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Abstract

The free evolution of a non-relativistic charged particle is manipulated using time-

dependent magnetic fields. It is shown that the application of a programmed sequence

of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to

"go back in time" to recover its past shape. The possibility of more general operations upon

the Schrhdinger wave packet is discussed.

1 Introduction

We expect that in a near future the problem of particle trapping will be replaced by a wider

manipulation problem concerning the purposeful operations on quantum states. This involves

the inverse evolution problem: given a unitary operator acting in the Hilbert space of states

of a quantum system, one asks if there exists a realistic (possibly time-dependent) Hamiltonian

inducing this operator as a result of a dynamical evolution process. The importance of the subject:

the unitary operations which can be dynamically induced, can also be used to control the wave-

like behaviour of quantum objects, e.g. during the preparation of a measurement. The so defined

subject was put forward by Lamb [1] and it has been subsequently developed by his followers

(Lubkin [2], Mielnik [3, 4], Royer [5], Brown [6], Fern£ndez [7], and other authors.) A key to

the manipulation of a quantum state lies in the possibility of trapping the particle in a circular

dynamical process called an evolution loop [4] (EL). In an EL the evolution operator g(t) becomes

the identity for a finite time interval. The subsequent perturbation of the EL can induce arbitrary

unitary operations on the wave packet as the result of the cummulative process involving the small

precessions of the distorted loop [3].

The unitary transformations that will be discussed in this paper are:

evolution loop U(T) = 1, r > O,
rigid displacement of the wave packet U(r) = e ia'p/_,

the quantum time machine U(r) -- e-iT'p2/2mtt, --oo <_ T' < oc.
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2 The evolution loops

Consider a non-relativistic spinless particle of charge e evolving under the action of a homogeneous

time-dependent magnetic field B(t). The Hamiltonian of the system can be expressed as:

1/ /H(t)=_ p+_c rxB(t) = 2-'-m p2+ _ 2c ] r_ 2mc ' (1)

where L is the angular momentum operator and r± = r-(r. _) _(_ is the part of r orthogonal

to B(t). Here, B(t) will be taken as the sequence of identically shaped orthogonal pulses in

the three directions xl, x2, x3 defined by the right-handed orthonormal set of basis vectors

{el, e2, es}:

{ BCt)ex for t E [0, T),
B(t) = B(t- T)e2 for t E [T,2T), (2)

B(t - 2T)e3 for t • [2T, 3T),

with S(t) = Bj3(t/T), fl _3(t')dt' = 0. The generic evolution can be determined through the opera-

tor U(3T, 0) = U(3T, 2T)U(2T, T)U(T,O). In dimenssionless units (t' = t/T, 61 = V/--_/hT q, (J =

_p) it takes the form:

u(t' = 3,0) = w1w2w3,
w1 = _(_1,_1)2exp(-i/5_/2),

w2 = fl(_2,_2)exp(-i_]12)_(_2,_2),
W3 = exp(-iiS]/2)f_(k3,/_3) 2. (3)

Above, flCq, p)= 7" {exp (-ifl o l-t(t')dt')} is the evolution operator induced by the one-dimensio-

nal harmonic oscillator of variable frequency a(t') = { eaT _/3(t,) = a_(t') and namiltonian//(t') =_,2--_-gc/

p2/2 + a(t')2q2/2, q and p are two canonically conjugated operators such that [q, p] = i and 7" is

the time ordering operator.

Now, because Wi depends on Hamiltonians which are quadratic in the canonical variables

(_i,#i) but it doesn't involve (_j,_5i) j # i, it is possible to represent it by a 2 x 2 matrix wi (the

"Heisenberg picture"):

W_t [_i Wi=wi Pi ' (4)

where i = 1,2, 3. The kind of dynamical process (3) depends on the algebraic type of the matrices

wi, and due to the form of the operators Wi it is determined just by one c-number invariant called

the discrirninant:

A(a/_) = Tr(Wl)= Tr(w2)= Tr(w3). (5)

Whenever this invariant accepts one of the distinguished values:

27rl
A(a_)=2cos--, l,n=+l,=l=2,..., (6)

n
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the matrices w_ fulfill the algebraic identity w[' = 1 [4] =_ W? = 1. Hence:

U(t'= 3n,0) = U(3,0) n = 1. (7)

It can be shown [8] that for any piece-wise continuous bounded real function fl(t'), 0 < t' < N

with N finite, there exist pulse amplitudes a for which the discriminant A(a_) accepts any of the

special values (6). Whenever this happens, the n repetitions of our magnetic pulse pattern (2)

generate the evolution loops in the space of states L2(R 3) at the loop period r = 3nT.

As an illustration we restrict the discussion to the case of rectangular pulses:

_(t') = 0(1/2 - t')O(t') - O(t'- 1/2)0(1 - t'),

where O(z) is the step function.

