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ORIENTATION EFFECTS ON THE MEASUREMENT AND ANALYSIS OF
CRITICAL CTOA IN AN ALUMINUM ALLOY SHEET

M. A. Sutton 1 , D. S. Dawicke a, and J. C. Newman, Jr. 3

ABSTRACT

Fracture tests were conducted on 76.2mm wide, 2.3mm thick middle crack tension

(M(T)) specimens machined from 2024-T3 aluminum sheet. The specimens were tested
in the T-L orientation and comparisons were made to similar tests conducted in the L-T
orientation. Measurement of critical crack tip opening angle (CTOA), applied stress, and

crack front shape were made as a function of crack extension. A two-dimensional,
elastic-plastic finite element analysis was used to simulate the fracture behavior for both
orientations. The results indicate that the T-L orientation had a 10% lower stress at

fracture than similar tests conducted in the L-T orientation. Correspondingly, the critical
CTOA in the T-L tests reached a constant value of 4.7 ° after 2-3ram of crack extension
and the L-T tests reached a value of 6 °. The fracture surface of the T-L specimens were
observed to remain flat, while those of the L-T specimens transitioned to a 45 ° slant
fracture after about 2-3mm of crack extension. The tunneling behavior of the two
orientations also differed; the T-L specimens reached a deeply tunneled stabilized crack

front shape, while the L-T specimens were observed to have only a small amount of
tunneling once the crack began to grow on the 45 ° slant. The two-dimensional, elastic-
plastic finite element analysis was able to simulate the fracture behavior for both the T-L
and L-T orientations.

NOMENCLATURE
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Applied stress range, MPa
Stress ratio

Specimen width, mm
Half crack length, mm
Distance behind crack tip for CTOA measurement, mm

Critical crack tip opening angle, degree

Critical crack opening displacement, mm

Crack extension, mm
Surface crack extension, mm

Mid-plane crack extension, mm
Sheet thickness, mm
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_TRODUCTION

The aging of the commercial transport aircraft fleet has brought greater awareness

of the deleterious effects of fatigue damage developing in pressurized fuselage structures.

Analysis tools are needed to assess the influence of fatigue cracks on structural integrity

and define inspection intervals. One of the objectives of the NASA Aircraft Structural

Integrity Program [ 1] is to develop the methodology necessary to predict residual strength

of cracked pressurized aircraft fuselage structures. The approach taken is to develop a

local fracture criterion that can be used with shell-code finite element analyses. The

fracture criterion should be able to predict large amounts of stable crack growth under

conditions of large-scale yielding in thin sheet materials.

One local fracture criterion is the crack tip opening angle (CTOA) [2-6]. This

criterion postulates that a crack will undergo stable crack growth when the angle made by

the upper and lower crack surfaces (at a fixed distance behind the crack tip) and the crack

tip, reaches a critical value. The critical CTOA criterion has been experimentally verified

and successfully used to predict residual strength in laboratory specimens of 2024-T3 in

the L-T orientation (i.e., the load was applied in the longitudinal or roiling direction and

the crack was in the transverse direction or perpendicular to the longitudinal direction) [7-

9]. However, this material has been shown to have anisotropic fracture properties, with

the T-L orientation (i.e., the load was applied in the transverse and the crack was in the

longitudinal direction) having about a 10% lower fracture toughness than the L-T

orientation [ 10]. Moreover, in a pressurized aircraft fuselage structure, the maximum

hoop stress would result in a preference for cracks developing lengthwise along the

fuselage (T-L orientation). As these cracks grow towards circumferential tear straps, they

will either "flap", (a process where the cracked fuselage would peel open in a small local

region and lead to safe decompression) or run through the tear strap. If flapping does

occur, the crack will then be growing in the L-T orientation. Thus, in order to predict the

residual strength of cracks in 2024-T3 aluminum alloy fuselage structures, both the L-T

and T-L properties must be known.

