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ABSTRACT

The goal of this project was to perform a preliminary design of a long term, reusable

transportation system between Earth and Mars which would be capable of providing

both artificial gravity and shelter from solar flare radiation. The heart of this system

was assumed to be a Cycler spacecraft propelled by an ion propulsion system. The

crew transfer vehicle was designed to be propelled by a nuclear-thermal propulsion

system. Several Mars transportation system architecturs and their associated space

vehicles were designed.



Section 1: Orbital Mechanics

Introduction: Goals

Various types of Cycler orbits to Mars were investigated for this project. Some of

the primary goals include: (1) more frequent encounters between Mars and Earth, (2)

small delta V angles, at Earth and M,'u-s approach, (3) short length of stay time on the

'Cycler, and (4) easy predictability of the position of the Cycler. An initial suggestion of

placing a Cycler in an orbit that would rotate along with the motion of Mars and Earth

was investigated. Other suggestions included: three Cyclers in three different VISIT

orbits at various positions between Earth and Mars, and a rotation of one Cycler, in a

VISIT orbit, with respect to the inertia frame of the Sun and the planets.

The Up/Down Escalator orbit was ruled out because the delta V was too large for

the Taxi to maneuver comfortably. The Cycler would have to travel far out past Mars to

be able to encounter the next Mars pass on its down escalator. This long distance would

require long periods on the Cycler.

After all the options were investigated, the best choice seemed to be the

configuration with three VISIT-like orbits in space at an angle of 130.degrees away from

the zero degree VISIT orbit

Options:

Keeping the objectives in perspective, the three approaches were examined.

Although the option of placing one Cycler in orbit with a rotation to meet the planets

seemed to be optimal, there were drawbacks to this selection. The fuel requirement to

rotate the Cycler for it to meet the planets at each window of opportunity was to be about

80% to 85% of the weight of the Cycler. Another drawback to this idea was that the
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motion of the Cycler had to be monitoredconstantlysinceit was not traveling at a

predictablepath. For a fifteen-yearmission, the cost would becomeimmense. The

motionof the Cyclerwould haveto becalculatedout in advancein order for the correct

encountersto occur. If anerroremerged,theproblemwouldpropagateto futuretripson

the Cycler. Above all, therewould needto be a constantmonitor of the motion and

positionof theCycleraswell astheplanets.

A solution to the predictability problem was to have a Cycler orbit on a preset

orbit around the planets. The plane which contained Earth and Mars with the sun as the

center was used as the orbit plane. Since the relative position between Earth and Mars

repeats every 2.143 years, the Cycler orbit was separated into seven equally angled

rotations around the sun. The orbit's major axis was 51.429 degrees away from each

other, thus covering the entire range with seven passes. Starting at the Earth, the Cycler

would travel in a VISIT 1 orbit to Mars, then, upon returning to Earth's vicinity, the

Cycler would perform a delta V with Earth's gravity assist. The delta V would get the

Cycler into an orbit that was 51.429 degrees away. This new orbit would have a longer

period and different orbital parameters. Table 1 shows the various parameters

corresponding to the position of the Cycler and the velocity differences between the

planets and the Cycler at the encounter points.

An argument against using this method of approach to Mars was that the Cycler

would be rotating for long periods of time without an encounter between either planets.

There would be periods of more than ten years before the Cycler met up with Mars and

be able to return to Earth. In conjunction to this argument, the fuel requirement for the

constant rotation would be on the order of about that of the first proposal. The crew

would spend most of its time on the Cycler instead of on Mars as the project proposed. A

longer period in space would constitute to a larger supply of food and fuel as well as more

recreational activities and living space. With these arguments, it can be deducted that a

mission of this magnitude would be practically impossible.
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Therefore,a missionconsistingof three Cyclers in orbits of 130 degrees away

from the zero degree VISIT orbit from Earth to Mars' perihelion was considered to be the

most optimal choice. Figure 1 shows the orbit configurations of the three Cyclers. And

Table 2 shows the orbital parameters of these Cyclers. As can be seen, the delta V's

between the Cycler and Mars are relatively small, translating to a small amount of fuel

needed by the Taxi to get to Mars from the Cyclers since Mars is traveling at a faster rate

than the Cyclers. Since the small delta V's are accomplished for relatively short amounts

of time, the crew should not be too unco_rffortable when entering the planets' atmosphere.

At encounters with Earth, the delta V's are a bit higher but the difference is not as

significant as seen for Earth has a higher gravitational pull.

Table 3 lists the length of each part of the mission. In the eighteen year projection,

three complete trips can be predicted. At an initial position where Earth and Mars are 135

degrees apart, the first Taxi should be on the Cycler , travelling to Mars on the zero

degree Cycler. It takes 0.442 years to reach Mars. Once on Mars, the crew would stay

on the planet for 4.30 years and then return to Earth within 0.669 years. This mission

would have a total travel time of 5.41 years. Then the next window of opportunity to go

to Mars would be 4.75 years after the initial launch off of the first mission. This time, it

would take a total of 3.70 years to reach Mars and the crew would be able to stay on Mars

for 2.49 years. The quickest return trip would take 0.543 years. The total mission time

would be 6.73 years. The last crew would leave 14.89 years after the initial mission and

travel for 0.658 years and stay on Mars for 1.36 years. After which, it would take 0.838

years to return to Earth. This shortest mission would be 2.856 years. Although there may

appear to be more opportunities for a crew to travel between Earth and Mars, the planets'

position must be taken into consideration. The graph shows the relative position in

relation to the sun but upon careful examination, Earth must meet the Cyclers at

appropriate intersections and the Taxi must perform small delta V's to make up for the

small angle change.



Of course,the time it takesthe Taxi to Ihrust from the planetsto the Cycler is

considerednegligiblesinceit will only takeaboutoneday to thrustinto a hyperbolicorbit

to captureinto theplanets'gravitationalpull. And since a hyperbolic flyby is used, the

change in direction for the Taxi to travel is small. With the two orbits in almost parallel

positions, the Taxi only needs to make a small adjustment once it leaves the Cycler to

meet Mars.

Analysis: The Combination VISIT Orbit

Once the configuration of the orbits was determined, calculations had to be made.

Taking into consideration the sphere of influence on both planets, the zero degree VISIT

orbit was calculated to have a aphelion distance from the sun, (one of the orbit's focus) of

2.072E+8 km. Since the distance from the sun to Earth is considered to be close to 1 AU

after the consideration of the sphere of influence, the perihelion is about 1.4055E+8 km.

Knowing these two distances of an ellipse, an eccentricity of 0.19157 can be determined.

Having a constant gravitational constant of 1.32712E+l 1 km^3/sec^2 around the sun, the

velocity at any point of the orbit can be determined with the knowledge of the position and

semimajor axis. Then the magnitude of the velocity difference can be found by comparing

the velocity of the Cycler and Mars. Applying this to the hyperbolic velocity calculation, a

true delta V canbe found. With this basis, the delta V between Earth and the Cycler can

also be determined.

Knowing all the necessary parameters, a position graph can be plotted, as in Fig. 2.

Where the paths of the Cycler and the planets meet are the points of connection between

the two bodies. Theoretically, there are more points of connection but the position of the

planets must be taken into consideration. Examining the graph, there are three complete

missions that are possible. Table 3 lists the duration of each leg.
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With all the parametersavailable,the delta V's of the Taxi maneuverscan be

calculated.As shownin Table2, thedeltaV's for eachCyclerasit meetsMars isbetween

5.27and6.32. With Earth,thedeltaV's arelarger:between9.49and10.46. Thesedelta

V's havetakenthe hyperboliccaptureinto considerationsincethen-fissionwill consistof

captureinto the planets'atmosphereby meansof a hyperbolicfly-by. The Cyclerswill

meetMars' orbit beforeMarsarrivesat thatpositionandlaunchtheTaxi. At that point,

theTaxi performsadeltaV thrustintoMarscaptureorbit. Figure3 showsthismaneuver.

Thesameprincipleappliesto thecaptureintoEarlh.

Thethrustrequiredto accomplishthesemaneuverswould belessthanthe engines

areableto perform therefore,the maneuversarepossible. The largestthrust neededon

theTaxi is 5.639E+5Nbut theenginesareableto performthrustsof up to 6.98E+5N.

From Earth'sLow Earth Orbit, LEO, the Cycler would needto spiralout to its

final zerothrustorbit bynearlycircularorbitsaroundEarth. For this spiralmaneuver,the

Cyclerwould need98.4N of thrust andtheenginesareableto supplya thrust of 150N,

thereforethemissionis saved.Figure4 showstheCycler'sspiralmaneuver.

