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1. INTRODUCTION
Project Objectives

The primary objectives of this research project, as stated in the initial proposal by
the first author of this report, were to develop the following computational tools for use

in active tip-clearance control:

o A discrete-layer plate theory (both semi-analytic and finite element approximations)

for laminated composites structures with embedded piezoelectric layers.

o A 3-D general discrete-layer element generated in curvilinear coordinates with con-
stant out-of-plane displacement components for modeling laminated composite piezo-
electric shells with curved surfaces. This tool will be used to represent the general

geometries of the engine blades and the casing.

This report describes the theoretical developments and implementation of these models as
well as additional work completed as part of this study. Conclusions regarding the nature

and performance of these models are presented, and additional testing and applications

are suggested.
Structure of Report

The primary components of this research were the theoretical development and intro-
duction of finite element models and semi-analytic solutions using discrete-layer approxi-
mations for the analysis of laminated piezoelectric plates and shells. These models form
the basic thrust and results of the present study. However, as part of this development,
it was found necessary to develop an additional component as both a check and a com-
putational alternative for the plate geometry. This additional component involved the
development of exact solutions-for the static and dynamic behavior of simply-supported
laminated piezoelectric plates. Although not included in the original proposal, the de-
velopment of the exact solutions was critical to the successful development of the plate
element because there are effectively no other results in the literature for laminated piezo-
electric plates other than very simple approximate models. The exact solutions filled a
needed gap in the understandiﬁg of these laminates, and because their development was
completed under the auspices of this project, the results are included here.

The following chapter gives a brief review of the literature to describe the current state-

of-the-art in the field of control using active materials, with emphasis given to piezoelectric
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materials. Also given in this chapter is an overview of the linear theory of piezoelectricity
and the governing equations to be used in the following chapters. In the third chap-
ter, semi-analytic solutions developed for the plate geometry are described. The fourth
and fifth chapters give the development of the plate and shell elements, respectively, for
laminated piezoelectric solids using the discrete-layer theory. The sixth chapter details
the development of the exact solutions for the static and dynamic behavior of simply-
supported piezoelectric laminates. The seventh chapter contains representative example
problems for the models developed in the previous chapters. A discussion of potential

future work and summary are given in the eighth and final chapter.

[SV]



2. BACKGROUND

This section includes a review of the literature regarding both discrete-layer theories
and so-called smart structures as these topics apply to the present study. The fundamental
equations related to the linear theory of piezoelectricity are also included in this section,

and are provided as a useful foundation for the chapters that follow.
Literature Review
- Piezoelectricity

In 1880, Pierre and Jacques Curie discovered that the electrical charges on certain
dielectric crystal could be produced by impressing mechanical stress. Later in 1881,
Hankle named this direct and its converse effect “piezoelectricity”. With the knowledge
of solid mechanics and electri.city, the mathematical foundations aud governing equations
were available and used in the original work of Voight [63]. In addition to this volume, two
other classical works of Mason [64] and Cady [66], are cited frequently in latter studies of
piezoelectricity. Both works gave a special attention in the physical properties of crystals,
as well as practical applications.

Several works published in 1960’s initiated the numerical solution of problems in-
volving piezoelectric solids. In 1967, Eer Nisse introduced the variational calculus and
a Ritz-approximation for analyzing electroelastic vibration problems [5, 6]. In his work,
variational formulas were derived for the equations of motion of piezoelectric cylinders
and were applied to find the resonant frequencies of thick discs. This application gave
a beginning for latter studies using numerical approximation. The monograph of Tier-
sten [67], provides a comprehensive treatment and application of the linear theory of
piezoelectricity. In this book, a systematic derivation of the governing equations of linear
piezoelectricity were given, and results of homogeneous plate vibration problems were
shown. In later works dealing with piezoelectric vibrations, this monograph is without
question the most oft-cited reference.

On the basis of the works of Eer Nisse [5, 6], Holland [7] presented an application to
rectilinear geometry. With specified trial functions, the resonant properties of piezoelec-
tric ceramic rectangular parallelepipeds were discussed, as well as several mode shapes
were contoured. To avoid the limitation of using Ritz-approximation under complicated

boundary conditions, Allik and Hughes [9] introduced a finite element formulation for the



equations of piezoelectricity. A electroelastic tetrahedral element was also developed in
this work but without further application and numerical results. This work began the ef-
forts of using modern computational techniques to represent the behavior of piezoelectric
solids.