(8)

In this case, the discriminant A(afl) can be analytically de-

termined taking the form A(a_3) = 2 cos 2a - a sin 2a.

n = 4, l = 1 in (6); the solution for a becomes:

a = 0.632295--..

The simplest EL is achieved making

(9)

The loop period is r = 12T, and the orders of magnitude of the field strenght and T must satisfy

the relation B = 2amc/eT with the value of a in (9).

3 Rigid displacement of the wave packet

The evolution loops provide a convenient method to generate arbitrary unitary transformations

of quantum states. Suppose, e.g., we want to produce a rigid displacement of the wave packet.

To this end, we take the loop induced by the rectangular pulses (8) with the a-value (9) as the

unperturbed system. The loop is then perturbed by a homogeneous time-dependent external force

F(t) = eE(t). The total Uamiltonian becomes H(t) = Ho(t) - er. E(t), where Ho(t) is the loop

part and -er • E(t) is the perturbation. The evolution operator within one loop period r = 12T

can be evaluated in the interaction picture. Hence:

(;/o ) ]U(r) = exp F(t). ro(t)dt = exp (a.p + b-r) , (10)

where ro(t) is the triplet of canonical operators xl(t), x2(t), x3(t ) in the Heisenberg frame of

Ho(t). By taking F(t) = P sin 27rt/r it is possible to obtain explicitly a and b in (10) [8]. With

the aim of produce the pure rigid displacement, with b = 0, we selected F(t) as a sequence of

pulses of rectangular force. It was found that a single pulse of rectangular force F = eE in the

xl-direction acting within the interval [9T, 10T] displaces the packet against the applied force by

a_ = -1.658693FT2/m (the boomerang effect). Other possibilities are discussed elsewhere [8].

4 The quantum time machine

As the next example we shall discuss the quantum time machine. In this scheme, the acceleration,

slowing or inversion of the free evolution of the charged particle is possible. Once again, the
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B(t)ex
B(t) = B(t-2T)e2

B(t - 4T)ea

technology is based on a sequence of pulses of homogeneous magnetic field of the form:

for 1 E [0, 2T),

for t E [2T, 4T),

for t • [4T, 6T), f_T B(t)dt = O,

with B(t) given by:

(11)

B1 forte[0,h), (0<tl <T)
B(t) = B2 for t E [tl,T), (12)

-Bs for t • [T,T+ts), (is = T- h),

-B1 for t E [T+ ts,2T).

The key evolution operator U(r = 6T, 0) in dimensionless coordinates and time t' = t/T takes a

similar form as in (3):

U(6, 0) = 12SG @ _Gl2 ® GD 2, (13)

where f_ = D(2) and G = G(2) describe the evolution of the oscillator of variable frequency and

the free evolution in [0, 2] respectively. All the calculations are made in the matrix representation,

working with the angular parameters ")'1 = alt'l and 3"s = (_zt_, where al = eB1T/2mc, a2 =

eB2T/2mc, t'x = tl/T, t'z = ts/T. It turns out that when the amplitudes and times of the pulses

of magnetic field satisfy the relations [8]:

?1 tan 3'1 - 3'2 tan 7s

tan 3'1

3'1 tan 71 - 72 tan 3'2
_2 =

-- tan _/s

t,1 = 3'1 tan 3'1 ,
3'1 tan 3'1 - 3's tan 3'2

t_ : -3's tan 3's (14)
3'1 tan 3'1 - 3's tan 3's '

the free evolution operator is produced at the end time of the sequence (ll):

U(r)=exp h2m ] =exp h2m rX ' (15)

where the "effective" time T _ = r X = 6T X depends on the distorsion coefficient:

1 2 tan s "/1 - tans 3'2 (16)
X = _ + _ cosS 3's 3'1 tan 3'1 - 3'2 tan 3'2"

As from definition t_ and t_ must be positive, then 3'1 and 3'2 must lie in intervals of different

parity, i.e. nr < 71 < (n+l/2)r and (m-1/2)r < 3"2 < mr, m,n e Z + or vice versa. The

distorsion coefficient X as function of 3'1 and 3'2 is plotted in the Fig.1. As can be seen, one can

generate three different situations:

X > 1 free evolution acceleration
0 < X - 1 free evolution slowing

X -< 0 free evolution regression
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FIG. 1. The "chessboard of distorted time" for the free evolution of a charged

particle manipulated by the magnetic field (11-12). The level curves for the distorsion

coefficient X are ploted as functions of the angles 7n and 3'2 and mark the zones for

which at r = 6T we obtain the acceleration (X > 1), slowing (0 < X < 1) or regression

(X < 0) of the free evolution.

As a final remark we would like to point out that this kind of manipulations is not restricted

to rectangular pulses of magnetic field. The same possibilities can be found if smooth fields are

used, although we won't have analytic expressions for the discriminant anymore.
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SECTION 3

AMPLIFIER AND CAVITY ELECrRODYNAMICS
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