Havingcalculatedthe parametersfor the first Cyclerorbit, the other two Cycler

orbits' parametersarecalculatedusingthe sameequations(givenin the appendix). The

numbertwo Cycleris rotatedby 130degreescounter-clockwise,while the numberthree

Cycleris rotated230 degreesclockwise. SinceMars hasanellipticalorbit, the aphelion

andthe semi-majoraxisaredifferentthanthatof theVISIT orbit at zerodegrees.Taking

thatintoconsideration,theparametersfor thesetwo orbitsarealsogivenin Table2.



Conclusion:

With thisconfigurationof orbits,optimalconditionsareaccomplished.With three

Cyclers, the number of completemissions increaseand the length of the trips are

shortened.Sincetheorbitsmeetnearlytangentiallyto theplanets'orbits, theamountof

fuel requiredto perform the deltaV's areloweredand thechangeof anglebetweenthe

two orbits are lessened.Thesecircumstancesmeet the criteria of the project. For an

eighteenyearprojectionof themission,threetripscanbeobtained,thusjustifyingthecost

andtimeof theentireproject.
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Appendix:

To calculate the orbital parameters, simple orbital mechanics equations were used.

Having the equation of an ellipse:

a(1-e 2)
r-

1 + ecosv

the velocity can be determined by

Calculating the sphere of influence for both planets by using:
2

r = R(m/M)_

and using the Earth's distance from the sun, 1AU, minus the sphere of influence to be the

perihelion of the Cycler orbit, the eccentricity can be determined. Since the perihelion rp

and aphelion ra for the orbits are known, the eccentricity is:

r, -- Tp

r I + Tp

and the semimajor axis is:

r I ar rp

a- 2

Applying the same velocity equation as above, the velocity of the Cycler is calculated.

Then using the equations for a hyperbolic trajectory, the velocity of the Cycler as it

passes the planets is:

_: va. + -_"p - •

To graph the positions of the planets and the Cyclers the radial distance of an

ellipse is used. The positions:

r = a(1- ecosE)
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where

e + cos v
cos E -

1+ e cosy

The time for the objects to reach a specific position is calculated as:

E - esinE
t=

n

where n is defined to be the mean anomaly of the orbit. And is calculated by

To calculate for the thrust,

where:

T _

/ / ,,

m = initial mass of the vehicle r = radius

g = standard gravity. t = time of travel

Isp = specific impulse

}.t= gravitational parameter.
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Table 2: iOrbital Parameters

E Mars

I ANGLE

!ANGLE PAD

0

0

ICycler

0.0000

!R POSITION 2.0663E+08

!a 2.2792E+08

VELOCITY 26.4995

PERIOD (YR) 1.253

TIME IN SEC 3.9536E+07

Ia

2.0716E+08

! 2

130 ! 230

2.26891 4.0143

2.4036E+08 ! 24036E+08

2.2792E+08! 2.2792E+08

22.8474! 22.8474

1.4391 1.439

4.5425E+07i 4.5425E+07
J

2.4088E+08'_ 2.4088E+08Ra

R p 1.4055E+08 1.4055E+08! 1.4055E+08
e 1.9157E-01 2.6304E-011 2.6304E-01

1.7385E +08 1.9071 E+08

1.5892E-07

VELOCITY

DELTA V

Earth vel of cycler
vel of earth

22.7575

6.3152

33.5428

1.9071 E+08

1.3832 E-07 lI 1.3832 E -07
20.1500;

5.2707

29.7844

Hyperbolic vel peri 35.9883 33.3028
delta v 9.4889 10.4554

mars

earth
sphere of influence

Table 3: Length of Legs of Mission

Trip
1

5.2305E+05

9.2459E+05

From Earth to Mar=

0.422 yrs

3.70 yrs

Stay on Mars

4.30 yrs

2.49 yrs2

20.1500

5.2707

34.5341

33.3028

10.4554

From Mars to Earth

0.669 yrs

0.543 yrs

0.838 yrs3 0.658 yrs 1.36 yrs
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Section 2: Cycler Design

In order for our proposed cycler project to run smoothly, there are a few projects

that are prerequisites to the launching of our cycler. First, there must be an Earth orbiting

space station. This is necessary as a base of operations for cycler construction and it would

also be the rendezvous spot for the taxi between the cycler and Earth. It is assumed that the

outbound astronauts would be transferred to the space station from a conventional shuttle

and would be taken from the space station to the cycler ship by way of the taxi. Upon

return to Earth, the astronauts would be transferred to the space station by the taxi and

would return to Earth inside a shuttle. The second critical project is an established base on

the surface of Mars. Our envisioned cycler project assumes that there have been previous

manned missions to Mars which have created habitats on the surface of Mars as well as a

landing / launch pad for the cycler's taxi. Third, a hydrogen electrolysis plant on Phobos is

needed to produce the hydrogen that is used by the taxi. The amount of fuel required by

the taxi is so large that our proposed taxi can only hold enough fuel to get to Mars and

needs to be refueled to get back to the cycler. This creates our last necessity, a fuel ship to

transfer fuel from the electrolysis plant to the Mars orbiting first stage of the taxi.

The Mars Cycler is designed to transport sixteen crew members to Mars. The

overall configuration is shown in perspective in Fig. 2-1. Figure 2-2 shows the front view

of the cycler. The sixteen crew members are divided into two groups of eight and each

group has its own crew module as shown in the figure. These crew modules are placed at

a distance at opposite sides of the central cycler. When spinning, the cycler provides

artificial gravity in the crew modules equal to 3/10 the force of gravity on Earth. The rate

of rotation as well as the distance from each crew module to the central axis were computed

as follows:

2-1



IN



_0

_...Q

iiIuU

2-3



The coriolis acceleration < 10% of artificial gravity

v, = 0.50m Is

coriolis = 2 oJv, = _o

_o -: 0.2943tad / s

a

r = _° z =_ oJ = 2.32rpm

r f 50m

a ,= 0.30g

Artificial gravity is deemed necessary because of the long times spent traveling in

the cycler spacecraft. NASA studies have shown the detrimental effects of prolonged

weightlessness including bone decalcification and muscle atrophy. It was assumed that an

artificial gravity of 0.3 g would be adequate so that the astronauts would be able to function

upon arrival at Mars.

The bulk of the Cycler's mass is positioned on the central axis. This creates the

smallest moment of inertia which in turn allows for the least amount of propellant required

to spin and despin the Cycler. The Cycler must be despun for docking and releasing the

taxi. Small reaction control jets are positioned at the ends of each crew module. When

fired, these jets produce a couple that spins or despins the Cycler. The distance between

the thrusters (108 m) combined with the small rotation rates needed (2.38 rpm) makes these

small reaction control jets feasible as a means for spinning or despinning the Cycler.

Connecting each crew module to the hub are permanent tunnels. Originally

collapsible tunnels were envisioned that would stay out of the way for most of the journey

but permanent tunnels seemed more practical. The permanent tunnels are less likely to

suffer failure as the are not moving pieces. The amount of travel between the crew

modules and the greenhouse / storage module would have made waiting for the extension
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of the collapsible tunnel unbearable. Micro-meteorites also posed a serious threat to the

collapsible tunnels. The penalty of extra weight is acceptable for the trade off of greater

ease of use,

The tunnels join in the center of the spacecraft at the hub. The hub is the central

joint of the cycler and is where the taxi docks with cycler as shown in Fig. 2-3. The nose

of the taxi is actually a retractable shroud that protects the docking mechanism of the taxi.

When nearing the cycler, this shroud is collapsed exposing the docking tunnel and allows

the taxi to couple with the Cycler.

Adjacent to the hub is the storm shelter. Solar periodic events create huge radiation

levels. Without a storm shelter, the astronauts would have inadequate protection to survive

these events unscathed. The storm shelter was designed to accommodate all sixteen crew

members and to provide protection for the astronauts such that each astronaut receives no

more than 50 reins. The solar periodic events are normally short lived so the astronauts'

accommodations are quite sparse. As shown in Fig. 2-4, the storm shelter is two tiered.

The astronauts are seated in semi-reclined chairs so that they can either sleep or do work.

The height of each level does not allow for the astronauts to stand so they are assumed to

be seated for the duration of the storm. Aluminum shielding was chosen over water and

liquid hydrogen shielding mainly due to the ease of construction and maintenance. With no

moving fluid, mechanical failure of the shielding will not occur. The thickness of the

storm shelter was sized using information from NASA report 1257 and the data is listed in

figure 2-5.
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Fig. 2-5

Dose equivalents for large Solar Periodic Events

Tables 11.25 and 11.27 (NASA RP. 1257, Transport Methods and Interaction for Space

Radiation)

Skin

Ocular Lens

BFO

Aluminum shield

thickness,

g/sq. cm.

