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Abstract

Gravitational field mismodellng produces errors in the estimated orbital

motion of near Earth satellites. This effect is studied using a linear perturba-

tion approach following the analysis of Kaula. The perturbations in the orbital

position as defined by either orbital elements or Cartesian components are de-

termined. From these perturbations it is possible to ascertain the expected

signal due to gravitational mismodeling that would be present in station-to-

satellite laser ranging measurements. This expected signal has been estimated

for the case of the Lageos satellite and using the predicted uncertainties of the

GEM-T1 and GEM-T2 gravity field models. The results indicate that observ-

able signal still exists in the laser range residuals given the current accuracy of

the range measurements and the accuracy of the gravity field models.
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1 Introduction

Satellites in Earth orbit are affected by a wide range of gravitational and non-

gravitational perturbations. An accurate modeling of these perturbations is required

if the full scientific benefits of geodetic satellites, such as Lageos, are to be obtained.

This modeling is sometimes limited by a lack of understanding of the physical pro-

cesses producing the perturbations, but it is more often limited by the accuracy of

the parameters that are needed in the model definition. A particular example of this

latter scenario is the modeling of the Earth's gravity field. The mathematical form of

the gravitational perturbation due to the Earth is well defined (using spherical har-

monics) but the constants used in the model are of varying accuracy. This leads to a

mismodeling of the gravitational effect and a resulting mismodeling of the predicted

satellite motion. This mismodeling is observable if accurate tracking measurements

of the satellite exist; such as laser range tracking.

To ascertain the level of mismodeling of the gravity field existing in current models,

a linear perturbation analysis has been applied. This approach makes it possible to

predict the expected magnitude of orbit error due to gravity field modeling error and

it also has been extended to determine the expected signal that would be observed

with laser range tracking.

The application of using spherical harmonics for modeling the Earth's gravity

field is first summarized. This is followed by a discussion of satellite dynamics and

the resulting orbital motion due to the presence of a nonspherical gravity field. The

perturbation approach, based on the method of Kaula, is then presented. Pertur-

bations in orbital elements and satellite position are included. From these results,

the expected perturbation in a station-to-satellite range measurement is then derived.

These linear perturbation results facilitate a covariance analysis based on the expected

uncertainties of present day gravity field models. Numerical results are presented for

the case of the Lageos satellite and the GEM-T1 and GEM-T2 gravity field models.





2 Gravitational Field

2.1 Spherical Harmonic Model

The common approach for modeling the gravitationalfieldof a planetary body is

through the sphericalharmonic representation,

U = Pe,,_(sin¢) [Cem cos mA + S_m sinmA] (I)

where: /_isthe product of the universalconstant of gravitation G and the mass of

the Earth M; ae isthe semi-major axis of the Earth's referenceellipsoid;r, _8,A axe

the satellitedistance,latitude,and longitude,respectively,in a body-fixed coordinate

system; Cem, Se,_are sphericalharmonic coefficientsof degree t and order m; and

Ptm are the Associated Legendre Functions of degree t and order m. A gravitational

model consistsofa set of constants that specifyp, a, and the Cem, St,,coefficients.It

should also be noted that such a set of constants also implicitlydefinesa body-fixed

coordinate system. The coordinate system defined ispreciselythat which was used

in the solution of the sphericalharmonic coefficients.

This representation of the geopotential can be thought of as consistingof three

constituent parts,

U=Uo+U +u2 (2)

The firstpart issimply the leadingterm of the expansion corresponding to the degree

and order zero term. The Associated Legendre Function, P0o has a value of one as

does the Coo coefficient.So the leading term issimply,

U0 =_- (3)
r

This isthe familiarpotentialresultingfrom treatingthe body a.spoint mass and that

used for deriving the fundamental resultsof two body motion.

The second part of the sphericalharmonic representationare those terms (besides

the above two body term) which do not have a longitude dependence. These are

the terms corresponding to m ffi0 and are denoted as the zonal contribution to the

potential,

Ul = _ (_) tPt°(sin¢)Ce'°r= , (4)

The degree 2 zonal term models the contribution due to the planetary oblateness.

As such, it is the second largest contributor to the overall potential following the

central body contribution. (The degree 1 term is zero assuming that the center of the

Earth-fixed coordinate system coincides with the center of mass of the Earth.) The

notation ,It is often used for the zonal coefficients instead of the above Ce,o. The two

notations simply differ in sign,

Je = -Ce,0 (5)



so that the zonal part of the potentialcould alsobe written in the form,

UI =-P-_ffiI (_) tPt'°(sin_)Jtr (6)

The C notation will be used throughout this report.

The remaining part of the spherical harmonic representation is that part depend-

ing on longitude,

/z 0o t

U2 - r _ (_) .=,_ P,,.(sinq_)[C,,,cosmA + S,,.sinmA] (7)

The largestlongitudinalcontributorto the potentialisusually the degree 2 and order

2 terms. These terms representthe amount that the planetis"out ofround" about the

equator. (As with the degree 1 zonal coefficient,the degree I and order I coefficients

willbe zero under the assumption that the center of the coordinate system coincides

with the center of mass.)

The spherical harmonic representation of the potential (equation (I)) can then

also be written as,

U= __
r

- _ Ptm(sindp)[Ct,,cosmA + St,. sin mA] (8)
r = mini

In the general case, where temporal variations in the potential exist (e.g., tides),

the spherical harmonic representation is still valid though the geopotential coefficients

(Ctm, St,.) then become time dependent.

2.2 Normalized Spherical Harmonic Model

The spherical harmonic coefficients (Ce,_, Sere) appearing in equation (1) are unnor-

realized. These coefficients tend to very small values as the degree increases. This

is partly a consequence of the nature of the Earth's gravity field but is for the most

part due to the fact that the Associated Legendre Functions tend to large values as

degree increases. Thus it is numerically advantageous to normalize the Associated

Legendre Functions and the coefficients. The normalization is achieved by multiply-

ing the Legendre functions by a scale factor depending on the degree and order of

the function. The resulting normalized Associated Legendre Functions maintain the

same magnitude with increasing degree. Denoting normalized values by an overbar,

the normalized Associated Legendre Functions are,

(e-m)!]'/'Peru - (2 - 6.,0)(2e+ I)_ m)lJ Pt,. (9)



where the Kronecker delta, 6m0, is equal to 1 if rn is zero and equal to 0 if m is greater

than zero. The geopotential coefficients, Ct_ and S_,_, are normalized by the inverse

of this scale factor,

•_t. = -_.0)(2£ 1) (e- m)!J St,,,

The spherical harmonic expansion of the geopotential (equation (1)) can now be

written in terms of normalized quantities,

U= _-_o (_) t _-_ pt_(sin¢) [Cemc°sm)_+ _msinm)_]r= m=0
(11)

This is usually the preferred formulation for numerical implementations of the spher-

ical harmonic representation. For some analytical developments it is simpler to work

with the unnormalized form (equation (1)).

2.3 Earth Gravity Field Model

Numerous spherical harmonic models of the Earth's gravity field have been developed.

These models are primarily based on the Earth-based tracking of low-Earth orbit

satellites. Other data types that are valuable in estimating the Earth's gravity field

include surface gravity measurements, satellite-to-satellite tracking and more recently,

satellite radar-altimeter measurements of the ocean surface. The maximum degree

(t) of the spherical harmonic representations of the Earth is more than 300 in some

models. Models based solely on satellite tracking data usually have a maximum degree

of approximately 50. Indeed, for most satellite applications, high degree models axe

not needed due to the insensitivity of the satellite motions to the small scale features

represented in such models.

A good general purpose model for satellite applications is the GEM-T1 model

developed at the NASA Goddard Space Flight Center (GSFC) [Marsh et al., 19881.

This model is based solely on the tracking data of Earth satellites and is complete

to degree and order 36. The accuracy of this model is greatly improved with respect

to earlier Goddard Earth Models (GEM). In addition to estimating the spherical

harmonic coefficients of the gravity field, GSFC also estimates the accuracy of those

coefficients. Such accuracy estimates are very valuable when attempting to estimate

the orbit error which may be induced when using the model for orbit propagation.

The GEM-T1 model was followed in development by the GEM-T2 model [Marsh

et al., 1990]. This model was a result of continual refinement in analysis techniques

as well as the inclusion of more and newer observations. The GEM-T2 model is

similar to the GEM-T1 model in that it is based solely on the analysis of satellite

tracking data. The GEM-T1 and GEM-T2 models were the primary models used in

the analyses presented here.



Table 1. The GEM-T1 Gravity Model.

Normalized Zonals C'_ in units of I × 10-9

2 0 -_1_.97 0.4 14 0 -19.73 4.0 26 0 1_ 4.7
3 0 _7.24 0.1 15 0 1.87 4.1 27 0 4.12 4.3
4 o _.73 1.1 Is o -9.:_ 4.5 28 o -5._ 5.0
5 0 _.78 0.3 17 0 20.404.0 _ 0 -3.9, 4.7
6 0 -148.10 1.,5 18 0 11.29 4.1 30 0 -0.27 4.6
7 0 90.53 0.8 19 0 -4.61 3.4 31 0 5.12 4.7
8 0 4,5.90 2.4 20 0 1,5.31 ,5.1 32 0 0.08 4.6
9 0 28.38 1.,5 21 0 9.78 2.8 33 0 2.23 4.5

10 O 57.22 2.6 22 0 -4.84 4.8 34 0 -2.48 4.0
11 0 -51.26 2.5 23 0 -24.13 2.6 3,5 0 1.27 4.7
12 0 32.08 3.`5 24 0 -0.96 4.9 36 0 0.74 4.1
13 O 42.23 3.5 25 0 6.89 3.4

The GEM-TI normalized zonal coefficients,complete to degree 36, are given in

Table I. The nonzonal coefficientsare listedin Table 2. Along with the coefficient

values in each table,the estimated uncertainty (_r)of the individual coefficientsis

also given. The gravitationalconstant and equatorialradius specifiedfor the GEM-

TI model are,

p = GM = 3.98600436 x 1014 m3/s 2 and a, = 6378137. m (12)

Several points can be made by examining the coefficientvalues and their uncer-

tainties.Foremost, the value of the second degree zonal coefficientisseen to be more

than two orders of magnitude largerthan any other coefficient.The next largestcoef-

ficientsare those ofdegree 2 and order 2. Analogous to the second degree zonal which

representsthe oblateness of the Earth, these coefficientscorrespond to the ellipticity

about the equator.

