https://ntrs.nasa.gov/search.jsp?R=19950006120 2020-06-16T09:43:50+00:00Z
NASA-CR-197174

NASw-4435
James Wii

ハ1191・ーR
26158 O/L Lout manyiversity of Wisconsin-Madison OIL Lout many May 9, 1994
jung mode with
Ratel justification. What is This?

As requested, we have examined the Venus Balloon concept in order to further develop the ideas and concepts behind it, and to creatively apply them to the design of the major Venus Balloon components. This report presents our models of the vertical path taken by the Venus Balloon and the entry into Venusian atmosphere. It also details our designs of the balloon, gondola, heat exchanger, power generator, and entry module. A vehicle is designed for a ballistic entry into the Venusian atmosphere, and an atmospheric model is created. The model is then used to set conditions. The shape and material of the vehicle are optimized, and the dimensions of the vehicle are then determined. Equipment is chosen and detailed that will be needed to collect and transmit information and control the mission. A gondola is designed that will enable this sensitive electronic equipment to survive in an atmosphere of very high temperature and pressure. This shape and the material of the shell are optimized, and the size is minimized. Insulation and supporting structures are designed to protect the payload equipment and to minimize mass. A method of cooling the gondola at upper altitudes was established. Power needs of the gondola equipment are determined. Power generation options are discussed and two seperate thermo-electric generation models are outlined.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY
System Description 1
Mission Objective 2
2. ENTRY PROBLEM
Entry Methods 3
Deployment Sequence 3
A Model Atmosphere 5
Shape Selection 10
Material Selection 12
Dimensioning The Entry Vehicle 12
Assumptions 17
Sensitivity Overview 18
Extensions Of Work 19
Knowledge Gained 20
3. GONDOLA 20
Shell Design 22
Material Selection 2i
Dimensions
Insulation
Support
CoolingExtra Mass21Cable Tension22
242.3
4. POWER GENERATOR 24Model 12324
Power Requirements
Model 2
5. THE VERTICAL MODEL 28
Objectives 28
Background and Challenges 28
Sources of Information 30
Scope of Investigation 31
Report Format 32
Technical Approach 33
The Venus Atmosphere Model (0 to 70 km) 33
Double Balloon System and Reversible Fluid 3Specifications33
The Mathematical Model 38
The Drag Coefficient 39
The Added Mass (Virtual Mass) 39
Solving the Differential Equation 39
Results 51
Heat Transfer 40
Computer Simulation 40
Results 47
Difficulties Involved 50
Assumptions 50
The Need For a Heat Exchanger 58
Vaporizing the Phase Changing Material 58
Size of Heat Exchanger and Stresses Involved 58
Concept of Heat Exchanger 59
Conduction 59
Radiation 60
Forced Convection 60
Free Convection 61
Problems With Heat Transfer 61
Conclusions 62
Bibliography 63
Figure 1 : Forces on a ballistic entry vehicle 4
Figure 2 : Deployment of probe 6
Figure 3a: Variatons of temperature with height 7
Figure 3b: Variation of density with height 8
Figure 3c: Variations of gravity with height 9
Figure 4 : Shapes considered for entry vehicle 11
Figure 5 : Exterior dimensions of the vehicle 15
Figure 6 : Suggested thermal blanket 17
Figure 7 : Energy flux balance of the vehicle wall 19
Figure 8a: Venus environment 29
Figure 8b: Condensation of R30 37
Figure 8c.1: Venus Atmosphere (Temp. vs. Altitude) 34
Figure 8c.2: Venus Atmosphere (Pressure vs. Altitudps
Figure 8c.3: Venus Atmosphere (Density vs. Altitudes 6
Figure 8d.1: Venus Balloon (Velocity vs. Time) 52
Figure 8d.2: Venus Trajectory 53
Figure 8d.3: Venus Balloon (Velocity vs. Altitude) 54
Figure 8e.1: Valve Close - Velocity vs. Time 55
Figure 8e.2: Valve Close - Velocity vs. Altitude 56
Figure 8e.3: Valve Close - Trajectory 57
Figure 8f-C Grid 41
Figure 8g.1: Fluent Plot 1 42
Figure 8 g .2 : Fluent Plot 2 43
Figure 8g.3: Fluent Plot 3 44
Figure 8g.4: Fluent Plot 4 45
Figure 8g.5: Fluent Plot 5 46
Figure 8h: Bulk Temperature vs. Time 48
TABLES
Table 1 : Current mass and volume estimates 13
Table 2 : Gondola equipment mass estimates 21
Table 3 -: Gondola equipment power consumption 24
Table 4 : Bulk temperature as a function of time 47

VENUS CLOUD BOBBER MISSION PROPOSAL

SYSTEM DESCRIPTION

An entry vehicle and survey package are proposed for a scientific expedition to Venus. The total mass of the vehicle and package is 157 kilograms (345 pounds) and has a total volume of 0.179 cubic meters (11040 cubic ind hes). The entry vehicle will be attached to a spacecraft bus that could possibly carry multiple probes of this same configuration. The entry vehicle is a trimmed blunted cone of half-angle 45 degrees with a base radius of 19 inches and a bluntness ratio of $1 / 2$. An AVCOAT 5026 heat shield of thickness 2.81 inches protects a titanium aeroshell of 0.164 inch thickness. Inside the entry vehicle is a survey package with a total mass of 89 kilograms (196 pounds) which consists of a dual balloon system, a science gondola, and a heat exchanger. The cigar shaped polyethylene balloons carry hydrogen as the primary gas and R30 as the phase change material for a cylindrical aluminum heat exchanger. The balloons have a mean radius of 2 meters (79 inches), thickness 4 mivis, and combined height of 22 meters (866 if ${ }^{2}$ ches). The heat exchanger is 0.3117 meters (12.27 inches) long and the diameter is 0.2286 meters (9 inches). It serves as altitude control for this survey package, as an unmodified dual balloon system would reach an equilibrium height. \rightarrow The maximum range of the balloon system with the heat exchanger is 64 kilometers and is attained three hours after deployment from the entry vehicle. The gondola is a single titanium sphere of radius 8 inches and thickness 90 mi 㑅. It has fibrous aluminum-silica insulation on the inside of thickness 1.41 inches. Power is generated by a smaller scale heat exchanger, and is used to run the camera, sensors, and communications equipment onboard the gondola.

MISSION OBJECTIVES

The primary goal of the mission is long term observation and measurement of the low altitude properties of the Venusian atmosphere and terrain. Other possible science returns include the study of wind variation by time of day and season, evaluation of gondola decay due to acidic exposure during ascent and descent through the cloud layer, and a precedent setting design that could be used for surveys of all planetary atmospheres, Adaptations of the basic gondola designtwould allow surface sampling missions and passive horizontal flight control. The mission is desirable because of its lightweight design, which reduces payload costs. The mission also offers the prospect of a repeatable design, where several of these survey packages could be produced, reducing the high cost of producing a unique one shot package.

Entry Methods

The simplest method of entry was chosen for study. The ballistic entry is a trim, minimal heat trajectory characterized by a constant angle of entry, four basic equations of motion, and good closed form solvability (Weisel). It is required that the vehicle have negligible or zero lift, or skipping may occur. A skip entry is characterized by an entry vehicle that pulls out of its descent and exits the atmosphere at the same angle it entered (Regan). The craft eventually descends again, with reduced speed. The skip entry would be a considerable alternative if peak heating rates for ballistic entry were found to be too great a burden for a lightweight vehicle to handle (Ely). Moderate lift to drag ratios produce partial skipping, in which the craft momentarily ascends without leaving the atmosphere before falling to the planet (Vegan).

Deployment Sequence

In all likelihood, the deceleration module will have an initial spin rate. There are some advantages to keeping the spin rate ingot unchecked. A slow, steady spin will cancel outurexpected lift forces and help distribute thermal energy more evenly (Duncan). Currently, no provisions exist for inertial navigation or propulsion systems. However, a simple yo-yo despin mechanism could be used to set the spin rate before entry (Weisel). Such a mechanism was used with the Pioneer probes and proved to be a cheapmeans of spin axis control (Fimmel). Even though the vehicle is supposed to be trimmed, any uncompensated lift could increase entry time, resulting in increased heating and less accurate tracking of the vehicle as it descends. To prevent tumbling of the craft during entry, the center of pressure
 should be located extremely close to the center of mass (Griffin). The desired orientation of the entry vehicle is shown in Figure 1; note that the only major requirements for attitude control are maintaining colinearity between the craft's axis of symmetry and keeping the craft in the nose-first position instead of the base-first the mass center towards the nose of the vehicle, and the need to keep thermally sensitive components away from the hottest portions of the craft.

Figure 1: Forces on a ballistic entry vehicle (Weasel, p.220)

Equations of Motion
$\frac{d X}{d t}=V \cos$ (angle)
$\frac{d H}{d t}=V \sin$ (angle)

$$
\begin{aligned}
& \frac{\mathrm{dV}}{\mathrm{mV}---\mathrm{dg}}=-\mathrm{cos} \text { (angle) } \\
& \mathrm{dV}
\end{aligned}
$$

$$
\begin{aligned}
& \text { NuKcuons } \\
& >\quad \text { SGT.up }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (wo transition prion) } \\
& \text { to EONS. }
\end{aligned}
$$

TO EONS

These equations of motion can be manipulated to solve for the velocity (V), and the aerodynamic deceleration (a). For each height listed in the spreadsheet there are five unknowns:
K_{d}, an inverse density parameter
H_{O}, a fictitious reference height

B_{O}, an energy parameter
a, the aerodynamic deceleration, and
$\rightarrow \mathrm{V}$, the craft's current velocity.
A complete list of terms used in this report is available in appendix A. Five equations are available to solve for these five unknowns, and a more detailed treatment of determining the height profile is given in Appendix B.

$$
\Leftrightarrow
$$ aNNex Post? san nova 7 paces 10 PDPENDIK B, wirier one (s) stance I Ficus $4^{\circ \sim}$

The deployment sequence begins when the craft speed has decreased to 35 meters per second. An accelerometer and pressure altimeter will be used to determine when this speed has been reached. At that time the onboard computer will send a command to release the chute attached to the aft cover. This will further decrease the craft speed. When the craft speed has been reduced to 10 meters per second, the computer will activate the explosive bolts and inflate the primary balloon. Sensors in the canister valves will monitor the flow of gas into the primary balloon. When the computer receives readings of negligible gas flow, the computer will send its final command to sever the survey package from the aeroshell. The sequence is shown in Figures 2a-2d. The entry vehicle has served its purpose and the operational phase of the survey package can now begin. The final speed at which the survey package begins the operational phase is about 9 meters per second.

A Model Atmosphere

Data on the physical composition of the Venusian atmosphere was obtained for heights up to 120 km by Pioneer probes (Fimmel, Vargaftik). Above 120 km , a mathematical model was used (Hunten). This model interfaces smoothly with Pioneer data and serves as a reasonable approximation. The variations of temperature, density, and gravity with height for this model are shown in Figures 3a-3c. Instead of taking a conventional simplified treatment of the atmosphere for entry calculations, the data was used to create an accurate model of vehicle descent. The traditional entry model uses an isothermal exponential atmosphere of invariant composition (Weisel). While this makes the determination of the trajectory and heating profile easier, it sacrifices a significant amount of accuracy.

Figure 2a: Initial deployment of parachute

Figure Db: Velocity reduced from $35 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$

Figure 2d: Balloon inflated, connections severed
(Goon curse on ficsurass)

$$
\text { aut } \mathrm{P}^{80} 1
$$

Figure 3a: Variation of Temperature with Height

$$
\text { First }{ }^{3}
$$

Figure Bb: Variation of Density with Height

Figure 3c: Variation of Gravity with Height

The density graph is similar to an exponential atmosphere. The gravity graph has nearly a linear look, since the distance covered is much smaller than the planetary radius. The temperature graph is disjointed somewhat at the spots where the mathematical model and the probe data are supposed to mesh, but it does not have a significant effect on the deceleration and heatng profiles.

The model used to calculate deceleration and heating rates has values for pressure, density, temperature, gravity, viscosity, and molecular weight of the Venusian atmosphere in discrete height steps that traverse the lower 200 km of the atmosphere. In reality, the atmosphere extends upwards of 500 km ; significant deceleration and heating do not occur above 200 km for this vehicle. The atmospheric properties allow calculation of a deceleration profile with respect to height; the velocity and time are found by integration assuming a step deceleration function. The velocity profile enables calculation of the convective heat rate from the atmosphere to the craft (Dueber). The time profile allows the use of an energy method in determining the necessary shield and aeroshell thicknesses. Sensors on the skin of the vehicle could provide valuable data to help confirm current models of the Venusian atmosphere, as well as increase understanding of the entry heating problem.

Shape Selection

with
Four basic craft shapes were considered and are shown in Results strain on Figures $4 \mathrm{a}-4 \mathrm{~d}$. The shape of the craft is important, since it directly influences the deceleration and heating profiles. A trend emerged from comparisons of the different shapes at a set volume: truncated and blunted cones produce significantly lower heating rates and lower amounts of total heat that the craft must deal with. Between these two shapes, four elements determined the final shape selection. The blunted cone had smoother heating and deceleration profiles due to a higher drag and a lower area. The truncated cone had reduced entry times and could endure greater entry angles due to a smaller drag and an increased area. The final decision came down to the preference of reduced peak heating rates over reduced entry time, in addition to the minimization of the necessary aeroshell and shield thicknesses. The blunted cone became the chosen shape of the vehicle, but now materials and dimensions needed to be optimized for the package that must be protected inside the vehicle. See Appendix C for the numerical analysis of the four shell shapes.

$$
\begin{aligned}
& \text { Hew do move } 2 \text { compline? } \\
& \text { dry rosucts phot stour. }
\end{aligned}
$$

SPHERE

TRUNCATED CONE

CONE

Figure 4a-4d: The four shapes considered for the entry vehicle

At the time of design, the dimensions of many internal components were tenuous at best. Other criteria were used,however, cimeans. to select optimal cone half angles and bluntness ratios. A high dra\$ coefficient is desirable to ensure that the vehicle decelerates to an acceptable speed in a limited amount of time. A large surface area can also aid deceleration, with a penalty of increased heat transfer. The entry constraints were assumed to be a maximum deceleration of 500 g 's and an entry time close to 5 minutes. Four size iterations produced the optimal cone angle of 45 degrees and the bluntness ratio of one half. This is the same basic shape as the Pioneer small probe, with only a difference in scad (JPL).