The objective of this study was to examine stable tearing behavior in the T-L

orientation of 2024-T3 aluminum alloy. Fracture tests were conducted with

measurements made of load, crack extension, and critical CTOA. The critical CTOA

criterion and an elastic-plastic finite element analysis were used to predict stable crack



growth observed in the tests. Also, the macroscopic fracture surface behavior was

examined through comparisons of the stable tearing crack tunneling behavior.

EXPERIMENTAL PROCEDURE

Fracture tests were conducted on 2.3mm thick 2024-T3 aluminum alloy. The

yield stress and ultimate strength of the material in the L-T orientation were 345 and 490

MPa, respectively. The yield stress and ultimate strength of the material in the T-L

orientation were 303 and 475 MPa, respectively. The multi-linear representations of the

uniaxial stress-strain curve for both orientations are given in Table 1. The tests were

conducted on 76.2mm wide middle crack tension, M(T), specimens. Measurements were

made of the critical CTOA and crack-tip strain fields.

Fr_t_ture Tests

The M(T) crack configuration is shown in Fig. 1. All of the specimens were

cracked in the T-L orientation (i.e., the load was applied in the transverse or

perpendicular to the rolling direction and the crack was in the longitudinal direction or

rolling direction). The specimens were fatigue cycled under constant amplitude loading

(AS = 34.5 MPa and R = 0.02) until the total crack length was 25.4mm (a/w = 0.33). The

stable tearing tests were conducted using displacement control, with a constant loading

rate of 0.002mm/sec. During each test, measurements of load, crack length, and surface

CTOA were made.

In some of the tests, the cracks were stably grown to pre-selected crack lengths.

The specimens were then fatigue cycled until failure to mark the stable crack growth

region. The maximum applied fatigue stress was 50-80% of the observed maximum

applied stress during stable tearing and the stress ratio was R=0.8.

M_asurement Techniques

The critical CTOA during stable tearing was measured by direct observation of

the surface using both the digital image correlation (DIC) and the optical microscopy

(OM) technique. The OM technique uses a video camera and a long focal length

microscope to image the tearing crack. The CTOA is calculated directly from points
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located on the upper and lower crack surfacesand the crack tip. Similarly, the DIC
technique [11-15] measuresthe CTOA basedon displacementsof referencedsurface

regionslocatedneartheupperandlowercracksurfacesandthecracktip. This technique
usesa computer controlled video cameraand lens systemto digitize imagesof the

specimensurface. To makemeasurements,the specimensurfacewascoatedwith ahigh

contrastrandompattern. A smallregion,or subset,is identified in areferenceimageand
the relative displacementof that samesubsetin a subsequentimage is calculated.

Additional detailsof theDIC andOM CTOA techniquesaregivenin References7 and8.

FINITE ELEMENT ANALYSIS

The elastic-plastic finite element code ZIP2D [16] was used to simulate the stable

tearing behavior in the fracture tests. The program uses 3-noded, constant strain

triangular elements and a critical CTOA criterion to extend the crack The elastic-plastic

analysis employs the initial-stress concept [17] based on incremental flow theory and

small strain assumptions. A multi-linear representation of the uniaxial stress-strain curve

for 2024-T3, with the data given in Table 1, was used in the analysis with avon Mises

yield criterion.

Finite Element Code and Meshe_

The element size along the line of crack extension was 0.48mm. One half of the

specimen was modeled, with the axes of symmetry along the crack line. The finite

element model consisted of 821 nodes and 1447 constant strain triangular elements, as

shown in Fig. 2. Normally, the nodes along the crack line and ahead of the crack tip are

fixed, while those behind are free. This analysis uses fictitious springs along the crack

line to change boundary conditions associated with crack extension. The stiffness of the

springs are set equal to zero for the nodes behind the crack tip and assigned extremely

large values for the nodes ahead of the crack tip. Monotonic loading (under displacement

control) was applied to the model. Crack growth by stable tearing was governed by the

critical CTOA criterion. References 8 and 9 contain the details of the elastic-plastic finite

element analysis used in this work.
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Critical CTOA Criterion

The critical CTOA, _c, criterion is equivalent to a critical crack tip opening

displacement (CTOD), _5c, value at a specified distance, d, behind the crack tip equal to

one element length and is given by:

(1)

The crack-tip node was released and the crack advanced to the next node whenever the

CTOA equaled or exceeded a preset critical value (_c) during incremental loading. This

process was repeated until the crack reached the desired length. The critical CTOA value

(_c) was determined experimentally from surface measurements made using both the

OM and DIC techniques.

