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Abstract

A thin cylindrical ceramic sample is placed in a single mode microwave

applicator in such a way that the electric field strength is allowed to vary

along its axis. The sample can either be a single rod or two rods butted

together. We present a simple mathematical model which describes the mi-

crowave heating process. It is built on the assumption that the Biot number

of the material is small, and that the electric field is known and uniform

throughout tile cylinder's cross-section. Tile model takes the form of a non-

linear parabolic equation of reaction-diffusion type, with a spatially varying

reaction term that corresponds to the spatial variation of the electromagnetic

field strength in the waveguide. Tile equation is analyzed and a solution is

found which develops a hot spot near the center of the cylindrical sample

and which then propagates outwards until it stabilizes. The propagation and

stabilization phenomenon concentrates the microwave energy in a localized

region about the center where elevated temperatures may be desirable.
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1. Introduction.

The use of microwaves to sinter or join ceramics is rapidly gaining accep-

tance in industry where the etficient production of high quality materials is

important. Efficiencies are increased because microwaves penetrate a ma-

terial and rapidly deposit energy there, in direct contrast to conventional

heating schemes where heat diffuses into a material from its surface. The

price paid is the need of control systems to prevent tllermal runaway and
other related instabilities.

The control and dependability of these processes requires a deep under-

standing of the inherent physics which are described by a formidable nonlin-

ear initiM boundary value problem. This is comprised of the time-harmonic

version of Maxwell's equations, the heat equation, an equation of state re-

lating the effective electrical conductivity to the temperature, and a thermal

boundary conditions on the surface of the ceramic material which balances

conduction, convection, and thermal radiation. The nonlinear character

arises from the dependence of the electric field ut)on the effective electri-

cal conductivity, which is a function of the temperature, the dependence of

the temperature upon the microwave power deposition, which is proportional

to the product of the effective electrical conductivity and the the magnitude

of the electric field squared, and the radiative heat loss, which varies as the

fourth power of the temt)erature. In addition, the boundary value charac-

ter of the problem is also challenging because the electromagnetic fields and

the ceramic material are confined in a cavity or waveguide applicator of a

complicated geometry.

The systematic analysis of these equations under a variety of physical lim-

its has primarily been restricted to one dimensional geometries (see reference

4 and the bibliography therein), but has recently been extended to three di-

mensions [4] in the small Biot mmlber limit. However, in all these cases

the effect of the waveguide applicator or cavity were neglected, i.e., the ce-

ramic samples were irradiated by plane waves in free space. Nonetheless, the

small Biot number theory predicts the phenomenon of thermal runaway and

suggests methods for its control.

The problem we model and study in this paper is concerned with sintering

and joining of ceramic fibers in a microwave applicator. As such, it is not



describedby the theoriesmentionedabove,becauseof the applicator and also
becauseof the small aspect ratio a/d of the fibers. In this paper, we take

into account the effects of the applicator by assuming that the electric field is

uniform throughout the cylinder's cross-section and known along its length.

That is, the ceramic cylinder is thin enough not to perturb the electric field

to leading order. Thus, the heating process will be modeled by a nonlinear

heat equation and boundary condition.

There are three small parameters that arise from a dimensional analysis

of tile simplified model problem. The first is the aspect ratio defined above,

the second is the Biot nmnber B1, which is a measure of convective heat loss

at the surface, and the third is B2 is a measure of radiative heat loss there.

As described above, we have developed an asymptotic theory to study the

microwave heating of ceramic slabs and other compact geometries [3,4] as

B1 --+ 0. In these studies Bz _ B1 so that both physical effects of radiation

and convection have been incorporated into the theory. This asymptotic

theory can be employed to analyze the present problem with the proviso

that the parameter e2 = (a/d)S/B1 is order one. The net result is that

the temperature remains spatially uniform across the ceramic's cross-section

and satisfies a nonlinear reaction-diffusion equation along its length. In this

equation the reaction term accounts for adsorption of microwave energy and

loss of thermal energy, which arises from convection and radiation at the

sample boundaries, and the diffusion coefficient is e2. The later will be taken

as small (which is the case for fibers) to allow an analysis of this equation.