Material Selection

Two important aspects of the vehicle needed to be determined. The heat shield and aeroshell of the vehicle will be subjected to the most adverse conditions, and must be designed properly to insure protection of the survey package. The heat shield and shell must be able to handle high dynamic and thermal loadings. The heat shield ideally has the properties of low density, low thermal conductivity, high heat of vaporization, and high emissivity (Dueber). Whether AVCOAT was charred or virgin material, it ranked higher than other candidates in almost all of these properties. The only directly determinable input is the convective heating from the atmosphere to the craft (Regan). This input can be converted to a total energy transfer to the vehicle. An approximation was made that the required mass of ablative heat shield material equals the total energy transferred, divided by the heat of vaporization for the shield. After finding that the mass required was probably too small, a more conservative approach was taken. The initial and final kinetic \rightarrow energies of the vehicle were calculated, and under IPL advice the heat shield mass was taken to be approximately 20% of the total craft mass. Under these conditions, the craft will empty 15% of the kinetic energy through mass loss. The remaining 85% will have to be radiated away or conducted through the aeroshell. Appendix C has the numerical results of shell and shield material studies.

Dimensioning the Entry Vehicle

The first obstacle in finding the optimal dimensions of an entry vehicle is the establishment of a complete equipment list. Once this list has been made to the best possible accuracy, the total mass and volume are used in the spreadsheet to set up a 500 g entry. The spreadsheet returns values of the maximum convective heat flux, the convective energy seen by the craft, and the angle at which the entry occurs. These values are used in heat transfer and stress calculations to determine if the shield and aeroshell thicknesses are accurate. The process is quite iterative, and time consuming unless computer aids are used. A detailed explanation of the heat transfer and stress calculations are found in Appendices D and E. The current equipment list is shown on Table 1 and the spacecraft dimensions are shown in Figure 5.

(345 lbm)
$(330 \mathrm{lbm})$
O8
두응

prowneres proke

SPACECRAFT DIMENSIONS

Base Radius, R:	$0.482 \mathrm{~m}(19.0 \mathrm{in})$
Nose Radius, Rb:	$0.241 \mathrm{~m}(9.49 \mathrm{in})$
Half Cone Angle:	45 degrees
Shell thickness, shell:	$0.416 \mathrm{~cm}(0.164 \mathrm{in})$
Shield thickness, tshield: $7.14 \mathrm{~cm}(2.81 \mathrm{in})$	

Figure 5: Exterior dimensions of the vehicle

The aeroshell is the next line of defense. Since temperature distribution through the thickness is unknown, the criteria that drive shell selection are basic: Low coefficients of thermal expansion, good buckling resistance, low oxidationsates, low thermal conductivity, and lightweight materiat (Jaworski). A worst case heat transfer scenario was developed, using the peak convective transfer rate as a steady state input to the exterior of the shell. The interior temperature was set at the desired level, while the exterior was treated as a hot spot at an arbitrary high temperature. At the time, this seemed extreme, but it turns out that the dynamic loads cause
 the shell to be even thicker than calculated here. Only two of four material candidates had desirable properties; between titanium and stainless steel, titanium handles large pressure vessel stresses with lightweight, thin sections. Titanium was chosen to be the aeroshell material, and was designed to sustain a deceleration induced hoop stress of 0.8 yield and handle thermal hoop stress of 0.25 yield (Fortescue). Since peak deceleration and peak heating do not occur at the same time, it is reasonable to assume that no combination of the two stresses causes failure. \sim Brr can tway capde? ir 50 Bomimins

It is regrettable that the depletion profile of the heat shield anow cacmoniva τ_{y}. could not be established. It leaves some doubts about the safety of the survey package should the thermal conditions prove to be worse than anticipated. This drove the decision to adhere a thermal blanket as a final line of defense. (see Figure 6) This is the same thermal blanket that was used on the Magellan orbiter. From the figure, it is noted that the thickness of the blanket is greater than the aeroshell thickness. It is a small price to pay for added thermal protection. Originally, the interior of the vehicle had been partitioned by shelves; at IPL'sbehest these have been removed and it is assumed that there yill be attachment points on the inside of the shell for the survey package and the rest of the deployment equipment.
axo of JPL?

Figure 6: Suggested thermal blanket

$$
\text { (Miller, p.8) } \rightarrow \text { cood ases ar pocones }
$$

Assumptions: A General Disclaimer

Entry calculations and the design of an entry vehicle are invariably a very complicated problem. It is important to realize the many simplifications and assumptions made during the design process, as the accuracy and reliability of the design will be directly dependent upon them. Let's begin the discussion by examining the accuracy of the atmospheric model. The most important portions of the model are dependent upon the accuracy of Pioneer sounder probe data. It would be prudent to expect cyclical variations in the physical characteristics of the atmosphere (Hunten). The magnitude of these variations, while unknown, could have a sizable influence on the heating and deceleration profiles in the middle altitudes. Gravity has
been approximated using the inverse square law for a surface value of the Venus gravitational acceleration, and the angle of entry has been assumed to be constant for the entire entry. The spacecraft mass and cross sectional area have been assumed to be constant during entry. In reality, neither the angle, mass, nor area will remain constant. The drag coefficient, which should vary over the entire trajectory, has instead been taken as an average value over the entire flight. The time elapsed is based on integrating stepped deceleration values between heights. Convective heating is based on an average skin coefficient for the entire vehicle, although this steady, 1 -D! parameter is allowed to vary with respect to height. The viscosity of the atmosphere is linearly interpolated at heights of $0-50 \mathrm{~km}$, and assumed to be linearly decreasing from $51-200 \mathrm{~km}$ (Vargaftik).

Sensitivity Overview

The design of the craft suffered with respect to thermal modelling. The true energy balance for the craft should look like Figure 7. Although factors relating to the mass flux can be calculated, the mass flux itself is a function of vehicle wall temperature (Jays). The problem is essentially a fourth order nonlinear nonhomogeneous transient partial differential equation. If it sounds difficult, try \longrightarrow solving it and find out what the designer faced. The energy lost to radiative emission should reduce the conductive energy transferred through the wall. The design has an ample amount of shielding for design conditions where ablative dissipation accounts for up to 15% of the total dissipation requirement. Beyond that, hopefully the aeroshell and thermal blanket can keep the interior temperature at a safe level. The use of a temperature and composition variant atmosphere increased the accuracy of the deceleration and heating profiles. Only further testing of the Venusian atmosphere and direct recording of flight data can increase the accuracy of that part of the design. The use of pressure vessel analogies to quantify the stress behavior of the aeroshell may come into question: worst case scenarios involve limited yielding of the titanium aeroshell with an acceptably low risk of failure. The shearing of the shell has not been directly considered, as the dynamic loading is a distributed one and does not solve easily for this shape. The location of components, which was not readily established, could greatly affect the dynamic stability of the craft.

$\begin{aligned} & q^{\prime \prime}=\text { Convective Flux } \\ & \mathrm{A}^{*} \mathrm{~T}^{\wedge} 4=\text { Radiative Emission }\end{aligned}$
Ablation Energy $=m f^{*}$ hap
where mf is the mass flow of the heat shield
hvap is the heat capacity of the wall
k is the thermal conductivity of the wall
$\mathrm{dT} / \mathrm{d} x$ is the thermal gradient across the wall
A is a constant based on emissivity

Rate Balance: $-k^{*}(d T / d x)=q^{\prime \prime}-A^{*} T^{\wedge} 4-m f^{*} h v a p$
where $\mathrm{q}^{\prime \prime}$ and mf are unknown functions of T

Figure 7: The energy flux balance of the vehicle wall

Expansions of Work

While much has been done, many aspects of vehicle design have not been covered completely. The thermal balance of the spacecraft needs refinement. Layout and interfacing of equipment needs to be developed. Calculations of dynamic and thermal loadings have been greatly simplified and warrant closer inspection. The design of the entry vehicle can really be broken down into four sections: aeroshell design, heat shield design, selection of subsystems, and internal layout. Each one of these subjects is interrelated and would be best addressed by a one year developmental effort. It is hoped that further investigative work will be done by future students.

Knowledge Gained

In learning how to design an entry vehicle, the designer gained some proficiency in certain topics. The creation of an accurate atmospheric model was undertaken successfully, as was an alternative material selection process in the absence of some useful
 data. The theory behind heat shield selection and ablation physics was understood, if not successfully applied. Conversations with JPL revealed the tendency for designers to stick with existing shapes in vehicular design. A significant improvement was made in the acquisition and use of resources for research. The truth is that more time and experience will produce a better design, but the effort described here is by no means a token one. \longrightarrow Sumy lironors uny ro justify

Transitional

yourc aonk.

The entry vehicle requires little or no power during descent and deployment phases. During descent, atmospheric data will be sent to instruments onboard the gondola for storage. With the deployment completed, the next design obstacle is a heat exchanger that will regulate the survey package's altitude. The development of a gondola package is considered next.

The gondola for the Venus balloon is a complex problem, because of the necessity of keeping temperatures inside the gondola below 20° Celsius while the surface temperature of Venus is $460^{\circ} \mathrm{C}$. This is necessary because the electronic equipment within the gondola cannot be subjected to cyclic high temperatures without sustaining damage. Also, the gondola must be strong enough to withstand a pressure of up to 92 atm .

The first steps in designing the gondola were to estimate the size and to decide upon a shape. A list of equipment for the gondola is shown in Table 2. We then obtained volume and mass data for the chosen equipment. Some of the data estimated or abridged in order to obtain what mefelt were more accurate numbers. Based on these dimension values, a total payload $\frac{\text { area was found to be } 726.6 \mathrm{in}^{3} \text {. At this point, 何ecided that due to }}{7}$

GONDOLA MASS ESTIMATE

COMPONENT	MASS
Power Distributor	3.5 kg
Charge Regulator	3.0 kg
Battery	3.3 kg
Antenna	0.7 kg
Transmitter	3.5 kg
Camera	2.0 kg
Command and Data Storage	2.4 kg
Shell	5.234 kg
Insulation	0.6902 kg
Foam	.3195 kg
PCM and Heat Pipes	1.5 kg
Miscellaneous	0.5 kg

Table 2. Gondola Equipment Mass Estimates

it's simplicity, aerodynamic features, and capabilities as a pressure vessel, a sphere would be the best shape to make the gondola. With this in mind we worked backwards fromoup payload volume . estimate to find that the sphere should have a minimum radius of 5.6 in. To make room for insulation, support structure, and other added volumes, Ourselection for the sphere size was a radius of 8.0 in .
The next step in our design process was to select the material and thickness of the gondola. Due to it's excellent strength to weight ratio a titanium alloy $(6 \% \mathrm{Al}, 4 \% \mathrm{~V})$ was chosen. Titanium resists over y, buckling in struts and thin plates better than other common materials, such as stainless steel and aluminum. Titanium also has a high yield point for axial stress. Based on these material properties, the atmospheric pressure of Venus, and the thin-walled pressure vessel formulas, a thickness of 0.04508 in. was found to be the critical value. In order to protect against atmospheric pressure variations, cole, ? possible internal point loads, and thermal deformations, a safety factor of 2 was used to bring the thickness of the sphere to 0.09016 in . Based on this number and the density of the material, a mass value of 5.234 kg was obtained for the sphere.

[^0]At this point in our design, there were two basic structures that were being considered. One type consisted of oncentric spheres with a vacuum in between as an insulator (JPL). This vacuum insulation would be very effective at preventing both conduction and convection, and also would be very lightweight. One problem with it is the fact that the two spheres would have to be attached in order to provide structural stability and support. Using these supports - Dunin os cumll. undermines the conduction resistant propertfes of the vacuum, as well as applies unwanted point loads to each sphere. It also maximizes the pressure difference acting on the sphere because one side of the sphere is at approximately 92 atm and the other side (the vacuum) is at 0.0 atm . In addition, having two shells would increase the weight of the gondola considerably.

The second structure considered was to use one spherical shell, and line it with enough insulation so that the heat transfer to the equipment would be minimal. With this type of structure there would only be one shell, so there would be a weight decrease of the titanium used. In addition, this type of gondola design makes supporting structures much simpler and more efficient. The main drawback is that there is a weight gain due to the insulation used. Based on the advantages and disadvantages of these two designs, we chose to pursue the single-sphere model.

Insulation

The next step in the design process was to determine the type and thickness of the insulation material. The driving factor was the weight vs. the insulating ability, but a high maximum service temperature was also required. Based on these factors, we chose to use an alumina-silica fiber as the insulating material. Using the material properties of this fiber, the temperature difference from the
 Venusian atmosphere, and the desired operating temperature inside the gondola of 15° Celsius, it was calculated that the thickness of the insulation would have to be 1.41 in . Using this number and the density of $48 \mathrm{~kg} / \mathrm{m}^{3}$, the mass of the insulator is 0.6902 kg (Incropera and Dewitt). This proved to be much less than the mass of the additional shell which would have been needed to provide vacuum insulation, so the choice to discount the vacuum insulation seems reasonable.

Support

The next part of the problem was to design some sort of supporting structure to hold the equipment in place. In addition to support, other needs were to absorb shock and dampen vibrations. We chose to use a molded polystyrene foam material for this. We decided to envelope the equipment and phase changing material completely in foam so that the entire otherwise unoccupied area
 inside the shell would be polystyrene. This foam was of suitable
stiffness and is operable in somewhat higher temperatures (Klempner and Frisch, p. 175). This serves the needs stated above as well as adds another insulating layer. After subtracting the volume of the equipment, phase change material, insulation, and all other components from the available space inside the gondola wound that there were still $.019966 \mathrm{~m}^{3}$ of volume left over. This volume of the chosen foam has a mass of .3195 kg .

Cooling

Despite having sufficient insulation from outside heat, it is important not to forget about the considerable amount of heat that the electronic equipment itself can generate. Because of this, we also need to include some type of cooling device. We decided to useoctadecaneas the phase changing material, along with a pair of miniature diode reflux heat pipes. The phase change material (pcm) will be contained in two lightweight heat conducting plastic containers and placed around parts of the equipment. The p cm will absorb heat from the equipment. When the temperature of the equipment reaches the melting point of the pcm , it will melt and by doing so absorb a greater amount of the heat energy. The heat pipes will be used to cool off the phase change material (pcm) when the balloon is in the upper atmosphere. They will conduct heat from the pcm through the foam and insulation and onto the shell, where it will convect into the atmosphere. This heat transfer will continue until the pcm has reached a much lower temperature and has re-frozenf The mass of the pcm and heat pipes is estimated at 1.5 kg .

Extra Mass (Equipment)

In addition to all of the previously detailed equipment, there are also several other sources of mass and volume to consider. There will be weight for electrical wires to connect each piece of equipment. There will also be a need for a small length of fiber optics cabling to allow the camera to take pictures outside of the gondola. These additional masses are estimated to be 1.0 kg .

Power Generation

Due to the large power requirement of the Venus balloon and the small allowable mass of the gondola, power must somehow be generated on Venus during the mission. The initial step taken was to determine how much energy would be needed to operate the balloon during one cycle. The equipment is already known and also the power needed to operate each piece of equipment. This data is shown in Table 3. As shown in this table, the estimated power requirements of each piece of equipment are multiplied by the estimated operating times. These estimations are based on the length of one cycle of the balloon being 24 hours long. This gives the energy requirement per cycle for each piece of equipment. These numbers were summed to find the total energy requirement of the gondola per cycle, which is $908.7 \mathrm{~kJ} . \rightarrow$ Goo

Table 3. Gondola Equipment Power Consumption

The next step in our design was to find a good method of power generation. We looked into using solar power, wind power, and thermal power. Solar power was the first option looked into. Although it is often used in space applications, that is typically on orbitting sattelites. It was discarded fairly quickly for a number of reasons. For instance, solar arrays, despite continuing improvements, have low output. They are typically 12-15\% efficient 7 But how (Boer). Also, the cloudy atmosphere, combined with the facts that it will be night for roughly half of each cycle and that there is a loss of solar radiation flux for a tilted solar panel, means that the solar intensity, and therefore the power output will be very minimal and sporadic (Repp, p. 37). In addition, high temperatures cause damage to solar arrays and loss of efficiency.