RESULTS AND DISCUSSION

Fracture tests were conducted on 2024-T3 aluminum alloy M(T) specimens in the

T-L orientation, with comparisons made to similar tests conducted on specimens in the L-

T orientation [7]. Surface crack growth measurements were made using an optical

microscope. Surface CTOA measurements for tearing cracks were made using the OM

and DIC methods. The extent of crack tunneling during stable tearing was determined

through metallographic analysis of fracture surfaces subjected to a loading history that

marked the crack front. The load against crack extension behavior was simulated using

an elastic-plastic, two-dimensional finite element analysis.

Critical CTOA Measurements

The critical CTOA measurements for the M(T) tests are shown in Fig. 3. Also

included in this figure is a scatterband that represents the measurements made on similar

tests conducted in the L-T orientation. The initial CTOA values, in both the L-T and T-L

tests, were high and decreased rapidly during the first 2.5mm of stable crack extension.

After this initial transient period, both tests reach a constant CTOA value. However, the

constant CTOA value in the T-L tests was about 4.7 ° compared to 6 ° in the L-T tests.

Both orientations had about the same (+1 °) scatter in the measurements.
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Crack Tunneling Measurements

A fractographic analysis of fracture surfaces was performed to quantify the crack

tunneling behavior present during stable crack growth. As described in Reference 7, a

distinct change in the macroscopic appearance of the fracture surface occurs when the

loading changes from fatigue cycling to stable tearing. To facilitate the marking of the

tunneled crack front, some specimens were fatigue precracked, loaded for a limited

amount of stable crack growth, then fatigue cycled at a high stress level (high R) until

failure. The stable tearing regions and the fatigue precrack regions have sharply different

appearances, with a distinct interface between them. This interface denotes the shape of

the crack front just prior to stable tearing. Also, a second distinct interface occurs when

the loading is changed from stable tearing to high-R fatigue cycling, marking the shape of

the crack front after the stable tearing. The interfaces between the different regions were

digitized for several fracture tests.

Sequences of crack front profiles from specimens tested in both the T-L and L-T

orientation, with increasing amounts of stable crack extension, are shown in Figs. 4a and

4b, respectively. The crack fronts shown in Fig. 4 represent trends in through-thickness

crack extension rather than the progression of a single crack front, since each came from

a different fracture test.

In the T-L tests, the cracks grew, on the average, about 0.1 mm more in the

interior than on the surface during fatigue cycling, as indicated by the first profile in Fig.

4a. The second crack front showed that stable tearing progressed faster and probably

began in the specimen interior. This crack front revealed about 0.25ram of surface crack

extension, but the interior grew about 1mm. The next two crack fronts indicate that the

extent of tunneling (defined as the difference between the interior crack length and the

surface crack length) increased with surface crack extension. The extent of tunneling

stabilized at about 2mm, after about 2mm of surface crack extension. The fracture

surface remained macroscopically flat during the entire fracture process.

In the L-T tests [7], the stable crack growth began in the interior, similar to the T-

L test, as seen by the second and third crack front profiles shown in Fig. 4b. However,

after about lmm of surface crack extension the crack front began to straighten, with the

surface catching up to the interior. This reduction in the extent of tunneling corresponded

to the onset of 45 ° slant crack growth [7].
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Theextentof tunnelingthatdevelopedduringstabletearingis shownin Fig. 5, wherethe

normalizedextentof tunneling(thedifferencebetweenthe interior crack length andthe

surfacecrack length(ai- as)divided by thethickness(B)) is plottedasa function of the
surfacecrackextension(Aas).Thetunnelingin theL-T testspeakedat about70% of the

thicknessafter about0.8 mm of surfacecrackgrowth anddroppedoff to about20% of

thethicknessfor longercrackextensions.Initially thetunnelingbehaviorin theT-L tests
wasidenticalto thatin theL-T tests,butafter aboutlmm of surfacecrackextensionthe

tunnelingin theT-L testscontinuedto increase,peakingatabout110%of thethickness.