Also evident isthat the magnitude of the coefficientsdecreasessignificantlyas the

degree increases(keep in mind that these are normalized coefficientsand effectively

have equal weight in their total contribution to the gravitationalpotential). This

characteristichas been formalized in the so-cailed"Kaula's Rule" [Kaula 1966].This

rulegives the expected sizeof the Earth's normalized harmonic coefficientsof degree

t to be _10-,5/t_. This ruleof thumb allows one to estimate the expected magnitude

of a gravitationalcoefficientifa value is not otherwise known (thisis particularly

convenient for higher degree coefficientsfor which accurate estimates have generally

not been obtained). The magnitude of the GEM-TI coefficients(complete to degree

and order 36) are plotted in Figure I along with Kaula's Rule.

The estimated accuracy of the various coefficientsshown in Tables I and 2 show

that the lower degree coefficientsare the best determined and the accuracy degrades as

the degree increases.This variationin accuracy isa reflectionof the factthat satellite

tracking data was used to solve for the coefficients.As discussed in latersections,

the sensitivityof the satellitesto the harmonic coefficientsdecreases as the degree

increases. That is, the low degree coefficientsproduce large perturbations to the

orbitalmotion and the high degree coefficientsproduce much smaller perturbations.

The abilityto recover high degree coefficientsisa directfunction of the accuracy of
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Figure 1: Absolute value of the normalized GEM-T1 coefficients and Kaula's Rule.

the tracking data being utilized and also the geographic distribution of that data.

Since the high degree coefficients represent fine scale features in the gravity field it is

necessary to have wide geographic coverage, and accurate tracking data, to completely

capture such details. The low degree coefficients on the other hand represent the large

scale features (continental in size) and it is possible to accurately model such details

given sparser geographic coverage.

Overall, the accuracy of the geopotential acceleration is dependent on the con-

stants p, Ct,,_ and _t,,= and the accuracy of the coordinate transformation from body-

fixed to inertial coordinates. The accuracy is also clearly dependent on the degree of

truncation of the infinite series describing the potential. It should be noted that the

quantity a, enters the potential strictly as a scaling factor and thus does not affect

the accuracy of the geopotential computation. Of these possible error sources, the

accuracy of the (_t,, and ._t,= coefficients is currently the limiting factor in precise

low-Earth orbit determination.



Table 2. The GEM-T1 Gravit_ Model. Normalized Sectorials and Tesserals
C(r_and SO,,in units of I x 10-9

2 2 2438.93 .3 - 1399.84 .3
3 1 2029.77 1.0 249.59 1.1 3 2 903.5,5 1.1 -620.42 1.2
4 1 -,533.43 .9 -475.12 .8 4 2 347.00 1.5 664.03 " 1.5
,5 1 -58.95 2.5 -95.54 2.8 5 2 6_.79 2.5 -323.41 2.9
6 1 -81.38 1.8 23.89 1.7 6 2 51.61 3.2 -375.00 3.2
7 1 277.10 3.9 97.82 4.2 7 2 317.71 4.4 91.81 5.2
8 1 28.86 3.1 54.72 3.0 8 2 70.38 5.2 68.45 5.1
9 1 148.04 5.8 24.53 6.0 9 2 31.14 5.9 -32.39 7.4

10 1 76.97 4.4 -138.11 4.3 10 2 -80.52 6.7 -51.34 6.7
11 1 9.50 7.0 -27.81 6.6 11 2 9.05 7.2 -99.24 9.0
12 1 -49.26 5.8 -49.6,5 8.6 12 2 7,64 7,0 34.92 6.9
13 1 -54.06 6.9 43.46 6.0 13 2 53.44 8.7 -57.58 10.3
14 I -18.75 6.3 23.22 6.7 14 2 -34.81 7.1 -6.07 7.2
1,5 1 8.2g 6.5 14.21 6.5 15 2 -21.63 9.5 -36.44 10.5
16 1 31.71 6.2 17.3,5 6.9 16 2 -15.64 9.0 24.54 9.3
17 I -30.94 8.0 -26.85 9.0 17 2 -5.78 8.8 17.12 9.3
18 I -.23 6.1 -45.61 6.8 18 2 8.41 9.g 16.84 10.5
19 1 -11.59 8.9 5.38 10.2 19 2 8.44 g.o -10.47 9.4

20 1 14.51 6.7 -21.27 6.9 29 2 19.88 9.6 3.23 9.9
21 1 -16.39 9.2 41.7,5 9.6 21 2 .gg 9.2 -2.61 9.3
22 1 8.39 7.5 -14.72 7.3 22 2 -14.29 8.7 2.10 8.9
23 1 .87 8.5 14.60 8.4 23 2 -.53 9.5 - 1.78 9.5
24 1 8.12 7.3 -29.20 7.2 24 2 -5.85 8.6 5.20 8.6
2,5 1 3.71 7.7 4.3,5 7.6 25 2 3.72 9.3 5.21 9.4
26 1 4.97 6.9 -17.25 6.8 26 2 -5.29 8.3 .25 8.3
27 1 .52 7.5 6.61 7.4 27 2 10.22 8.3 -2.82 8.4
28 1 6.53 7.0 -10.03 6.6 28 2 -8.43 7.5 -11.5,5 7.6
29 1 3.47 7.0 2.42 7.0 29 2 9.46 7.6 -4.33 7.7
30 1 - 1.62 6.4 -9.09 6.3 30 2 -4.0,5 7.0 -5.36 7.2
31 1 5.18 6.8 2.38 6.6 31 2 6.60 6,8 .64 6.8
32 1 -9.15 6.0 -9.25 5.9 32 2 1.86 6.4 4.37 6.5
33 1 1.27 5.8 2.13 5.7 33 2 -1.02 6.3 .95 6.3
34 1 -1.56 5.6 -9.10 5.5 34 2 3.58 5.9 5.18 5.9
3,5 1 -1.91 5.6 2.01 5.6 35 2 -2.55 5.6 1.03 5.6
36 1 2.88 5.2 -5.84 5.2 36 2 .18 5.3 1.29 5.3

3 3 720.99 1.2 1413.17 1.2
4 3 990.98 .9 -200.62 .9 4 4 -190.63 .9 308.46 .9
5 3 -448.20 2.0 -215.14 2.1 5 4 -294.82 1.7 52.41 1.7
6 3 61.97 2.5 4.64 2.6 6 4 -92.80 1.9 -473.31 1.9
7 3 250.74 4.1 -209.16 4.3 7 4 -273.74 3.1 -122.02 3.1
8 3 -19.97 4.6 -86.94 4.7 8 4 -246.06 3.6 67.75 3.7
9 3 - I&5.37 6.6 --84.02 7.0 9 4 -- 12.83 5.7 23.26 5.5

I0 3 1.31 7.1 --161.48 7.5 I0 4 -97.31 6.0 --69.38 6.3

II 3 -28.89 8.3 -132.50 8.6 II 4 -33.21 8.9 -70.00 8.7
12 3 32.42 8.7 17.94 g.5 12 4 -63.30 8.5 -3.01 8.9
13 3 -14.03 8.4 83.66 8.8 13 4 -8.82 10.8 -.37 10.4
14 3 36.93 9.0 22.42 9.8 14 4 -8.93 10.2 1.88 10.7
15 3 44.63 9.2 20.54 9.8 15 4 --44.38 10.5 12.64 10.1
16 3 -32.08 8.3 -4,5.03 8.5 16 4 36.51 10.5 43.86 I 1.0
17 3 10.12 10.9 9.89 11.3 17 4 12.59 10.2 31.22 I0.0
18 3 -I.00 9.6 -7.05 9.6 18 4 43.42 9.0 6.0g 9.4
Ig 3 1.44 11.0 14.20 11.3 19 4 2.57 10.7 7.67 10.8
20 3 8.27 10.6 13.72 10.6 20 4 - 1.80 9.2 .83 9.6
21 3 1.gg 11.0 22.69 II.0 21 4 -.25 10.3 6.99 10.4
22 3 6.73 10.2 -8.09 10.4 22 4 -9.45 9.7 16.71 9.8
23 3 -4.56 10.2 -11.95 10.3 23 4 -10.63 9.9 -1.67 9.9
24 3 6.91 9.4 -- 10.59 9.5 24 4 6.06 9.5 18.11 9.7
25 3 -3.26 9.2 -3.11 9.2 25 4 6.35 9.7 -1.53 9.7
26 3 -.26 8.7 -3.72 8.8 26 4 5.32 8.9 4.90 9.1
27 3 -5.10 8.7 -1.86 8.7 27 4 2.92 8.8 -.64 8.7
28 3 -.26 8.1 1.17 8.1 28 4 2.68 8.1 -2.49 8.1
29 3 -4.39 7.8 - 1.76 7.9 29 4 -6.36 7.9 .73 7.8



Table 2. Continued.

m C{pl o"
30 3 -1.61 7.3

31 3 -1.87 7.1
32 3 - .67 8.6
33 3 - 1.70 6.3

34 3 -.51 5.9
35 3 .67 5.7
36 3 -.81 5.4

•_¢m o'
1.48 7.2

-4.08 7.1

3.00 6.8
-2.88 6.3

2.21 5.9
.69 5.7

- 1.39 5.4

5 5 177.76 2.2 -666.03 2.3
6 5 -26,5.76 1.3 -537.75 1.3
7 5 3.47 2.7 19.85 2.8
8 5 -24.93 2.8 85.30 2.8
9 5 -14.11 4.3 -60.06 4.4

10 5 --50.44 5.3 --43.83 5.5
11 5 45.91 6.9 53.28 7.3
12 5 50.60 8.0 -1.47 8.1
13 5 59.62 10.0 57.45 10.5

14 5 22.80 10.1 -11.61 10.1
15 5 16.07 11.5 10.89 12.1
16 5 -7.72 11.3 -1.88 10.9
17 5 -11.15 10.6 -5.60 11.2

18 5 1.74 11.7 21.13 11.4
19 5 -2.45 10.7 17.38 10.8
20 5 -10.42 10.9 .30 10.7
21 5 17.76 11.1 -15.89 11.2
22 5 -4.63 10.5 -.13 10.5
23 5 1.99 10.8 -7.94 10.8
24 5 -14.08 9.7 -7.08 9.7
25 ,5 -2.46 9.5 -2.35 9.0
26 5 4.30 8.9 10.6,5 8.9
27 5 - 1.59 8.7 3.71 8.7
28 5 2.92 8.3 -.24 8.2
29 5 3.45 7.9 3.54 7.9
30 5 3.39 7.4 .70 7.4
31 5 .91 7.1 1.46 7.1
32 5 -.05 6.7 -2.79 6.7
33 5 -.51 6.3 3.24 6.3
34 5 - 1.30 6.0 .04 6.0
35 5 -.24 5.7 -.74 5.7
38 5 -1.18 5.4 .34 5.4