Turbine power was thought to be an option for use due to the fact that the gondola would have constant vertical motion. The vertical air flow caused by this motion would then be able to drive ? vertical wind turbines. We did not look closely at the power capabilities of this option. Wedecided that we did not want to have a moving mechanical part like a turbine due to the vibrations and cyclic stresses that would be present, affecting both the turbine and the gondola. It would add difficulty to the design of other components, such as the gondola shell and the equipment. In addition the vertical velocity of the wind could often be as low as 1 m / s, which would not seem to offer a great supply of energy. Finally, using wind turbines would add extra weight by requiring the use of a generator.

Therefore, 10 concluded that Neshould try to harness some of the vast thermal energy found on the planet Venus. The methodize decided to use was a thermocouple. The thermocouple device shown can be used to create a hot and cold node to which a thermocouple Doves not In can be attached. The thermocouple itself has not been designed although an efficiency value of 6% was assumed. Although an efficiency value of $10-20 \%$ is possible in a thermocouple, the chosen wax woT? value to use in calculations is taken to be 6% due to the harsh operating conditions in the atmosphere of Venus. Using this efficiency, it can be calculated that 16333 kf of heat energy would need to be converted into electrical energy in order to sufficiently power the balloon. A summary of the work accomplished in designing this method follows.

The model showr is a device that can be used to store this heat energy while it is being converted into electrical energy. Exact numbers have not yet been worked out, but this analysis shows the scope of the problem. Water has been chosen as a working flyid, although there may be much better options........ Whed is er, mem?

In stage one, as shown, the fluid is contained in section A. As the water is heated up it evaporates and raises into an adiabatic section, B. Once this happens, the valve is closed and the balloon rises to the upper atmosphere. It has been estimated that an average temperature of 350 Celsius will be maintained in section B. That would give the water vapor a specific energy of $2877.4 \mathrm{~kJ} / \mathrm{kg}$ (Moran and Shapiro p. 700). A thermocouple is connected between section B and an arbitrary cold point, which can be basically anywhere in the upper atmosphere, perhaps on the gondola. At this point the balloon may oscillate in the upper atmosphere. According to this model, the majority of heat lost would be through the thermocouple and approximately 6% of that would be converted to electrical energy. If the heat energy loss were to occur over time until the water vapor became a saturated liquid at 100 C , where latent energy of vaporization could be taken advantage of, it would prove to be beneficial. At this point the specific energy of the water would be $418.94 \mathrm{~kJ} / \mathrm{kg}$ (Moran and Shapiro p. 700). This is a difference of $2458.46 \mathrm{~kJ} / \mathrm{kg}$ between the two states. Based on this number and the total heat energy needed, 6.16 kg of water would be needed to insure proper power generation. This is probably not a very reliable number, but there are many things which can be done to improve
upon it. ouch as!

Many assumptions have been made due to lack of availability of accurate heat transfer modelling through the adiabatic section of the thermocouple device. Therefore there are many ways to improve this model. The working fluid and pressure can be changed to take greater advantage of specific internal heat energy. Also, the process can be reversible to some extent when the balloon descends. The adiabatic section will keep the water cooler than the surrounding atmosphere until the valve is open, so the thermocouple will have a temperature difference. Possibly the efficiency of the thermocouple can be approved. It is also possible to link the thermocouple directly to the heat exchanger of the secondary balloon. This would save weight for the overall design. It is too soon to predict how that would affect the power output of the thermocouple.

In conclusion, having previously looked into solar arrays and wind turbines, the thermocouple seems to be the most promising choice for power generation and it warrants further study. The heat exchanger that will control the altitude of the balloon is now discussed.

Most of his section or two repeat :
a crueptival design, Merry more details should hor firer deternemial. The vert tear should desert the

In the anting gonoozs / Bon Gatuondion SECTION, ThERE 15 to RGFERGNCES TO THF

 wo exveuntin's prov boon move?

INTRODUCTION TO THE VERTICAL MODEL

Objectives

The purpose of this section of the project is to investigate the performance of the proposed Venus Balloon for exploring the deep atmosphere of the planet. Knowledge of the vertical motions of the balloon system is important for three reasons. First to effect a desired ascent profile, we need to understand how the balloon responds to its lift force, drag force and changes in its operational environment. Second, to initiate ascent or to vary the rate, we must be able to predict the effects of gas vadurg.

Third, to provide adequate cooling for the onboard instruments and sufficient communication time, the altitude versus time plots must be carefully and accurately determined.

Background and Challenges

The high temperature Venus atmosphere of mostly carbon dioxide poses a great challenge to reconnaissance work on the planet. Intensive and prolonged exploration of the planet surface and atmosphere have been impeded by the unfriendly atmosphere of Venus. The only balloons ever flown in the planet were the fixed altitude Soviet Vega Balloons which lasted for about two days.

The opacity of the thick cloud layer; 48 km to 60 km above ground level (a.g.1.), and the haze layer; 30 km to 48 km a.g.l., precludes any clear imaging from a higher altitude where the temperature and pressure is more moderate. The dense atmosphere also precludes the transmission of signals to Earth based stations (see Fig. Ba). In order to obtain clear images of the terrain, the balloon has to descend to altitudes where temperatures of 460 Celsius and pressures of 92 bars prevail.

To communicate, the balloon has to ascend above the cloud layer.

VENUS ENVIRONMENT

Sources of Information

The first step towards achieving our objectives was to review the rather extensive literature in one of three problem areas that deal with balloon ascent. The first area is the Venus atmospheric conditions. Sources consulted include:
o Hunter et al., 1983
o Fimmel, 1983
o Lide 1992
o Nock and Jones, 1993
o JPL correspondence: JPL scientists, Jay Wu and Jack Jones

The second area deals with balloon ascent, weather balloon trajectory modelling, space exploration vehicles, float motion and aerodynamics of free pressure balloons:
o Soviet Vega Balloon Report, 1982
o Boaz, 1983
o Dwyer, 1985
o Ward and Kincaid, 1985
o Boyce, 1986
o Zak, 1988
o Greenberg, 1988
o UW-Faculty consulted with:
Professor Fieriesen, Fluid Mechanics, M.E. Dept.
Professor R. Reitz, Fluid Mechanics,'M.E. Dept.
Professor G. Meyers, Thermodynamics, M.E. Dept.
Professor P. Cheng, Thin Shells, E.M. Dept.
Professor Johnson, Mechanics, E.M. Dept. Professor J. Kuelbs, System of Eqns. Math Dept. Professor Frosteric, Diff. Equations Math Dept.
o JPL correspondence:
JPL scientist, Jay Wu (Trajectory)

The third area, heat transfer (internal and external) encompasses some of the principal concerns that compelled this study. The altitude control of the balloon is directly related to the overall heat exchange rate of the system.

Of the three problem areas, this is by far, the most complex. Without performing actual experiments, most heat exchange perimeters cannot be determined to any level of fairaccuracy. The closest thing to performing an actual experiment on expensive prototypes is computer simulation. Fluent, a commercial fluid dynamics package was used to investigate the heat exchange rate and the bulk temperature of the balloon as a function of time and altitude. Sources on heat exchange consulted include:

- Seigel et al, 1981
o Vargaftik 1983
o Dwyer, 1985
o Blamont et al. 1985
o Incropera et al., 1990
o Fluent Manuals., 1993

o UW-Faculty consulted with:
Professor Mitchell, Heat Transfer, M.E. Dept. Professor Meyers, Thermodynamics M.E. Dept. Professor R. Reitz, Fluent, M.E. Dept. Ms. C. Maul (T.A.), Fluid Mechanics Chem.E.Dept.

Scope of Investigation

This project involved seeking information on/designing for the following:
o Balloon design
Selection of working fluids for the balloon system
Selection of balloon skin material
k Shape and dimensions of balloon
o Kinematics of the balloon system
Altitude as a function of time
Velocity as a function of time
Acceleration as a function of time Balloon cycle design (Cooling instruments and transmission of data to earth)

- Dynamics of the balloon system

Buoyancy force as a function of time and altitude
Drag force as a function of time and altitude
Volume as function of time and altitude
Stability
o Valving
Condensation rate of R30 in the secondary balloon
Gas valving rate
o Heat exchange phenomenon of balloon

$1+$ Computer simulation of flow conditions and heat transfer as a function of time using Fluent
a Convectional heat transfer
b Conductive heat transfer
c Radiative heat transfer

Bulk temperature as a function of time and altitude
HOverall Buoyancy as a function of bulk temperature

Report Format

This report includes these four main sections:

1. Technical Approach:

- A complete discussion of the trajectory model.
o A complete discussion of the heat exchange model.

2. Difficulties involved and assumptions made: a discussion on how some hard-to-find data and equations were quantified and estimated.

3. Results: a presentation and discussion of the overall performance and deficiencies of the balloon system. Errors involved are analyzed and discussed.
4. Conclusion and recommendation:
$\underset{\text { in }}{ }$ A summary of the possible effects of the outcome of the investigation; a recommendation for further study and design refinement.

TECHNICAL APPROCH

A Word About The Weather

The Venus Atmosphere Model (0 to 70 km)

The mostly carbon dioxide atmosphere (98%) acts as a huge thermal blanket, trapping most of the impinging thermal radiation from the sun. Surface temperature is as high as 460 Celsius. Thick layers of sulphur dioxide cloud exist up to an altitude of about 60 km (Hunter 1983). Immediately above the cloud layer, the temperature drops to about -10 Celsius. Pressure and density also drops significantly (see Fig 8c.1-8c. 3 on the following page).

Double Balloon System and Reversible Fluid

In order to ensure a long duration operation, good altitude control design is essential. The life-span of the entire system depends on how well the onboard instruments are insulated and maintained. Temperature control of the interior of the craft is directly related to altitude control (buoyancy control). Our design uses a double balloon system. The primary balloon is filled with hydrogen while the secondary balloon uses a reversible refrigerant R. Fig. 8 b shows an estimation of the condensation rate of R versus altitude. As reported by JPL, R, begins to condense at an altitude of about 56 km above the surface $\phi \mathrm{f}$ Venus.

The balloon system continues to rise until the ifs net buoyancy is less than its entire weight. The liquid refrigerant is trapped in a small heat exchanger at the base of the secondary balloon. A closed valve prevents the R from evaporating back into the secondary
balloon. The balloon system continues to descend below the 56 km altitude until the valve is reopened; the superheated R evaporates instantaneously into the secondary balloon -restoring the buoyancy of the secondary balloon. The whole cycle is repeated until a) the onboard instruments have cooled sufficiently and b) transmission data to Earth is completed.

Specifications

As suggested by JPL, the balloon skin is to be manufactured out of polyethyene. The balloon is a free pressure system. It is entirely free to expand and there are no stresses on its skin.
Both balloons are designed to have a fixed diameter of four meters; only the lengths of the balloons change as the system ascends or descends. Its cigar shape is designed for drag reduction. See appendix M for detailed specification and dimensions of the balloon system.

VENUS ATMOSPHERE TEMPERATURE VS ALTITUDE

Fig 861

VENUS ATMOSPHERE PRESSURE VS ALTITUDE

Fig 802

VENUS ATMOSPHERE DENSITY VS ALTITUDE

Fig 86.3

CONDENSATION OF R30 IN 2ND BALLOON

 (ESTIMATION)

Fig. 8 b

The Mathematical Model

Earlier balloon users sought mathematically simple models for predicting balloon ascent rate. The earlier equations were purely dynamics equation. These equations did not include thermodynamic and heat transfer effects and were thus not very accurate.

In our Model, heat transfer effects within the balloon, on the balloon skin and outside the balloon are carefully analyzed. Due to the size of the two balloons, the temperature of the entire system can neither be considered uniform nor equal to that of its immediate environment. A separate section is devoted entirely to the investigation of the transient heat transfer phenomenon of the balloon (see next section). The purpose of this investigation is to obtain a bulk interior temperature as a function of time. This bulk temperature is then incoßperated into the set of differential equations of motion to solve for its flight path.

If we assume that the balloon trajectory problem is twodimensional in nature, then the following differential equations define the model when the balloon is partially full; either when it is floating or when it is moving vertically, upward or downward. As mentioned earlier, the balloon is a free pressure system. Its bulk pressure is assumed to be that of its surroundings at all times.

The differential equations:
(2) $\mathrm{V}=\mathrm{dh} / \mathrm{dt}$

> Vol 1 $=\mathrm{n} 1 * \mathrm{R}^{*} *$ Tbulk $1 / \mathrm{P} \quad$ (The gas law is assumed $)$ Vol 2 $=\mathrm{n} 2^{*} \mathrm{R}^{*}$ Tbulk2 $/ \mathrm{P} \quad$
where:

$$
\begin{aligned}
& \mathrm{V}=\text { velocity of balloon } \\
& \text { mot }=\text { total mass of balloon system } \\
& \text { rhos }=\text { density of atmosphere at altitude } \mathrm{h} \\
& \mathrm{~g} \text { I }=\text { acceleration due to gravity } \\
& \text { Vol }=\text { volume of hydrogen balloon } \\
& \text { Tbulk1 }=\text { volume of R ballot temperatoon of interior of hydrogen balloon } \\
& \text { Tbulk2 }=\text { bulk temperature of interior of } \mathrm{R} \text { balloon } \\
& \mathrm{P}=\text { external pressure at altitude } \mathrm{h} \\
& \mathrm{n1} \mathrm{n2}=\text { number of moles of gas } \\
& \mathrm{Cd}=\text { coefficierint of drag } \\
& \mathrm{Ap}=\text { projected area of balloon } \\
& \mathrm{h}=\text { altitude of balloon } \\
& \mathrm{R}=\text { gas constant } \\
& \mathrm{k}=\text { Virtual mass coefficient }
\end{aligned}
$$

The Drag Coefficient

As advised by Jay Wu of JPL, the drag coefficient of the balloon was assumed to be 0.8 at all altitudes.

The Added Mass (Virtual Mass)

$$
\pm 10 ワ ?
$$

The conditions under which the added mass term applies are not too well defined. Generally, the added mass term becomes important when the density of the working fluid (inside the balloon) is lower than that of its environment's (Toter 1993, P97). No data on the mass coefficient was available for balloon shape. We estimated the coefficient to be 0.01.

what is

 a
Solving the Differential Equation on Quattro Pro

Equations (1), (2) and (3) were solved simultaneously using the
Runge-Kutta Method of order 4. Equation (1) is a second order, nonlinear, non-homogeneous differential equation. A step-wise iterative process was used to solve for the velocity and displacement of the balloon system as a function of time.