Several studies have appeared using finite element approximations to the equations
of linear piezbelectricity. Kagawa and Yamabuchi [14] developed a computer program to
solve the axisymmetric vibrations of a piezoelectric circular rod of finite length. Later in
the 1980’s, several piezoelectric structures were analyzed by Naillon et al. [20], as well
as three-dimensional structures by Ostergaard and Pawlak [25]. Being different from Eer
Nisse’s approximation [6], Kunkel et al. [38] used the finite element method to find the
natural vibrational mode of axially symmetric piezoelectric ceramic disks.

Three volumes, which are not referred here but have been cited frequently in recent
studies, are the works of Nye [68], Bottom [71] and Zelenka [i2]. These books provide
details and more recent information on the properties of (quartz) crystals. In Zelenka's

book, Piezoelectric resonators and non-linear properties of crystal are an area of focus.

Theories of Thick Laminates

The classical laminated plate theory (CLPT), which is a direct extension of classical
plate theory (CPT), has been used to solve many composite plate problems for years.
Because the assumed Kirchhoff hypothesis remains in CLPT, the thickness effect, which
is known to cause poor results when analyzing thick plates with the use of CPT, similarly
occurs when using CLPT to analyze thick laminates. According to the literature reviews
of several studies [32, 43, 44], the initial work to take into account the thickness effect
could be credited to Basset [1] in 1890. After this work, several displacement-based
refined theories developed by Hidebrand, Reissner and Thomas (2], as well as Mindlin
[3], were extremely useful to later studies dealing with the transverse stresses in plates.
Another commonly used book is that of Timoshenko [65], which gives development of
a generalized plate theory and some elasticity solutions for specific plate geometries. In
many later studies to refine the CLPT, the above works are frequently cited.

In Pagano’s works [10, 11], limitations of the CLPT for laminated elastic plates were
investigated. Solutions of several specific composite problems using CLPT were com-
pared with the corresponding elasticity solutions (i.e. exact solutions). The conclusions

pointed out the undesirable effects and limitations of CLPT, and motivated later re-




finment. To deal with the shear deformation and rotatory inertia effects in arbitrarily
laminated anisotropic plates, the first-order shear deformation plate theory (FSDT) [2, 3]
was generalized by Yang et al. [4]. In this generalized FSDT, the normals to the mid-
plane before deformation remains straight (i.e. first-order formulation) but not necessarily
normal to the mid-plane after deformation. However, a correction to transverse stiffness
was required to satisfy the boundary conditions (i.e. the zero transverse shear stress on
the top and bottom surfaces of plate). Several applications using this theory in bending,
vibration and transient analyses were shown by Whitney et al. [12] and Reddy [17, 19].
Following the generalized FSDT, higher order formulations were given to obtain a better
description for thick laminates. A variationally consistent high order shear deformation
laminate plate theory was introduced by Reddy [22, 27]. Using this theory, the correction
needed in the FSDT was not required. Later, for reasons of efficiency, Putcha and Reddy
developed a mixed shear flexible finite element [27] to apply the high order theories. An
analysis of stability and natural vibration for laminated plates were also represented. In
addition to Reddy’s studies, Khdeir presented several applications using his refined shear
deformation theory [40]. Results available in the literature have been adapted frequently -

for comparisons in many later studies.
Discrete-layer Theories

Several works employed to develop so-called discrete-layer theories are specially intro-
duced here for their usefulness in this research. The most initial work that use a layerwise
displacement theory to analyze layered piezoelectric plates and layered anisotropic plates
could be credited to Pauley [13] in 1974. In his dissertation, a layer-wise analysis was
used to study the free vibration characteristics of infinite laminated piezoelectric plates
using finite element thickness approximations. However, the analysis was limited under a
condition of plane strain. Even though this work was a precursor to later development of
discrete-layer theories and research in laminated piezoelectric structures, no later studies
have cited this effort.

In the work of Reddy [32], a general two-dimensional shear deformation theory of
laminate plates (GLPT) was represented. Based on GLPT, a desired degree of approxi-
mation of the displacements through the laminate thickness can be given. Additionally,
this work indicated that the GLPT could represent a generalized form of many other

laminate theories. The CLPT, the generalized FSDT, the higher order theory [22], and



several other refined laminate theories can be considered as special cases deduced from
GLPT. The discrete-layer theories are also extended form the GLPT.