Two types of problems naturally arise depending upon the orientation

of the ceramic cylinder in the applicator. If the sample is placed so that

the electric field has no spatial variation along its axis, then the reaction-

diffusion equation has constant coefficients. Equations of this type have

received considerable study because of their applicability in a wide variety of

physical settings [9]. That the present equation supports traveling traalsition

layers comes as no mathematical surprise. However, in the present physical

context it does explain the mechanism for the formation and propagation of

hot-spots [5,6] which are seen in experiments [8,11].

On the other hand, if the ceramic fiber is placed so that the electric field

varies along its axis, then the equation has a spatially varying reaction term.

The analysis and understanding of the solutions of these types of equations



arelesswell understood than thosedescribedabove[1]. We shall analyze tile
equation below using standard matched asymptotic methods and showhow
its solution evolvesinto a hot spot, propagatesoutward fl'om its inception,
and stabilizes to form a regionof elevatedtemperature. This stable region of
elevatedtemperature canbeexploited in fiber sintering and hasalreadybeen
used in joining processes[2]. Moreover, our analysisshowshow the sizeof
the spot dependsupon the temperature dependenceof the material's thermal
properties. Thesedependenciesare often ignored becausethe experiments
are more sensitive to changesin the effective electrical conductivity with
temperature. However, they are essentialin understanding the final width
of the spot.

2. Formulation.

A thin cylindrical ceramic sample is positioned in a single mode waveguide

applicator, so that the electric field along its axis varies as the fundamental

mode of the waveguide. The sample is held in place at its ends t)y two

thermally insulated, microwave transparent push-rods. Although the electric

field is altered by the presence of the ceramic, for the present analysis we

assume that this effect is negligible and that the time-harmonic electric field

is given by
E = Eosin(TrZ/d)j (1)

where d is the height of both the cylinder and the guide, E0 is the strength

of the incident mode, and j is a unit vector perpendicular to the axis of

the cylinder. This assumption effectively decouples the equations for the

electromagnetic field from the equation for the energy of the sample, and

allows us to focus solely on the sample's thermal field. In addition, we assume

that the sample is thin enough to ensure that variations in the electric field

are negligible across its circular cross-section.

In light of these assumptions, the temperature, T, satisfies the energy

equation

o'(T)Egsin,Z(rrZ/d), O< Z<d, O<R<a(pCpT) = V. (A'VT) +
(2)



where R = v_X 2 + y2 is tile radial distance from the cylinder's axis, p is the

density of the ceramic, Cp is its specific heat, K is its thermal conductivity,

a is its effective electrical conductivity, and a is the radius of the sample.

Although variations of the thermal parameters K and Cp are small over the

temperature range required for sintering or joining when compared to the

change in the electrical conductivity, they are included in the following anal-

ysis, since they may have a profound effect on the dynamics of the heating

process.

We also require that the temperature satisfies the surface heat balance

t(ff---_T -'k h(T - TA) H- .se(T 4 - T_) = 0, R = a, 0 < Z < d (3a)

where h is a constant corresponding to heat loss from the surface by convec-

tion, s is a constant for radiative heat loss, e is the emissivity of the surface,

and TA is the ambient temperature of the surrounding medium. To simplify

the analysis that follows, we assume that the ambient temperature remains

constant. At the ends of the sample, we prescribe the boundary conditions

0

07_T=O, Z=0, d; and 0<R<a (3b)

and we take the initial temperature of the smnple to coincide with the am-

bient temperature, i.e.,

T(X, Y, Z, O) = TA. (4)

Equations (2)-(4) constitute a nonlinear initial boundary value problem for

the temperature T within the sample. The nonlinear character of this sim-

plified problem is caused by the del)endence of the electrical conductivity a

and thermal parameters K and Cp on the temperature and by the radiative

losses at the sample boundary. This is the generalization of the mathemat-

ical models for microwave heating as studied by Tian using finite difference

simulations [10] and by Kriegsmann using asymptotic methods [5,6].
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3. The Simplified Theory.

There are three small parametersthat arise from the nondimensionaliza-
tion of equations (2-4). The first is the Biot munber B1 = ha/KA, where

KA = K(TA) is the value of the thermal conductivity at the ambient temper-

ature TA, and the second is B2 = seaT_/KA. The former is a measure of the
relative effects of convection and conduction and the latter is a measure of

the relative effects of radiation and conduction. Typical values of B1 and B2

for ceramics are of the order of 0.01, see, e.g., [7]. The third small parameter

is the fineness or aspect ratio of the cylinder a/d.