The time step was staggered from 0.05 sec to 4 sec in successive blocks to ensure convergence. The initial conditions were:

$$
\begin{aligned}
& \text { At time } t=0 \text { : } \\
& \text { displacement }(t=0)=40000 \mathrm{~m} \text { (balloon is released from } \\
& \text { velocity }(t=0)=-11 \mathrm{~m} / \mathrm{s} \begin{array}{l}
\begin{array}{l}
\text { (as derry vehicle) } \\
\text { calculations) from entry }
\end{array}
\end{array}
\end{aligned}
$$

For a more detail ${ }^{\ell f}$ description, see spreadsheet on appendix N - P.

$$
\begin{aligned}
& \begin{array}{l}
\text { The generalization of the } R-k \text { method for the intital } \\
\text { value problem } x^{\prime}=f(t, x, y), y^{\prime}=g(t, x, y) \text { with } \\
x\left(x_{0}\right)=x_{0}, y\left(t_{0}\right)=y \text {. is: }
\end{array} \\
& x_{n+1}=x_{n}+\frac{1}{6} h\left(k_{n 1}+2 k_{n 2}+2 k_{n-1}+k_{n 4}\right) \\
& y_{n+1}=y_{n}+\frac{1}{6} 4\left(I_{1}+2 m_{2}+2 k_{n 3}+k_{n 4}\right) \\
& \text { where: } \\
& k_{n_{1}}=f\left(t_{n}, x_{n}, y_{n}\right) \\
& k_{n_{2}}=f\left(t_{n}+\frac{1}{2} h, x_{n}+\frac{1}{2} h k_{n 1}, y_{n}+\frac{1}{2} h l_{n 1}\right) \\
& k_{n 3}=f\left(t_{n}+\frac{1}{2} n, x_{n}^{1}+\frac{1}{2} h k_{n 2}+y_{n}+\frac{1}{2} h l_{n-1}\right) \quad l_{n 2}=\begin{array}{l}
g\left(t_{n}+\frac{1}{2} h, x_{n}+\right. \\
\left.y_{n}+\frac{1}{2} h l_{n 1}\right)
\end{array} \\
& k_{n_{4}}=f\left(t_{1}+h, m_{n}+h k_{n_{3}}, y_{-1}+h l_{n 3}\right) \quad \ln _{3}=g\left(t_{n}+\frac{1}{2} h l_{n} x_{n}+\frac{1}{2} h k_{2},\right. \\
& \left.y_{n}+\frac{1}{2} h \ln 2\right) \\
& \ln _{4}=g_{y n}\left(t_{n}+h, h_{L_{n 3}}\right)\left(h k_{n},\right.
\end{aligned}
$$

HEAT TRANSFER

Computer Simulation

The commercial fluid dynamics software, Fluent was used to investigate the heat transfer that occurs between:
a) The balloon skin and the exterior of the balloon
b) The balloon skin and the interior of the balloon
c) The overall heat transfer; the bulk temperature of the balloon system as a function of time

Because of the numerous variables involved and the complexity of the problem, a simplification was made. The balloon was treated as a 2-dimensional object. The problem's complexity arises from the fact 1) that the environmental conditions are constantly changing and 2) the conditions within the balloons are also changing with time. To further simplify the problem, the environmental temperature was held constant. Only the internal
 conditions of the balloon system were permitted to vary.

A Grid of the balloon was initially created (see Fig 8 f -The inlet conditions were taken to be those found at an altitude of 56 km above the Venusian surface. This altitude is crucial because this is the point where the R30 begins to condense. The condensation rate will provide an insight into how much and how soon the balloon loses buoyancy once it passes the 56 km point.

Fluent uses the conventional fluid mechanics equations (Navier- Stokes) and heat transfer equations (Free and Force convection) to generate results. A radiation file was also created in Fluent to model the radiative effects of the balloon and its Surroundings. Heat transfer data for R114 was provided by Jay Wu. The overall heat transfer coefficient of the balloon was found to be 4.4 (For computation, see appendix Q). Laminar flow was assumed because of the low velocity of the flow.

Snapshots of the bulk balloon temperatures were taken every 15 minutes (see figures 8 g.1-.5). 25R30
\qquad The whole program took about 8 hours to run and many more hours to create.

Fluent uses a finite difference method to compute results. A time step of 0.1 second was specified initially.

Due to a limitation of the resolution capabilities in Fluent the skin of the balloon cannot be made as thin as that specified in the actual design specifications. To compensate for this, the thermal conductivity was proportionally increased.

$3.46 \mathrm{E}+02$ $3.43 \mathrm{E}+02$ $3.40 \mathrm{E}+02$ $3.37 \mathrm{E}+02$ $3.34 \mathrm{E}+02$ $3.31 \mathrm{E}+02$ $3.28 \mathrm{E}+02$ $3.25 \mathrm{E}+02$ $3.22 \mathrm{E}+02$ $3.20 \mathrm{E}+02$ $3.17 \mathrm{E}+02$ $3.14 \mathrm{E}+02$ $3.11 \mathrm{E}+02$ $3.08 \mathrm{E}+02$ $3.05 \mathrm{E}+02$ $3.02 \mathrm{E}+02$ $2.99 \mathrm{E}+02$ $2.96 \mathrm{E}+02$ $2.93 \mathrm{E}+02$ $2.90 \mathrm{E}+02$
Y\quadAT56KM Temperature Mox $=3.458 \mathrm{E}+02$

\sum_{x}^{Y}	AT56KM Temperature (Kelvin) $\text { Max }=2.919 E+02 \quad \text { Min }=2.889 E+02$	$\text { Time }=0.000 E+00$	Apr 291994 Fluent 4.22 Fluent Inc.

Results

The Table below shows the bulk temperature of the system as a function of time.
$\underset{(\text { ming })}{\text { TIME }} \quad \underset{(\mathrm{K})}{\text { HYDROGEN BALLOON }}$ R30 BALLOON

0	315	328
15	304	314
30	300	308
60	291	301
180	291	292

Table 4. The bulk temperature as a function of time.
Fig 8h on the following page shows a plot of the above results. As expected, the R30 balloon took a longer period of time to equilibrate thermally (compared to the H2 balloon). Looking at the curves of the temperature vs. time plots, it can be inferred that the bulk temperature of the hydrogen balloon is about 20° Celsius higher than the surrounding during its ascend and about 20° Celsius lower during its descend (b)

$$
\star
$$

This is how it is approximated:
At altitude $=56 \mathrm{~km}$ and at time $\mathrm{t}=0$
Environment Temp $=289$
H 2 Balloon Temp. (initial guess) $=315 \mathrm{~K}$
Temperature difference $=25$ degrees
At time $=20$ minutes later, balloon temperature has dropped to 303 Celsius.

At altitude $=59 \mathrm{~km}$ and at time $\mathrm{t}=20$ minutes
(Based on an ascend rate of $3 \mathrm{~m} / \mathrm{s}$ at that height)
Environment Temp. $=282$ degrees
H2 Balloon Temperature $=303$ Celsius
Temperature difference $=21$ degrees
At altitude $=64 \mathrm{~km}$ and at time $\mathrm{t}=40$ minutes
(Based on an ascend rate of $4 \mathrm{~m} / \mathrm{s}$ at that height)
Environment Temp. $=276$ degrees
H 2 Balloon Temperature $=296$ degrees
Temperature difference $=20$ degrees

BULK TEMPERATURE OF INTERIOR OF BALLOON VS TIME

\rightarrow R30 BALLOON $-\square$ H2 BALLOON

Fig $8 h$

Hence it can be seen from the reasoning in the preceding pages that the difference between the interior bulk temperature of the H 2 balloon and the environment will converge to approximately 20 degrees. Following the same line of reasoning, it was found that the bulk temperature of the R30 balloon is about 22 degrees higher than the surrounding at all altitudes during the ascend cycle.

On the descend cycle, the temperature difference is reversed. With this knowledge, weyvent back to the initial spreadsheet (see appenedix N) to create the 'columns' for the 'bulk H2 balloon temperature' and 'bulk R30 balloon temperature'. The Runge-Kutta algorithm addresses these cells during its iterative process. This is how we incopperate the Fluent results into Runge-Kutta process.
Duin cosich /IT psorson

Id Formal areitnos.

Difficulties involved and assumptions made:

The difficulties involved in modelling the balloon trajectory are numerous:
o Lack of data on condensation of R30 above 56 km
o Lack of data on important heat transfer coefficients
o Lack of precise formulas for calculating drag coefficients
o Lack of data on R30 (JPL was unable to forward any data on R30 to us; however, data on Freon R114 was forwarded instead.)
o Lack of references on space balloon trajectories
o Lack of data on Venusian wind conditions
o Scope of problem was too wide
o Initial velocities had to estimated for the calculation of the Reynold's number
o Lack of information on dimensions of system
o Difficulties in solving a system of non-linear differential equations
o Radiative properties of R30 were not available
o No data on solar intensity below the 60 km was available

Assumptions

o Initial mass of various components were estimated
o 3-dimensional problem was reduced to 2-dimensional for ease of treatment
o Wind forces were ignored
o Condensation rate of R30 was estimated
o Initial gas requirements (no. of moles required) were estimated
o Initial velocities were estimated
o Both internal and external flow were estimated to be laminar
o Balloon skin thickness was estimated
o Radiative properties of R30 were estimated
o Fluent has a great deficiency; it cannot
model a balloon that changes in size constantly. As the balloon rises, its bulk temperature will
 decrease. If the volume of the balloon remains constant, the interior of the balloon will develop a negative pressure. In our model, this effect is ignored

RESULTS

The velocity of the balloon after the initial release stabilizes after 3 seconds (see Fig 8d.1). The balloon continues to rise up to a maximum height of 64 km . At this height it is far enough above the cloud layer to permit clear transmission (see Fig 8d.2). This occurs three hours after deployment. The maximum velocity attained by the balloon was found to be $4 \mathrm{~m} / \mathrm{s}$ (see Fig 8d.3).

When most of the gas in the secondary balloon has condensed, the downward forces predominate and the balloon system descends. The condensed fluid seeps into a heat exchanger at the base. As the balloon passes the 56 km altitude, the R evaporates again due to the increase in temperature. To prevent this, a valyeat the neck of the heat exchanger closes, trapping the condensed R. The balloon continues to descend until the valve opens, releasing the superheated \mathbb{R}. For a more detailed trajectory description, see Figs 8e.1-3.
\#?

The condensation rate of R30 had to be estimated. No data on this phenomenon was available. This had led to some discrepancies between the predicted result and the actual result generated by the Runge-Kutta algorithm. Figure Bd. 2 shows that the balloon remains afloat at an altitude of about 54 km after its initial deployment. The balloon is expected to descend as it loses buoyancy. This discrepancy cannot be resolved until

- more information on the condensation rate is made available to us.

How long are going to stay up there? Period of each cycle? At these point, theseminmers cannot be answered because JPL has not provided us with any specific requirements. The cycle period can be adjusted according to cooling needs of the instruments within the gondola and transmission requirements. At this point we do not have any information on these requirements.

VENUS BALLOON (VELOCITY VS TIME) INITIAL RELEASE AT 40 KM AGL

$$
\text { Fig } 8 \mathrm{~d} .1
$$

VENUS BALLOON TRAJECTORY INITIAL RELEASE AT 40 KM AGL

Fig 8d. 2

VENUS BALLOON (VELOCITY VS ALTITUDE) INITIAL RELEASE AT 40 KM AGL

Fig d. 3

VENUS BALLOON (VELOCITY VS TIME) after valve closes

AFTER VALVE CLOSES

$$
\text { Fig } 8 e 2
$$

The Need for a Heat Exchanger

To accurately control the height of the balloon versus time a heat exchanger was added to the system. When the balloon reaches a height of 56 km , the gaseous methylene chloride, which was providing buoyancy, will condense into a liquid. This reduces the lift force and the balloon will fall. It is the job of the heat exchanger to capture the condensed liquid and provide enough heat where the liquid will turn back into a gas. A valve will control the flow of the vaporized or condensed liquid.

Vaporizing the Phase Changing Material

The first step is to calculate the energy required to vaporize the liquid. To find the heat of vaporization $\left(\Delta \mathrm{H}_{\mathrm{V}}\right)$ we can use the 2 point form Clausius - Clapeyron Equation.

$$
\log \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)=\left(\Delta \mathrm{H}_{\mathrm{V}} / 2.303 * R\right)^{*}\left(1 / \mathrm{T}_{1}-1 / \mathrm{T}_{2}\right) \longrightarrow
$$

where P is the pressure,
T is the temperature,
R is the gas constant.
The 1 and 2 represent different states as found on the Van't Hoff plot. The heat of vaporization is found to be 31682.5 Joules / mole (Appendix R-U). To vaporize all 200 molesof methlyene chloride it would take 6336.5 KJ .

Now We want to calculate the energy required to heat the fluid from 333 K to 366 K . This energy is given by

$$
\mathrm{E}=\Delta \mathrm{T} * \text { heat capacity }
$$

The heat capacity for methylene chloride is $99997.6 \mathrm{~J} /$ degree. The total energy to heat the fluid is 3299.9 KJ . Now weed to put in 9636.4 KJ of energy to he f treflifleprandovaporize it to a gas.

Size of Heat Exchanger and Stresses Involved

One limiting factor in the size of the heat exchanger is the space that it will require inside of the entry vehicle. For this reason it must be smaller than 13.8 inches long. By knowing the density of the liquid and the mass of the liquid, the volume can be found. In this case it was $0.013 \mathrm{~m}^{3}$. Next an optimizing sequence was done to find the best radius, length, and thickness that would hold the liquid and resist the pressure involved from the phase change (Appendix V-X).

In this analysis of the stresses we will treat it as a thin walled cylindrical pressure vessel. The stress that we are concerned with is the hoop stress given by

$$
\sigma_{1}=\mathrm{P} * \mathrm{r} / \mathrm{t}
$$

Where P is the gage pressure,
r is the radius,

t is the thickness.
The gage pressure is the difference in pressure between the inner pressure and the atmospheric pressure. For this model we will be using an aluminum shell with a yield stress of 416 M Pa . The final dimensions of the heat exchanger is a 0.1143 m inner radius cylinder 0.3117 m in length with a thickness of 0.0138 m . The final mass of this unit is 8.5 kg .

Concept of a Heat Exchanger

At low altitudes we have a hot fluid, the carbon dioxide atmosphere flowing across a vertical tube which contains the phase changing material, methylene chloride. The temperature difference between the atmosphere and the inner fluid will cause energy to transfer and heat up the methylene chloride changing it from a liquid to a vapor. The three types of heat transfer present are conduction, radiation, and convection. For all three types of transfer we assumed a one dimensional, steady state, vertical cylinder without. fins. Other assumptions made are noted in the sections.