After GLPT was developed, Reddy et al. [43, 44] presented several applications and
detailed discussion. In [43], a plate bending element was developed using GLPT. The
accuracy of using this element was also evaluated by comparison with the exact solutions
of the generalized plate theory [65] and 3D-elasticity solutions. When using the bending
element, a layer-wise description of the inplane displacements and stresses of laminate
can be given, and an improved approximation to the transverse shear deformation was
obtained. Results of several examples showed that the thickness eff_ect was effectively
eliminated. Almost at the same time, another work [44] represented the exact analytic
solutions of GLPT in two cases, cylindrical bending and simple support plate. By com-
paring with the 3D-elasticity solutions, this work confirmed that GLPT allowed accurate
determination of interlaminar stresses.

In the work of Robbins and Reddy [53], the GLPT was adapted to laminated piezo-
electric beams. This could be the first work that involved the GLPT into the analysis of
the smart material. Four different displacement-based finite element models, which were
derived from GLPT, were represented with numerical results. However, the piezoelectric
effect was only modeled using an induced strain rather than the equation of piezoelectric-
ity.

Finally, the recent work of Heyliger and Saravanos [59, 62] represented discrete-layer
theories that can deal with the thick piezoelectric laminates. The kinematic assumptions
were based on the GLPT. To describe the in-plane performance of plates or beams, piece-
wise linear variations of the components were used through the composite thickness. In

addition, finite element and global/Ritz approximation in plane of laminate were involved

to solve several test problems.

Intelligent Structures And Piezoelectric Laminate Theories

In this section, the primary characteristics of piezoelectric beam, plate, and shell
theories are introduced.

Compared with the use of piezoelectrics in transducer applications, the study of dis-
tributed piezoelectric actuators for all solids is quite recent, with most papers appearing
after 1985. The work of Bailey and Hubbard' [23] may be the first that introduced dis-

tributed piezoelectric polymers as actuators to control the bending vibration of cantilever




beams. Fanson and Chen [28, 29] also demonstrated that the use of piezoelectric materials
as sensors/actuators in beam vibration control was feasible. The passive structure ele-
ment for the control of large space structures can also be replaced by piezoelectric active
members.

Later, Crawley and Luis [30] presented an analytic and experimental development of
one-dimensional piezoelectric elements. These elements can be placed either on the sur-
face or embedded within structural laminated beams, and function as actuators to excite
the steady-state resonant vibrations in the cantilevered beams. The given conclusion em-
phasized that the existence of the embedded actuators may not affect the elastic modular
of the composite structures, but would reduce the ultimate strength of the laminate by
20%. Finally, the work of Robbins and Reddy [53] is repeated here for their analysis of
simulated piezoelectric laminated beams.

Beginning in 1987, a series of publications by Lee et al. [39, 81. 47] initiated efforts
to develop theoretical models for bending and torsional control in laminated piezoelectric
plates. In [39], Lee and Moon presented a set of piezopolymer devices for the model control
of piezoelectric laminates. Experimental results were followed and used to compare with
the theoretical predictions. The latter work by Lee [84] introduced in detail the governing
equations for piezoelectric laminate plates, as well as the reciprocal relationships of the
piezoelectric sensor/actuator. The assumptions of CLPT were involved because only
slender plates were considered.

Wang and Rogers [52] also used the assumptions of CLPT to model laminated plates
with spatially distributed piezoelectric actuator patches. Using the Heaviside function
that corresponding to the inplane location of patches, the strain induced by the actuators
was represented. In addition, the equivalent external forces induced by the piezoceramic
patches under some voltage field can be determined upon the assumption of free constraint
for expansion or contraction of the patches.

In the work of Heyliger and Saravanos [59], discrete-layer theories were developed
to analyze the laminated composite beams and plates which contain active piezoelectric
layers or patches. The coupled relationship between the elastic and electric variables were
explicitly represented in the governing equations. Both the static and dynamic behaviors
were also considered. Later, Heyliger and Brooks [60] derived the exact solution for
piezoelectric laminates in the two-dimensional configuration of cylindrical bending. These

results provided useful information to evaluate the developed or futurce piezoelectric plate



theories.