7 7 1.60 2.1 22.00 2.0
8 7 70.42 1.9 74.86 1.9
9 7 -118.62 3.5 -100.,53 3.3

10 7 9.75 3.4 -4.29 3.5
11 7 9.61 4.4 -91.89 4.3
12 7 -12.70 5.2 34.83 5.3

3.57 6.5 -6.62 6.3
37.48 7.4 -4.36 7.6
66.71 8.8 I 1.45 8.8

3.05 10.1 -9.07 I0.1
22.95 10.4 -11.98 10.5

13 7
14 7
15 7
16 7
17 7
18 7 -.80 11.3
19 7 5.14 11.5
20 7 -7.79 11.4
21 7 - 12.23 10.8
22 7 12.75 11.1
23 7 -2.33 10.4
24 7 -2.51 10.0
25 7 .26 9.5
26 7 5.45 8.9
27 7 6.93 8.5
28 7 -4.65 8.2
29 7 1.18 7.9

6.72 11.3
-1.86 11.5

4.90 11.4
-1.41 10.7

1.30 II.1
2.65 10.3
5.07 9.9
3.46 9.4
2.58 8.9

-2.82 8.4
- 1.54 8.2
-7.29 7.8

TR Ctm (7 S(rr; O"

30 4 -2.11 7.4 -3.92 7.4
31 4 -4.95 7.0 -1.64 7.0

32 4 2.02 8.6 -3.38 6.6
33 4 -.24 6.4 .39 6.4
34 4 2.85 6.0 --1.88 6.0
35 4 2.74 5.7 1.49 5.7
38 4 1.32 5.4 -.12 5.4

6 6 9.08 .8 -238.33 .8
7 6 -357.85 .5 150.92 .5
8 6 -66.42 2.0 312.83 1.9
9 6 70.53 3.2 216.63 3.2

10 6 -34.74 3.5 - 77.72 3.3
11 0 8.47 5.0 24.29 5.1
12 6 1.39 6.2 45.63 6.1
13 6 --22.39 7.7 - 11.84 7.7
14 6 -3.19 9.2 6.51 9.1
15 6 27.23 10.5 -51.71 10.4
16 6 17.99 11.1 -26.78 11.0
17 6 .22 12.2 -30.42 12.0
18 6 31.20 11.0 -8.56 11.0
19 6 --6.25 11.1 3.92 10.8
20 6 12.76 10.6 .97 10.6
21 6 4.21 10.1 -8.35 10.0
22 6 14.63 9.7 2.43 9.8
23 8 I0.00 9.7 4.96 9.5
24 6 -.31 9.5 -.66 9.8
25 6 5.94 9.6 -6.74 9.5
26 0 8.54 9.0 3.20 9.1
27 6 1.77 8.8 -2.13 8.8
28 6 -8.33 8.1 2.00 8.1
29 6 -.30 7.8 --2.47 7.8
30 6 -3.22 7.4 4.17 7.4
31 6 -.56 7.0 .77 7.0
32 6 -3.83 6.6 .22 6.6

33 6 1.38 6.4 - 1.25 6.3
34 6 .58 6.0 -.32 6.0
35 6 .83 5.7 -1.48 5.7
36 6 -.56 5.4 -.90 5.4

8 8 - 1 18.88 3.9 122.33 3.8
9 8 184.50 3.2 -1.85 3.2

10 8 43.75 3.0 -92.48 2.9
11 8 -6.35 4.1 22.58 4.0
12 8 -21.22 3.0 16.90 3.1
13 8 -12.30 5.0 -11.09 5.0
14 8 -32.94 5.1 -13.18 5.0
15 8 -40.67 8.7 24.73 6.7
16 8 -13.44 8.0 2.28 7.9
17 8 31.16 9.2 8.77 9.2
18 8 45.72 10.8 .43 10.5
19 8 14.86 10.6 - I1.33 10.5

20 8 -2.01 10.8 -1.29 10.8
21 8 -18.10 10.7 2.52 10.6
22 8 -9.82 10.2 -6.83 10.1
23 8 4.22 9.6 -6.80 9.5
24 8 -2.43 9.7 7.56 9.7
25 8 1.43 9.1 -4.12 9.1
26 8 3.09 9.1 -2.14 9.1
27 8 -4.18 8.7 -4.41 8.7

28 8 -.57 8.2 -3.18 8.1
29 8 -6.42 7.7 2.54 7.7



Table 2. Continued.

30 7 -.17 7.3 -.13 7.3
31 7 1.48 7.0 -1.75 7.0
32 7 -3.08 6.7 1.86 6.7
33 7 -.04 6.3 1.78 6.3
34 7 2.31 5.9 .I0 5.9
3,5 7 .07 5.7 1.53 5.7
36 7 -. 17 5.4 - .42 5.4

9 9 -55.35 5.9 97.59 5.7
10 9 128.18 3.5 -48.19 3.5
11 9 -38.78 4.1 40.28 4.0
12 9 46.94 4.4 13.22 4.5
13 9 20.38 4.4 45.78 4.4
14 9 37.16 6.1 17.93 5.2
15 9 13.44 5.7 41.02 5.7
16 9 -16.58 6.2 -50.98 6.3
17 9 -3.20 6.9 -34.32 7.0
18 9 -13.52 8.1 19.24 8.1
19 9 1.76 8.6 8.66 8.6
20 9 22.81 10.0 7.24 10.2
21 9 17.32 9.8 -9.39 9.8
22 9 12.51 10.2 -9.48 10.3
23 9 -4.03 10.1 -10.39 10.1
24 9 -3.89 9.8 - 1.43 9.8
2,5 9 -6.03 9.3 9.84 9.3
26 9 2.52 8.7 -.66 8.8
27 9 .40 8.3 2.16 8.3
28 9 2.94 8.0 -3.06 8.0
29 9 -1.64 7.7 2.48 7.7
30 9 .17 7.3 -3.94 7.3
31 9 -3.89 6.9 -1.70 6.9
32 9 1.9,5 6.6 .77 6.6
33 9 -.29 6.3 1.87 6.3
34 9 1.27 5.9 1.51 5.9
35 9 1.08 5.6 -2.07 5.6
36 9 --.32 5.4 .55 5.4

11 11 ,54.33 6.2 -54.73 6.3
12 11 5.41 3.0 -9.52 2.9
13 11 -40.19 4.4 5.50 4.4
14 11 8.08 3.6 -4 1.38 3.6
15 II 1.72 4.3 28.93 4.2
16 11 14.02 3.9 -6.44 3.9
17 11 -17.11 4.7 17.50 4.7
18 11 -12.80 4.0 -.60 3.9
19 11 16.48 4.7 13.47 4.7
20 11 11.38 4.4 -23.93 4.3
21 II 9.28 5.1 -36.78 6.I
22 I I -9.37 5.4 - 18.38 5.3

23 I I 3.8,5 5.9 13.68 6. I
24 II 12.74 6.6 12.12 6.4
2,5 11 5.58 6.9 -1.28 7.0
26 II 3.20 6.8 5.08 6.7
27 11 --1.19 7.1 -3.10 7.1
28 11 --.82 6.9 -.83 7.0
29 11 --9.32 6.9 .45 6.8
30 11 - 1.62 6.7 5.08 6.7
31 11 -- 1.68 6.4 5.8,5 6.5
32 11 -2.40 6.3 -.6,5 6.3
33 11 5.56 6.0 -.48 6.1
34 11 1.24 5.7 -3.83 5.7
35 11 .68 5.4 -3.66 5.4
36 11 .59 5.2 -.73 5.3

13 13 -61.55 1.3 68.27 1.3

30 8 2.95 7.4 .57 7.3
31 8 .09 7.0 -1.18 7.0
32 8 .68 6.6 3.32 6.5

33 8 -.08 6.3 1.56 6.3
34 8 .71 6.0 -.79 6.0
35 8 .27 5.7 .18 5.7
38 8 - 1.05 5.3 - .54 5.3

10 10 94.56 4.3 -20.10 4.2
11 10 -52.08 4.3 - 17.81 4.3
12 10 -9.13 2.8 31.68 2.7
13 10 43.30 4.7 -38.04 4.7
14 10 37.00 2.9 -2.80 2.8
15 10 9.59 4.9 16.08 4.9
16 10 -10.42 4.2 6.61 4.1
17 10 2.10 5.8 20.12 5.8
18 10 9.01 6.0 -10.86 6.0
19 10 -35.35 7.4 --2.68 7.3
20 I0 -22.42 6.0 -8.09 8.0
21 I0 3.6,5 8.5 1.84 8.5
22 I0 6.01 9.2 20.38 9.2
23 I0 19.98 8.8 -3.76 8.8
24 I0 17.35 8.6 9.30 8.6
2,5 I0 5.69 8.5 -4.47 8.5
26 10 -4.84 8.5 1.68 8.5
27 10 -8.31 8.1 6.01 8.1
28 10 -7.28 8.0 1.20 8.0
29 10 .08 7.5 6.01 7.5
30 10 1.23 7.2 -1.04 7.2
31 10 2.52 6.8 --3.74 6.8
32 I0 .83 6.5 - 1.95 6.5
33 I0 .23 6.1 -.94 6.1

34 I0 -1.49 5.9 -.01 5.9
35 I0 - 1.43 5.6 -.64 5.6

36 I0 -.38 5.3 .47 5.3

12 12 --3.53 2.5 --11.80 2.5
13 12 --28.01 2.5 86.41 2.5
14 12 8.97 1.6 -32.07 1.5
15 12 -28.33 3.4 12.49 3.4
16 12 26.88 1.6 5.74 1.6
17 12 34.27 4.1 17.26 4.1
18 12 -26.18 2.4 -16.53 2.3
19 12 3.2/) 4.7 4.33 4.7
20 12 -4.08 3.2 17.30 3.1
21 12 2.82 ,5.2 .12.71 5.2
22 12 7.44 4.0 -7.84 3.9
23 12 21.58 5.5 - 16.68 5.6
24 12 12.34 5.0 -9.52 4.9
25 12 -5.54 5.8 11.01 5.9
26 12 -19.65 5.8 5.43 5.7
27 12 -.42 6.1 -1.72 6.2

28 12 .40 6.2 2.43 6.2
29 12 -.83 6.3 -4.93 6.3
30 12 3.79 6.2 -3.42 6.2
31 12 .15 6.1 4.62 6.1

32 12 -1.71 5.8 4.19 5.8
33 12 5.22 5.5 4.13 5.5
34 12 .45 5.3 2.49 5.3
35 12 1.48 5.3 -2.08 5.3
36 12 -.22 5.1 -1.61 5.1



Table 2. Continued.

l ,,, _'¢m a ,.¢¢_ a
14 13 31._ .9 44.62 .9
15 13 -28.11 1,0 --4.98 1.0
16 13 13.08 1.1 .61 1.1