2

20

2

20

2

20

Dose equivalent

(Sv)
8/72 SPE

i ,

] 1.30

0.18

9.09

0.17

1.24

0.O7

Dose equivalent

(Sv)
8/72 and 2/56

SPEs combined

14.2

0.43

11.3

0.43

1.64

0.31

This table compares radiation levels in 3 organs using 2 or 20 grams per square

centimeter aluminum. The August 1972 solar periodic event was the largest ever recorded

while the February 1956 event contained the most harmful spectrum to date. The final

column shows the expected radiation level of a solar event with the duration and intensity

of the 1972 event combined with the harmful spectrum of the 1956 event. From this table

it is seen that the highest levels of radiation occur in the skin while the blood fluid organs

(BFO's) suffer the least amount of radiation. Using 20 grams per square centimeter

aluminum provides protection sothat 43 rems is the largest dose an astronaut could expect

to see. Therefore, 20 grams per square centimeter was chosen. This is equivalent to 7A
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cm thick aluminum. As designed, the storm shelter requires 760,000 square cm of

aluminum. This equates to 15,000 kg!

Each crew module is divided into two levels with the upper level as the communal

level while the lower level is the residential level. (See figures 2-6 and 2-7) Included on

the communal level are the exercise area and the infirmary. At least two doctors per crew

are part of the mission and with such long missions, a dedicated sickbay is necessary.

Each crew member receives his/her own room. Each room is 2 meters by 3 meters and

contain a bed and a desk. The astronauts can retire to the privacy of their own rooms

where the decor can be customized to satisfy the individual astronaut. A typical crew

quarter is shown in figure 2-8. This room just shows the basic configuration without any

personalized effects. Storage for the crews personal belongings is provided both in each

crew quarter as well as in large storage areas in the center of the residential level.

The greenhouse / storage module above the hub as shown in figure 2-2 contains

space for zero gravity experimentation, food storage and life support reclamation systems.

The water in the cycler is fully recycled as illustrated in figure 2-9. Potable water is stored

in 4 tanks that distribute the water to the various areas on the cycler. Waste water from the

toilets is pretreated with waste products removed before joining with the gray water from

sinks and showers in the hygiene water reclamation system. The hygiene water

reclamation system contains various filtration schemes. First comes a chemical treatment

and then the water passes through a charcoal filtering medium. Wet/dry trickle filters

provide biological filtration using aerobic bacteria to breakdown harmful nitrates and

nitrites. Venturi protein skimmers are utilized to bubble out proteins. Waldman's dark

green lettuce (Lactuca Stavia L. Var. Crispa L.) is used as both a water purifier and a

source of food. Studies were done on this lettuce by Ricardo Jacquez and Michael

Montoya which showed the feasibility of the lettuce as a food source that could also clean

water (See Proceedings of Space _L4, Vol. 2). The water would then be run through a UV



Water Reclamation System

Potable Water Tanks
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sterilizer to kill any living particles and would be run through an algae scrubber and a

reverse osmosis filter. Following this, the water would be tested and either be rejected and

sent back to the hygiene water reclamation system or have nutrients replaced and returned

to the potable water tanks. Along with the water reclamation system will be a green house

where some of the astronauts food will be grown under a combination of fluorescent,

actinic and halogen bulbs to recreate the spectrum of the sun. This greenhouse would aid

the oxygen reclamation system.

Communication to and from the cycler is accomplished using the communication

array which is located on the cycler's main axis and is despun. Rings and brushes on the

coupling are used to transfer information form the spinning cycler to the despun

communications array.

The ion propulsion engines are fueled by argon and there are 60 of the 165 kg, .85

meter diameter engines. Each engine produces 4.4 N of thrust. The high specific impulse

of the ion engines allows for very efficient fuel usage and our cycler only requires one 1.5

m radius tank. This provides for a volume of 14.14 cubic meters of argon @ 87 K and 1

arm. As the argon is used, an inflatable bladder within the propellant tank fills with

hydrogen from a small external tank. The pressure inside the tank stays constant at 1

atmosphere so there is no problem with the argon expanding and sputtering the ion

engines. Also, since both argon and helium are inert, no foreseeable problems exist

concerning the degradation of the inflatable bladder. The propellant tank contains 1/3 inch

thick 2024 aluminum. The stresses in the tank walls were estimated by cutting the

spherical tank in half and analyzing the forces on the half sphere. The overall force caused

by the pressure of I arm was calculated to be 153218.8 Ibs. This equates to a tensile stress

of 1283 psi.

We chose a reactor to provide 10MWe power. Combined with a Stirling cycle

power converter that has a thermal efficiency of 0.254, this sizes our reactor that generates



40 MWth. It wasassumed that in the future, reactors providing 500 kWe/kg would be

developed ( some books showed up to 3000 kWe/kg as future goals ). This is a far cry,

from the current Snap-100 reactors. To radiate the excess heat, radiators operating at

1000K were sized to need 1000 square meters of surface area. Approximate power plant

masses are shown in Fig. 2-11 along with mass estimations for the rest of the cycler. This

figure shows a cycler dry weight of 112,000 kg and an overall weight of 130,000 kg fully

fueled.

The taxi as shown in Fig. 2-10 is comprised of two stages. The upper stage, which

includes the command module and room for all 16 astronauts only separates from the first

stage for mars landing. The upper stage is based on McDonnell Douglas' DC-X ( the Delta

Clipper ) which allows for vertical take-off and landing. This upper stage is propelled by

conventional liquid chemical rockets. The whole reason behind this separating stage is to

prevent contamination of the Martian surface by the radiation from the nuclear thermal

reactors that comprise the two engines of the first stage. In this way, areas on Mars are not

turned uninhabitable and extra precautions do not need to be taken by the disembarking

astronauts to avoid radiation. In this scheme, the nuclear propulsion provides the

propulsion to get from the cycler to a Mars orbit. There are two nuclear engines each with

a nozzle diameter of 2.5 meters. Once in the Mars orbit, the stages separate and the DC-X

lands on Mars while the first stage retains its orbit about Mars. When departing Mars, the

DC-X recouples with the recently refueled first stage in the Mars orbit (via the refueling

vessel mentioned in the opening paragraph of the design section) and the taxi returns to the

cycler. Assuming an overall mass of the taxi equal to 30,000 kg, 22,000 kg is needed as

propellant leaving a dry weight of the taxi of approximately 8,000 kg. This means that the

taxi is almost a flying fuel tank. The 22,000 kg of liquid hydrogen takes up 3 I0 cubic

meters. The estimation of 8,000 kg for the dry mass of the taxi could prove to be overly

optimistic in which case a heavier taxi would need to be evaluated.
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FiR. 2-I I

Cycler Mass Estimations

Structure

Reactor

Propulsion

Storm Shelter

Crew Modules

Hub

Truss

Tunnels

Storage/Greenhouse

Propelant Tank

Refrigeration Cycle

2@7800 =

Reactor and Controls

Radiator

Shielding

Thermal Converter

Insulation

Power Conversion

Interface Structure

Argon 13 m3@1390 kg/m3

Ion Engines 60@165kg

Crew/Equipment/Supplies

Mass (kcl)

1 5000

1 5600

1 500

1000

7500

1 2500

65O

31

30

2000

1500

250

300

120

300

18000

9900

43819

Total = 130000 kg
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Section 3: Propulsion

Introduction

There are many types of propulsion systems available today and in the future that

can be considered for this mission to Mars. We settled on a high efficiency ion-propulsion

system. Ion propulsion is a highly efficient method of propulsion, but it does pose the

problem of an extremely low thrust. As discussed in the Design section, the mass of the

cycler is 130,000 Kg. However, we do have the luxury of taking our time in putting the

cyclers into their respective orbits.

The taxi used to go between the planets, space stations, and the cyclers provided a

more difficult problem for propulsion. Normal chemical rockets lack the efficiency needed

to make the long trips and ion propulsion was just not fast enough. Therefore, it was

decided to use a hydrogen nuclear-thermal propulsion system. This provides a reasonable

fuel efficiency and a very high thrust.

Ion-Propulsion

The most successful electrostatic thrusters use propellant atoms ionized by

electron bombardment. The electrons are emitted from a cathode surface and gain energy

from the potential difference between the cathode and anode surfaces in a bombardment

ionization chamber.

Figure 4-1 shows a schematic diagram of a generic ion thruster. On the way to the

anode (chamber wall), the electrons accelerate and bombard neutral propellant atoms

entering from the left-hand side of the chamber. A positive ion is produced when an

electron-atom collision is successful. The positive ions then pass through the screen and

are accelerated by the screen-accelerator potential difference, producing high-velocity

exhaust beam. A neutralizer beam of electrons (not shone) must be emitted from the

chamber to maintain a zero net charge for the vehicle. Failure to do this will result in the
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Figure 4-1. Diagram of an ion engine

exiting plasma beam to return to the positively charged vehicle, resulting in a zero net

force and damaging the hull and other instruments on the exterior of the vehicle. To

increase the chance of a collision, an axial magnetic field is employed forcing the electrons

to follow a longer spira/path as opposed to a straight line between the anode and cathode.