Development of piezoelectric shell theories were initiated by a number of Russian
authors, whose efforst are summarized in the outstanding monograph of Kudrayavstev
and Parton. Yet only recently have these been extended for active control problems.
In 1989, Tzou et al. presented a numbers of works regarding piezoelectric shell theory
[42, 49, 51, 55]. In [42], a laminated thin shell with piezoelectric layers was evaluated.
The governing equations of the dynamic state were derived based on Love’s hypothesis -
and Hamilton’s principle. Later, Tzou [49] introduced a piezoelectric element to analyze
the distributed sensing and active vibration control of flexible plates and shells. The finite
element formulation was also given. However, only a zero-curvature shell problem was
demonstrated. In [51], Tzou and Tseng developed a “thin” piezoelectric solid element with
the internal degrees of freedom. This element was used in the finite element formulations
to analyze the piezoelectric shell. In 1991, Tzou and Zhong [55] developed electromechanic
equations of motion of generic piezoelectric shell using Hamilton’s principle and linear
piezoelectricity. Numerical results using finite difference technique were represented, as
well as a comparison with the experimental results.

In addition to the works of Tzou et al., Lammering [54] developed a shell deformation
finite element to analyze a shell structure with surface coated piezoelectric layers. In this
work, a shear deformation elastic shell theory of the Reissner-Mindlin type was used to

develop the finite element formulation.

The Linear Theory of Piezoelectricity

To begin the analysis for laminated structures with embedded piczoelectric layers, the
material properties and governing equations for piezoelectric media must to be defined.
The behavior of piezoelectric material used in the composite is assumed to be linear. A

brief introduction to the material behavior and related equations is given below.

Behavior of Piezoelectric Material

In 1880, the Curie brothers discovered the piezoelectric effect on certain crystalline
materials. When mechanical stresses are ai)plied on a dielectric crystal, surface electric
charges are instantaneously created. The converse effect is that the presence of an electric
field results in changing the shape of the crystal. More than a hundred ferroelectric ma-

terials with the piezoelectric effect have been found. Conventional piczoelectric materials




are crystalline or polycrystalline style. Therefore, they are mostly produced in the form
of ceramics or crystals. The brittle properity leads to disadvantages in usage.

In 1969, a strong piezoelectric effect in PVDF, polyvinylidene fluoride polymer, was
discovered by Kawai [84, 16] . PVDF-type materials are flexible. The polymeric properi-
ties are very different to the properities of the conventional piezoelectric materials. They
can be produced and formed into thin-film sheets that are easy to cut or shape for com-
plex configurations. Because of the convenience, structures with highly distributed sen-
sors/actuators (intelligent structure) can be constructed.

In laminated structures, the embedded or coated piezoelectric layers function as dis-
tributed sensors and actuators. When applied forces result in strains within the structure,
the surface charges on each layer can be collected through a surface electrode (i.e. it can
be coated on the layer) to an outside detector. The deformation can therefore be mea-
sured. Conversely, if a voltage field is linked to a certain piezoelectric layer, the shape
change within that layer can be used to actuate the structure. The surface electrode.
which covers the piezoelectric layer, can be placed at any desired location. Ounly the
portion of the piezoelectric layer covered by the electrode can initiate the effect.

In Figure 1, a piezoelectric film with covered electrodes, and the poling and rolling
(stretching) directions are shown. Figure 2 presents three possible delormations of piezo-
electric laminated plate when applying an electric field. Both figures are taken from the

work of Lee [84].
Equations to Describe the Piezoelectric Medium

To describe the behavior of a piezoelectric medium, there are five mechanical and
electromagnetic relations (or equations) involved :
(1) the stress equations of motion/equilibrium,
(2) the strain - displacement relations,
(3) the charge equation of electrostatics,
(4) the electric field - electric potential relations, and
(5) the constitutive equations.

These are given sequentially as follows:
Tiji = pu; (fi=0) i

Here 7;; are stress components, p is material density, 4, are compunents of acceleration,




and the body forces f; are assumed to be zero.