Metallographicevaluationof boththeT-L andL-T fracturesurfacesdid not show

anysignificantdifferences;bothdemonstratedclassicaldimpledruptureprofiles through
thethicknessandalong thecrackfront. However,metallographicevaluationsof theas-
testedrolled sheetconfirms that thegrain structureis elongatedin theroiling direction,

though it is not totally clear how this variation contributesto observedcrack growth
differences.

Stable Crack Growth Measurements and Simulations

The load against surface crack extension measurements and the finite element

simulations are shown in Fig. 6 for specimens tested in the T-L and L-T orientation. The

peak stresses in the L-T tests were about 10% greater than that observed in the T-L tests.

The finite element analyses used the stress-strain curves given in Table 1 and the critical

CTOA values measured in the fracture tests to simulate the stable tearing behavior. The

critical CTOA values were 6 ° and 4.7 ° for the L-T and T-L simulations, respectively. As

seen in Fig. 6, the finite element simulations of peak stress were about 2% less than the

peak stresses observed in the tests. The finite element analyses overestimated the amount

of initial crack extension, but after reaching peak stress the analyses agreed well with the

experimental measurements.

CONCLUDING REMARKS

Fracture tests were conducted on M(T) specimens machined from 2024-T3 sheet

aluminum in the T-L orientation and comparisons were made with similar tests conducted

on specimens in the L-T orientation. Using two independent experimental methods,

CTOA was determined for 10mm of crack growth. Results indicated that:
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The CTOA trends were similar for both orientations; initially large CTOA values
were measured, followed by a rapid decrease to a constant CTOA value for
Aa>2.5mm.

a. For the T-L orientation, the constant CTOA was about 4.7 °.
b. For the L-T orientation, the constant CTOA was about 6 °.

A substantial difference was observed between the T-L and L-T crack growth
processes.
a. The T-L fracture surface remained flat and exhibited significant tunneling

(a difference in crack length between the surface crack and interior of
about 2mm).

b. The L-T fracture was on a 45" slant after about 2-3mm of surface crack

extension and initially exhibited significant tunneling, but as the stable
tearing transitioned from fiat-to-slant, the tunneling decreased.

The tests conducted in the T-L orientation had a peak fracture stress that was 10%
less than that observed in the L-T tests.

The two-dimensional, elastic-plastic finite element analysis was able to simulate
the peak fracture stress for both the T-L and L-T orientations.

The two-dimensional, elastic-plastic finite element analysis overpredicted crack
growth during the first 2mm of crack extension, where the surface CTOA and the
amount of crack tunneling are changing.

REFERENCES

[1]

[21

[3]

[4]

[5]

[6]

[7]

Harris, C. E., "NASA Aircraft Structural Integrity Program", NASA TM 102637,
April 1990.

Anderson, H., "Finite Element Representation of Stable Crack Growth," Journal
of Mechanics and Physics of Solids, Vol. 21, 1973, pp. 337-356.

de Koning, A. U., "A Contribution to the Analysis of Quasi Static Crack Growth
in Steel Materials," in Fracture 1977, Proceedings of the 4th International
Conference on Fracture, Vol. 3, pp. 25-31.

Wells, A. A., "Unstable Crack Propagation in Metals: Cleavage and Fast
Fracture," in Proceedings of the Cranfield Crack Propagation Symposium, Vol. 1,
1961, pp. 210-230.

Wells, A. A., "Application of Fracture Mechanics at and Beyond General
Yielding," British Welding Journal, Vol. 11, 1961, pp. 563-570.

Wells, A. A., "Notched Bar Tests, Fracture Mechanics and Brittle Strengths of
Welded Structures," British Welding Joornal, Vol. 12, 1963, pp. 2-13.