In recent studies [3,4] of the microwave heating of ceramic slabs and other

compact geometries we have utilized the size of these three parameters to

obtain an asymptotic approximation to the temperature. Similar methods

can be employed for the nonlinear initial boundary value problem (2-4) but

will not be reported in detail here. The result of this analysis is that, as

Ba _ 0 with B2/BI held fixed (so that the effects of radiation and convection

are of equal importance) and with (a/d)2/B1 held fixed, the temperature of

the sample T is given by

T(X,Y, Z,O = U(Z, 0 + O(B, ) (5)

where U(Z, t) is the leading order approximation to the temperature, which

is independent of the cross-sectional or transverse coordinates X and Y, and

O(Ba) represents a contribution which is of the same (small) order as B_.

We note that this O(B1) error term does depend upon X and Y and thus

represents a small nonuniform heating across the cross-section of the sample;
the term will not be calculated here.

The leading order term U(Z,Q of (5) satisfies the dimensionless initial

boundary value problem

0 (F(l+u))= e20 OCO_---II -_z (k u)+pf(u)sin2(zrz)-2{u-t-a[(u+l)4-1]}, 0 < z < 1,

(6a)
where the boundary conditions (3b) and initial condition (4) become, respec-

tively,
cO
--u = O, z = O, 1 (6b)
Oz



u(z, O) ----O, 0 < z < 1. (6c)

In arriving at equations (6a-c) we have introduced the dimensionless variables

U h
z=Z/d, u_ 1, t (Ta)

TA a(pCp)A

where Z is nondimensionalized with respect to the cylinder length d, u is the

relative deviation of T from TA, and t is nondimensionalized with respect

to the ambient convective time a(pCp)A/h. We have also introduced the

dimensionless parameters

a_rAE_ B2 e2 (a/d) 2 (7b)
P-- 2hTA ' a- B1' = ----B1

and the dimensionless functions

f(u) = a((TA(l + u)), k= K/KA, F- pCp (7)
(rn (pCp )A

where O"A = o'(TA) is the effective electrical conductivity at the ambient

temperature, a is the ratio of the convective and radiative Biot numbers,

and p is a dimensionless power.

The nonlinear initial boundary value problem (6) constitutes the mathe-

lnatical statement of our small Biot number theory for the heating of the
ceramic rod.

4. Analysis.

We note here that in some applications where ceramic fibers are sintered

in a single mode applicator [11] the parameter e is very small. For other

experiments such as joining, e may not be as small. The asymptotic limit

e _ 0 is quite relevant in the former case and is expected to give qualitative

results in the later. In mathematical terms, the theory which follows is

strictly valid for the ordering B1 << e2 << 1. That is, B1 << a/d << X/_l,

so that the diffusion term in (6c) is larger than the neglected terms of O(B_).



FIGURE 1

(G ,v )
m m

M ,v )U

laM.,,

G(v)

Setting e = 0 in (6a), we obtain the ordinary differential equation

0

_(r(1 + u)) = pf(u)sin2(Trz) - 2{u + a[(u + 1) 4 - 1]} (8)

the solution of which depends upon z parametrically and satisfies the initial

conditions (6c).
A reasonable model for the effective electrical conductivity leads to the

function f being given by the Arrhenius-like law [12]

f(u) = 1 + cle -c_lu (9)

where cl and c2 are constants. If we fix z and define P = p sin2(_rz), then the

solution of (8) and (6c) increases monotonically from its initial value u = 0

to a terminal value v, which is given implicitly by the solution of

2{v + a[(v + 1) 4 - 1]} (10)
P = a(v) =_ f(v)



A graph of G(v) is shown in Figure 1, from which we deduce that there can

be either one or three solutions of (10) depending upon the value of P. If

P < G,,, then the terminal solution v lies on the lower branch, whereas if

P > GM then it lies on the upper branch. If G,,, < P < GM, then there are

three solutions; one on the upper branch, another on the lower branch, and

the third solution o11 the nfiddle branch. A simple analysis of (8) shows that

solutions on the upper and lower branches are stable, and that solutions on

the middle braalch are unstable.