Sij = o (uij + ujs) (2)

N —

Here S;; are strain components and u; are components of displacement.
D;;=0 (3)

Here D; are the components of the electric displacement, or electric flux density, along

the 2 direction.
Er=—¢r : (4)

Here Ej are electric field along k direction and ¢ is electrostatic potential.”
The piezoelectric constitutive equations present the relations anwong :
(1) the stress field, the strain field, and the electric field;
(2) the electric displacement, the strain field, and the electric field.

They can be written as follows.
Tii= GsaSe — epsbn (5)

D; = e;xiSk + ei Ex (6)

The elements C;;x are elastic constants, ey;; are piezoelectric coefficients, and &;; are
dielectric constants. In this research, the constitutive relations of an orthotropic layer off-

axis are followed. The elastic stiffness matrix and the matrix of piczoelectric coefficients

are given as

[Cii Ci2 Ciz 0 0 O]
Ciz C2 Ciz 0 0 Oy
Cis Cis Cs3 0 0 Cs (7)
0 0 0 Cu €5 0
0 0 0 sy G0
| Cis C C36 0 0 Cégs |

and '

0 0 0 €14 €315 0

0 0 0 €94 €25 0 (8)
es1 e ez 0 0 es

The indicial notations Cjji change into Cg, also ey;; change into €, (¢, =1,2,---,6,
and k=1,2,3).
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The total set of 22 equations in 22 variables can fully define a given piezoelectric
medium. Several additional equations related to linear piezoelectricity are briefly intro-

duced here.
The equation to describe the total surface charges ¢(t) at time ¢, which are collected

by a surface electrode and sensed by the outside detector, is given by

g(t) = /5 D-ndS = /S Din;dS 9)

Here n is the normal vector of the small surface area dS, and D is the electric displacement
vector in the piezoelectric medium. This equation represents that the D passing through

the surface with electrode are collected. The internal energy function can be written as
1 1
= /V(;C,-,-HS,-J-SH -+ ;)-EijE,'Ej)dV (10)

The first item of right hand side is the strain energy per unit volume. The second is

electrostatic energy density. Finally, the electric enthalpy H per unit volume is defined

as
H(S,E) = U-E-D=U - E;D;
1 1 -y
= 3C'ijk:5ij5k1 — exij ExSi; — §c‘ijbilbj (11)

The electric enthalpy will be used in Hamilton’s principle in the next section.

Hamulton’s Principle for Linear Piezoelectricity

In this section, the generalized Hamilton’s principle for a piezoelectric medium is pre-
sented. The variational formulations developed in subsequent chapters depend critically
on this expression. For the plate geometry, this expression will be given in terms of rect-
angular Cartesian coordinates. For the shell, the variational formulation will be developed
in both the cylindrical and the curvilinear coordinates.

In this research, the generalized Hamilton’s principle is used as

t1 t
| sc-uyd+ [ owdt =0 (12)

to to

Where
1
o ALt 13
£ / Sptt - ddV (13)
SW = / (f-6u + 6(E - D))dV + /(t-éu —g6¢)dS (14)
v s
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Here K is the kinetic energy of the system, U is the internal energy of the piezoelectric
medium, and éW, virtual work done to the system. The four items on the right hand
side of equation 14 represent the virtual work done by (1) body force in a virtual dis-
placement, (2) variation of electric field in a electric displacement, as-well as variation
of electric displacement in a electric field, (8) the prescribed surface tractions in a vir-
tual displacement on medium surface, and (4) the prescribed surface charge & in a small
variation of electrical potential ¢.

Since the applied electric field E and electric displacement D are interdependent, the
system is not conservative. The body force f is assumed to be zero here. The expression

of equation 14 is the governing equation used in this research, and is written as
t i ¥ t = % il
5[ at [—pu,-u,- g, H(Skl,Ek)] v+ [Cdt [ (Bswi-559)iS =0 (15)
to v 2 to S

Here H(Sk, Ex) is the electric enthalpy, which replaces the terms of internal energy and
E - D in equation 14. The value will not be changed due to the coordiunate transformation.

The variational form of H is expressed as
0H = 6(U—-E-D)=6U-46E-D)
= Ci;nS:ij0Sk — eri; Er6S;; — erij6 ExSi; — €:i; 6 E; (16)
These equations will be used extensively in later chapters. Depending on the problem

geometry and coordinate system used, the form of these equations will be different and

are detailed for each case in the following chapters.