Fuels considered for this thruster were mercury, xenon, argon, and potassium.

Mercury has the nicest of all the fuels because of it has the highest potential thruster

efficiency and needs rrdnimum tankage mass; however, because of its toxicity, it should

not be used in near earth maneuvers. Potassium also had good potential, but it required a

boiler since its normal'form is a solid; this posed problems of having a steady flow of fuel

in a consistent form. Both xenon and argon are clean and easily used as a fuel. Xenon

tends to be relatively expensive, but it can be stored noncryogenically. Argon does require

cryogenic storage, but is less expensive and more plentifully available than xenon.

Instead of designing the entire thruster, we used a similarly designed engine that

runs on potassium. The exit diameter is 0.85 meters and has a specific impulse of 10,000

seconds. For an optimized ion thruster, argon has an efficiency of about 80% at 10,000

Isp. Xenon has about a 90% efficiency, so the tradeoff is appreciable, but not enough to
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justify theexpenseof xenon. Thepotentialdifferencerequiredfor argonacrosstheengine

is about2007.32voltsandproducesa 7.6megawattbeam.This ispossiblebecausethe

nuclearpowersourcefor thecyclerproducesabout10megawattsof power. For safety

andto leavepowerfor othersystemsduringtheestablishmentof thefinal orbit,only 9.50

megawattsis usedfor propulsion.Eachengineproducesabout4.4Newton'sof forceand

expends1.579E-3kilogramsof argonpersecond;sofor a 130,000kilogramcycler,35

engineswasdeemedareasonablenumber.Ionengines,though,haveatendencyof failure

in theaccelerationscreendueto damagefrom ionsth:_tdeviatefrom theion stream.

Thus,a70% safetymarginis added to bring the total number of engines to 60: however,

only 35 engines would be used at any one time.

The acceleration for the cycler would be about 1.239E-3 meters per second per

second. For the first orbit, per the orbital mechanics section, the delta V required is 10.5

kilometers per second. This leaves a burn time of 96 days, 17 hours, and 15.9 minutes

using 13,195 kilograms of argon. The second and third orbit have a delta V of 11.46

kilometers per second using 14,333 kilograms of argon over 105 days. All specifications

are listed in the appendix.

As an added benefit, the ion thrusters can be utilized to adjust the cycler orbit with

great ease and little fuel. So, if in several decades, the cycler orbit needs to be adjusted,

the entire project is not a loss and corrections can be made. This is under the assumption,

though, that the engines are allowed enough time to perfoma the corrections.

Nuclear-Thermal Propulsion

In contrast to the ion-propulsion, the nuclear-thermal propulsion system is a much

higher-thrust system with a considerably lower efficiency. The trade-off here is more fuel

is used to acquire shorter burn times and stays in space. The cycler was intended for

extended stays, whereas the taxi was designed primarily for short-term habitation on the

order of a day or so.
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Thissystemis morecommonlyrefereedto asaNuclearTherrnalRocket(NTR).

Hydrogenis thepreferredpropellant,because,for anygivenexhausttemperature,it

resultsin thehighestpossiblespecificimpulse,abouttwice thatof chemicalrockets.The

majordrawbacksto usinghydrogenarethatit needsto bestoredcryogenicallyandit hasa

very low specificmass,evenasaslush.

In selectionof fuels,it mustbetakenintoconsiderationthatNT's requirethatthe

its coolantis initial liquid andis gaseousattheexhaust.Sincethereis aphasechange,

caremustbe takento preventthischangefrom occurringin thereactor;this would leadto

majorcontrolproblems.To preventthis, weareusingareactorpressureof about30

atmospheres.

It shouldalsobenotedthatNTR'sdonotrequireacombustiblefuel, butsafety,

available,andstoragearealmostalwaysthedecidingfactorsin fuel selection.Hydrogen

wassettledon because of its desirable perfom_ance qualities, availability in slush form,

non-reactivity with the engine and tank materials, and for mission optimization. We will

have to deal with the large volumes of fuel needed as well as contending with the fact that

with a large mass fraction of hydrogen, the taxis will be essentially flying bombs should

something go dreadfully wrong.

Each taxi will be equipped with two engines. One engine is sufficient for any taxi,

but two provides for a good margin of safety. The engine was designed to be able to

provide the necessary performance at maximum thrust to complete the taxi missions;

however, running the rockets at full power all the time is not necessarily the optimal thing

to do so far as maintenance and life-span are concerned.

Each engine has a reactor temperature of 1800 K, exit diameter of 2.5 meters, a

pressure ratio of 500 (this is dependent on the shape of the nozzle), and uses 42.6 Kg/s at

maximum thrust. For these specifications, the specific-impulse is about 836 seconds, the

thrust is 349 kilonewtons, and provides an acceleration of 11.65 meters per second per
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secondfor a 30,000Kg wet taxi. Thisprovidesamaximunlmassfractionof 3.57or a

DCX module mass of 8350 Kg. Specifications are given in the appendix.

The most fuel will be used on the approach and departure from Earth. The

requirements here will be on the order of 21,000 Kg of hydrogen. On the approach to

Mars, though, the fuel requirements are between 14,000 and 16,000 Kg. This allows for

more mass to be moved to and from the cycler around Mars. The large mass requirements

are the reasons that orbiting platforms around Earth and Mars or Phobos are necessary.

The Phobos station must produce the hydrogen necessary for the taxi, and both hydrogen

and oxygen for the DCX stage. In fact, the DCX stage can be unfueled until it reaches

Mars orbit. Then additional mass can be loaded and used to land on Mars. The Earth

station is extremely important in that the largest fuel requirements are here. Refueling

cargo missions to the cycler will be necessary to keep the taxi refueled in transit. This can

be done when the cycler is resupplied. Several taxi missions may be necessary for this, or

a specialized tanker can be constructed for rendezvous with the cycler.

The burn times for the taxi are relatively short, less than 10 minutes, giving the

astronauts feeling between 2 and 3 g-forces. Since the delta V is fixed for our approach,

the mass fraction is fixed; thus, the only variables we can really adjust are the transit and

bum times. Thus using smaller engines would only increase the bum time required while

saving only a little on mass. Since much of the perfonnance is dependent on the shape of

the exhaust nozzle, itis necessary to design a highly efficient nozzle while trying to keep

the mass as low as possible. As the pressure ratio increases, the efficiency increases with a

decrease in thrust. This is not a problem because a lower thrust just means a slightly

longer bum time while using less fuel and allowing for more cargo to be transported.

3-5



Conclusion

For optimum performance, the ion and NTR propulsion tandem seems to be the

solution. The ion engine with the high efficiency is ideal for maneuvering a massive object

like the cycler over periods of time and requires little fuel. The NTR propulsion is ideal

for the taxi because of its high thrust capability. The major drawbacks to this though are

the necessity of a cryogenic storage system and the large volume that the hydrogen

requires. This cannot be avoided though if we wish to maintain the level of performance

that is desired.

3-6



References

1. Brewer, George R., Ion Propulsign, Gorden and Breach, New Yerk 1970

2. Griffin, Michael D., and French, James R., _ _ _, AIAA, Washington

D.C., 1991

3. Hill, Philip, and Peterson, Carl, Mechanics and Thermodynamics of Propulsion.

Addison-Wesley Publishing Co., Reading, Mass., 1992, pp. 65':- 684

4. Oates, Gordon C., A¢rQ_hcrm0_lyn_mi¢s of (_as Tt,Jrbin¢ and R0ck¢I Prop_flsion, AIAA,

Washington D.C., 1988.