Dawicke, D. S. and Sutton, M. A., "Crack-Tip-Opening Angle Measurements and

Crack Tunneling Under Stable Tearing in Thin Sheet 2024-T3 Aluminum Alloy",
NASA-CR-191523, September 1993, also submitted to Experimental Mechanics.

8



[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Dawicke, D. S., Sutton, M. A., Newman, J. C., Jr., and Bigelow, C. A.,
"Measurement and analysis of Critical CTOA for an Aluminum Alloy Sheet",
NASA-TM-109024, September 1993, also submitted to Fracture Mechanics:

Twenty-Fifth National Symposium, ASTM STP 1220.

Newman, J. C., Jr., Dawicke, D. S., and Bigelow, C. A., "Finite-Element Analysis
and Measurement of CTOA During Stable Tearing in a Thin-Sheet Aluminum

Alloy," Proceedings from the International Workshop on Structural Integrity of
Aging Airplanes, April 1992, pp. 167-186.

Grover, H. J., Hyler, W. S., and Howell, F. M., "Axial-Load Fatigue Properties of
245-T and 755-T Aluminum Alloy as Determined in Several Locations," NACA-
TN-2928, 1953.

Sutton, M.A., Bruck, H.A., Chae, T.L., and Turner, J.L., "Experimental

Investigations of Three-Dimensional Effects Near a Crack Tip Using Computer
Vision," International Journal of Fracture, Vol. 53, 1991, pp. 201-228.

Sutton, M.A., Bruck, H.A., and McNeill, S.R., "Determination of Deformations

Using Digital Correlation with the Newton Raphson Method for Partial
Differential Correction," Expcrim¢mal Mechanics, Vol. 29 (3), 1989, pp. 261-
267.

Sutton, M.A., Turner, J.L., Chae, T.L., and Bruck, H.A., "Development of a

Computer Vision Methodology for the Analysis of Surface Deformation in
Magnified Image," ASTM STP 1094. MICON 90. 1990, pp. 109-132.

Sutton, M.A., Turner, J.L., Bruck, H.A., and Chae, T.L., "Full-Field
Representation of the Discretely Sampled Surface Deformation for Displacement
and Strain Analysis," Experimental Mechanics, Vol. 31 (2), 1991, pp. 168-177.

Sutton, M.A. and McNeill, S.R., "The Effects of Subpixel Image Restoration on
Digital Correlation Error Estimates," Optical Engineering, Vol. 27 (3), 1988, pp.
163-175.

Newman, J. C., Jr., "Finite-Element Analysis of Fatigue Crack Propagation--
Including the Effects of Crack Closure," Ph.D. Thesis, VPI & State University,
Blacksburg, VA, May 1974.

Zienkiewicz, O. C., Valliappan, S., and King, I. P., "Elasto-Plastic Solutions of

Engineering Problems, Initial Stress, Finite Element Approach," International
Journal of Numerical Methods in Engineering, Vol. 1, 1969, pp. 75-100.



TABLE 1
Multi-linear representationof theuniaxialstress-straincurvefor 2024-T3

L-T Orientation
Or

(MPa)
345

390

0.00483

0.015

T-L Orientation

Or

(MPa)
303

355

403

0.00425
0.015

430 0.04 0.04

470 0.1 448 0.1

490 0.16 476 0.16
490 0.2 476 0.2

E = 71,400 MPa

v = 0.3

Note: All dimensions
in mm

ql---- 76.2-11-"

1
Figure 1 M(T) specimen configuration.
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Figure 2

76.2mm

Finite element model of 1/2 of the M(T) specimen.
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Critical CTOA measurements for the M(T) specimens in the T-L
orientation (precracked at a stress range of AS = 34.5 MPa) and the
scatterband for similar M(T) L-T tests [7].
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Figure 4 Crack front profiles after stable tearing for specimens tested in the T-L and
L-T orientations.
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Extent of crack tunneling for specimens tested in the T-L and L-T
orientations.
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Figure 6 Stress against surface crack extension measurements and finite element
predictions for tests conducted on specimens in the L-T and T-L
orientation.
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