3. SEMI-ANALYTIC SOLUTIONS

This section details a discussion of what are termed semi-analytic solutions for simply-
supported laminated piezoelectric plates. This work was an exteunsion of work completed
by the principal investigator and the technical monitor of this research project (DAS).
The phrase “semi-analytic” denotes the fact that use of Navier-type displacement fields
will identically satisfy the in-plane requirements of a simply supported plate for the exact
solution of the equations of linear piezoelectricity. In this case, as for the exact solution
included in a later chapter, the problem effectively becomes one-dimensional.

The new and major thrust of this section is to detail 1) the relative accuracy of the.
two major out-of-plane displacement approximations used in previous work in comparison
with exact solutions, and 2) description of an alternative displacement field that was
found necessary to accurately model piezoelectric plates. This field uses piecewise linear
variation of the out-of-plane displacement components that are different than those for the
in-plane and potential components. This is discussed to some extent in the chapters on
the plate and shell elements, but is included here because it was [or this class of problem
that a preliminary numerical algorithm has been completed and results computed.

Governing Equations

Geometry

The geometrical configuration of the laminate is such that the thickness dimension of
the laminate coincides with the z-direction, with the lengths of the plate in the x and
y directions denoted as L, and L, respectively. The general problem considered in this
study is to determine the behavior of the elastic and electric field components throughout
the laminate under an applied mechanical or electrical loading. Each layer of the laminate
can be composed of a purely elastic, piezoelectric, or conducting material. The forcing

function is introduced through either an applied surface displacement, traction, potential,

or electric charge.
Variational Formulation

A single piezoelectric layer has the constitutive equations given by [67]

O3y = C.‘ij == ej;EJ- (IT)

= e;ij + Engj

13



Here o;; are the components of the stress tensor, C;; are the elastic stiffness components,
S; are the components of infinitesimal strain, e;; are the piezoelectric coefficients, E; are
the components of the electric field, D; are the componenfs of the electric displacement,
and ¢; are the dielectric constants. The poling direction in this study is coincident with
the x3 or z axis.

The strain-displacement relations are given by

S;-=%<%+g—z> | (18)
Here S;; are the components of the infinitesimal sta.in-tensor and u, represent the displace-
ment components. To be consistent with equation 17, the conventional notation for the
strain indices has been used, i.e. S;; = S1, S23 = Sy, etc. The electric field components

E; are related to the electrostatic potential ¢ using the relation

9¢
i [‘)a:;

For the materials used in this study, it is assumed that the non-zero components of the

= (19)

rotated piezoelectric tensor e;; are es;, €3, €a3, €24, €15, €25, €14, and ess. The elastic
stiffnesses C;; are those of an orthotropic material rotated about the z axis, and the
dielectric constants are given by €11, €12, €22, and €33.

The starting point for the variational formulation is Hamilton’s principle for a piezo-

electric medium [67], expressed as

t 100t t = 23 % .
s [ at / [gpujuj & H(SH,Ek)] av+ [ dt [ s — 5501 =0 (20)

Here t is time, V and S are the volume and surface occupied by and bounding the solid,
t and G are the specified surface tractions and surface charge, respectively, é is the vari-
ational operator, the . superscript represents differentiation with respect to time, and H

represents the electric enthalpy. The electric enthalpy is given by

1 1
H= §Cijk15ij5kl — eijkEiSik — e EiE, (21)
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The weak form of the governing equations, as well as the governing differential equa-
tions themselves, can be found by applying the variational operator in equation 20 over

a typical element. For the material constants of a typical lamina used in this study, the

first variation of the electric enthalpy is

Ouddu , ., Oudbv Ju 86w
=G Ougs By +Cug %,
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6145El (a—z + 53) i 6156E1 (a_’l:' e a—:) 6'245E'2 (av 5}) 8256E2 (a'[j a’LU) ==

d d 2, du dv
au 6325E3‘5§ - 633(5L3(all = 6306[,3 (()y al) o

a5u
%)
déu 351}
¥ ) K
5 dbw
) "
05u déw)

9z
Ou av 86v+
dy

ea0E3—

enELéE, — 622E25E2 — €33E30 E3 — €126 By — €12E20Ey —
& ) & ) 96 06 L)

e1afy a—g-i-@ —eiskh 8u+3w —enk; 0v+ 4 — ek _u+ " I
0z 81 0z Oz

0z dy 0z dz
06 96 a6 96 dév
631E3—3'§ — enFEs— ayv — eazEs a_w = CssEa'(FyE + P )(22)

Using the assumption of periodic motion, the substitution of this expression into equation
20 yields the final weak form, which provides the basis for the finite-element approxima-
tions over an element. It is possible to integrate this expression by parts to give the three
equilibrium equations and the conservation of charge equation. For brevity, results of this

step are not included here.