Conduction

Conduction will tell how much heat is lost through the walls of the heat exchanger.
This is given by

$$
q=-k A(d T / d x)
$$

where q is the heat rate in Watts, k is the thermal conductivity of the material,
A is the exposed area,
$\mathrm{dT} / \mathrm{dx}$ is the temperature gradient (Incropera).
The negative sign shows that heat is transferred to the cooler side of the material. For a thin member we can assume this to be negligible but in our case this was calculated. In reality this is a two dimensional transient problem but due to the slow velocity, the
material will have time to come to equilibrium with the surroundings. The calculations to prove this assumption can be found in Appendix Y.

Radiation

Radiation will tell how much heat is gained and reflected to the atmosphere. The general equation is given by

$$
\mathrm{q}=\mathrm{A} \varepsilon \sigma\left(\mathrm{~T}_{\mathrm{s}} 4-\mathrm{T}_{\mathrm{sur}}{ }^{4}\right)
$$

where q is the heat rate in Watts,
A is the exposed area,
ε is the emissivity of the material,
σ is the Stefan-Boltzmann constant,
T_{S} and $\mathrm{T}_{\text {sur }}$ are the temperatures of the
atmosphere and surface of the material
respectively (Incropera).
This equation will give us the heat rate from the atmosphere to the balloon, but it can also give us the heat rate from the balloon to the methylene chloride gas by changing the subscripts on the temperature to surface and gas respectively. We also need to consider the amount that is absorbed from solar radiation. The solar flux Venus receives is $2600 \mathrm{~W} / \mathrm{m}^{2}$ of which $132 \mathrm{~W} / \mathrm{m}^{2}$ is absorbed. It is the latter number that we use to calculate how much solar flux is absorbed by the heat exchanger. The calculations can be found in Appendix Z.

Forced Convection

This is the greatest source of heat transfer to the cylinder. The heat rate for convection is given as

$$
\mathrm{q}=\mathrm{hA}\left(\mathrm{~T}_{\mathrm{sur}}-\mathrm{T}_{\mathrm{s}}\right)
$$

where q is the heat rate in Watts, A is the exposed area, h is the convection coefficient, T_{S} and $\mathrm{T}_{\text {sur }}$ are the temperatures of the atmosphere and surface of the material respectively (Incropera).

In order to find the convection coefficient we need to calculate the Reynolds (R_{e}) and Nusselt (N_{u}) numbers. This will be treated as external flow over a cylinder where the following equations apply

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{e}}=\mathrm{VD} / \mathrm{v} \\
& \mathrm{~N}_{\mathrm{u}}=\mathrm{C} \mathrm{R}_{\mathrm{e}}^{\mathrm{m}} \operatorname{Pr}(1 / 3) \\
& \mathrm{h}=\mathrm{N}_{\mathrm{u}} \mathrm{k} / \mathrm{D}
\end{aligned}
$$

where V is the velocity of the wind,
D is the diameter of the tube,
v is the viscosity of the atmosphere,
Pr is the Prandtl number, k is the thermal conductivity.
C and m are constants dependent on the Reynolds number.
Numerical calculations can be found in Appendix AA - AB.

Free Convection

from aunt?

This is a source of heat transfer to the inside gas. The same general equation applies to free convection. The difference is in the method to find the convection coefficient, h. This is modeled as laminar flow on a vertical isothermal plate where the following
equations apply

$$
\begin{aligned}
& \mathrm{Gr}=\mathrm{g} \beta\left(\mathrm{~T}_{\text {sur }}-\mathrm{T}_{\mathrm{gas}}\right) \mathrm{L}^{3} / \mathrm{v}^{2} \\
& \mathrm{Nu}=(4 \mathrm{~g}(\operatorname{Pr}) / 3)(\mathrm{Gr} / 4)(1 / 4) \\
& \mathrm{h}=\mathrm{Nuk} / \mathrm{D}
\end{aligned}
$$

- \quad is the volume coefficient of expansion (Incropera). Calculations for this quantity were not done due to the lack of
 information of the properties of methylene chloride. Inside the heat exchanger the liquid is boiling and thus the above equations are no longer valid. The equation for pool boiling is

$$
\begin{aligned}
& \text { the liquid is boiling and thus the above equations are no } \\
& \text { d. The equation for pool boiling is } \\
& \left.\mathrm{q}^{\prime \prime}=\mathrm{m}_{\mathrm{l}} \mathrm{~h}_{\mathrm{fg}}[\mathrm{~g}(\mathrm{\rho l}-\mathrm{\rho v}) / \sigma]^{1 / 3}\left[\mathrm{Cpl} \Delta \mathrm{Te} / \mathrm{C}_{\mathrm{s}, \mathrm{f}}\left(\mathrm{~h}_{\mathrm{fg}}\right) \operatorname{Prn}\right] 3\right\} \text { ass }
\end{aligned}
$$

where $q^{\prime \prime}$ is the heat flux, ml is the mass of the liquid, h_{fg} is the latent heat of vaporization, σ is the surface tension, ρ is the density.
The letters v and 1 represent the vapor and liquid states, $C_{s, f}$ and n are constants (Incropera). (See Appendix AC)

I wal Present tais if it as wove user?

Problems With Heat Transfer

By doing all of the above calculations, the balloon will receive enough energy to heat and vaporize the liquid that has condensed after two hours. All the calculations done have been based on a - steady state model floating between the altitude of 48 to 60 km . This time would actually be longer due to the fact that this is a transient problem and the heat rate is proportional the temperature difference. Another problem is calculating the horizontal winds. The
 graph in Appendix shows a broad spectrum for the velocity of the wind. The stress calculations show that the heat exchanger will be safe for cycling about the 56 km mark but might not withstand the pressure near the surface. Future work should be done to fully calculate the stresses depending on what range the balloon system will see. The material for the heat exchanger must be lightweight, have a high thermal conductivity and also be able to withstand the pressure near the surface.

CONCLUSION

[^1]
Bibliography

Boaz, Mary L., Mathematical Methods in Physical Sciences, John Wiley and Sons, Canada, 1983.

Boer, Karl W., ed., Advances in Solar Energy, volume 7, Plenus Press, NewYork, 1991.

Boyce, William E., and Diprima, Richard C., Elementary Differential Equations and Boundary Value Problems, 4th edition, John Wiley and Sons, New York, 1986.

Camarda, Charles J., Anaysis and Radient Heating Tests of a Heat-Pipe-Cooled Leading Edge, National Aeronautics and Space Administration, Springfield Virginia, 1977.

Cheney, Ward, and Kincaid, David, Numerical Mathematics and Computation, 2nd edition, Brooks / Cole Publishing Company, California, 1985.

Clark, R. C., and Meinecke, E.A., Mechanical Properties of Polymeric Foams, Technomic Publishing, Westport Connecticut, 1973.

Cook, Robert D., and Young, Warren C., Advanced Mechanics of Materials,, Macmillan Publishing Company, New York, 1985.

Dike, Paul H., Thermoelectric Thermometry, Leeds and Northrup Company Tech. Publishing, Philadelphia Pennsylvania, 1954.

Dueber, Ross E., Chemical Principles Applied to Spacecraft Operations, Krieger Publishing Company, Malabar Florida, 1993.

Duncan, Robert C., Dynamics of Atmospheric Entry, McGraw-Hill, New York, 1962.

Dwyer, James F., Factors Affecting the Vertial Motion of a Zero Pressure Polyethylene Free Balloon, Air Force Geophysics Laboratory, 1985.

Ely, Lawrence D., Return From Space: An Explanation of Re-entry Problems and Factors of Re-entry Vehicle Design and Performance, C. C. Thomas, Springfield Illinois, 1966.

Fimmel, Richard O., Pioneer Venus, 1983.
Fortescue, Peter W., and Stark, John P.W., ed., Spacecraft Systems Engineering, John Wiley and Sons, New York, 1991.

Frisch, Kurt C., and Klempner, Daniel, Handbook of Polymeric Foams and Foam Technology, Hanser Publishers, New York, 1991.

Griffin, Michael D., Space Vehicle Design, American Institute of Aeronautics and Astronautics, Washington D.C., 1991.

Greenberg, Michael D., Advanced Engineering Mathematics, Prentice Hall, Inc., New Jersey, 1988.

Hunten, D.M., Colin, L., Donahue, T.M., Moroz, V.I., editors, Venus, The University of Arizona Press, Tucson, Arizona, 1983.

Incropera, Frank P., and DeWitt, David P., Introduction to Heat Transfer, John Wiley and Sons, 1990.

Kays, William M., Convective Heat and Mass Transfer, 3rd edition, McGraw-Hill, New York, 1993.

Lenk, John D., ABC's of Thermocouples, Sams Publishing, 1967.
Lide, David R., ed., CRC Handbook of Chemistry and Physics, 73rd edition, CRC Press, Boca Raton, Florida, 1992.

Moran, Michael J., and Shapiro, Howard N., Fundamentals of Engineering Thermodynamics, 2nd Edition, John Wiley \& Sons, Inc., New York, 1992.

Pollock, Daniel D., Thermocouples : Theory and Properties, ASTM, Philadelphia Pennsylvania, 1971.

Pollock, Daniel D., Thermoelectricty : Theory, Themometry, Tool, ASTM, Philadelphia Pennsylvania, 1985.

Rainville, Earl D., Elementary Differential Equations, 7th edition, Macmillian Publishing Company, New York,

Rapp, Donald, Solar Energy, Prentice - Hall, Inc., Englewood Cliffs New Jersey, 1981.

Regan, Frank J., Dynamics of Atmospheric Re-entry, American Institute of Aeronautics and Astronautics, Washington D.C., 1993.

Regan, Frank J., Re-entry Vehicle Dynamics, American Institute of Aeronautics and Astronautics, Washington D.C., 1984.

Siegel, R., and Howell J., Thermal Radiation Heat Transfer, Hemisphere Publishing Corp., Washington, 1981.

Shackelford, James and Alexander, William, ed., CRC Materials Science and Engineering Handbook, CRC Press, Boca Raton, Florida, 1992.

Vargaftik, N.B., Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixtures, 2nd edition, Hemisphere Publishing Corp., Washington, 1983.

Weast, Robert C., ed., CRC Handbook of Chemistry and Physics, 67th edition, CRC Press, Boca Raton, Florida, 1986.

Wiesel, William E., Spaceflight Dynamics, McGraw-Hill, New York, 1989.

Williams, S.D., Thermal Protection Materials: Thermophysical Property Data, National Aeronautics and Space Administration, Springfield Virginia, 1992.

Weisel, William E., Spacecraft Dynamics, McGraw - Hill, Inc., New York, 1989.

Zak, B.D., Development of an Adjustable Bouyancy Balloon Tracer of Atmospheric Motion, 1988.

The Venus Balloon Group had correspondence with the following people.
Professor Fieriesen, at UW-Madison, Mechanical Engineering Department (Fluids)
Professor G. Kulcinski, at UW-Madison, Nuclear Engineering Department
Professor G. Meyers, at UW-Madison, Mechanical Engineering Department (Thermo)
Professor Mitchell, at UW-Madison, Mechanical Engineering Department (Heat Transfer)
Professor R. Reitz, at UW-Madison, Mechanical Engineering Department (Fluid)
Professor Johnson, at UW-Madison, Engineering Mechanics and Astronautics Department
Professor P. Cheng, at UW-Madison, Engineering Mechanics and
Astronautics Department
Professor J. Kuelbs, at UW-Madison, Mathematics Department Professor Frosteric, at UW-Madison, Mathematics Department Teaching Assistant Ms. C. Maul, at UW-Madison, Chemical Engineering Department
Kerry Nock, Jack Jones, Jay Wu at Jet Propulsion Laboratory

The Venus Balloon used the following computer software packages for modeling.
Excel
Cricket Graph
Quattro Pro
Fluent
Mathematica

APPENDICES

A : Definition of symbols
B : Specific Model of Venusian Atmosphere
C : Numerical justification of shape and material selection
D : Heating problem
E : Loading problem
F : Sphere thickness, mass and volume
G : Insulation
H : Foam volume and mass
l : Gondola structure diagrams
J : Tension of supporting cables
K : Generator model 1
L : Generator model 2
M : Balloon dimension
N : Spreadsheet
O : Trajectory of Balloon - Spreadsheet
P : Range - Kutta Algorithm
Q : External Flow Calculation
R : Phase Transitions
S : Properties of Methylene Chloride
T : Energy Needed to Heat Liquid
U : Van't Hoff Plots for Reversible Fluids
V : Volume Required
W : Stresses
X : Weight of Heat Exchanger
Y : Conduction
$Z \quad$: Radiation
AA : Forced Convection
AB : The Winds on Venus
AC : Free Convection

Appendix A: Definition of Symbols

A	Exposed area (length ${ }^{2}$), assumed constant
a	Aerodynamic deceleration (length/time ${ }^{2}$)
B_{0}	Energy parameter (mass*length ${ }^{2} /$ time 2)
Cd	Drag coefficient (unitless), assumed constant
Cf	Skin Friction coefficient (unitless)
Dh	Characteristic length (length)
Ein	Convective energy seen by the craft (mass*length ${ }^{2} /$ time 2)
Etot	Total kinetic energy lost by the craft (mass ${ }^{*}$ length ${ }^{2} /$ time 2)
e	Euler constant, 0.5772156 (unitless)
e	Thermal strain (unitless)
g	Gravitational acceleration (length/time ${ }^{\text {a }}$) Qeis Nam
H_{0}	Scale height (length) -urat dob then riem
$\mathrm{h}_{\text {vap }}$	Heat of shield vaporization (length ${ }^{2}$ /time ${ }^{2}$)
K_{c}	Ratio of specific heats (unitless), assumed constant
K_{d}	Drag parameter (length ${ }^{3} /$ mass)
Kg	Universal gas constant divided by molecular weight (length ${ }^{2 *}$ temperature/time ${ }^{2}$)
$\mathrm{k}_{\text {char }}$	Thermal conductivity of the char layer (length)
$\mathrm{k}_{\text {shell }}$	Thermal conductivity of the aeroshell (length)
kvirgin	Thermal conductivity of the shield (length)
L	Vehicle length (length)
M	Mach number (unitless)
m	Spacecraft mass (mass), assumed constant
Nu	Nusselt number (unitless)
oyield	Yield stress (mass/length-time ${ }^{2}$)
P	Dynamic pressure (mass/length-time ${ }^{2}$)
Pr	Prandtl number (unitless)
p	Atmospheric density (mass/length ${ }^{3}$)
p char	Char density (mass/length ${ }^{3}$)
p virgin	Shield density (mass/length ${ }^{3}$)
$p_{\text {oe }}$	Atmospheric density at stagnation point (mass/length ${ }^{3}$)
$q^{\prime \prime}$	Convective heat flux (mass/time ${ }^{3}$)

R	Universal gas constant (length ${ }^{2} /$ time 2-temp)
R_{n}	Nose radius of curvature (length)
Re	Reynolds number (unitless)
r	Base radius (length)
T	Atmospheric temperature (temperature)
t	Aeroshell thickness (length)
t_{ch}	Thickness of the shield char layer (length)
$\mathrm{t}_{\text {shell }}$	Thickness of the aeroshell (length)
$\mathrm{t}_{\text {virgin }}$	Thickness of the untouched shield (length)
μ	Viscosity (mass/length-time)
V	Current velocity (length/time)
$\mathrm{V}_{\text {char }}$	Volume of the char layer (length ${ }^{3}$)
$\mathrm{V}_{\text {shell }}$	Volume of the aeroshell (length ${ }^{3}$)
$\mathrm{V}_{\text {virgin }}$	Volume of the shield (lengt hi)
V_{o}	Entry velocity, 11540 meters per second

Appendix B: Specific Model of a Venusian Atmosphere

Most models of planetary atmospheres use an isothermal constant composition algorithm. This facilitates the creation of a fictitious reference height that makes the calculations of acceleration, velocity, and position very easy. A summary of the relevant equations for this case is shown below (Weisel). An improvement on the model is to remove the isothermal constraint, adding a lapse rate term to the equations of motion. The lapse rate is the change in temperature with respect to the change in height. To keep calculations manageable, the atmosphere is usually divided into sections that have constant lapse rates (Regan). The designer has not settled for either of these approximations. The model upon which the design is based uses given values of pressure, temperature, and density at each altitude, plus correlations for gravity, viscosity, and chemical composition. A section of the spreadsheet model is shown in Figure B. From this data, a more realistic profile for deceleration can be created. Figures Ba-Bd show comparisons between typical plots from the spreadsheet and general plots of expected entry vehicle results. Accuracy could be further improved by allowing angle, mass, and drag coefficient to vary during entry instead of remaining constant. This model can provide accurate profiles for any ballistic entry to a reasonable degree. It is interesting to wonder how this model would fare against trajectory simulation software.