17 13 16.91 1.2 20.11 1.2
18 13 -6.,.58 1.1 -3,5.18 1.1
19 13 -6.09 1.6 -29.17 1.6
20 13 28.6,5 1.3 4.89 1.3
21 13 -18.17 2.1 11.60 2.0
22 13 -16.95 1.4 17.85 1.4
23 13 -10.46 2.8 -7.51 2.6

24 13 -3.62 2.2 -.38 2.2
25 13 7.38 3.5 -15.19 3.5
26 13 2.72 3.2 1.42 3.3
27 13 -5.98 4.2 -4.13 4.1
28 13 .10 3.8 3.53 3.9
29 13 -1.15 4.5 -1,98 4.5
30 13 14.67 4.6 --.02 4.6
31 13 5.69 4.6 1.32 4.6
32 13 7.26 5.0 .22 5.0

33 13 3.67 4.4 6.78 4.3
34 13 -8.08 4.8 1.28 4.9
35 13 -1.18 4.7 4.48 4.7
36 13 .77 4.5 3.79 4.5

15 15 - 18.09 3.2 -8.09 3.2
16 15 -12.53 3.9 -32.30 3.9
17 15 4.94 1.4 5.75 1.4
18 15 -37.76 3.8 -19.82 3.8
19 15 -18.32 2.7 -12.77 2.7
29 15 -22.73 3.5 -.41 3.5
21 15 16.62 3.5 14.98 3.4
22 15 27.94 3.3 3.10 3.3
23 15 17.73 4.1 -2.28 4.0

24 15 9.81 3.6 -13.53 3.6
25 15 - 1.99 4.4 --2.27 4.4
28 15 -11.38 4.8 4.70 4.9
27 15 -4.34 5.3 .I0 5.3
28 15 -8.21 5.8 5.38 5.8
29 15 --1.27 5.6 -2.49 5.7
30 15 2.81 6.0 -9.28 6.0
31 15 .45 5.6 -4.37 5.6

32 15 3.91 5.5 -4.94 5.5
33 15 -3.01 5.3 2.17 5.3
34 15 .76 5.4 3.00 5.4

3,5 15 .26 5.1 2.83 6.1
36 1,5 - 1.82 4.8 1.86 4.8

17 17 -38.31 7.5 -20.62 7.6
18 17 6.11 7.4 8.77 7.4
19 17 27.95 4.0 -10.88 4.0
20 17 4.29 7.0 -8.98 7.I
21 17 -6.75 6.2 .84 6.2

22 17 13.81 6.4 -11.13 6.4
23 17 -7.21 6.3 -6.60 6.3
24 17 -8.46 ,5.9 1.98 5.9
2,5 17 -8.31 6.4 .35 6.4
26 17 -4.89 ,5.9 8.28 5.9

27 17 ,5.5,5 6.4 1.59 6.4
28 17 4.,52 6.9 -4.26 6.9
29 17 4.57 6.5 --2.78 6.5
30 17 1.01 6.5 --1.54 6.5
31 17 -5.93 8.4 2.57 6.4

32 17 --3.66 6.3 1.89 6.3
33 17 -2.14 6.0 3.04 6.0

14 14 -50.57 1.8 --6.37 1.8
15 14 6.17 1.0 --25.61 .9
16 14 -19.12 .8 -38.29 .8
17 14 -13.34 .8 11.76 .8
18 14 -9.28 1.2 -10.94 1.2
19 14 -`5.12 .7 -12.64 .7
20 14 10.32 1.8 - I 1.76 1.8
21 14 18.78 1.2 8.70 1.2
22 14 8.73 2.2 10.24 2.2
23 14 4.61 2.2 -3.27 2.2
24 14 --18.64 2.8 1.46 2.8
25 14 -21.94 3.3 13.21 3.3
26 14 3.93 3.5 5.63 3.`5
27 14 11.97 4.3 8.64 4.3
28 14 -2.11 4.3 -6.50 4.3
29 14 -5.15 4.6 1.94 4.7
30 14 -.03 4.8 -2.5,5 4.8
31 14 --7.28 4.4 1.25 4.5
32 14 4.66 4.8 6.92 4.6
33 14 9.23 3.9 2.51 3.9
34 14 -1.04 3.9 -.29 3.9
35 14 -.48 4.2 -.12 4.1
36 14 --4.84 4.5 --4.07 4.,5

16 16 -32.41 7.1 -4.37 7.1
17 16 -29.07 ,5.,5 1.88 ,5.5
18 16 9.79 4.0 5.03 4.0
19 16 - 19.90 5.0 - 11.93 ,5.0
20 16 --10.67 4.3 1.69 4.3
21 16 8.73 4.2 --5.16 4.2
22 16 .09 ,5.0 -4.93 5.0
23 16 4.90 4.5 11.77 4.6
24 16 -.49 6.2 6.28 6.2
25 16 3.04 5.3 - 12.80 5.3
26 16 `5.82 6.4 -4.15 6.3
27 16 6.58 5.5 -4.11 5.6
28 16 -8.31 6.1 -7.69 6.0

29 18 -2.20 8.4 -`5.53 6.4
30 16 .62 6.3 5.66 6.3
31 16 -4.51 6.4 4.80 6.4
32 16 2.92 6.2 4.10 6.2
33 16 -.39 5,7 1.97 5.7
34 16 1.13 5.6 -2.66 5.6
35 18 .13 5.4 -1.34 `5.4

36 16 1.34 5.2 -2.01 ,5.2

18 18 -4.45 11.4 -,5.06 11.4
19 18 21.6,5 9.2 -3.11 9.1
20 18 10.58 6.5 1.30 6.5

21 18 16.63 8.2 -6.57 8.2
22 18 7.03 6.8 - 10.30 6.7

23 18 -1.91 6.4 -6.30 6.4
24 18 4.31 6.5 -,5.07 6.5
25 18 -1.30 6.7 -10.67 6.6
26 18 -9.01 7.2 7.,55 7.3
27 18 -,5.19 6.9 ,5.94 6.9
28 18 .36 6.7 -.83 6.6
29 18 -2.01 6.3 -.14 6.3
30 18 .30 6.5 .85 6.5
31 18 2.56 6.4 .85 6.4

32 18 2.21 6.2 -1.48 6.2
33 18 .87 6.1 -1.24 6.1



Table 2. Continued.

t m a34 17 .36 5.7 5.7
35 17 3.39 5.5 -2.44 5.5
36 17 2.17 5.3 -.85 5.3

19 19 6.46 10.5 10.42 10.5
29 19 -7.10 9.4 8.46 9.5
21 19 -20.95 5.7 15.88 5.7
22 19 6.62 8.2 -4.70 8.3
23 19 -8.68 7.9 7.49 8.1
24 19 .53 7.3 -15.02 7.2
25 19 9.18 6.9 2.13 7.0
26 19 1.63 6.7 .72 6.7
27 19 .93 6.7 -6.23 6.7
28 19 4.42 6.7 13.80 6.7
29 19 -2.19 6.8 1.51 6.8
30 19 -5.83 6.7 -2.64 6.7
31 19 2.02 6.2 2.82 6.3
32 19 3.09 6.2 -1.51 6.2
33 19 1.68 5.9 .24 6.0
34 19 .60 5.7 -1.00 5.7
35 19 -2.90 5.6 .59 5.6
36 19 --.26 5.3 --.07 5.3

21 21 2.48 11.3 -6.85 11.3
22 21 -13.22 10.4 7.60 10.4
23 21 10.82 6.4 7.64 6.4
24 21 10.57 8.2 1.12 8.1
25 21 5.40 8.0 3.14 8.0
26 21 -,39 7.3 -2.41 7.3
27 21 2.07 6.7 --4.54 6.6
28 21 2.49 6.6 .27 8.6
29 21 -9.40 6.2 -5.95 6.1
30 21 -7,45 6.5 -3.10 6.5
31 21 2.34 6.4 3.58 6.4
32 21 1.17 6.1 5.88 6.1
33 21 .73 5.9 --.84 5.8
34 21 1.37 5.7 --.68 5.8
35 21 1.38 5.4 2.74 5.4
36 21 .74 5.2 --2.12 5.2

23 23 .84 10.5 .20 10.5
24 23 -2.14 9.9 -9.01 9.9
25 23 4.57 6.3 --2.46 6.3
26 23 2.35 7.1 8.95 7.1

27 23 -5.39 7.0 -2.74 7.0
28 23 -2.64 6.7 6.39 6.6
29 23 -5.01 6.0 -.08 6.0

30 23 - 1.58 6.0 -5.34 5.9
31 23 9.50 5.4 5.65 5.5
32 23 3.86 5.8 .48 5.7
33 23 --.63 5.6 --4.40 5.6
34 23 -.93 5.5 -2.14 5.5
3,5 23 -2.38 5.2 -1.56 5.2
36 23 -1.22 5.0 -.55 5.0

25 25 4.95 8.5 4.01 8.5
26 25 -3.99 8.3 8.25 8.4
27 25 11.80 5.5 3.15 5.5
28 25 1.13 6.4 --4.81 6.5
29 25 8.31 6.1 3.63 6.0
30 25 8.85 6.0 --5.61 6.0
31 25 -7.74 5.2 -.28 5.2
32 25 -13.17 5.1 7.70 5.1
33 25 -1.26 4.7 -4.82 4.7
34 25 6.25 4.9 -8.21 4.9
35 25 -3.39 4.7 1.52 4.7

34 18 -2.72 5.8 -.09 5.9
35 18 1.50 5.5 -.59 5.5
36 18 .07 5.2 .53 5.2

20 20 1.71 13.1 -13.51 13.2
21 20 -19.04 9.9 18.54 9.9
22 20 -13.32 7,6 14.78 7.6
23 20 17.22 8.4 -9.05 8.5
24 20 -6.06 8.0 --.33 8.1
25 20 -3.73 7.0 -6.62 6.9
28 20 9.48 6.8 - 10.95 6.8
27 20 2.95 6.7 3.01 6.7
28 20 -.98 7.0 1.13 7.0
29 20 -4.80 6.7 3.16 6.7
30 20 -.03 6.5 3.57 6.5
31 20 1.89 6.3 .56 6.2
32 20 -1.59 6.2 1.42 6.2
33 20 2.08 5.9 -.75 5.9
34 20 .89 5.8 -.40 5.7
35 20 -.77 5.5 -,88 5.6
36 20 -.91 5.3 -.87 5.3

22 22 -1.46 12.7 4.72 12.6
23 22 -.90 9.5 -2.14 9.5
24 22 - 1.73 7.9 - 1.30 7.9
25 22 - 1.87 7.5 - 1.76 7.5
26 22 10.91 7.8 9.16 7.8