5. Somaras, Demetrius G., Appli¢_ltions of Ion Flow Dynamic,s, Prentice Hall, New York,

1962

6. Stuhlinger, Ernst, Ion Propulsion for _ E!Jg_b_I,Mc Graw Hill, New York, 1964

3-7



APPENDIX

Main Equations Used

Voltage Required
1 2

av - _ mi vi

Power Required
Isp g T

Pb- 2n

Exit pressure ratio

=(1+ M2) :¢-1

Exit density ratio

1 ..2L-

P--L_=(1+_- M2)_ -1
P

Exit velocity

-7

V= RT_(1-

Mass flux

m= p,V, Ao

Mass flow rate

ffa=mg

Mass fraction of fuel

1TL AV

m, - eXp(g-'_sP)

Thrust

T=mVc

Specific Impulse
T

Isp =-_"
m
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Cycler Propulsion

TotalMass = 130,000 Kg

Ion Propulsion

Specifications(per engine)

Fuel type

ExitDiameter

Efficiency

Isp

Power Required

Beam Power

PotentialDifference

Mass flux

Acceleration

TotalThrust

Thrustper Engine

Number of engines Required

Safty Factor

Total number of engines

Mass per engine

Total Engine Mass

Argon

0.85 m

0.8

10000 s

9,50 MW

7.6Mw

2007.32 V

1,579E-3 Kg/s

1.239E-3 (m/sh2)

154.9 N

4.4 N

35

70%

60

165 Kg

9900 Kg

Orbit I

Delta V required

Mass fuelrequired

Burn time

10.5 Km/s

13195 Kg

8356554.78 s

96 days 17 hours 15.9 minutes

Orbit 2 and 3

Delta V required

Mass fuel required

Burn time

11.46 Km/s

14333 Kg

9077264.09 s

105 days I hour 27.7 minutes
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Taxi Propulsion

Total Mass = 30000 Kg

Nuclear Thermal Propulsion (2 engines used)

Specifications (per engine)

Fuel type
Exit diameter

Combustion Temperature
Combustion Pressure

Pc/Pe

Mass Flow

Thrust

Isp
Acceleration

Hydrogen

2.5 m

2800 K

30 atm

500

42.6025 Kg/s
3.49E+5 N

836.23 s

11.65 (m/sA2)

Orbit 1 Approach to Mars

Delta V Required

Mass fuel required
Burn time

6.3152 Km/s

16108Kg

378 s

6.30 min.

Orbit 1 Approach to Earth

Delta V Required

Mass fuel required

Burn time

9.4889 Km/s

20564.34 Kg
482.7 s

8.05 min.

Orbit 2 and 3 Approach to Mars

Delta V required

Mass Fuel Required

Burn time

5.2707 Km/s

14220Kg
333.78 s

5.56 min.

Orbit 2 and 3 Approach to Earth

Delta V required

Mass Fuel Required
Burn time

10.4554 Km/s

21613 Kg
507.3 s

8.46 rain.

Maximum Mass of DCX 8386 Kg
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THERMAL CONTROL

Christopher J. Robson

Overview

This section of the report summarizes the mission thermal control design objectives and results.

design process was initiated by defining a set of design objectives as follows:

The

analyze and design thermal control systems to provide for the proper heat transfer between spacecraft

elements so that temperature sensitive components will remain within their specified temperature

limits during all mission emironmental conditions

• design reliable thermal control systems utilizing proven technologies while attempting to minimize

the number of moving parts and provide for adequate redundancy

• design each spacecraft component to be thermally independent of other components

• investigate both active and passive thermal control systems

Once the design objectives were determined, the critical thermal and related systems were identified as

follows:

• Cryogenic Storage

• Radiation Shielding

• Nuclear Power Generation

With the design objectives in mind, various active and passive thermal control devices were employed to

achieve the desired level of thermal control as described on the following pages.
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I. Cryogen Storage System

The cryogenic storage system described herein is utilized for the orbital long-term storage of subcritical

liquid cryogens. Although a mission of this scope would require the storage of hydrogen, oxygen,

methane, argon, helium, deuterium, and nitrogen triflouride with tank sizes ranging from 0.6 m 3 to 37.4

m 3, only an analysis of the storage of those gases required by the propulsion systems follows. (14:131)

The cryogenic cooling system consists of a pressure vessel containing the saturated liquid cryogen, a

structural support system, multilayer insulation ('MLI"), penetrating inflow and outflow lines, and a

Molecular Absorption Cryogenic Cooler CMACC").

Multilayer Insulation ("MLI")

Multilayer insulation consist of a number of highly reflecting radiation shields interspaced with a low

thermal conductivity spacer material. The radiation shields are generally a thin Mylar or kapton film

metalized on either one or both sides. Spacer materials range from very coarse silk nets to continuous

materials such as borosilicate fiber sheets (i.e. tissuglas or dexiglas). (11:503) For analysis, the radiative

heat transfer into spherical tanks through multilayer insulation was approximated by the radiative heat

exchange between parallel plates. It was assumed that the silk net could be approximated by a

noninteracting spacer. (10:477) A worst-case heat-flux of 1399 W/m 2 at 1.0 A.U. (the Cycler's closest

approach to the Sun) was assumed for all calculations. As shown in Attachment #1 and Diagram #1,

several combinations of materials and layers of insulation were considered before an "ideal" MLI

configuration was determined.

4-2



A summary of the final MLI configuration and it's effectiveness is shown below:

Cryogenic Tank Component

Exterior Surface Material

Interior Surface Material

Spacers

Mylar Film Quantity & Thickness

Film/Gap Spacin s
Wall Thickness

Rate of Heat Transfer:

liquid hydrogen ( 20 K )

liquid argon ( 87 K )
Shield Effectiveness

(reduction in overall heat transfer):

liquid hydrogen ( 20 K )

liquid argon ( 87 K )

Comparison to Published Results:
(2.3 m outer diameter hydrogen tank)

calculated heat transfer rate

published heat transfer rate

Composition/Magnitude

Optical Solar Reflector
= 0.88

ct = 0.14

Mylar

surface coated with vapor

deposited 2024 aluminum
g = 0.04

silk nets / tissuslas

30 layers; 270 anl_strom/layer
0.01 inches

0.31 inches

0.085 Wlm 2

0.082 W/m 2

98.3%

98.3%

0.35 W
0.48 W

Optical solar reflector was selected for the exterior surfaces of the tanks because it possesses a low o./_

ratio of 0.16 and has been shown to withstand surface degradation in the orbital radiation environment

over extended periods of time. The support system for the tanks consists of low-thermal conductance

high-strength tubes designed to minimize heat dissipation and provide for structural rigidity under all

mission loading conditions. (14:133) Although heat transfer through the insulation normal to the layers

is small, discontinuities such as seams or penetrations provide thermal "shorts" which degrade the over-all

system performance. (11:503) A low conductivity ceramic standoff will be used to mount the tanks to the

Cycler thus preventing conductive heating of the tanks from the warmer Cycler truss structure.
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Tank/Pressure Vessel Sizing

Sizing of the cryogen tanks was performed using the calculated rate of heat transfer per unit area, a

selected tank pressure of I atmosphere, and the mass of respective cryogen required for the mission as

provided by the propulsion and design engineers. A sample calculation for this analysis is shown on

Attachment #2.

In order to determine if the calculated rates of heat transfer were legitimate, the calculated results for

hydrogen were compared to figures presented in Reference 15 for a design which also utilized MLI. The

calculated heat transfer rate for the hydrogen tank was determined to differ from the published results by

approximately 25%, which for this level of analysis seemed quite reasonable.

The overall heat transfer to the cryogen tanks, assuming the worst-case scenario as defined above, were as

follows:

HYDROGEN TANKS

Tank Diameter 5.0 m

Tank Volume 65.45 m 3

Rate of Heat Transfer 1.66 W

Mass of Hydrogen 4,647 kg

ARGON TANKS

;rank Diameter 3.0 m

Tank Volume 14.14 m 3

Rate of Heat Transfer 0.58 W

Mass of Argon 19,655 kg
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Boiloff Recondensation - Molecular Absorption Cryogenic Cooler

With the hut input as shown in the above tables, boiloff of the cryogen is inevitable. A Molecular

Absorption Cryogenic Cooler CMACC") as described in Reference 15 was selected to recondense the

boiloff. Since the MACC has been used in conjunction with MLI in prior experiments, may use waste

heat or direct solar heat as an energy source for the compressor, has essentially no moving parts, is

compact and lightweight, has been shown to provide for the level of heat extraction required, and has

never failed during testing, it is an ideal candidate for the requirements of this mission.

A summary of the MACC refrigeration cycle is shown in Attachment #3. The MACC, as described in

Reference 15, operates as follows: The cooler operates by using a hydride power 0.,aNis) to absorb large

quantifies of hydrogen at temperatures around 290 K and 1 aim pressure. When heated to about 390 K,

however, the hydrogen pressure increases to about 4 MPa (40 aim). The pressure from the hydrogen gas

then activates a diode check valve and the hydrogen flows through a series of space radiators and heat

exchangers, as shown in Attachment #3. When the gas reaches the JT valve, it is at about 30K. When

expanded to 1 aim through the JT valve, it is further cooled and partially condensed. Heat from the

hydrogen tank then vaporizes the condensed hydrogen, and the cycle is closed back through the

countertlow heat exchangers, heating the returning hydrogen while prechilling the high-pressure

hydrogen.

