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Abstract

We study a Stern-Gerlach type setup, with a quadrupole magnetic field, for neutrM

particles of arbitrary spin. The Haxailtonia_u is of a form proposed for joint measurements of

incompatible observables. The measurement results axe discussed, showing the limitation of
such Haxniltonians. Some remarks axe made on the relevance of covaxiance as a criterion for
measurement schemes.

1 Introduction

The canonical form for the Hamiltonian of a measurement interaction is (operators axe caxeted)

/_I ^t ^ ,= tcapAo (1)

where the subscripts o and p denote object and pointer, respectively. The operator fi-o is mea-

sured, whereas &'p is conjugate to the read-out observable _p. One of the simplest measurement

arrangements, often used as an example [1, 2, 3], is the Stern-Gerlach, where an inhomogeneous

magnetic field effects an interaction amounting to [2, 4]

/:/i = (2)

Here the coupling constant t¢ is proportional to the strength of the inhomogeneity. The spin

degrees of freedom represent the object, and the spatial degrees of freedom are the "measuring

device". Thus we measure the spin in the x-direction, by reading out the x-momentum component.

If we assume both/_x and &_ to be conserved in the absence of interactions, the Haxniltionian (2)

causes in the Heisenberg picture (h = 1)

O (t) = + (3)

Thus, as soon as t is larger than the i6x-width, the spatial part is separated into s packets, according

to 8z eigenvalue. Conversely, a read-out of/_z means an accurate measurement of &z.

In order to be able to measure two incompatible observables jointly, Arthurs & Kelly [5]

extended the basic scheme (1) to

(4)
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^! a4-'ld AtIn this interaction Hamiltonian, % bp are two compatible pointer system operators, with

read-outs av and bp, respectively. The operators A,o and/3o, not necessarily compatible, are to be

measured. Arthurs & Kelly applied (4) to joint position-momentum measurements. They found

that the probabilities of finding a result (a, b) are given by

prob(a,b) = 1Tr(_ol_)(c_O , _ = a + ib , (5)

where Is) is a coherent or squeezed state, depending on the interaction balance hA/as. Therefore

the a marginal is related to the x probability distribution by a convolution

Fprob(a)= f(a- _)(_1_o1_)d_
oo

(6)

with a Gaussian f, and analogously for b and p. This relation, providing the basis for the inter-

pretation of b in terms of x, we have termed "non-ideality" elsewhere [6]. Sets of operators such

as -_[a}(a[, which generate probability distributions but are not orthogonal, are called positive

operator-valued measures (POVMs)[7].

If we combine (4) with (2), we get a Hamiltonian like

(7)

Such a Hamiltonian may be realized using a quadrupole magnetic field, which around the origin

in the x, y-plane satisfies

X _ (0,0, xy) _ B _ (x,-y,0). (8)

In the present paper we will investigate the properties of a measurement scheme based on the

quadrupole Stern-Gerlach (7), where a = a_ = au. Neutral particles of arbitrary spin s will be

used. We shall focus especially on its relation to (6) and (5).

2 General description

If we consider the quadrupole Hamiltonian (7), we see that its rotational symmetry immediately

implies that ), = L, - &, is conserved. It is therefore profitable to change into a polar momentum

representation (p, _o). Denote the eigenvalues of 5, by m,. Now we can eliminate _p by writing the

m, component of the state 1_) as

(rn,,p, qolqt ) = exp[i(m.; + m,)_0] ¢,_.(p) . (9)

The Hazniltonian, seen as an operator on the (22 + 1)-dimensional spin Hilbert space, then

becomes

h"= p_- i o ^ _ 5._s + 5. (lo)
Op a_ p

We have taken _ = 2m = 1, without loss of generality [8]. Note that 5u5_ is not Hermitian, but

then neither is i_; the overall expression (10) is Hermitian.
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FIG. 1. Two views on the measurement results. (The Gaussian spatial part initially

had variance Ap 2 = 0.01 and L, = 0.)

a. Typical output distribution. The density of markers indicates the momentum
B 3

probability density at t = 1. The input state was a s = 5 state, with m_ = -5"
^ 1

b. Matrix element (-_[M(p=)[_> for s = 5 as a function of time. The quality of the

measurement can be characterized by the integral of the matrix element over p_ > 0.

Note that this value does not approach 1.

We integrated eq. (10) numerically. In view of the fact that the process is intended as a spin

measurement, we took the initial state to be a product of spatial and spin parts (denoted by

subscripts r and a when necessary),

= ICb® (11)
The spatial part t¢>, was taken to be a axially symmetric Gaussian. The final state then turned

out to be structured into a number of expanding rings, one for each [mJ; only m = 0 (for integral

spin particles) leads to a hump remaining around the origin. Fig. 1.a is a typical example, where

s = _, and we have 3 rings. In the figure the spin part was initially directed in the x-direction,

_ 3 and thus we see that the distribution is peaked in the left part of the middle ring.with m_ - -5,

More generally, states with spin initially directed in "_he xy-plane lead to correspondingly oriented

distributions; only spins initially in the z-direction evolve into complete ring distributions. In the

rings the spins are directed roughly outward, with appropriate magnitude.