27 22 -.14 6.6 2.93 6.6
28 22 -4.85 6.5 .51 6.4
29 22 9.66 6.3 4.44 6.3

30 22 3.25 6.3 -5.54 6.3
31 22 -6.27 6.0 -5.73 6.0
32 22 -4.66 6.1 .75 6.1
33 22 -4.10 5.8 -1.10 5.8
34 22 .83 5.6 .42 5.6
35 22 .02 5.4 3.30 5.3
36 22 .57 5.2 .69 5.2

24 24 2.34 11.2 -1.21 11.2
25 24 3.61 8.5 -3.86 8.5
26 24 -1.37 6.9 12.18 7.0
27 24 --1.94 6.1 2.62 6.1
28 24 6.88 6.3 -15.08 6.3
29 24 -2.53 5.4 3.70 5.4
30 24 -2.51 5.6 -.04 5.6
31 24 -3.83 5.5 -1.91 5.4
32 24 -6.59 5.3 5.33 5.3
33 24 3.99 4.9 -.48 4.9
34 24 6.73 5.3 .85 5.3
35 24 2.53 5.0 2.20 5.0
36 24 .66 4.9 -- 1.42 4.9

26 26 3.43 7.6 -4.27 7.5
27 26 -5.01 6.4 4.00 6.4
28 26 3.44 5.7 1.68 5.7
29 26 6.26 5.0 -3.69 5.1
30 26 -3.21 5.9 8.14 5.9
31 26 -4.69 4.8 .36 4.8
32 26 - 1,05 4.9 - 1.53 4.9
33 26 8.13 4.3 5.54 4.3
34 26 1.08 4.6 -9.01 4.6
35 26 -14.34 3.7 -.14 3.7



Table 2. Continued.

36 25 .03 4.9 8.65 4.9

27 27 6.89 3.0 3.45 3.1
28 27 -9.92 5.5 1.33 5.4
29 27 -7.47 3.4 -2.15 3.4
30 27 -1.92 4.7 7.82 4.7
31 27 7.00 3.5 12.25 3.5
32 27 -3.09 4.4 -3.92 4.4
33 27 -10.33 2.6 -2.13 2.6
34 27 6.90 4.0 -.54 4.0
3,5 27 2.78 1.5 -19.13 1.6
36 27 -10.19 2.5 4.23 2.6

29 29 8.64 7.6 3.16 7.6
30 29 4.82 6.3 .12 6.2
31 29 -5.42 3.9 -5.95 4.0
32 29 -3.34 4.1 2.50 4.0
33 29 -21.32 3.5 .19 3.5
34 29 -3.81 3.1 -4.48 3.0
3,5 29 8.19 3.3 -3.15 3.3
36 29 - 1.34 2.9 -2.45 2.9

31 31 -.23 7.2 -.07 7.2
32 31 -.76 6.3 -2.71 6.3
33 31 .17 5.6 1.16 5.6
34 31 2.35 4.3 2.30 4.3

36 26 8.45 3.9 11.08 3.9

28 28 6.77 4.7 1.9,5 4.7
29 28 10.32 6.1 -1.96 6.1
30 26 -8.97 4.2 -5.16 4.2
31 28 .34 4.1 1.73 4.1
32 28 1.57 4.4 2.33 4.4
33 28 - 10.89 3.3 1.90 3.3
34 28 4.5,5 3.5 --8.20 3.5
33 28 -10.89 1.9 -23.35 2.0
36 28 6.9,5 2.0 5.66 2.1

30 30 - 1.51 7.4 - .42 7.4
31 30 -2.4,5 6.5 8.42 6.5

32 30 8.29 4.7 1.67 4.7
33 30 2.52 4.4 - 13.49 4.4
34 30 -6.12 4.4 .03 4.4
35 30 3.71 4.8 --2.89 4.8
36 30 -1.56 3.7 -2.03 3.6

32 32 .73 6.8 .51 6.8
33 32 2.41 6.3 -.02 6.3
34 32 -.82 5.4 -1.16 5.4

35 31 1.33 5.1 1.03 5.1
36 31 --3.5,5 4.9 1.36 4.8

33 33 -.27 6.5 -.33 6.5
34 33 1.03 6.0 1.38 6.0
35 33 -.29 5.6 1.67 5.6
36 33 -2.40 4.9 -2.62 4.9

3,5 35 .09 5.8 -.14 5.8
36 35 .22 5.4 -.73 5.4

33 32 -3.98 5.3 .57 5.3
36 32 -.08 4.8 -.30 4.8

34 34 -.21 6.1 -.60 6.1
3,5 34 -.52 5.7 .12 5.7
36 34 .83 5.2 1.76 5.2

36 36 .15 5.4 .42 5.4





3 Satellite Dynamics

3.1 Cartesian Equations of Motion

The gravitationalaccelerationat any given location is obtained by computing the

gradient of the potential. Since the potential is given as a function of Earth-fixed

spherical coordinates, it is most convenient to compute the gradient in the same

system. In Earth-fixedsphericalcoordinates,thisgradient is,

BU _ 1BU. I BU

E - VU - _-ru, + r_-_u_ + rcos ¢ HA u_ (13)

where 3,, 3_ and 3_ are unit vectors in the r, ¢, A basis.This basis has 3, pointing

along the radius vector to the satellite,3_ isin the directionof increasingnorth lati-

tude and 3_ isin the directionof increasingeast longitude. The accelerationvector

obtained from thisexpression willbe the inertialaccelerationforthe point of interest.

Though, as noted, the components of the accelerationare given in the Earth-fixed

coordinate system. For most applicationsitwillbe desiredto have the components of

the accelerationexpressed in an inertial(nonrotating) coordinate system. This isac-

complished by applying the appropriate coordinate transformation from the spherical

coordinates to the desired coordinate system. So as a firststep, the components of

the inertialaccelerationin the Earth-fixed (rotating)coordinate system are obtained.

Substituting for the gravitationalpotential (equation (1))and taking the indicated

partialsin equation (13) gives the accelerationvector,

- -_-_ (e+ I) __, Pt,_(sinC)[Ct,,cosrnA + St,,sinmA] 3,
/--0 mr0

+ oe
Fn_O

m [-Gem sin mA + St,. cos real 3A+ cose
(14)

Notice that the leading term of the radial component (degree and order equal to zero)

is simply the expected two-body gravitational acceleration -p/r 2. Also, if only zonal

terms are used (m -- 0), then the longitudinal component of the acceleration is zero.

Next, the Earth-fixed Cartesian components of the acceleration can be obtained

by rotating from the spherical coordinates to the x, y, z basis. Let the components

of the acceleration in spherical coordinates be represented by,

(15)

where the components a,, a_ and a_ are given in equation (14). The acceleration

vector in Cartesian coordinates can be written as,

a=v= -" a=3= + ay3y + a,3= (16)



where _z, _y and _= are the Cartesian unit vectors in the Earth-fixed (rotating)

coordinate system. The Cartesian components of the accelerationcan be obtained

from the sphericalcoordinate components through the standard transformation,

aT

ay

a:

cos _#cos A

= cos _bsinA

sin_b

- sin¢ cos A - sinA

- sin¢ sinA cos A

cos_ 0 ¢IA

(17)

Having obtained the Earth-fixed Cartesian components of the acceleration one

further coordinate transformation is necessary to obtain the acceleration components

in the defined inertial coordinate system. If the matrix T represents the coordinate

transformation from the Earth-fixed system to the inertial coordinate system, then

the acceleration components in the inertial system will be,

@xYz --T_=,, (18)

where axyz is the inertial acceleration vector in inertial coordinates,

(19)

with ux, u_, and Uz being the unit vectorsof the Cartesian inertialcoordinate system.

In component form, thisfinaltransformation willhave the structure,

ax

ay

az

TII

= T21

TI2 T13

T22 T23

T32 T33

aT

ay

a:

(20)

The actual elements of the transformation matrix T depend on the inertialcoor-

dinate system being used. In the most general case,thistransformation willaccount

for polar motion (the motion of the spin axiswith respect to the Earth crust),Earth

rotation (the largesteffect)and, precessionand nutation (the motion of the spin axis

with respect to the stars). In the simplest case, allof these effectsare neglected

except for Earth rotation.This definesa coordinate system with the same z axis as

the Earth-fixedsystem but not rotatingwith the Earth. For many applicationssuch

a system iseffectivelyinertial.The transformation from the Earth-fixed system to

thisnonrotating system issimply,

.-.

cos8 -sinO 0

sin 8 cos 8 0

0 0 1
(21)

where 8 isthe Greenwich Hour Angle (the anglefrom a referencedirection,usually

the Vernal Equinox, to the Greenwich meridian).



3.3 Lagrangian Equations of Motion

The equations of motion for a satellite moving in the gravity field are given by equation

(13). These equations are convenient for numerical computation of an ephemeris but

not for analytic investigations into the evolution of the orbital elements. Such analyses

axe more conveniently performed using the Lagrangian equations of motion. These

equations are equivalent to equation (13) but directly give the time rates of change

of the Kepler orbital elements,

da 20V

dt na O M

de 1 - e _ OV

dt na2e OM

dw cos i OV

dt na2(1 - e2) 1/2 sin i Oi

di cos i OV

dt na2(1 -- e2) 112 sin i Ow

df_ 1 OV

dt na2(1 - e2)l/2sini Oi

dM 1 - • _ OV 20V

dt na2e Oe na Oa

(1 - e2) I/2 8V

na_e Ow

(22)

(23)

(1 - e2)_/20V
+ (24)

na2e Oe

1 OV

na2(1 - e_)l/2 siniOff
(25)

(26)

(27)

(28)

where V is the perturbing gravitational potential, i.e., the gravitational potential

excluding the point mass contribution,

U = #- + V (29)
r

These equations require that the perturbing gravitational potential V be repre-

sented in terms of the orbital elements instead of the spherical coordinates as ex-

pressed in equation (1). This conversion has been carried out by Kaula [1966],

= - _ _ F,,,,,(i) Gtm(e)St,,,m(w,M, ft, O) (30)
rn =0 p----0 qffi --

where

and

_bt,.m = (l - 2p)w + (l - 2p + q)M + m(£ - o) (32)

All quantities having been previously defined except for the inclination function

Ft=p(i) and eccentricity function Gtpq(e), which are given by Kaula. In this for-

mulation, the overbar on Ft,.p indicates it is normalized (in the same fashion that



3.2 Orbital Elements

While it isconvenient to express the satelliteequations of motion in the Cartesian

coordinate system, the evolutionof the satelliteorbit ismore conveniently evaluated

in terms of itsorbital elements. This is because the satellitemotion is nearly Ke-

plerian (i.e.,itcorresponds closelyto the idealellipticalmotion which resultsfrom

the gravitationalmotion about a point mass). The orbitalelements are a set of six

parameters which uniquely definethe positionand velocityof the satellite.Transfor-

mations existwhich convert Cartesian position and velocityto orbitalelements and

vice-versa.The set of elements used in thisstudy are the conventional set of Kepler

elements. These six elements are

semi-major axis --am One-half the length of the major axisof the ellipse.For a
circular orbit this would be the radius of the circle.

eccentricity --e--- Measure of ellipticity (0 _< e _ 1). For a circular orbit e = 0.

inclination _._/I The angle formed by the orbital plane and the equatorial (z-y)

plane (0 ° < i < 180°).

right ascension of the ascending node if/-- The angle measured in the equa-

torial (x-y) plane from the x-axis to the point of intersection of the orbital path

with the equatorial plane. The orbital path will intersect the x-y plane in two

places: once ascending (south to north) and once descending (north to south).