A summary of the MACC's specifications is shown below:

MACC Specification

Heat Absorption
MACC Mass

Absorption to Mass Ratio

Magnitude
0.48 W

31 k_

0.155 W/kg
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II. Radiation Shielding

Surface Contamination and Degradation

A very important aspect of the development of thermal control surfaces is the consideration of the long

duration of planned future missions. The effects of electromagnetic radiation or particle radiation on

thermal control surfaces is not completely understood, but for a mission of this scope these surfaces should

be space stable or have a predictable degradation values for at least 10 to 20 years. The following

narrative, excerpted form Reference 8, exemplifies the need for this predictability, justifies the

incorporation of secondary and redundant thermal control systems, and poses the question as to whether

or not thermal control surfaces can be repaired or cleaned to remove the effects of contamination.

The o_/e ratio of the S-IVB stage of the Pegasus satellite which was coated with S-13, a paint composed of

ZnO as the pigment and methyl silicone resin as the binder, was expected to start at 0.22 and increase

within a year's effective lifetime of the spacecraft to not more than 0.27. The first measurements in orbit

showed a value of 0.52, which increased with time in orbit. If it were not for the active thermal control

provided by a louver assembly between the Pegasus electronic canister and the S-IVB, the electronics

would have exceeded their thermal limits. The reason for the high values of the ratios of solar

absorptance to infrared emittance was not simply the degradation caused by the space environment, but a

combination of the contamination from the rocket firings and the subsequent effect of the space

environment on the contaminated surfaces.

As further discussed in Reference 8 contamination of thermal control surfaces has three aspects: on the

ground, during launch, and in space. Contamination on the ground occurs during assembly, thermal

vacuum testing, and handling prior to and during launch. In many cases, more than a year passes

between the application of coatings and the launch of a spacecraft. During launch and in space, exhaust

jets from reaction control engines, which have a wide expansion cone, have been shown to produce a

contamination cloud surrounding the whole space vehicle. During simulated tests in chamber A at NASA
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MannedSpacecraftcentercontaminantsfromtheReactionControlSystemengineswerefoundon

surfaces which were behind barriers and lg0 ° from the jets. The effect of such contamination is more

serious in space because of the simultaneous effect of uv radiation. Without this irradiation the

contaminants would probably leave the surface again after a short time. However, with the presence of uv

radiation and the solar wind, the contaminants undergo reactions which prevent them from vaporizing

and which lead to high solar absorptance.

Inflatable Solar Shields

As discussed in Reference 12, an inflatable solar shield has been developed that can be folded and

packaged in a relatively small canister. Once in space the canister cover is jettisoned and the shield is

deployed, inflated, and chemically rigidized over the area of the shield that is subject to high inertial

loading. This provides a thermal shield that is external to the vehicle such that incident solar energy can

be intercepted and then reflected and re-radiated back to space. A schematic and summary of the

inflatable shield concept is presented in Attachment #4. A summary of the inflatable shield's

specifications follows:

Section

Spherical Shell

Sun-Side

Back-Side

Foam Stiffener

Composition
3/4-mil-thick

aluminum/Mylar/aluminum tri-laminate

Alodine Coating

(alpha = 0.3 r epsilon =0.52)

Multiple Materials (epsilon = .90)

open-celled foam bonded to shell; utilizing a

polymerization accelerator N,N, Diethylaniline

(DEA) to ri[idization

The effectiveness of a solar shield is highly dependent upon the radiative properties of the shield surface.

It is imperative that these properties remain relatively constant throughout the entire mission. The three

coatings tested in Reference 12 were silicon oxide, alodine, and a carbon-doped polyester deposited on a

_bstrate of the aluminum/Mylar/aluminum tri-laminate. These were selected because of their ability to

maintain their surface properties after the shield is deployed and inflated from a tightly packed
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configuration in its storage canister. All three materials were found to be very resistant to solar wind

protons. The alodine and carbon-doped polyester coatings were also found to be very resistant to

ultraviolet radiation.

Some areas of the shield require reinforcement in order to withstand inertial loads. The rigidized material

developed to provide this reinforcement is a flexible open-cell polyurethane foam that is bonded to the

GT-15 and them impregnated with a monomeric compound. Rigidization of the foam may be

accomplished by use of a polymerization accelerator.

The effects of nuclear radiation on the properties of the rigidizable material were also investigated.

Results indicate that the material will remain sufficiently flexible and that it can be successfully folded,

stored, and then deployed after exposure in a vacuum at 300 F to an accumulated gamma dose of up to

about 4 x 104 ergs/g(C).

Scale-model thermal tests indicate that the spherical solar shield is capable of maintaining backside shield

temperatures between -175 o to -2000 F (144 - 155 K). With these characteristics, an inflatable solar shield

appears to be an ideal candidate for a secondary or back-up thermal control system.

Osmotic Heat Pipes

As discussed in Reference 16, evolving future spacecraft will require a much more significant role of

thermal management because of the multi-year mission duration, large quantities of waste heat to be

dissipated, and long physical distances involved. Osmosis provides the capability to transport large

amounts of heat over very long distances with a passive device.

A conceptual osmotic-pump-driven energy transport loop is illustrated in Attachment g4 and operates as

follows: Direct osmosis is employed as the driving force that circulates working fluid inside a closed

system. When two fluids of different concentrations are separated by a semipermeable membrane, the
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solvent will flow into solution to attain equilibrium. The membrane is imperlneable to the solute. As long

as the concentration gradients are high between solvent and solvent-solute mixture (solution), flow will

continue due to direct osmotic forces. The addition of heat to the solution causes solvent to evaporate and

flow to the condenser, where it recondenses, giving up heat. The solvent then returns to the membrane.

The passage of solvent through an osmotic membrane can create a differential pressure that is orders of

magnitude greater than the capillary action created by surface tension in couventional hot-pipe wicks.

Thus, osmosis provides the capability to transport large amounts of heat over very long distances with a

passive device.

III. Nuclear Power Generation

Major Design Considerations

The major considerations surrounding the design and operation of a space nuclear reactor system follows:

• physics, neutronics

• fuel materials and performance

• materials for high temperature application

• control/instrumentation

• safety parameters

• high-efficiency conversion systems

• shielding and radiators (low weight)

Nuclear Reactor Power System Composition

The major subsystems contained within a nuclear reactor power system are as follows:

• Reactor/Fuel

• Coolants

NaK mixture, hydrogen, lithium, helium, air, heat pipes

• Shielding
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shieldcircumferentially surrounds core and consists of alternating layers of tungsten and lithium

hydride - primarily intended to attenuate radiation directed towards the crew habitat; permits crew
excursions

Power Conversion

Brayton cycle, Rankine cycle, Stirling cycle and direct conversion cycles: thermoelectric, thermionic,

and magnetohydrodynamic

Candidate

Thermoelectrics

Rankine:

Organic

Mercury
Potassium

Bra_aon

Stirlin_
Thermionics:

In Core

Out of Core

Inlet Temp. (K)
1360

600
950

1420

Outlet Temp 0 _)
850

400
633

933

Thermal

Efficiency
0.054

0.20

0.07

0.20

1325 500 0.186

1325 700 0.254

910

900

2O0O

1620

0.10

0.10

Heat Rejection

only available is heat transfer method is radiation, need high temperature rejection for efficiency,

high temperature also provides for lower weight and smaller size of the radiator

This extensive list of requirements and design choices emphasizes the fact that a great deal of technical

research and development effort will be required before any reactor systems is ready for use and before

appropriate system/material and operational trade-offs can be made.

SP-100 Nuclear Space Power System

The SP-100 Nuclear Space Power System provides a valuable scaleable design base for this mission. The

system was designed to furnish lO0kWe over a seven-year lifetime. The nuclear reactor subsystem

consists of a fast-spectrum 235UCh fueled reactor with a liquid-metal coolant conveyed to radiators by

heat pipes. (1:24)

Power conversion for the SP-100 concept is achieved using thermoelectric ("TE") converters. Thermal

energy is extracted from the reactor core by heat pipes that then radiate it to panels containing

thermoelectric converters. Hot shoe thermal collectors are used to concentrate this radiant energy. The
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thermalenergyflowsthroughthethermoelectricmaterialbyconduction.Thermalinsulationisusedto

minimizethermalenergylossesaroundthethermoelectricmaterial.Thermalenergythatcannotb_

effectivelyusedis thenrejectedtospacebyradiationheattransfer.