SUMMARY OF DEVELOPED EQUATIONS

Figure B

Shencs 7 know				
WIS \rightarrow Q Bluntaricket Sun May				
	Bluntcricket			May 8, 19
Deceleration	$\text { Bo Column 17 } \quad V^{\wedge} 2$	V		Total
10.000	10113000000.9987870000.0133171600.00	O 11540.000	0.347	0.347
20.000	10108000000.9987870000.0133171600.00	O 11540.000	0.347	0.693
30.000	10104000000.9987870000.0133171600.0	011540.000	0.347	1.040
40.000	10098000000.9987870000 .0133171600 .0	0 11540.000	0.347	1.386
50.000	10093000000.9987870000.0133171600.0	011540.000	0.347	1.733
60.000	10088000000.9987870000.0133171600.0	011540.000	0.347	2.080
70.000	10084000000.9987870000.0133171600.0	011540.000	0.347	2.426
80.000	10080000000.9987870000.0133171600.0	011540.000	0.347	2.773
90.000	10076000000.9987870000 .0133171600 .0	011540.000	0.347	3.120
100.000	10074000000.9987870000.0133171599.0	O 11540.000	0.347	3.466
110.000	10071000000.9987870000.0133171599.0	011540.000	0.347	3.813
120.000	10064000000.9987870000.0133171596.0	011540.000	0.347	4.159
130.000	10055000000.9987870000.0133171586.0	011539.999	0.347	4.506
140.001	10046000000.9987870000.0133171554.00	011539.998	0.347	4.853
150.003	10036000000.9987870000.0133171427.00	011539.993	0.347	5.199
160.013	10027000000.9987870000.0133170874.00	0 11539.968	0.347	5.546
170.083	10039000000.9987870000.0133164247.00	011539.681	0.173	5.719
180.131	10036000000.9987870000.0133160008.00	011539.498	0.173	5.893
190.210	10034000000.9987870000.0133153087.00	011539.198	0.173	6.066
200.324	10032000000.9987870000 .0133142579 .00	011538.743	0.173	6.239
210.506	10030000000.9987870000.0133125818.00	011538.016	0.173	6.413
220.826	10026000000.9987870000.0133099217.00	011536.863	0.173	6.586
231.382	10022000000.9987870000.0133055068.00	011534.950	0.173	6.759
242.287	10019000000.9987870000 .0132981136 .00	011531.745	0.173	6.933
253.926	10015000000.9987870000.0132858021.00	011526.405	0.174	7.106
266.589	10013000000.9987870000.0132647481.00	011517.269	0.174	7.280
2711.394	10009000000.9987870000.0132287368.00	011501.625	0.174	7.454
2819.264	10007000000.9987870000.0131673766.00	011474.919	0.175	7.629
2933.101	10004000000.9987870000.0130615885.00	011428.731	0.176	7.805
3056.572	10001000000.9987870000.0128840012.00	011350.771	0.177	7.982
3195.417	9998726352.09987870000 .0125788863 .00	011215.563	0.180	8.162
32158.802	9996085598.09987870000 .0120737994 .00	00988.084	0.185	8.347
33255.448	9993514464.09987870000 .0112311633 .00	10597.718	0.194	8.541
34348.543	9991360010.09987870000 .099934499 .000	9996.724	0.209	8.750
35436.450	9988948470.09987870000 .083773111 .400	9152.765	0.112	8.863
36466.853	9987678998.09987870000 .074557896 .200	8634.691	0.120	8.983
37484.230	9986352625.09987870000 .064815821 .600	8050.827	0.129	9.112
8498.638	9985034942.09987870000 .054765326 .700	7400.360	0.142	9.254
39495.799	9983708216.09987870000 .044533465 .400	6673.340	0.159	9.413
40465.198	9982317404.09987870000 .034643635 .100	5885.884	0.183	9.596
41409.888	9980846690.09987870000 .025648876 .900	5064.472	0.215	9.811
42347.836	9979539623.09987870000 .017900971 .700	4230.954	0.262	10.073
43268.062	9978029122.09987870000 .011642350 .200	3412.089	0.331	10.404
44192.411	9976668536.09987870000 .06929935 .480	2632.477	0.437	10.841
5121.625	9974945436.09987870000 .03762719 .200	1939.773	0.611	11.453
673.373	9974369662.09987870000 .01774182 .890	1331.985	5.818	17.271
70.789	9967807649.09987870000 .09174 .546	95.784	8.489	25.760
80.189	9966668249.09987870000 .01889 .284	43.466	11.087	36.847
90.024	9965160683.09987870000 .0200 .649	14.165	12.049	48.896
00.002	9963341776.09987870000 .014 .228	3.772	13.040	61.936
10.000	9961552112.09987870000 .00 .639	0.799	14.051	75.986
20.000	9959375786.09987870000 .00 .017	0.132	15.119	91.106
30.000	9957650679.09987870000 .00 .000	0.017	16.318	107.423
40.000	9955889390.09987870000 .00 .000	0.001	17.572	124.995
50.000	9953955595.09987870000 .00 .000	0.000	18.837	143.832
60.000	9951713072.09987870000 .00 .000	0.000	20.066	163.898

For each height listed in the spreadsheet, the values of C_{d}, A, m , angle, $\mathrm{k}, \mathrm{T}, \mathrm{g}, p, \mathrm{~V}_{\mathrm{O}}$, and e are given. There are fifteen parameters, 10 knowns, 5 unknowns, and five equations. This set of equations has a closed form solution. The simple textbook model substitutes in for p :

$$
\begin{aligned}
& \quad \text { is } \\
& \quad p=p_{0}{ }^{*} \exp \left(-\mathrm{H} / \mathrm{H}_{\mathrm{O}}\right)
\end{aligned}
$$

This is the exponential atmosphere equation and is only valid for isothermal constant composition atmospheres.

Figure Ba: Typical entry vehicle plots

Figures $B b$ and $B c$: Plots of designed vehicle parameters
(Compare to a)

Figure Bd: Another plot to compare toßa; Figs $8 b-\hat{8} d$ are similar to those shown in Figure B:

Appendix C: Numerical Justification of Shape and Material Selection

Ptease peruse the tables below for the four different shapes evaluated in this design. Each table is based on calculations for a 250 kg vehicle with the areas and drag coefficients for each shape listed. It was desired to maximize the angle for which a 500 g entry would occur, while simultaneously minimizing the peak heating rate, the total energy transfer, and the total time of entry. From these and other tables, the shape selection was narrowed down to the two highlighted choices. The worst heat shield material candidate properties were plugged into the conductive heat transfer equations to find which shape required less heat shielding. Some sample calculations follow, from which the reader should convince themselves that the best shape is the blunted cone. The second page of calculations documents the selection process of the shield and shell materials. Although there were only a small scope of materials considered, each one of these materials have been candidates for Venus missions before.

$$
\begin{aligned}
& \text { FCONE : } t_{\text {SHIEC }}=8=0 k+1.3 z \mathrm{w} / \mathrm{rr}-k / 1.56 \times 10^{6} \frac{\mathrm{w}}{\mathrm{~m}}=7.0 E \times 10^{-4} \mathrm{~m} \\
& t_{\text {SHELL }}=207 K * 14 \mathrm{~W} / \mathrm{m}-\mathrm{K} / 1.56 \times 10^{6} \frac{\mathrm{w}}{\mathrm{mz}}=1.86 \times 0^{-3} \mathrm{~m} \\
& \text { B-CUNE: } \text { S SHIEN }=800 \mathrm{~K} * 1.38 \mathrm{~W} / \mathrm{m}-\mathrm{K} / 2.23 \times 10^{6} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}=4.95 \times 10^{-4} \mathrm{~m} \\
& t_{\text {SHETL }}=207 K * 14^{\mathrm{W}} / \mathrm{m}-\mathrm{K} / 2.23 \times 10^{6} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}=1.3 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

The concurtures usec here are those of cargon PHENOLC ANC STANLESS STEFZ, RESPECTIVEZy. THE NUMEERS REPRESENT USE OF INFERLOR MAEERIHS THAT WGULD increase the tuickiess requireo.

BEST OF THIS GROUP ARE LOW DENSITY PHENOLIC NYLON AND AVCOAT. BaSEs an and enitions?
AVCOAT: HEAT OF VAPORIZAMON : $5.46 \times 10^{\mathrm{B} \mathrm{kJ} / \mathrm{kg}}$
DENSITY: $529 \mathrm{ks} / \mathrm{m}^{3}$
THERMAL CONDUCTIVITY: $0.242 \mathrm{w} / \mathrm{m}-\mathrm{K}$
LOW DENSITY
PHENOLIC
NYLON : HEAT OF VAPORIZATION: $4.79 \times 10^{3} \mathrm{~kJ} / \mathrm{kg}$
DENSIN : $561 \mathrm{~kg} / \mathrm{m}^{3}$
THERME CONOUCTVITY: $0.106 \mathrm{~kg} / \mathrm{m}^{3}$
LOW CENSITY PHENOLIR NYLON is A RELTTVELY WEW SUBSTANCE AND AVCOAT IS READILY AVAILABLE AT AN ASSUMED LOWER PRICE. SO AVCOAT IS CLOSER TS BE THE HEAT SHIELD MATERIAL. $Z \rightarrow$ Gre? Is caTo DRIVOR? crim tins se built recon?
TWO TYPES OF ALUMINUM ALLOYS, ONE STAINLESS STEEL, ANS ONE TITANIUM ALLOY WERE CONSIDERED FUR AEROSHELL FABRICATION. BOTH ALUMINUM ALLOYS HAL unacceptable thermal conductivities, so the selection PROCESS WIS SIMFLIEIED:

$$
\begin{aligned}
& \text { TITANIUM: DENSiTY }=4400 \mathrm{~kg} / \mathrm{m}^{3} \\
& \text { (6AI-4V) THERMAL EXPANSION }=9 \mathrm{~m} / \mathrm{m}-\mathrm{K} \\
& \text { YIELD STRENGTH }=825 \mathrm{MPa} \\
& \text { THERMAL CONXCTUVTY }=7.86 \mathrm{w} / \mathrm{M}-\mathrm{K}
\end{aligned}
$$

STARLESS STEEL: DENSITY $=7767 \mathrm{~kg} / \mathrm{m}^{3}$

$$
(17-4 P H)
$$

$$
\begin{aligned}
& \text { THERMAL EXPANSION }=15 \mathrm{um} / \mathrm{m}-\mathrm{K} \\
& \text { YIELD STRENGTH }=300 \mathrm{MPa} \\
& \text { THERMAL CONOUCTVITY }=15.3 \mathrm{~W} / \mathrm{m}-\mathrm{K}
\end{aligned}
$$

MATERIAL EFFICIENCY CRIEGUN
STRUT BUCKLING ($E^{1 / 6 / \rho}$)

Titanium
2.4

1. 1
stainless steel
1.8
ittanium is the fest material for the hershel

Appendix D: The Heating Problem geo. The design of the heat shield and aeroshell was influenced by

 the thermal balance. Figure? Shows the simplified version of the problem. A model of one dimensional steady-state heat transfer was used, incorporating the three knowns of desired interior temperature, maximum heating rate, and total convective energy transferred. The surface temperature of the heat shield was estimated based on the melting point of the material. The ratio of charred material to virgin material at any time was haggled oxer, and node temperatures were set based on the established conditions. Plugging in all the above values gave the needed thickness of the heat shield for thermal loading. This value was plugged in to volume calculations to find the mass required. Finally, the calculated mass was checked against the total energy transfer term to see if all the material would be vaporized. A sample calculation follows: per f, cs

Appendix E: The Loading Problem

The design of the aeroshell was affected by the high loadings during descent. A modified approach based on the pressure vessel analogy was used to estimate a suitable thickness. The dynamic pressure was used as the value of the gage pressure in the calculations. A worst case scenario was developed and the thickness solved for. This thickness was compared to the thickness calculated for thermal loading, and the greater of the two values became the final result. A sample calculation follows:

Sample calculation
gross) D 2
assume $t_{\text {VIRGin }}=10 t_{\text {Char }}$

$$
\text { Mas remaining }=\rho \text { chare } V_{\text {char }}+\rho_{\text {virgin }} V_{\text {vicinal }}=
$$

$$
\frac{5.74 \times 10^{-5} 5 \cdot 264.3 \mathrm{ks}}{\mathrm{~m}^{3}}+\frac{1.09 \times 10^{-4} \mathrm{~m}^{3} \mid 528.6 \mathrm{Gg}}{\mathrm{~m}^{3}}=0.073 \mathrm{Kg}
$$

