
210
e 1.00+ Z
F= Z
204 2
= 2
= | B
W E
Z
% [ ]
04
Z S
i Z S
Z S
0 , = .
Yertica Lateral Longitudinal
Hub Shears Component

Figure 9.20: Optimal shears for deterministic and cautious versions of local
and global controllers using quasisteady aerodynamics, u=0.3.

240



EA U.S. local deterministic

S U.S. local cautious
[JU.S. global deterministic

B V.S global cautious

Nondimensional Yalue ( & of baseline )
<

LT T T

AAALAEARIRNHARRRRAARRRARRRRR RN

Vertical Lateral Longitudinagl
Hub Shear Component

Figure 9.21: Optimal shears for deterministic and cautious versions of local
and global controllers using unsteady aerodynamics, u =0.3.

241



gl N

9 [ ]0Q.S. local cautious
Bl U.S. local cautious

|

0S 0C CS CC §S SC
HHC Degree of Freedom

Figure 9.22: Comparison of optimal HHC inputs for the cautious version of
the local controller using quasisteady versus unsteady aero-
dynamics, u =0.3.

242



-
--

ittt I R

————
——
-
-

Ll I,

- - .

~——
~ -

-

—_————
-~ -
.
-
-

baseline

-
-
-
-
-

-===-----optimum

-—— -
~———
-

I L T L] L

180

T v v v v [y v Ty

I

0.06 A

0.02 A

ZO0OZO—2Z2TWZWN—0Z <

— —0Q O—UNoOL A< WITWZH+—

360

270

90

BLADE AZIMUTH (DEGREES)

=0.3.

Flap, lag, and torsional elastic tip response, baseline response
and optimal response due to cautious global HHC, unsteady

aerodynamics, soft-in-plane blade, u

Figure 9.23:

243



0.25 S
N baseline o~
O ll \‘
N ] e~ mm—— opt imum P
0 ‘-.
| Y
MO0.20
E
N
S
|
0
N
AQ0.15
L
T
f
P
DO0.10
|
S
P
L
A
C
E0.05
M
£
N
T

0.00

U I A L B R S Sy B S e e e e
0 90 180 270 360

BLADE AZIMUTH (DEGREES)

Figure 9.24: Total torsional geometric and elastic tip displacement, baseline
response and optimal response due to cautious global HHC,
unsteady aerodynamics, soft-in-plane blade, u=0.3.

244



theta CC

6-4
H
H 5 -
Cc

deterministic

A 4 1
Ny m—m—esmsee- cautious
G
L
E

MMMV MO Zz —

theta OC theta CS

ﬁ“ll'l,l"'"'llﬁﬁ""'l""""'l"l"""l"",'ﬁ'l

0 1 2 K] 4 5 6

NUMBER OF ITERATIONS

Figure 9.25: Iteration history of HHC input angles for deterministic versus
cautious local control, unsteady aerodynamics, step change
from £ =0.3 to u=.35.

245



0.005 A N
] deterministic
-------- cautious
0.004 1
N 4 lateral
O p
N J
D )
! ]
M ;
E 0.003 -
M )
S
| /
0
N
A ]
L 0.002 -
v
A
L
u
E J
0.0011
longitudinal TSI ———
0.000
IIIIlllll"l"li"lll[ll’llllll'llllIllll]ll'lll'llI'!I‘llllYY—r
0 1 2 J 4 5 6

ITERATION NUMBER
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Figure 9.27: Iteration history of HHC input angles for deterministic versus
cautious global control, unsteady aerodynamics, step change
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hub moments, hingeless blade, 5% blade root offset, cautious
global control, u =0.3.
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