A conical-shaped radiation shield is located between the reactor and the payload. It serves as a barrier

that reduces the amount of reactor-generated nuclear radiation, neutrons and gamma rays, reaching the

payload sensitive portions of the spacecraft or the astronaut crew. The shield contains primarily two types

of materials: low atomic weight lithium hydride (LiH) to attenuate neutrons and high atomic weight

tungsten to shield against gamma radiation. (SNP:225)

Reference 3 is a study which couples the SP-100 reactor with a Brayton power conversion cycle. Of

relevance for this mission is the heat rejection system utilized in the design. Waste heat from the Bra)lon

engines is transferred to a single, gas to liquid NaK heat exchanger. The heat exchanger systems uses a

shared radiator system in which the NaK is pumped through an armored manifold to a number of heat

pipe radiator panels connected in series. Since this manifold is vulnerable to single point failures, an

independent stand-by loop was included. (3:870) The design provides for the usage of only a portion of

the radiator to reject the heat load which allow failure of a radiator panel without compromising full

power output.

Another study, presented in Reference 13, tested an aluminum space radiator panel utilizing a liquid

metal coolant in the 3000 to 7000 F temperature range. Testing of the panel in air and in vacuum

confirmed its feasibility. Such a radiator would be suitable for the primary heat rejection system of a

Rankine or a Brayton power cycle.
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Themission's Nuclear Electric Propulsion ("NEP") reactor's requirements include:

• temperatures from 1350 to 2000 K

• firing times up to 7 years

• high fuel burnup

• power of 25 to 100 MWth (5 to 10 MWe)

The NEP system also requires also requires high temperature turbines and radiators and high temperature

power conditioning. In consideration of the current state of technology and the relative success of the SP-

100 Nuclear Power System, a nuclear power system for this mission was projected as follows:

Thermal Characteristics of Proposed Nuclear Power System

Component
Reactor/Fuel

Composition
undetermined

Coolant NaK

Shielding

Power Conversion

Carnot Efficiency
Radiator

Temperature Profile:
Reactor Core:

Converter Inlet:
Radiator:

alternating layers of tungsten and lithium

hydride

Sterling Cycle (efficiency = 0.25)
0.50

1000 m'

honeycomb sandwich panel heat pipe;

Iconel 718 honeycomb radiator matrix

& Nickel-200 cooling jacket

2000K
1600K

1000 K

The projected reactor is envisioned to provide 10 MWe of power output. A Stirling cycle is optimal for

power conversion because of its highly efficient conversion cycle (25%), its high temperature heat

rejection which minimizes radiator size, its low specific mass, and its reliability. An advanced radiator

design, as previously described was also selected to be used in the 1000 K temperature regime.

(2:165,179)
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ATTACHMENT #1 a

CRYOGENIC STORAGE SYSTEM

Multilayer Insulation

Requirements:
- solar radiation flux at 1.0 A.U.

- explore several possibilities

Approximations:
- radiative exchange between parallel plates

- noninteracting spacers (silk net/tissuglas)

CASE
A

B

C
D

*E

Solar Flux, Is (W/m^2) =

exterior surface, epsilon:
exterior surface, alpha:

ext. alpha/epsilon =

interior surfaces, epsilon:
insulation, epsilon:

Boltzmann constant (VV/(m^2*K^4):

Temp of Outer Surface, To (K) =

Temperature of Inner Surface, Ti =

Case I - No Shield Used

total resistance =

total heat transfer, q/A (W/m^2) =

Case II - One Shield Used

total resistance =

total heat transfer, q/A (W/m^2) =

Case III - Two Shields Used

total resistance =

total heat transfer, q/A 0N/m^2) =

Case IV -Three Shields Used

total resistance =

total heat transfer, q/A (WIm*2) =

Case V - 100 Shields Used

total resistance =

total heat transfer, q/A (W/m^2) =

Scaling Notes:
Aluminum film thickness:

Gap Spacing:

Packing Density:

exterior surface

aluminized kapton
tiodized titanium

white silcone paint
gold plate

optical solar reflector

CASEA CASE B

1399 1399

0.6 0.6

0.5 0.6
0.83 1.00

0.07 0.07

0.07 0.07
5.70E-08 5.70E-08

361.3 378.2

20 20

14.95 14.95

64.97 77.97

42.52 42.52
22.85 27.42

70.10 70.10
13.86 16.63

97.67 97.67

9.95 11.94

2772.10 2772.10
0.35 0.42

270 angstrom
0,01 inches

97.6 layers/inch

interior surface

6061 aluminum

6061 aluminum
6061 aluminum

6061 aluminum
2024 aluminum

CASEC CASE D

1399 1399
0.88 0.043

0.14 0.215

0.16 5,00

0.07 0.07
0.07 0.07

5.70E-08 5.70E-08

217.01 1093.0
20; 20

14.42 36.54
8.77 2225.88

41.99 64.11
3.01 1268.65

69.56 91.68
1.82 887.14

97.14 119.26

1.30 682.04

2771.561 2793.68

0,05 29.11

(cool)

(hot)

CASE E

1399

0,88

0.14

0.16

0.05
0.05

5.70E-08

217.0

20

20.14

6.28

59.14
2.14

137.14

0.92

3920,14
0.03:

t_.q-3



ATTACHMENT #1 b

CRYOGENIC STORAGE SYSTEM

Multilayer Insulation

Assumptions
- solar radiation flux at 1.0 A.U.
- radiative exchange between parallel plates
- noninteracting spacers (silk net/tissuglas)

Exterior Surface :
Interior Surface:

optical solar reflector
2024 aluminum

Solar Flux, Is (W/m^2) =
exterior surface, epsilon:
exterior surface, alpha:
ext. alpha/epsilon =
interior surfaces, epsilon:
insulation, epsilon:
Boltzmann constant (W/(m^2*K^4):

Temp of Outer Surface, To (K) =
Temperature of Inner Surface, Ti =

No Shield Used
total resistance =
total heat transfer, q/A 0N/m^2) =

30 Shields Used
total resistance =
total heat transfer, q/A (W/m^2) =

% Reduction in Heat Flux =

LIQUID HYDROGEN

1399
0.88
0.14
0.16
0.04
0.04

5.70E-08

217.0
20.26

25.14
5.03

1495.14
0.0845740

-98.32%

LIQUID ARGON

1399
0.88
0.14
0.16
0.04
0.04

5.70E-08

217.0
87.29

25.14
4.90

1495.14
0.0823674

-98.32%

Scaling Notes:
Aluminum film thickness:

Gap Spacing:
Packing Density:
Wall thickness for 30 Shields:

270
0.01
97.6
0.31

ang_rom
inches
layers/inch
inches
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ATTACHMENT #2a

CRYOGENIC STORAGE SYSTEM

Tank Sizing Analysis

LIQUID HYDROGEN

q/A (W/m^2) = 0.084574

Effective

Radius Volume Area

(m) (m^3) (m^2)

1.0 4.19 3.14

1.5 14.14 7.07

2.5 65.45 19.63

Heat Tansfer H.T.R. per
Rate Unit Volume

(W - J/s)

0.27 0.0634

4.0 268.08 50.27

5.0 523.60 78.54

6.0 904.78 113.10

7.0 1,436.75 153.94

8.0 2,144.66 201.06

9.0 3,053.63 254.47

10.0 4,188.79 314.16

11.0 5,575.28 380.13

12.0 7,238.22 452.39

13.0 9,202.76 530.93

14.0 11,494.03 615.75

15.0 14,137.16 706.86

1.66 0.0254

4.25 0.0159

6.64 0.0127

9.57 0.0106

13.02 0.0091

17.00 0.0079

21.52 0.0O70

26.57 0.0063

32.15 0.0058

38.26 0.0053

44.90 0.0049

52.08 0.0045

59.78 0.0042

LIQUID ARGON

q/A (W/m^2) = 0.0823674

Heat Tansfer H.T.R. per

Rate Unit Volume

(W - J/s)

0.26 0.0618

0.58 0.0412

i_!_;_i;iiiii_i_i_i_i_i_i_;_i!i_..._1i!62iii_i_i_i_i_ii!!!ii_!!ii_247
4.14 0.0154

6.47 0.0124

9.32 0.0103

12.68 0.0088

16.56 0.0077

20.96 0.0069

25.88 0.0062

31.31 0.0056

37.26 0.0051

43.73 0.0048

50.72 0.0044

58.22 0.0041i

Boiloff Rate Determination

Assumptions:

- thickness of tank wall can be ignored

Heat Transfer Rate:

Enthalpy of Vaporization:

Rate of Boiloff:

Density @ Boiling Point:
Mass of Tank Contents:

% Mass Boiloff Per Day:

LIQUID HYDROGEN

1.66E-03 kJls

446.42 kJlkg

3.72E-06 kg/s

71.0 kglm^3

1,004 kg

0.0320%

LIQUID ARGON

5.82E-04

163.29

3.57E-06

1390.0

19,651

0.0016%

kJ/s

kJ/kg

kg/s

kg/m^3

kg

k ¥- (,,



ATTACHMENT #2b

CRYOGENIC STORAGE SYSTEM

BOIL-OFF RECONDENSATIOi! ANALYSIS

Assumptions:
Ideal Cycle: Reversed Carnot thermodynamic cycle (refrigeration cycle)