The x-axis will normally be defined to be pointing at the vernal equinox (the

location of the Sun in the sky on or about March 21).

argument of perigee _ The angle measured in the plane of the orbit from

the ascending node to the point of the orbit corresponding to closest approach

(the distance from the center of the Earth to the satellite is a minimum). This

angle will not be defined if the orbit is circular.

mean anomaly --Mm A non-physical angle. Defined as M = n(t -T) where T

is the time of periapsis passage, t is the current time, and n is the mean motion

(n = 2_r/P, where P is the orbital period). Unless the orbit is circular, the

satellite does not move with a constant angular rate and thus the actual angle

swept out by the satellite (which is the true anomaly) in a given amount of

time will not correspond to the mean anomaly. The mean anomaly would be

the angle swept out by the satellite if it were moving at a uniform rate.

At any given instant the Cartesian position and velocityof the satellitecan be con-

vetted to the corresponding set of Kepler orbitalelements. These values of the or-

bitalelements willcontinuallychange in time due to the various forcesaffectingthe

satellite;these instantaneous values for the orbitalelements are referredto as the

osculatingorbitalelements. And itisthe changes in these osculatingorbitalelements

(due to the acting forces)that isof primary interesthere.



the AssociatedLegendreFunctionsare normalized via equation (9)).This isrequired

since normalized sphericalharmonic coefIicientsare being utilized.





4 Satellite Motion

4.1 Precessing Ellipse

A satellite moving in the low-Earth orbit environment does not follow the idealized

elliptical path resulting from the consideration of the motion of a particle about a

point mass. Instead, the satellite will deviate from the idealized elliptical path as

the various acting forces perturb the satellite. In this discussion, only the perturbing

forces resulting from the Earth's gravity field are considered. Though it should be

emphasized that depending on the actual orbital geometry and spacecraft design,

other forces (principally, atmospheric drag, solar radiation pressure, and lunar and

solar gravity) may be more important.

The general problem of determining the motion of a satellite orbiting in a gravita-

tional field (described by spherical harmonics) can only be solved through numerical

integration. The equations presented in section 3 can be used for this purpose. How-

ever, it is possible through various degrees of approximation to analytically determine

the important characteristics of the motion.

The largest effect on a satellite orbiting the Earth is that due to the oblateness

(predominantly the second degree zonal _2,0). This is not surprising given the size

of the second degree zonal with respect to all other coefficients of the gravity field

(Tables 1 and 2). The most noticeable effect of the oblateness is to cause the right

ascension of the ascending node and argument of periapse of the orbit to vary linearly

in time. In the two-body problem these quantities remain constant. The oblateness

also causes a small change in the orbital period. Besides these secular effects (linear

changes in time) the oblateness causes (relatively) large periodic changes in all of the

orbital elements.

The rate of change in the node, periapse, and mean anomaly due to the second

degree zonal coefficient are (from Kaula [1966]), respectively,

d_
= ._/,_\2n_a) 2 cos/ C (33)d--t- _ (1 - e2)2 2,o

dw 3n (._)2 (5cos' i - 1d"_" = (1 -- e2) 2 )C2,0 (34)

d-'t- ffi n - _.n _ - e]_-_- C,,o (35)

(Note that the unnormalized second degree zonal coefficient is used in these expres-

sions.)

So as a first approximation, a satellite orbiting the Earth can be reasonably rep-

resented by a secularly precessing ellipse. This is an ellipse that has constant values

for the semi-major axis, eccentricity and inclination, and values that vary linearly in

time for the right ascension of the ascending node, argument of periapse and mean

anomaly. The actual motion of the satellite then consists of small deviations away

from this secularly precessing ellipse. To characterize these deviations away from this

precessing ellipse the solution presented by Kaula [1966] is very useful.



4.2 Kaula's Solution

Kaula's approach was to define a reference orbital path corresponding to the secularly

precessing ellipse. The orbital elements that define this reference orbital path are

referred to as mean (or averaged) orbital elements. Kaula determined (to first order)

the deviation from these mean orbital elements caused by the spherical harmonic

coefficients of the gravity field. That is, it is assumed that the orbital elements can

be written in the form,

semi-major axis a" =

eccentricity e ° =

inclination i" =

right ascension of the ascending node f_" --

argument of periapse o_° -

mean anomaly M" =

a + Aa (36)
e + Ae (37)

i + m (381
_t + No + AN (39)

&t + _o + Aw (40)

1(lit + Mo + AM (41)

where the star quantities represent the osculating (true) orbital elements of the satel-

lite and the unstarred orbital elements are those that define the reference precessing

ellipse. The time t is measured from a reference epoch and no, wo and Mo are the

values at the reference epoch. The deviations from the reference ellipse will be purely

periodic (assuming the mean orbital elements and rates have been accurately defined).

The resulting deviations in the orbital elements are of the form

t t +oo

t----I mffi0 pffi0 qffi-oo

where a represents any one of the six orbital elements. The individual Aatmpq can

be written in the forms

Aat,,,_ = C'_._St,,,pq for a, e, and i (43)

Aatm_ = C?.,_S;.,_ for f_, w, and M (44)

where the C_m _ are constants which depend upon the orbital elements of the reference

secularly precessing ellipse; and the Stm_ and S;m_ functions are sinusoidal with

amplitudes dependent on the values of the gravity field spherical harmonic coefficients.

The constant C_,._ coefficients are

C_,._ = 2a Ft.,Gt_( t - 2p + q) _pq (45)

(-_) n (,_6),(1- e_)'/_$,a,,_[(i- e_)'/_(t-2p+ q)- (t-2p)]'_,-,,,,,c_,,,,,,,= ;

C_,,,m = Gtm - 2p)co_s/- rn] . n (47)
- sm i _t_pq(1 e2)1/2



cr,..,,,, G,,,<,cosio&,,,,],,
= "--=-*+_.- -%7)_/2-- Oi J+---e oe (1 - sin+ _Ptmpq

o,+,+, ,,fl

C_.,pq = sin/ Oi (1-e2)l/2Otmpq

{[ ]n-,--Z-- Gt_M

C_,,,_ = .F't,,,. 2(t+ 1)-3(t-2p+q)_b,p q

(48)

(49)

(1 - e2) OGt_ _

e Oe J _+m_+

(50)

The sinusoidalfunctions Stm_ and S;m_ are

[ [+,.],---.sin_Ptmpq (51)
= cos _tm_ + Ctm t-,,, oddStm_ --Stm t--* odd

- cos _tmpq (52)
-- sin _btmA Ctm t-mS;m;w --Stm t-m odd

The periodicities of the orbital element variations caused by the gravity field are

thus,

_tmA -- (£ --2p)Q + (£ - 2p + q)h:/+ rn(£/-- e) (53)

where e is the Earth rotation rate, e and m are the sphericalharmonic degree and

order,p isan integerthat can take on the values 0 to _,and q isan integer that can

take on the values 4-oo. Kaula's solution isobtained through an expansion in the

orbitaleccentricitywhich is the reason the index q has an infiniteextent. For orbits

with small eccentricitiesonly a small range of q values needs to be considered. High

eccentricityorbitsrequire the consideration of much greater range in q and Kaula's

solution may not be the best approach in such cases.

4.3 Position Perturbation

Kaula's solution provides a prediction of the expected variation in the Kepler or-

bital elements due to the gravity field. This formulation is useful for determining

the amplitudes and frequencies of the variations in the osculating orbital elements.

To determine how these orbital element perturbations are manifested in terms of a

position displacement of the satellite (with respect to the reference secularly precess-

ing ellipse) it is necessary to transform the results back into a Cartesian coordinate

system. The chosen coordinate system for doing this is the rotating radial, transverse

(along-track), and normal (cross-track) system. This coordinate system is defined by

the reference secularly precessing ellipse. The radial direction is along the radius vec-

tor, transverse is perpendicular to the radius vector (in the orbital plane and positive

in the direction of the satellite motion), and normal is perpendicular to the orbital

plane (and positive in the direction of the angular momentum vector).



The corresponding position perturbation in the radial,transverse,and normal

directionsisgiven by the followingrelations(Rosborough and Tapley, [1987])

Or OrAr = _aAa+ _eAe+ AM (54)

( c3fAM )Ar = r A_+_-_ +Aflcosi (55)

At/ = r[Aisin(w + f) - Agtsinicos(w +.f)] (56)

where f is the true anomaly as measured along the referencesecularly precessing

ellipse(the central angle from the point of periapse to the satellitelocation).Given

the expected perturbations in the orbitalelements from Kaula's solution it is then

possible to compute the corresponding position perturbations using these mapping

relations.

In the application at hand, the satellitesof interestare establishedin orbitswith

small eccentricity.This allowsfor an accurate evaluation of the expected orbitalel-

ement variationsusing a very limited range of q values. This in turn simplifiesthe

evaluation for the position perturbation. Assuming a small eccentricity,the pertur-

bations in the radial,transverse and normal components ate approximately given

by

t tA,.= _ E C_,.,S,,.,o (SZ)
l= 1 m =0 p=O

_, = }2 E c;_,s;_o (58)
t_l m----0F_0

a_ = E E r. (c_:,sr,+,_,o-c;_.-,s(;_,.,o) (59)
l= 1 m=O p=O

C "+ and C_p depend upon the orbitalelementsThe constant coefficientsC_'mp,C[,.p, trap

and rates of the referencesecularlyprecessingellipseand are given by,

fa,_ [ 4p - 3_ - 1 4p- _ + 1]

t et,,,_ 26t,.p, 2_,t,,,_1 J

(_)t [2(t+1)-3(t-2,);_._ +4p_3t_ 1

t,,u, = 2 ""---_Pt,-vo[(t- 2p) cosi - m]/Ytm,si._.ni OPt,.,Oi

{ }C_,,_p = _ bt,.po- [(g- 2p)cosi- m] i_t''psin---7+ O/Yt"'

(60)

_-4p- 1]+ (_lmp- 1

(61)

(62)

(63)



5 Perturbations in Laser Range

Of particularinterestin this applicationisthe expected orbit error signal that will

be observed using satellitelaserranging. The orbit perturbations produced by the

gravityfieldcause a perturbation in position (inthree-dimensions) as described in the

preceding section. This perturbation in position willresultin a perturbation of the

expected station-to-satelliterange measurement. The finalstep isto then determine

thisperturbation in the range observable.