ORIGINs- MASS COULD RE ASSUMED TO GE TWICE THE REMAkING MASS, IN WHICH CASE THE ANIMAL FUG: OF HEAT SHIELD' MATER:K WOULD RE

$$
2 \times 0.073 \mathrm{~kg}=0.146 \mathrm{~kg}
$$

THIS SEEMS LIGHT $\rightarrow C$

$$
\begin{aligned}
& \Rightarrow t_{C H A R}=1.39 \times 10^{-5} \mathrm{~m} \\
& t_{\text {virgin }}=1.39 \times 10^{-4} \mathrm{~m} \\
& V_{C H A R}=V-\left[\frac{2 \pi}{3}\left(r_{D}-t_{C H A R}\right)^{3}+\frac{\pi}{3}\left(R-t_{C H A R}\right)^{2} L-\frac{\pi}{3}\left(r_{0}-t_{C H A R}\right)^{2} \frac{r_{0}}{\tan 45}\right] \\
& =5.74 \times 10^{-5} \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{\pi}{3}\left(r_{0}-t_{c h a r}-t_{\text {vinic }}\right)^{2} \frac{r b}{\text { for } 45}\right] \\
& =1.09 \times 10^{-4} \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& q_{\text {max }}^{\prime \prime}=1.31 \times 10^{6} \mathrm{w} / \mathrm{m}^{2} \\
& E_{I N}=2.78 \times 10^{6} \mathrm{~J} \\
& K_{\text {CHAR }}=0.38 \mathrm{~W} / \mathrm{m}-\mathrm{K} \quad K_{\text {VIRe }}=0.2421 \mathrm{~W} / \mathrm{m}-\mathrm{K} \\
& \rho_{C H A R}=264.3 \mathrm{~kg} / \mathrm{m}^{3} \quad \rho_{\text {VIRe }}=528.6 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

sample calculation
an alternative is to consider the dissipation of THE KINETIC ENERGY OF THE VEHICLE. IF IT IS ASSUMED THAT ALL THE CONVECTVE ENERGY GOES INTO THE SHIELD, THEN THE MASS REQUIRED FOR THE HEAT SHIELO wOULD bE AT LEAST

$$
m=\frac{E_{\text {In }}}{h_{\text {NAP }}}=\frac{2.78 \times 10^{6} \mathrm{~J}}{4.77 \times 10^{7} \frac{\mathrm{~J}}{\mathrm{Kg}}}=0.058 \mathrm{~kg}
$$

HOWEVER, WHEN THE CONECTVE ENERGY IS COMPARED TO THE CHANGE IN KINETIC ENERGY, A DOUBTFUL RESULT OCCURS:

$$
\begin{aligned}
E_{\text {TOT }} & =\frac{1}{2} m V_{0}^{2}-\frac{1}{2} m V_{\xi}^{2}= \\
& \frac{E_{\text {IN }}}{E_{\text {TOT }}}=\frac{2.78 \times 10^{6}}{9.99 \times 10^{9}}=2.78 \times 110^{-4} \text { THIS Is SMALL! }
\end{aligned}
$$

if we are to believe the results, then radiative TRANSFER AVID CONCOCTION MUST ACCOUNT FOR THE REMAINNG 99.99% OF THE TOTAL ENETIOY CHA: GE. THIS IS NOT GOOD IF CONDUCTION IS TO RE MIHINEEA.
IT HAS BEEN SUGGESED TEFL THAT 20% OF THE ITAL VEHICLE MASS CORSET OF A HEAT SHIELd.
san oo nor sariocone any or po
TPL oxcamours id ta ne isieliocrapory.

SO THIS VERN ABLATION WILL HAOLE 14.3% OE -TE incoming energy to the spacecraft, hofe=-w the SKIN TE EHERATIE WILL RE HIGH ENOUGH THAT COMCUTHON WILL RE SMALL THESE LAST V RUES OF MOS WERE THE LARGEST, INC WERE CHOSEN. TR GE TS FINK NAVES FOU THE VEGGIE.

$$
\begin{aligned}
& \text { TOT MASS }=150 \mathrm{~kg} \\
& \text { arrear rosuncucat? } \\
& \text { HEAT SHELl MASS }=30 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{m * \operatorname{Nar}}{E_{\text {oCT }}}=\frac{30 \mathrm{Kg}+4.77 \times 10^{7} \frac{\mathrm{~K}}{\mathrm{E}}}{9.94 \times 10^{9} \mathrm{~J}}=0.143
\end{aligned}
$$

Sample calculation
Dynamic pressure $P=\frac{1}{2} \rho V^{2}$
maximum value of P during descent: 6.71 MPa
stress approximation due to pressure:

$$
\begin{gathered}
\sigma=\frac{P * r}{t} \quad \begin{array}{c}
\text { WHERE } \\
\text { RAMS IS TAKEN TO BE THE BASE } \\
\text { THICKNESS } t \text { IS THE SHELL }
\end{array}
\end{gathered}
$$ THICKNESS

DESIRED MAXIMUM STRESS IS $0.8 \sigma_{\text {VIED }}$
$\sigma_{\text {VIER }} 15$ Ba MPA FOR TTANIUM.

$$
\text { NECESSARY THICKNESS } t=\frac{P * r}{0.8 \sigma_{1 E 00}}=4.37 \times 10^{-3} \mathrm{~m}
$$

maximum temperature gradient across thickness is 207 K
strain caused by the gradient is the change in temperature times the coefficient of thermal expansion:

$$
\frac{207 \mathrm{~K}}{} \left\lvert\, \frac{9 \mathrm{um}}{m-k}=1.86 \times 10^{-3}=\varepsilon\right.
$$

Young's modulus for traniom: $E=110 \mathrm{GPa}$
STRESS DUE TO THERMAL EXPANSION $=E_{\varepsilon}=205 \mathrm{MPa}$
this value is $\sim 25 \%$ of yezo.

 FROM

$$
q^{\prime \prime} \text { MAX }=\frac{-k_{\text {SHEA }}(-207 k)}{t_{\text {SHEL }}} \text { WHERE }
$$

$K_{\text {SHELL }}=7.86 \frac{\mathrm{~W}}{\mathrm{~m}-\mathrm{K}}$ AND $\quad q_{\text {MAX }}^{\prime \prime}=1.31 \times 10^{6} \mathrm{w} / \mathrm{m}^{2}$ THIS THICKNESS $=1.24 \times 10^{-3} \mathrm{~m}$
as with the heat shield, the largest thickness is chosen to ge the final value. The volume ane mass of the shell can be found in a similar fashion.

$$
V_{\text {SHER }}=2.22 \times 10^{-3} \mathrm{~m}^{3} \quad m_{\text {SHER }}=9.8 \mathrm{~kg}
$$

sPhere thickness, mass, and volume concurdians?

THIN-WALLET SPHERICAL FRESSURミ VESSEL

$$
\begin{aligned}
\sigma=\frac{p r}{2 t} & \rho=92 \mathrm{~atm} \times \frac{14.716 \mathrm{in}^{2}}{12 \times \mathrm{m}}=1352.416 / \mathrm{in}^{2} \\
& r=8, \mathrm{in}
\end{aligned}
$$

$$
\sigma=120 \mathrm{ksi}
$$

$$
\begin{aligned}
& t=\frac{p r}{2 \sigma}=.04508 \mathrm{in} \\
& S A F E T, A C-O E=2 \\
& \therefore t=.0901 \mathrm{ir}
\end{aligned}
$$

$$
\begin{aligned}
& V O L U M E(r)=\frac{4}{3} \pi\left(r_{3}^{3}-r^{3}\right) \\
& \qquad V=\frac{4}{3} \pi\left(8^{3}-\left(8^{3}-.09016\right)^{3}\right)=71.7 \text { ir }^{3}
\end{aligned}
$$

MASS $(M)=\rho V$

$$
\rho=.161 \text { (16) } \text { in }^{3}
$$

$$
\begin{aligned}
& M=\left(71.7 \mathrm{in}^{3}\right)\left(.16 / 16 / \mathrm{in}^{3}\right) \\
& M=11.54 \mathrm{ib})(5.234 \mathrm{~kg})
\end{aligned}
$$

MBSS is nor
MGOSuROD 10165
THS CARS Noub REFOR $(\operatorname{sic} \cos$ IN MOIN BOD
TIVIS ossures gi fromel
RFEFETOMT!

Assumptions: 1. Steady-State comitans.
2. Negrigitie ressence to noat evausfer through the outer shell.

Hacel trent
$r_{0}=21.59 \mathrm{~cm} \quad \circ q_{1}$ is heat traisfer $r_{i}=$? from outside to inside $\overline{b o}_{0}=225^{\circ} \mathrm{C} \quad q_{i}$ is heat frousfer from $=498 \mathrm{k} \quad$ inside to out side $\mathrm{T}_{2}=288 \mathrm{~K}$

- Haterial; Aluminum Silica fiber

$$
\begin{aligned}
& k=5.4 \mathrm{w} / \mathrm{m} \cdot \mathrm{k}(0) 400) \\
& w=1.8 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

$q_{1}=q \operatorname{cond} f q \operatorname{con}$ (out side to inside)
 FFre NoT MONLFGR ONDLYSIS?

- 1-D ar 2-D an 3-D?
- Sromoy ar Transiver?
- nocolat rodition?

TVES WAS NGUAR REFARENCAD BY MPID BUYY OF REPONT!

$$
=\frac{T_{\infty_{2}}-T_{\infty}}{(1 / 4 \pi k)\left[\left(/ V_{i}\right)-\left(1 / r_{0}\right)\right]+\left(1 / 4 \pi r_{0}^{2}\right)}
$$

$$
=\frac{(498-288)}{1 / 4 \pi\left(5^{\prime} .4\right)\left(\left(\frac{1}{r_{i}}\right)-\left(\frac{1}{0.216}\right)\right)+\left(\frac{1}{1.84 \pi(0.26)^{2}}\right)}
$$

$$
=\frac{210}{0.0147^{-1}\left(\frac{1}{r_{i}}-4.63\right)+(0.947)}
$$

$$
=\frac{210}{\frac{0.0(4)}{r_{i}}-0.068+0.945}
$$

$$
=\frac{210}{\frac{0.0100}{r_{i}}+0.88}
$$

$q_{2}=h \Delta T A \quad\left\langle\Delta T: 15^{\circ} \mathrm{C}\right.$ is allowable $=1.8\left(15+20_{3}^{3}\right)\left(4 \pi r_{i}^{2}\right)$
$=6514 r_{i}^{2}$$\left\{\begin{array}{l}\text { teruperature. } \\ \text { so. \& fo is based on } \\ \text { teripelature dithence } \\ \text { oto } 15^{\circ} \mathrm{C} .\end{array}\right.$

[^2]

Front View

$$
T=T_{1}=T_{2}=T_{3}=134.6 \mathrm{~N}
$$

$$
\begin{aligned}
F_{\text {set }} & =\left(W_{\text {Gori }}+W_{\text {Meatex }}+W_{\text {cable }}+W_{\text {Patimex }}\right) g \\
& =301.40 \mathrm{~N} \text { G } 68 \mathrm{~km} .
\end{aligned}
$$

$$
\begin{aligned}
T & =F_{\text {net }}-W_{\text {Godea }}+T_{1} \\
& =(3 \% 1.46-325.6)+134.6 \\
& =180.46 \mathrm{~N} \text { for each cable. }
\end{aligned}
$$

NEUAR ROFERENCOD!
$12 \quad<-2$

MODEL OF THERMOCOUPLE DEVICE

MODEL OF THERMOCOUPLE DEVICE

Appendix L	Heat Pipe	14

\square Container section
$L \times W \times H=0.1 \times 0.1 \times 0.1=1 \times 10 \wedge-3 \mathrm{~m} \wedge 3$Insulation section
$L x W x H=0.00085 \mathrm{~m}^{\wedge 3}$

Pipe section
0.03 m -diameter,

NEVER

$$
\begin{aligned}
& M_{\text {water }}=1 \operatorname{leg} \\
& \text { Mcontrine } \overbrace{\text { (1) }}=f_{\text {Alunimen }} \times V_{\mathbb{D}} \\
& \left.=2090 \mathrm{~kg} / \mathrm{m}^{3} \times\left[(0.1)^{3}-(0.098)^{3}\right)\right] \mathrm{m}^{3} \\
& =0.16 \mathrm{~kg}
\end{aligned}
$$

M containeu (3) \& Some as $\left.M_{\text {con } \theta)}\right)=0.16 \mathrm{~kg}$

$$
\begin{aligned}
H \text { contaruser (2) } & =\rho \text { copter } \times V(3) \\
& =8933 \mathrm{~kg} / \mathrm{m}^{3} \times\left[(0.1)^{3}-(0.098)^{3}\right] \mathrm{m}^{3} \\
& =0.52 \mathrm{~kg} .
\end{aligned}
$$

$$
\begin{aligned}
H_{\text {contaimer, toral }} & =M_{\operatorname{con} \theta}+M_{\operatorname{con}(3)}+M \operatorname{con}(3) \\
& =0.16 \mathrm{~kg}+0.52 \mathrm{~kg}+0.16 \mathrm{ig} \\
& =0.84 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
M_{\text {Main Contoiner }}= & \rho_{\text {Aluminum }} \times V_{\text {Maim Cont }} \\
= & 2990 \mathrm{~kg} / \mathrm{m}^{3} \times[(0.15 \times 0.15 \times 0.32]]-[(0.148) \times \\
& (0.148) \times(0.318)] \\
= & 0.65 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
& M_{\text {value }}=0.0 r \mathrm{~kg} \times 3=0.03 \mathrm{~kg} \\
& M \text { therk-couple }=0.001 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{align*}
& =12 \mathrm{k}^{2} / \mathrm{m}^{3} \times 0.00085 \mathrm{~m}^{3} \\
& \text { ROTARENCD! } \tag{NGUR}
\end{align*}
$$

$$
\text { Maize }=P_{\text {aim }} \times V_{\text {pipe }}=0.05 \text { kg }
$$

$$
\left.M_{\text {total }}=M_{\text {water }}+\left(M_{\operatorname{con} \theta}+M \operatorname{con} \theta\right)+M \cos \theta\right)
$$

$$
+M_{\text {rain } c_{\text {con }}}+H_{\text {value }}+M_{t \cdot c}+M_{\text {ins. }}+\text { Write }
$$

$$
=1 \mathrm{~kg}+(0.84 \mathrm{~kg})+0.65 \mathrm{~kg}+0.03 \mathrm{~kg}
$$

$$
+0.001 \mathrm{~kg}+0.0102 \mathrm{~kg}+0.05 \mathrm{~kg}
$$

$$
=2.58 \mathrm{~kg} .
$$

There fore, Total Mas of Heat pipe, gemerater, is 2.58 kg

Appendix M	Balloon dimension	

$$
49
$$

z

亩：

1
3．
มัะ ํx
Nom

* Balloon is released from 4000 km

身名

항

28.2891848257
24.7881473953
19.9473404782
15.6875211978
12.9381274411
18.9
12.9381274411
10.7940890482
9.1705557285

 4.8471124197
4.37252827913 3.97774899806

 2.0963748798
1.83800873777僉會品
 1.09004707874
1.00179264916 0.92543037301
0.85890372459

器

 0.53012138373 0.51533828762

0.49377759616 | K |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| \vdots |
| \vdots | 0.4583829258

0.44015096767 0.42534300618

0.36841657769
0.35880178371
0

Appendix Q

Assume model as External flow over sphere.