We observe that, because of the spatial variation of the power P along the

axis of the waveguide and sample, at different points along its axis the ce-

ramic sample experiences different values of P, and so there is the possibility

that a steady temperature distribution may be on the upper branch in one

part of the sample while it is on the lower branch in the remainder. This is

indeed the case if we take the dimensionless power p > GM. If we define zl

by
1

zl =-a,'c.sin(_/p) and z2 =l-z,, (11)
lr

then P > GM in the interval Zl < z < z2, and a steady temperature distri-

bution in that part of the sample must lie on the upper branch. We have

sketched this in Figure 2.

If we try to resolve the discontinuity in this steady state approximation by

introducing boundary layers at zl and z2, within which the diffusion term of

(6a) is important, then we are immediately struck with the disconcerting fact

that such a solution does not exist. To see this, we introduce the stretched
Z -- Z 1 0

variable 2 - e into (6a), set _ = 0, and obtain

d-_z(k u) + f(u)[GM -- G(u)] = O, Izl < (12a)
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where G is defined in (10). The boundary conditions for this equation are

deduced by asymptotic matching of its solution as 2 _ +cx_ with solutions of

(10). We find from a straightforward analysis that u ---* vu + o(1) as 2 _ (x_

where v,, is the value of u on the upper branch corresponding to GM (see
c

Figure 1). We deduce from a similar analysis that u --_ VM + _ as 2 _ --cx_.
In either case we have

d
--u_0 as 2_-t-_. (12b)
d2

d

Upon multiplying (12a) by k-d_zu, integrating the result from -t-oo, and using

(12b) we obtain

_ k(u)f(u)[aM -- a(u)] du = 0. (13)
M

However, fl'om the definition of GM we deduce that since VM < u < vu the



integrand is positive so that (13) can not be true, and a steady solution of
this type doesnot exist.

We resolve this apparent contradiction by removing the constraint that
0

- 0 in the above analysis. That is, we shall look for a traveling wave
071

solution of (6a) which has the form

7_, -- Z 1 -- C(T)
u = ¢(e), whe,'e e = and _"= _'1. (14)

Inserting this ansatz into (6a) we obtain, at leading order,

d(kd¢) + c'd(v(1 +¢))+ f(¢)[psin 2 rr(z, + C)- G(¢)] =0 (15a)

where the prime on C denotes a derivative with respect to its slow time

argument _- = eTj, and the equation is to be solved on the interval -cxz <

2 < o0. We deduce similar boundary conditions to the above and find again

that, as in (12b),
d

_¢--,0 as _--,+_. (155)

Now however, asymptotic matching implies that the solution ¢ has the limits

¢--,¢_(c) as _--,+o¢, (15c)

where ¢+(C) > ¢_(C) are those roots of psin2(zl + C) = G(¢) which lie on

the upper and lower branch of the S-shaped response curve of (10), respec-

tively. Multiplying (15a) by k_22¢, integrating the resulting expression,
and

applying (15b) and (15c), we deduce that

f¢+(c)
C'=- ¢_(c) k(¢)f(¢)[psin2_r( zl +C)-G(¢)]d¢ (16)

f2_ k(¢)(d¢)_[r +/'(1 + ¢)]d_

where the dot above F denotes its derivative with respect to ¢.

l0



Equation (16) is a first order nonlinear ordinary differential equation for
the position of the slowly moving traveling wave, or front, which has the
initial condition C(0) = 0 and connects the solutions on the upper and lower

branches of (10). We note that the dependence of the right hand side on C is

implicit, and, in particular, the integrand in the denominator depends upon

C through the solution of the boundary value problem (15).

We ca:: now deduce the dynamics of the heating process when p > GM, by

using (16). Initially, the rod heats according to (8), so that a discontinuous

temperature profile begins to form, with discontinuities at z = Zl and z = z2

and a hot spot, where zl < z < z2, as shown in Figure 2. At this point in

time, considering the dynamics of the left half of the sample 0 < z < 1/2

alone since the solution is symmetric about the sample's midpoint z = 1/2,

C = 0 and fro::: (16) C' is negative, if we assume that the term F + I'(1 + ¢) >

0 as will be the case for physically realistic applications. Thus, C decreases,

and the front begins to move to the left, fro::: z = Zl. This elevates a lm'ger

portion of the rod to the higher temperatures of the upper brm:ch, i.e., the

hot spot begins to grow.