The station-to-satelliterange is

p= V/(x_ x.)2+ (y_ y.)2+ (t- t.)2 (64)

where x, y, z are the Cartesian coordinates of the satellite and x,, yo, z, are the Carte-

sian coordinates of the tracking station. The perturbation in the range measurement

due to a perturbation in the satellite position is given (to first order) by

P At

(65)

Y -- Y° A z -- z,_ z--x, Az+_ y+ At (66)
P P P

where Ax, Ay, and Az are the perturbations in the satellite position. The perturba-

tions in the satellite Cartesian position will now be expressed in terms of the already

specified radial, transverse, and normal position perturbations. The transformation

between these two orthogonal coordinate systems is

D

Ar

Ar

A_

=RB=

Rll R12 R13

R21 R22 R23

R31 R32 R_

Ax

Ay

Az

(67)

The rows of the R rotation matrix contain the components of the unit vectors in the

radial, transverse, and normal directions. That is,

R

r"/r

,_.x ¢,
(_'x _/l_'x

(68)

Thus, given the perturbations in the radial,transverse,and normal components, it

ispossible to compute the corresponding perturbations in the xyz Cartesian system.

And the resultingperturbation in the range measurement is

Ap = ArB - ATRrD = ArR r

Ar

Ar

Arl

(69)





6 Covariance Analysis

The preceding analysis provides the tools for determining the perturbations in the

satellite orbit position (in terms of orbital elements or Cartesian position) and the

resultant perturbation in a station-to-satellite range measurement. These perturba-

tions describe the effect on the orbit of the perturbing gravitational potential with

respect to the reference precessing ellipse. Since the relations are all linear with re-

spect to the gravity spherical harmonic coefficients, one can equally well determine

the effect of errors in the coefficients (as opposed to the entire effect). Since a nominal

gravity model is used in the analysis of geodetic satellite tracking data, it is in fact

the error in the coefficients that is of most interest and not the entire effect (most of

which is being accurately modeled by the nominal gravity model). However, the error

in the coefficients is obviously not known. But the statistics of the expected error

(in the gravity field coefficients) is known. This knowledge of the error statistics is a

by-product of the least-squares process used in the estimation of the nominal gravity

model, and it is represented by the estimated error covariance matrix.

Define a vector which contains the differences of the true gravity field spherical

harmonic coefficients with respect to the nominal gravity model values

6g --

¢;0
6¢21

 C3o
6¢31
6s31

 c4o

(70)

where the coefficientswith an asteriskdenote the values used in the nominal gravity

fieldmodel. The error covariance matrix of the estimated coefficientsisthen

P_ --E[SgSg T] (71)

where E is the expectation operator. The gravity field coefficient error covariance

matrix Ps is an n x n symmetric matrix where n is the total number of coefficients.

Using the gravity field error covariance and the linear relations between the orbit

perturbations and the gravity field coefficients, it is possible to compute the estimated

orbit position variance. Similarly, the estimated station-to-satellite range error vari-

ance can also be obtained. So for a given uncertainty in the gravity field (as provided

by the estimated error covariance matrix Pg) it is possible to determine what the

expected uncertainty in the satellite position and/or range measurement will be.



As noted, the relationsbetween the orbit perturbations and the gravity fieldco-

efficientsare linear,and thus can allbe expressed in the form

6_ = FT6g (72)

where F is the vector of coefficients that multiply the gravity field coefficients: The

quantity Je can represent any quantity of interest that has been previously derived:

orbital element; radial, transverse, normal position component; Cartesian position

components; or the range measurement error. In each case, the coefficients in the

vector F will differ, but the linear relation with respect to the gravity field coefficients

always exist. The lower case 6 is used to indicate that the perturbation is resulting

from an error in the gravity field coefficients; as opposed to the previously used upper

case A which was used to denote the full perturbation effect due to the gravity field

coefficients.

The variance in the quantity e is then

p_ _ ElF T _g_T F] = F T E[6g6gT]F = F T PeF (73)



7' Applications

These analytical developments were applied to the particular case of laser range track-

ing of the Lageos satellite. The problem was to determine the expected magnitude

and characteristic of the Lageos orbit error due to gravitational field mismodeling

as observed through laser range tracking. In this study the gravity field error co-

variance for GEM-T1 and GEM-T2 were used to quantify the current uncertainty

of the Earth's gravity field. Thus the results presented here are only indicative of

the current state of the art as represented by GEM-T1 and GEM-T2. Though the

methodology described in this report can continually be applied to new fields that

are developed and thus provide another means for quantifying the improved accuracy

that such fields provide.

7.1 Lageos and the Tracking Network

The geodetic satellite Lageos is an excellent satellite for analysing the effect of gravity

field mismodeling. The satellite is in a high near-circular orbit which decreases its

sensitivity to the high degree gravity field coefficients but at the same time it is

also minimally effected by nongravitational forces which could mask the gravitational

perturbations. So while it does not provide a good test for the entire gravity field

model, it does provide a stringent test for the low degree portions of the gravity field

(approximately up to degree 20). The orbital elements of the Lageos satellite are

given in Table 3.

Table 3. Lageos Orbital Elements.

Orbital Element Value

semi-major axis 12,271 km

eccentricity 0.0044

inclination 109.84 degrees

Geodetic satellites such as Lageos are tracked by a globally distributed network of

laser ranging stations. Some of these stations operate at a fixed location and others

axe transportable and have operated at a number of locations. This has resulted in

observations being obtained at well more than 50 locations. To evaluate the expected

Lageos laser range residuals that could result from mismodeling the gravity field, a

representative subset of 20 tracking locations have been used in this study. These

stations are globally distributed and are listed in Table 4.



Table 4. Subset of Laser Range Tracking Station Locations.

Location East Longitude Latitude

Arequipa, Peru

Easter Island, Chile

Goldstone, USA

Grasse, France

Graz, Austria

Greenbelt, USA

Haleakala, USA

Huahine, French Polynesia

Kwajalein, USA

Matera, Italy

McDonald Observatory, USA

Monument Peak, USA

Orroral, Australia

Platteville, USA

Quincy, USA

Royal Greenwich Observatory, UK

Shanghai, China

Simosato, Japan

Wettzell, Germany

Yaragadee, Australia

288.5 ° -16.5 °

250.6 ° -27.1 °

243.2 ° 35.2 °

6.9 ° 43.8 °

15.5 ° 47.1 °

283.2 ° 39.0 °

203.7 ° 20.7 °

209.0 ° -16.7 °

192.5 ° 9.4 °

16.7 ° 40.6 o

256.0 ° 30.7 °

243.6 ° 32.9 °

149.0 ° -35.6 °

255.3 ° 40.2 °

239.1 ° 40.0 °

0.3 o 50.9 °

121.2 ° 31.1 °

135.9 ° 33.6 °

12.9 ° 49.1 °

115.3 ° -29.0 °

7.2 Predicted Range Uncertainty

For each of the tracking station locations listed in Table 4, the expected uncertainty

of the station-to-satellite range was determined for the Lageos satellite and using the

error covariance matrices of the GEM-T1 and GEM-T2 gravity field models. These

uncertainties were computed for every geographic location of the Lageos satellite that

placed the satellite at least 20 degrees above the horizon with respect to the tracking

station location. Thus, the uncertainty varied depending on the relative orientation

of the satellite with respect to the tracking site. The results of these computations
are summarized in Table 5 for GEM-T1 and Table 6 for GEM-T2.



Table 5. Station-to-SatelliteRange Uncertainty for Lageos.

Based on the GEM-TI Gravity Field Error Covaxiance.

Station

Range Uncertainty in millimeters

Ascending Descending Overall

Min Max RMS Min Max RMS RMS

Arequipa Ii 22 16 13 23 17 16

Easter Island 12 33 20 12 24 17 19

Goldstone 11 25 17 12 20 15 16

Grasse 11 26 18 12 33 22 20

Graz 11 28 18 12 33 22 20

Greenbelt 11 23 16 12 23 16 16

Haleakala 14 31 21 12 21 16 18

Huahine 15 35 23 12 23 17 20

Kwajalein 15 33 22 12 21 16 19

Matera 12 24 18 12 35 22 20

McDonald Observatory 11 23 16 12 21 15 16

Monument Peak 11 24 17 12 20 15 16

Orroral 12 32 21 11 24 17 19

PlatteviUe 11 23 17 11 21 16 16

Quincy 11 25 18 11 21 15 17

Greenwich Observatory 11 27 18 11 30 21 19

Shanghai 13 31 21 13 28 19 20

Simosato 13 33 22 12 26 18 20

Wettzell 11 29 18 12 33 22 20

Yaragadee 12 24 18 II 25 I7 18

Table 6. Station-to-SatelliteRange Uncertainty for Lageos.

Based on the GEM-T2 Gravity Field Error Covsxiance.

Station

Range Uncertainty in millimeters

Ascending Descending Overall

Min Max RMS Min Max RMS RMS

Arequipa 7 14 i0 7 14 I0 i0

Easter Island 7 19 12 7 15 11 11

Goldstone 7 15 10 7 12 9 10

Grasse 7 15 11 7 17 11 11

Graz 7 15 10 7 17 12 11

Greenbelt 7 14 10 7 14 10 10



Table 6. Continued.

Station

Range Uncertainty in millimeters

Ascending Descending Overall

Min Max RMS Min Max R.MS RMS

Haieakaia 8 17 12 8 13 10 11

Huahine 9 19 13 7 14 10 12

Kwajalein 9 18 12 8 14 10 11

Matera 7 14 10 7 18 12 11

McDonald Observatory 7 14 10 7 12 9 10

Monument Peak 7 15 10 7 12 9 10

Orroral 7 17 12 7 15 11 11

Platteville 7 14 10 7 13 10 10

Quincy 7 15 11 7 13 10 10

Greenwich Observatory 7 15 11 7 15 11 11

Shanghai 7 16 11 8 16 11 11
Simosato 8 16 11 8 14 11 11

Wettzell 7 15 11 7 17 12 11

Yaragadee 7 15 11 7 15 11 11

These resultsdemonstrate the improvement in gravity fieldmodeling provided by

GEM-T2 versus GEM-T1. The overalluncertainty in the overallstation-to-satellite

range uncertainty decreased from approximately 20 mm to 10 ram. In all cases

the range uncertainty tends to be largestwhen the satelliteis low on the horizon

(relativeto the tracking site)and smallest when the satelliteisdirectlyoverhead of

the tracking site.This isnot unexpected sincethe transversecomponent ofthe orbital

perturbations are much largerthan the radialcomponent. And itis the transverse

component that is predominantly being observed by the ranging system when the

satelliteislow in the sky. When the satelliteismore directlyoverhead a more direct

detection of the radialorbit error is being made. This geographic variation of the

range uncertainty isclearlyshown in the figuresof the Appendix.