The scheme is meant to be seen as a spin measurement. Accordingly, we trace out the spatial

variables and generate the outcome probabilities from the spin density operator _ by means of a

POVM/_/(p, _0) on spin Hilbert space,

prob_.(p,_) = Tr[_o _h_/(p,_p)];

M(P, = ,(¢1 ®i )O(t) ICb ; O(t) = exp(-i/ftt) . (12)

In the next two sections we will discuss some properties of the POVM _/'(p, _o).
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3 Marginals

The output variables of the measurement axe (P,,Pv). Naively, one would suspect on the basis

of (3) and (7) that a read-out of/_ can be seen as a measurement of _x. Accordingly, we are

interested in the p, marginal of M,

Jl_/(p_) = f__ J_/(p_,p_) dpu. (13)

Consider first the s = -_ case. Here the spin operators anti-commute. Thus the interaction

Harniltonian (7) satisfies

= f/I; = e (14)

Hence, if the initial spatial state is/_u-symmetric, the px marginal of the final (p,:,pu) distribution

must depend only on 5_. Accordingly we may write (13) as

(15)
1 1

m=+ _,-_

where the f,_ axe positive functions and/_,_(0) denote the projectors onto the _ eigenstates. Thus

we get an analog of the convolution (6), reproducing the basic result (3) with additional noise terms

that do not depend on the spin degrees of freedom [4]. As is easily verified, an analogous relation

holds between/3_ and dv. In fig. 1.b we plotted the probability that a particle with m_ = +½ will

give the measurement result px. We see that the noise terms assure that the measurement quality

is limited, in contrast to (3). This is necessary on account of the uncertainty principle [9, 10], as

we are jointly measuring the two incompatible observables g_ and &v.

Nevertheless, (15) means that an unambiguous relation between the p'_ and _ distributions

exists. It allows for the ra_ estimation from p_ that we aimed at [11], albeit an imperfect one. In the

spin-½ case, the spin observables axe Fourier-pairs [12] and therefore close analogs of the position-

momentum pair studied by Arthurs & Kelly [5]. Accordingly, the above conclusion matches theirs.

1 this result may be generalized. In fig. 2.a the diagonal elementsWe might think that for s >

of the POVM (13) in b_ representation are plotted vs. p_. We see that indeed the various m_

values are roughly correlated to different p_ regions, as expected. Thus, it appears that from p_

But there is a catch: neglecting the p2-terman estimate of m_ can be made, just as for s = _.

(strong or impulsive interaction approximation), it follows after some calculation that

=
sin rt

+ _(0)[tcos2O + --sin20]
F

& 0 cos rt - 1
+ &_(0) _[l'sin-_rtt] sin 20 + _( ) r sin 0 ; (16)

where we used the polar position representation (z, y) = (r cos 0, r sin 0). Clearly/3_ contains extra

spin terms that do not commute with &_. Indeed the non-diagonal elements of M(p_) are not zero,

as is evidenced by fig. 2.b. Consider again (16). The desired effect, t&_, is contained in the second

term, whereas the last two terms are the problematic ones. As the rings expand more and more,

the 1 terms will decay roughly as lit 2. Still, even as t --. oo, a significant term containing _
r

remains: /_/and &_ are incompatible.
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FIG. 2. The __OVM 21_/(px) in &._representation. (D)ta as in fig. 1.)

a. Diagonal matrix elements (mlM(p )lm> = (-mlM(-p )l Z m/.
b. Independent non-zero non-diagonM matrix elements (mlM(-p_)im').

(m,m')

-- Re(5/2,1/2)

--- Im(5/2,1/2)

.... Re(5/2,-3/2)

• Im(5/2,-3/2)

---- Re(3/2,- 1/2)

Im(3/2,- 1/2)

But all the problematic terms in (16) are seen to contain a factor sin20 or sin0. Denote

reflection in the zz-plane by /*_. The sine terms in (fi:} vanish if we choose the spatial part of

the initial state/_-symmetric, like we do in our calculations. But if we consider </3_>, terms with

_sin 220 emerge. Such terms do not vanish, so that higher moments do not commutefactors like au

^2 ]. so that (/3_) commutes with 5_ dter all, in accordancewith&_. Only if s-- 1, wehavea V c¢
with our earlier result (15).

But in what sense can we consider this scheme to be a measurement of &_ if s > x_v Clearly2"

no analog of (15) holds; only the expectation value (/3_) is free of incompatible spin terms, so that

we can use the measurement only to estimate the &_ expectation value. Higher moments, or even

m_ probabilities, cannot be established. Thus it is a &_ measurement only in the weak sense of

expectation value estimation [11].

4 Covariance

The measurement is therefore not generally a useful joint measurement. But it may have another

use. Remember, the Harniltonian (7) is rotationally symmetric. If we now consider the outcomes

in polar coordinates, it is easily derived that the POVM M(p,_p) is angle covariant:

,_/(p, _, + A_) = h(A_o)M(p, _)h*(A_,) ; /_(A_) = exp(iA_o6,). (17)

Covaxiance is a criterion that is often used to characterize classes of measuret_ents e.g. time

or photon phase measurements. Here we therefore speculate that ._/(p, qp) realizes some kind of

spin-angle measurement. Define the projector onto the eigenstate of the operator cos 0&_ + sin 0by

with eigenvalue m as/)._(0). Then we choose as spin-angle observable [13]

c_ f k_(0) dO = i , (18)
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where the summation runs over all relevant Iml values, and c_ = _ for m = 0 and _,! otherwise.
A

Accordingly, c,,_E,n(0) defines a POVM that may be seen as a "spin-angle" observable [7]. We can

now attempt to link (18) to (17). As in the previous section, this is possible for _ = ½. There a

convolution-type relation between the realized angle measurement and the ideal (18) holds [4]. But,

as in the previous section, this cannot be generalized to higher spins: JP/and 18 are incompatible,

although the incompatibility is generally smaller than that of fig. 2.b. Thus, although the POVM is

angle-covariant, it is not clear in what sense the "angle of spin" is measured, if at all. Analogously

we may therefore conclude that photon-phase covariance and time covariance must also give many

POVMs without unambiguous interpretation. Like spin-angle covariance, they are weak criterions.
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