This description is give:: under the proviso that

r(6)(1 + ¢) > 0

which, fron: the definitions of ¢ and l", is equivalent to the statement that

the internal energy density of the ceramic, pCpT, is an increasing flmction of

the temperature. This is true in ceramics and in ahnost all materials, away

from phase transitions.

We now turn to the further development and stabilization of the hot spot.

Noting the definitions of _b+(C), it follows that the derivative with respect

to C of the numerator on the right hand side of (16), i.e.,

o+(c:)N= k(¢)f(¢)[psin 2 rc(z_ +C)-G(¢)]d¢,
J¢_ (c:)

(17)

is

f¢+(c:)0 N 7rp k(¢)f(¢)sin2rc(z_ + C)du, (18)
OC JO_(c')

11



which is strictly positive, since0 < zl + C < 1/2, and k and f are positive.

Also, since ¢+(0) = v,,, ¢_(0) = VM, and GM = psin2(Trzl), we deduce from

(17) that N(0) > 0. Similarly, if we define (_ so that G,,, = psin 2 7r(zl + (_),

then ¢+(C) = v,,,, ¢_((_) is the corresponding point on the lower branch of

the S-shaped curve, and consequently N(C) < 0. Hence, there is a unique

C = C, < 0 such that N(C,) = 0. Since the denominator, D(C), of (16) is,

for the reasons given above, strictly positive, we deduce that the solution of

the differential equation C' = -N(C)/D(C) with initial condition C(0) = 0

is monotone decreasing and tends to C, as r -+ oo, with its final approach

being exponential in r. Thus, the hot spot grows in size and finally stabilizes

to occupy the region zl + C, < z < 1 - Zl - C,.

We can now consider the influence of a temperature-dependent thermal

conductivity on the equilibrated value C,. First we recall that C, is such

that

++(c.)N(C.) = k(C)f(C)[psin 2 7r(z 1 -4-C,)-G(¢)]ddfl:O,
¢_(c.)

(19)

and consider the case when the thermal conductivity is constant, so that

k(¢) = 1. Then, since ¢_(C) and ¢+(C) are such that the local power at

the boundaries of the hot spot P = psin2(z: + C,) = G(¢+(C,)), the graphs

of/(u)a(u) and Pf(u) intersect transversally at u = ¢_(C,), u = ¢+(C,),

and, from (19), also at some value between, i.e., on the interval ¢_(C,) <

u < ¢+(C,). Equation (19) implies that the unique value C, is such that

the areas of the two lobes between the graphs of f(u)G(u) and Pf(u) are

equal. When k(¢) is not constant but, for example, is a monotone increasing

function of ¢ with k(0) = 1, as is the case for typical ceramics, the influence

of the temperature-dependence with C fixed is such as to increase the area

of the right hand lobe (at larger ¢) more than that of the left hand lobe.
0

This increases N(C), so that, since _--_N > 0, the temperature-dependence

of k is such as to decrease the equilibrating value C, to more negative values,

and hence increase the final width of the hot spot in the steady state.

12



5. Conclusion.

The implications of the analysis for the sintering of ceramic fibers and
joining of ceramic cylinders is now evident. In the first case, the hot spot
forms, propagates,and then stabilizes. If the temperature in the relatively
warm region of the hot spot is sufficient for sintering, then the fiber can
be slowly pulled through the guide, thus insuring that the entire sample is
processed.This is usedasa meansof sintering ceramicsin practise [11], and
the rate at which tile fiber is to be drawn is found experimentally. In the
secondcase,the hot spot is to encompassthe butt joint at which the two
ceramic cylinders are to be joined, and, if the temperature in this region is
sufficient for the materials to fuse, then a strong joint can be obtained [2].

We closeby briefly describing another type of solution that is possible if
the applied electric field hasa minimum at the centerof the fiber. This may
occur by exciting the applicator in one of its higher spatial modes. If the
maximum of the electric field is such that P > GM and the minimum is such

that P < GM, then hot spots will form at both ends of the fiber. These

spots will grow in size and stabilize according to the mechanism described

at the end of the last section.
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