8 Conclusions

The linear perturbation approach, patterned after the method of Kaula [1966], is

a powerful analysis technique for evaluating the accuracy of gravity field modeling.

Given the expected uncertainty in the spherical harmonic coefficients of a gravity

field model, via the error covariance matrix from least squares, the corresponding

expected uncertainty in the orbital motion can be determined in a straightforward
manner. And these results can then be extended to determine how these orbital

modeling errors will be observed through the satellite tracking system.

Analysis of the Lageos satellite and the gravity field models GEM-T1 and GEM-

T2 have shown that the orbital motion is being modeled to the 1-2 cm accuracy level

in terms of station-to-satellite range measurements. This accuracy is compatible (in

an RMS sense) with the current accuracy of laser range measurements. The range

uncertainty as a function of geographic location, shows that gravity field mismodeling

will still at times be significantly above the laser range measurement accuracy, and

thus still can be a limiting factor in Lageos geophysical studies.
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9 Appendix

The attached figuresillustratethe variationof the range uncertainty for each of the

tracking sitesthat have been considered. Figures are only presented for the case of

using the GEM-TI gravity fieldmodel. The resultsfor the GEM-T2 model are very

similarin character and primarily differby having an overallsmaller magnitude. For

each of the tracking sitestwo figuresare presented -- one figurefor the situationof

Lageos being tracked while on an ascending pass and the corresponding case forwhen

Lageos isbeing tracked on a descending pass. The contours of the range uncertainty

are computed over a slightlylargergeographic extent than the results provided in

Tables 5 and 6. Here the range uncertainty isevaluated for station-to-satelliteele-

vations down to 10 degrees (insteadof 20 degrees). This largergeographic coverage

provides for a slightlybetter visualizationof the character of the range uncertainty.
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MINIMUM = 12 MM MAXIMUM = 35 MM
CONTOUR INTERVAL = I MM

RMS = 21 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
EASTER IS. TRACKING LAGEOS ALONG DESCENDING PASSES

! I

\

\

.....\-.....\
t 1

/
l

/
/

MINIMUM = 12 MH MAXIMUM = 31 MM
CONTOUR INTERVAL = I MM

RMS = 18 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
GOLDSTONE TRACKING LAGEOS ALONG ASCENDING PASSES

MINIMUM = 12 MM

CONTOUR INTERVAL
MAXIMUM
I MM

I

26 MM RMS = 18 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
GRASSE TRACKING LAGEOS ALONG ASCENDING PASSES

MINIMUM = 11 MM MAXIMUM = 31 MM RMS = 19 MM
CONTOUR INTERVAL = I MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T!
GOLDSTONE TRACKING LAGEOS ALONG DESCENDING PASSES

MINIMUM = 11 MM MAXIMUM = 23 MM
CONTOUR INTERVAL = I MM

RMS = 16 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
GRASSE TRACKING LAGEOS ALONG DESCENDING PASSES

MINIMUM = 12 MM MAXIMUM = 37 MM RMS = 23 MM
CONTOUR INTERVAL = I MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
GRAZ TRACKING LAGEOS ALONG ASCENDING PASSES

MINIMUM = 11 MM MAXIMUM = 33 MM RMS = 19 MM
CONTOUR INTERVAL = I MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
GREENBELT TRACKING LAGEOS ALONG ASCENDING PASSES

MINIMUM = 11 MM MAXIMUM = 23 MM RMS = 17 MM
CONTOUR INTERVAL = I MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
GRAZ TRACKING LAGEOS ALONG DESCENDING PASSES

MINIMUM = 12 MM MAXIMUM = 37 MM RMS = 23 MM
CONTOUR INTERVAL = I MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
HALEAKALA TRACKING LAGEOS ALONG ASCENDING PASSES

! i t 6.
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l ; I I

! !
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, !
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MINIMUM = 13 MM MAXIMUM = 34 MM RMS = 22 MM
CONTOUR INTERVAL = I MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
GREENBELT TRACKING LAGEOS ALONG DESCENDING PASSES

\

MINIMUM = 11 MM MAXIMUM = 24 MM RMS = 17 MM
CONTOUR INTERVAL = 1 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
HUAHINE TRACKING LAGEOS ALONG ASCENDING PASSES

\

MAXIMUM = 39 MM

j'

i
!

/

/

CONTOUR INTERVAL = I MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
HALEAKALA TRACKING LAGEOS ALONG DESCENDING PASSES
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MINIMUM = 12 MM MAXIMUM = 23 MM
CONTOUR INTERVAL = I MM

RMS = 16 MM



RANGE STANDARD DEVIATION
KWAJALEIN TRACKING LAGEOS

i
!

PREDICTED
ALONG ASCENDING

BY GEM-T1
PASSES

l

I

1
!

L

MAXIMUM
= I MM

I
I

t
! _T- f"

= 36 MM RMS = 23 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
HUAHINE TRACKING LAGEOS ALONG DESCENDING PASSES
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\

RMS = 18 MM
CONTOUR INTERVAL = I MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
HATERA TRACKING LAGEOS ALONG ASCENDING PASSES

i

MINIMUM = 12 HM MAXIMUM = 31 MM
CONTOUR INTERVAL = I MM

RMS = 19 MN



RANGE
KWAJALE[N

STANDARD DEVIATION
LAGEOS

"..... -E-G

!\

!

I
!

/

= 12 MM
INTERVAL

!
|

MAXIMUM
I MM

1

i
|

23 MM

|
|

RMS

\ \

17 MH



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
MATERA TRACKING LAGEOS ALONG DESCENDING PASSES

MINIMUM = 12 MM MAXIMUM = 38 MM
CONTOUR INTERVAL = I MM

RMS = 23 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
MCDONALD TRACKING LAGEOS ALONG ASCENDING PASSES

\

MINIMUM = 12 MM MAXIMUM = 24 MM
CONTOUR INTERVAL = 1 MM

RMS = 17 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
MONUMENT PK TRACKING LAGEOS ALONG ASCENDING PASSES

jw

i / i ;" i _ \

MINIMUM = 12 MM MAXIMUM = 27 MM
CONTOUR INTERVAL = I MM

RMS = 18 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
MCDONALD TRACKING LAGEOS ALONG DESCENDING PASSES

MINIMUM = 12 MM MAXIMUM = 23 MM
CONTOUR INTERVAL = I MM

RMS = 16 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
ORRORAL TRACKING LAGEOS ALONG ASCENDING PASSES

L

/
I

l

1

MINIMUM = 12 MM MAXIMUM = 33 MM
CONTOUR INTERVAL = I MM

RMS = 22 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
MONUMENT PK TRACKING LAGEOS ALONG DESCENDING PASSE

MINIMUM = 12 MM MAXIMUM = 23 MM
CONTOUR INTERVAL = I MM

RMS = 16 MM



RANGE STANDARD DEVIATION PREDICTED BY GEH-TI
PLATTEVILLE TRACKING LAGEOS ALONG ASCENDING PASSES

MINIMUM = 11 MM MAXIMUM = 24 HH
CONTOUR INTERVAL = I HH

RMS = IB MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
ORRORAL TRACKING LAGEOS ALONG DESCENDING PASSES
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MINIMUM = 11 MM MAXIMUM = 25 MM
CONTOUR INTERVAL = I MM

RMS = 18 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
QUINCY TRACKING LAGEOS ALONG ASCENDING PASSES

MINIMUM = 12 MM MAXIMUM = 27 MM
CONTOUR INTERVAL = I MM

RMS = 19 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
PLATTEVILLE TRACKING LAGEOS ALONG DESCENDING PASSE

MINIMUM = 11 MM MAXIMUM = 24 MM RMS = 17 MM
CONTOUR INTERVAL = I MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
RGO TRACKING LAGEOS ALONG ASCENDING PASSES

! I

MINIMUM = 11 MM MAXIMUM = 31 MM
CONTOUR INTERVAL = I MM

RMS = 19 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
QUINCY TRACKING LAGEOS ALONG DESCENDING PASSES

MINIMUM = 11 MM MAXIMUM = 26 MM RMS = 17 MM
CONTOUR INTERVAL = I MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
SHANGHAI TRACKING LAGEOS ALONG ASCENDING PASSES

\

MINIMUM = 12 MM MAXIMUM = 32 MM
CONTOUR INTERVAL = I MM

RMS = 21 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
RGO TRACKING LAGEOS ALONG DESCENDING PASSES

MINIMUM = 11 MM MAXIMUM = 34 MM RMS = 22 MM
CONTOUR INTERVAL = I MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
STMOSATO TRACKING LAGEOS ALONG ASCENDING PASSES

•' / I ,%, ( i

MINIMUM = 12 MM MAXIMUM = 34 MM
CONTOUR INTERVAL = I MM

RMS = 22 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
SHANGAHI TRACKING LAGEOS ALONG DESCENDING PASSES
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MINIMUM = 12 MM MAXIMUM = 29 MM
CONTOUR INTERVAL = 1 MM

RMS = 20 MM



RANGE STANDARD DEVIATION PREDICTED BY GEN-TI
WETTZELL TRACKING LAGEOS ALONG ASCENDING PASSES

MINIMUM = 11 MM MAXIMUM = 33 MM RMS = 19 MM
CONTOUR INTERVAL = I MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
SIMOSATO TRACKING LAGEOS ALONG DESCENDING PASSES

\
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MINIMUM = 12 MM MAXIMUM = 31 MM
CONTOUR INTERVAL = I MM

RMS = 19 MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
YARAGADEE TRACKING LAGEOS ALONG ASCENDING PASSES

!
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MINIMUM = 11 MM MAXIMUM = 25 MM RMS = 19 MM
CONTOUR INTERVAL = I MM



RANGE STANDARD DEVIATION PREDICTED BY GEM-TI
WETTZELL TRACKING LAGEOS ALONG DESCENDING PASSES

MINIMUM = 12 MM MAXIMUM = 37 MM
CONTOUR INTERVAL = I MM

RMS = 23 MM



./

RANGE STANDARD DEVIATION PREDICTED BY GEM-T1
YARAGADEE TRACKING LAGEOS ALONG DESCENDING PASSES

i

I

MINIMUM = 11 MM MAXIMUM = 26 MM
CONTOUR INTERVAL = I MM

RMS = 18 MM