Composed of four reversible processes:
- (1-2) reversible isothermal expansion
- (2-3) reversible adiabatic expansion
- (3-4) reversible isothermal compression
- (4-5) reversible adiabatic expansion

Yields maximum possible efficiency between two reserviors

Radiator Surface Temperature (Th) = 250 K

HYDROGEN
Heat Transfer Rate =

Inner Surface Hydrogen (T hy,low) =

Thermal Efficiency, nth,rev =

Efficiency @ 70% Carnot =
Efficiency _ 30% Carnot =
COP =

Work Input/Power Required =

1.66E-03 kJIs

20.26 K

0.92

0.64
0.28

0.0882

1.88E-02 kJIs

ARGON
Heat Transfer Rate =

Inner Surface Argon (1"ar,low) =
Thermal Efficiency, nth,rev =

Efficiency _ 70% Carnot =

Efficiency _ 30% Carnot =
COP =

Work Input/Power Required =

5.82E-04 kJIs

87.29 K

0.65
0.46
0.20

0.5365
1.08E-03 kJIs

FLAT-PLATE RADIATOR SIZING

Assumptions:

- fiat pkde radiator
- set at incidence angle of 90 degrees(edge on) to incoming solar flux a 1.0 A.U.
- area requirement set by fixed temperature of the sink
- surface: optical solar reflector ( alpha = 0.14, epsilon = 0.88)

HYDROGEN
Heat Transfer Rate - 1.66 JIs

Required Area ,, 0.0042 m^2

ARGON
Heat Transfer Rate = 0.58 JIs

0.0015 m^2



CRYOGENIC COOLING SYSTEM DESIGN
ATTACHMENT #3

BOIL-OFF RECONDENSATION

MOLECULAR ABSORPTION CRYOGENIC COOLER ("MACC")

MACC
Characteristic Ma_lnitude

Mass 31 kg
Heat Absorption 0.48 W

Absorption to Weight Ratio 0.155 W/kg

o used in conjunction with MLI configuration
• essentially no moving parts

• hydrogen working fluid
long-life; no mechanical failure during any test periods

REFRIGERATION CYCLE

(continuous flow - pressure )

OUT +H 2 IN

300k _.._ _DIODECHECKVALVES

PRECOOLER _

_OIATO_ ' _ ].x WaT.IN
J J.T. REFRI-

J-T _ J GERATOR

"COMPRESSOR"

(1-2)
"CONDENSER"

(2-3)

"EXPANSION-THROTTLING"

(3-4)

"EVAPORATOR"

(4-1)

i) hydride power (LaNis) used to absorb large quantities of

hydrogen at T = 290 K, P = 1 atm

ii) heat hydrogen to 390 K, P increases to 4 MPa (40 atm)

iii) pressure activates diode check value and hydrogen

flows through a series of space radiators and heat

exchangers

iv) at the JT valve T = 30 K; hydrogen is expanded to 1

atm and is further cooled and condensed

v) enter hydrogen tank; heat from hydrogen fuel tank

vaporizes the condensed hydrogen

vi) cycle is closed back through the counterflow heat

exchangers heating the hydrogen and prechilling the high-

pressure hydrogen

• .



OSMOTIC HEAT PIPE
A'I_I'A CHMENT #4

• allows for the passive transport of heat over large distances

• driving force is osmosis - two fluids of different concentrations separr.ted by a semipermeable membrane; the
solvent will flow into solution to gain equilibrium; membrane is impermeable to the solute

pumping force proportional to the concentration gradient

I. Heat addition to the solutioncauses solvent to evaporate and flow to the condenser, where it reconclenses,
giving up heat

2. Solvent retumsto membrane

3. Passes through an osmotic membrane, creating a differential pressure that is orders of magnitude greater
than the capillary action created by surface tension in conventional heat pipe wicks.

O

D"I _ HEAT

• _ SOLUTE _'["_ r'J SOURCE __ ALUMINIZ[ D MYLAR

os_oT,c_ I I --7 -- _ D,_tc,

I

_( "*-- R|GInlZ[D FOAM

, FLATABLE SHIELDS
SNADEO DJRfAS Rf_AEsfqr WICKS

• packaged in a canister;, once in space the canister cover is jettisoned and the shield is deployed, inflated,
and chemically rigidized

• provides a thermal shield that is extemal to the vehicle such that incident solar radiation can be
intercepted and then reflected and re-radiated back to space

• reduces the need for active thermal control devices

• system can withstand gamma doses of up to 4 X 106 ergs/g(C)at 30° F without undergoing premature
polymerization

Section

Spherical Shell

Sun-Side

Back-Side
Foam Stiffener

Composition
3/4-mil-thick

aluminum/mylar/aluminum tri-laminate
Alodine Coating

(alpha = 0.3, epsilon =0.52)
Multiple Materials (epsilon = .90)

open-celled foam bonded to shell; utilizing a
polymerization accelerator N,N,

Diethylaniline (DEA) to rigidization

EFFECTIVENESS: Backside shield temperatures between 144-155 K.



MANE 161C

MANNED MISSION TO MARS
ATTACHMENT #5

SUMMARY OF THERMAL CONTROL ANALYSIS

DESIGN OBJECTIVES:

• analyze and design thermal control systems to provide for the proper heat transfer between spacecraft
elements so that temperature sensitive components will remain within their specified temperature limits
during all mission environmental conditions

• design reliable and redundant systems utilizing proven technologies and minimal numbers of moving parts

• design each spacecraft component to be thermally independent of the system

• investigate both active and passive thermal control systems

DESIGN RESULTS:

I;;;I'Cryogenic Cooling System - Multilayer Insulation

Component
Exterior Surface Material
Interior Surface Material

Spacers
Film Thickness
Gap Spacing
Wall Thickness
Rate of Heat Transfer:

liquid hydrogen ( 20 K )
liquid argon ( 87 K )

Shield Effectiveness:
liquid hydrogen ( 20 K )
liquid argon ( 87 K )

Comparison to Published Results:
(2.3 m OD hydrogen tank)

calculated heat transfer rate
published heat transfer rate

Composition/Magnitude
Optical Solar Reflector
mylar - vapor deposited

2024 aluminum
Silk Net / Tissuglass

270 angstrom
0.01 inches
0.31 inches

0.0846 W/m^2
0.0824 W/m^2

98.32%
98.320/0

0.35 W
0.48 W

I_ Cyrogenic Cooling System - Boiloff Recondensation

Utilization of Molecular Absorption Cryogenic Cooler ("MACC")

Component
Heat Absorption
MACC Mass

Absorption to Mass Ratio

Composition/Magnitude
0.48 W
31 kg

0.155 W/kg

• compact; essentially no moving parts; reliable - no mechanical failures during testing



I_ Alternative Thermal Control Techniques (Active & Passive)

,=:,Thermal Coatings & Insulation (Degradation/Contamination)

=:,Osmotic Heat Pipe
=:>Inflatable Shields

Louvers
=:>Electrical Heaters

I_ Space Nuclear Power

Nuclear Reactor Power System Composition:

• Reactor/Fuel: uranium carbide, uranium nitride, and uranium oxide

• Coolants: Na, NaK mixture, hydrogen, lithium, helium, air, heat pipes

• Shielding: shield circumferentially surrounds core and consists of alternating layers of tungsten
and lithium hydride - primarily intended to attenuate radiation directed towards the crew habitat

• Power Conversion: Brayton cycle, Rankine cycle, Sterling cycle and direct conversion cycles:
thermoelectric, thermionic, and magnetohydrodynamic

Heat Rejection: only available is heat transfer method is radiation, need high temperature
rejection for efficiency, high temperature also provides for lower weight and smaller size of the
radiator

State of Technology:

• components for system have been identified; several reactor types, fuel elements, and coolants are
available

° an "optimized" system has not been designed
• technology is not in hand for a manned Mars mission

Proposed Nuclear Power System

Component
Reactor/Fuel

Composition
undetermined

Coolant NaK
Shielding

Power Conversion
Radiator

Temperature Profile:
Reactor Core:

Converter Inlet:
Radiator Reject:

alternating layers of tungsten
and lithium hydride

Sterling Cycle
honeycomb sandwich panel

heat pipe; Iconel 718
honeycomb radiator matrix &

Nickel-200 cooling jacket

2000 K
1600 K
1000 K

Conclusion: A great deal of technical research and developments effort will be required before any
reactor system is ready for use and before appropriate system/material and operational trade-offs can
be made.