$$
\begin{aligned}
& N_{u}=2+\left(.4 \operatorname{Red}^{1 / 2}+.06 \operatorname{Re}_{0}^{2 / 3}\right) \operatorname{Pr}^{.4}\left(\frac{\mu}{\mu}\right)^{-1 / 4} \\
& \text {. val fer } \quad 71<\operatorname{Pr} \leqslant 380 \\
& 35<\operatorname{Re}_{0}<7.6110^{4} \\
& 1.0<\left(\mu / \mu_{5}\right)<3.2 \\
& R_{e}=\frac{V D}{D} \Rightarrow \frac{Y D P}{\mu} \\
& -Y=3.9 \mathrm{~m} / \mathrm{s} \\
& \bar{\nu}=\frac{\mu^{\mu}}{\rho} \\
& P=1.3257 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mu=3.03 \times 10^{-5} \mathrm{~N} \mathrm{~s} / \mathrm{m}^{2} \\
& \operatorname{Re}_{\mathrm{D}}=6525.35 .6
\end{aligned}
$$

$$
\begin{aligned}
& \text { N/4s }=.9 \\
& N_{u}=687.859 \\
& \frac{k}{k}=25.3 \times 10^{-3} \omega / \mathrm{m} k \\
& \bar{h}=4.4 \\
& N_{u}=2+(330.46+465.12)(.8851)(.944)=657.859
\end{aligned}
$$

PHASE TRANSITIONS

Clausius - Clapeyron Equation (2 point form)

$$
\log \left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)=\left(\Delta \mathrm{H}_{\mathrm{vap}} / 2.303 \mathrm{R}\right)\left[\left(1 / \mathrm{T}_{1}\right)-\left(1 / \mathrm{T}_{2}\right)\right]
$$

This equation relates temperature and pressure with the heat of vaporization. We can use values of pressure and temperature off the Van't Hoff plot for a specific chemical. Units of $\Delta \mathrm{H}_{\text {vap }}-->\mathrm{kJ} / \mathrm{mol}$ The heat needed for the vaporization of a liquid is called the heat of vaporization (or enthalpy of vaporization)

HEAT CAPACITY

Heat Capacity, C , is the quantity of heat needed to raise the temperature of the sample of the substance one degree C.

$$
\mathrm{q}=\mathrm{C} * \Delta \mathrm{~T}
$$

where $T=T_{f}-T_{i}$ and the units of C are Joule $/{ }^{\circ} \mathrm{C}$

SPECIFIC HEAT

The specific heat of a substance is the quantity of heat required to raise the temperature of one gram of that substance by one degree C.

$$
\mathrm{q}=\text { sp.ht. }{ }^{*} \text { mass } * \Delta \mathrm{~T}
$$

where $\mathrm{T}=\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}$ and the units of sp.ht. are Joule/ gram ${ }^{\circ} \mathrm{C}$

CRITICAL TEMPERATURE AND PRESSURE

The temperature above which the liquid state of a substance no longer exists is called the critical temperature. The vapor pressure at the critical temperature is called the critical pressure. It is the minimum pressure that must be applied to a gas at the critical temperature to liquefy it

APPENDIX S

$$
\text { Properties of Methylene Chloride }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

Taken from: CRC Handbook of Chemistry and Physics 67th Edition

Pg C349 No. 9060
Molecular weight 84.93
Boiling Point $40{ }^{\circ} \mathrm{C}$
Melting Point -95.1 ${ }^{\circ} \mathrm{C}$
Density 1.3266
Pg C671 Heat of Vaporization $\Delta \mathrm{Hv}=7572.3$ gram calories/gram mole (To convert to Joule/gram mole, multiply listed by 4.184)

Pg C716 Limits of Superheat of pure liquids

$$
\begin{aligned}
\mathrm{P} & =0.101 \mathrm{MPa} \\
\mathrm{~T} & =394.8 \mathrm{~K}
\end{aligned}
$$

Pg E4 Thermal Conductivity $\mathrm{k}=0.0002908$

$$
\left[t\left({ }^{\circ} \mathrm{C}\right)=0, t(\mathrm{OF})=32\right]
$$

Pg F63 Critical Temperatures and Pressures Critical Temperature $\mathrm{Tc}\left({ }^{\circ} \mathrm{C}\right) 273$ Critical Pressure Pc (atm) 60

Pg D59 Selected Values of Chemical Thermodynamic Properties

	0 K		298.15 K	$250^{\circ} \mathrm{C}$		
State	$\Delta \mathrm{Hf}$	$\Delta \mathrm{Hf}$	$\Delta \mathrm{Gf}$	$\mathrm{H}_{298^{-}}$ H_{0}	S	Cp
Liquid	-------	-29.03	-16.09	-----	42.5	23.9
Gas	-20.462	-22.10	-15.75	2.830	64.56	12.18
	Kcal $/$ mol		$\mathrm{Kcal} /$ mol		$\mathrm{cal} / \mathrm{deg}$ m	

APPENDIX T

The Energy Needed to heat the liquid
$E=\Delta T$ (heat capacity) $\Delta T=33$ degrees (this is modified from the original calculations)

$$
\text { heat capacity }=99997.6 \mathrm{~J} / \mathrm{deg}
$$

$$
E=3299920.8 \mathrm{~J}
$$

To change from liquid to a gas.

$$
\begin{aligned}
E & =(\text { heat of vaporization })(\text { number of mokes }) \\
& =(31682 . \mathrm{J} / \mathrm{Jal})(200 \mathrm{mal}) \\
& =6336500 \mathrm{~J}
\end{aligned}
$$

Total Energy Needed 9636420.8 J
Heat recieved
Conduction 201.5 W
Radiation 56.3 w
Convection $\frac{1080.85 \mathrm{w}}{1338.65 \mathrm{\omega}} \Rightarrow 1338.65 \mathrm{~J} / \mathrm{s}$
*
The time required to provide the needed energy is

$$
\frac{9636400.8}{1335.65}=7195.655 \rightarrow 1.9996 \text { hrs. }
$$

Appendix U
VAN'T HOFF PLOTS FOR REVERSIBLE FLUIDS
PRESSURE (ATM)

Appendix V

Volume Required

We have ace inches of Methylene Chloride

$$
\text { Imus }=84.93_{\mathrm{J}}+200 \text { mole }=16.984 \mathrm{~kg}
$$

(12) knew the specific gravity is 1.3266

$$
\begin{aligned}
& S G=\frac{P_{\text {Heinchl }}}{P_{\text {Liter }}} \rightarrow P_{\text {meth }} \text { Ch }=13.014 \mathrm{kN} / \mathrm{m}^{3} \\
& \text { Voluine }=\frac{\text { max amity }}{\text { den } \approx t_{7}}=\frac{(6.986 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{13014 \mathrm{~N} / \mathrm{m}^{3}}=.0128 \mathrm{~m}^{3}
\end{aligned}
$$

This the Volume of the Methylene Chloride in liquid form. When wis heat the ligwit the gas will expand requiring a larger volume.

$$
\text { Volume } \equiv \pi r^{2} \mathrm{~h} \quad \text { (Conversion } \operatorname{lin}^{3} \equiv 1.639 \times 10^{-5} \mathrm{~m}^{3} \text {) }
$$

radius $(n) \quad 3 \quad 4.5$

length $($ in $)$	27.6	1554	12.22
volume $\left(\right.$ in $\left.^{3}\right)$	780.37	$781 / 3$	780.58

We jas that a 45 in radius is short enough to fol inside. of the entry vehicle (lEngth of $13,1 \dot{y}$ in)

Next to calculate the stresses and thickness of the walls.

Dimension 5

$$
\begin{array}{ll}
\text { rage }=.1143 \mathrm{~m} \quad \text { Area }=2 \pi r h=.2239 \mathrm{~m}^{2} \\
\text { leigh } & =-3117 \mathrm{~m} \quad \text { Volume }=\pi_{1} r^{2} h=.0128 \mathrm{~m}^{3}
\end{array}
$$

Appendix W

Stresses
hoop stress: $\bar{v}_{1}=\frac{p r}{t}$
...longitanal $\begin{aligned} T_{z} & =\frac{p r}{2 t}\end{aligned}$
Shear $\tau_{\max }=\sigma_{2}$

Where p denotes the gage pressure of the fluid, e the excess of the inside pressure over the outside atmospheric pressure.
r is the radius
t is the thickness

We are looking at aluminum with a. yield stress of. . 4l6 Mia.

The hoop stress is critical.
The presivie at $48 \mathrm{~km}=1.3 \mathrm{~atm}=131690 \mathrm{~N} / \mathrm{m}^{2}$
.. If all the ligure vecomes vapor we can use the ideal gas
law $P V=\cap R T \ldots$ (pressure volume = no. moles . gas (inst - temperature)

$$
P=\frac{n R T}{V}=\frac{(200 \text { moles })\left(8.314 \mathrm{~m}^{3} \mathrm{~Pa} / \mathrm{k} \text { mole }\right)(373 \mathrm{k})}{\left(.0128 \mathrm{~m}^{3}\right)}
$$

$$
=48455031.25 P_{n}
$$

. The gage pressure is 48323341.25 Pa
. Now optimize the thickness and the stress. non smews!

σ_{1}	200×10^{6}	300×10^{6}	400×10^{6}
$t(m)$.0276	.0184	.0138
$t(n)$	1	.72	.543

author Dean Trommel 572055 f shan?

ONGNAL PACE : Gr MOOR guILTY

IF sworn BE Nicuob刀, B uric coup los witt posswere sheasser.

Appendix X

Weight of Heat Exchanger

$$
\begin{aligned}
\text { Surface Area }=2 \pi r h
\end{aligned} r \begin{aligned}
r & =\text { radius }
\end{aligned}=.1143 \mathrm{~m} .
$$

For Here conditions, the weight is 8.5 kg

If the thickness is changect to 0.0184 m then the new weight would be 11.409 kg
cur curs DLGenlian pleicon.?

Sour monetize ans nostoc justíloo!
\qquad

Appendix Y
\qquad Frise unvont piekap o moroxiel, bow cen you trove o K your?
\qquad
\qquad
\qquad

Appendix Z

Radiation

$$
\begin{aligned}
& q=A\left(\alpha_{s} G_{s}+\alpha_{s k y} G_{s k y}-E\right) \quad \alpha=\text { solar absorptivity } \\
& q=A\left(\alpha_{s} G_{s}+\varepsilon \sigma T_{s k y}^{4}-\varepsilon T T_{s}^{4}\right) . \quad \varepsilon=\text { emissivity } \\
& A=\text { Ares } \\
& \alpha_{s} G_{s}=18.48 \mathrm{w} / \mathrm{m}^{2} \quad G_{s}=\text { Solar Flux } \\
& \varepsilon \tau\left(T_{s k y}^{4}-T_{s}^{4}\right)=233.02 \mathrm{\omega} / \mathrm{m}^{2} \quad T_{s}=\text { Temp of surface } \\
& T_{s k y}=\text { Temp of atmosphere } \\
& \text { Material : Aluminum (anodized) } \\
& \alpha=.14 \\
& \varepsilon=.84 \\
& T_{\text {sky }}=93^{\circ} \mathrm{C} \rightarrow 366 \mathrm{~K} \\
& T_{s}=65^{\circ} \mathrm{C} \rightarrow 338 \mathrm{~K} \\
& T=5.67 \times 10^{-8} \omega / m^{2} k^{4} \\
& A=.2239 \mathrm{~m}^{2} \\
& G_{s}=132 \text { W } / \mathrm{m}^{2}
\end{aligned}
$$

Solar Flux at Venus $2600 \mathrm{w} / \mathrm{m}^{2} \leftarrow G 000$. Absorbed solar flux $132 \mathrm{w} / \mathrm{m}^{2}$

Appendix AA

Forced Convection
Modeled as a cylinder- in cross flow

$$
\begin{aligned}
& R_{e_{D}}=\frac{V D}{V} \\
& N_{u}=C \operatorname{Re}^{m} P_{r}^{1 / 3} \\
& h=\frac{N_{u} k}{D} \\
& q=h A\left(T_{a}-T_{s}\right)
\end{aligned}
$$

Constants

$R_{e_{D}}$	c	m
$.4-4$.989	.33
$4-40$.911	.385
$40-4000$.683	.466
400.40000	.193	.618
$400: 40000$.027	8.3

$V=$ Velocity of Wind D - Diameter of tube . $\nu=V_{i s c o s t y, ~ K i n e m a t i c ~}^{\text {in }}$
$R_{e_{D}}=$ Reynolds number
$N_{u}=$ Nusselt number
Pr = Prandtl number
h = Convective heat transfer coefficient
$K=$ thermal conductivity
$A=$ Area
Ta $=$ Temperature of Atmosphere
$T_{s}=$ Temperature of Surface
C, $m=$ Constants
$V=50 \mathrm{~m} / \mathrm{s}$
$\nu=14.3 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
$D=.2286 \mathrm{~m}$
$R_{c_{0}}=799300.7$
$C=.027$
$m=.8 .05$
$\operatorname{Pr}=.737$
$\mathrm{Nu}=13.76 .5$
$k=\omega / \mathrm{m}^{2} 24.3 \times 10^{-3}$
$h=\omega / m^{2} k \quad 146.35$
$A=.2038 \mathrm{~m}^{2}$
$T_{\infty}=366 \mathrm{~K}$
$T s=338 \mathrm{~K}$

$$
q=1080.55 \mathrm{~W}
$$

$$
\begin{aligned}
& \text { The Winds on VENUS } \\
&(\text { HORIZONTAL }
\end{aligned}
$$

Westward Zonal Winds (m / s)

Appendix $A C$

Free Convection
Inside of Heat Exchanger, modeled as isothermal vertical plate in laminar flow.

$$
\begin{aligned}
& G_{r}=\frac{g \beta\left(T_{s}-T_{\infty}\right) l^{3}}{\nu^{2}} \\
& G r=G r a s h o f ~ N u m b e r ~ \\
& B \equiv \text { Volumetrs thermal expansion } \\
& \text { coefficient } \\
& \beta=\frac{1}{T} \\
& \text { Is = Temperature at Surface } \\
& T_{a}=\text { Temperature of gas } \\
& L=\text { length } \\
& \nu=\text { viscosity } \\
& \text { Ra }=\text { Rayleigh Number } \\
& \operatorname{Pr}=\operatorname{PrandH} \text { Number } \\
& \mathrm{Nu}=\mathrm{Nu} \\
& g\left(P_{r}\right)=.75 P_{r}^{1 / 2} \\
& \left.-6609+1.231 P_{r}^{1 / 2}+1.238 \operatorname{Pr}\right)^{1 / 4}
\end{aligned}
$$

DIfficulties in finding this because of two factors.

1) Lack of information about the properties of methylens chloride.
2) The methylene chloride will boil inside the heat Exchanger.

Nor $\left.-\cdots \quad \sigma_{1}\right]\left(C_{s}\left(h_{r g}\right) P_{R}^{n}\right)$ Could not find information on saturated liquid and vapor states.

[^0]: thistle goenneng rede of fail us?

[^1]: We believe thatour investigation and design as it is defined will provide an added source of literature to the Venus balloon concept. Our preliminary study will lay the ground work to further refinement of the trajectory model. We recommend that actual heat transfer experiment be conducted and results compared against those generated by computer simulation.

[^2]: * Assupmtion: no information, The numbers were determined from the Viking lander.