Displacement Functions

There are several cases in both static behavior and free-vibration analysis {or which
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either exact solutions are available or global in-plane functions can represent the elastic
and electric fields within the laminate. One such case is for simply-supported plates. In

this case, the Navier-type boundary conditions along the edges of the plate are given as

'LU(.’L',O,Z) = ’LU(IL‘,Ly,Z) = w(O,y,z) = ( Y, 2 ) (23)
¢(:L‘,0,Z) = ¢(11Ly12) = ¢(0ay1 ) ¢(Lz,ya )
), 2l= u(z, 5 2) =
v(0,9,2) = v(Ls,y,2) =0
' (24)
These conditions are satisfied exactly‘for the functions
u(z,y,2) = U(z) cos pzsin gy = U exp(sz) cos pz sin qy (25)

( )
v(z,y,z) = V(2)sin pz cos qy = V exp(sz) sin pz cos qy
w(

w(z,y, 7) = W(z)sinpzsinqy = Wexp

(
p(

sz)sin pz sin qy
)

é(z,y,2) = ®(z)sin pzsin qy = P exp(sz) sin pz sin gy
Finite Element Approzimation

The through-thickness approximation for each displacement component and the elec-

trostatic potential can be given as

(26)

Hence the variables are represented by linear combinations of a known through-thickness

distribution described using the one-dimensional Lagrangian interpolation polynomials
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U,(z) [14,16]. The in-plane distributions are already included in the total approximation.
Here (n-1) is the number of subdivisions through the laminate thickness (typically taken
equal to or greater than the number of layers in the laminate), and Uj; is the value of
component u at height j corresponding to the i-th in-plane approximation function.

The difference between the two theories considered here is in the form of ‘il;" For
the case of constant transverse displacement through the thickness, this function is equal
to 1. For a variable-w approximation, this function can be any Lagrangian interpolation
polynomial. It is also possible to use functions in the z-direction which are non-zero only
over specified regions. This would be most useful for the functions \Ilf for conducting
materials, in which case the potential is a constant. Also, independent approximations
for all variables can be used by denoting different ranges and limits of integration for each
component.

Substituting these approximations into the weak form and collecting the coefficients

allows the governing equations to be expressed in matrix form as

M) o] [0 [o ﬁ (V) (K2 (K] [K)] ({U)

(0] [M*?] [0] [0] y G W I Y R
o] o] [M] [0 |} {w} TR R A P] I R
Wy ORI I Y] Vil ViG BRI GG I C Gy S RS

The elements of these matrices contain additional submatrices wlose elements are de-
termined by evaluating the pre-integrated elastic stiffnesses, piezoelectric coefficient, or
dielectric constant through the thickness multiplied by the various shape functions or
their derivatives as determined by the variational statement. These are identical to those
of the plate element, and as such are not stated here. They are documented in the next
chapter.

The nature of the submatrices depends on the approximation used for w. For variable
w, the structure of [K’?] are similar to those of the other matrices. Depending on the
approximation functions used, this type of model is either similar or identical to a three-
dimensional finite element model of the equations of piezoelectricity. This aspect and other
computational issues regarding these types of models for elastic laminates are discussed in
[61]. For constant w, the submatrices within [K®], [K?®], and [K**] are column vectors and
those in [K*] become scalars. In general, the submatrices within [K“] are each of order

(n+1), while the [K*] themselves depend on the order of in-plane approximation. These
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can be defined by the subscripts a and . The final representation of these elements can

be expressed in fairly compact form and are given in the chapter on the plate element. In
matrix form, they are written as

[ B ] el [ -8

Assuming periodic motion and eliminating the potentials results in the eigenvalue

problem

([R] - M) {4} = {0)

where

(K] = [Kaa] - [KaolKas] [Koal (20)

The numerical results for the preceding theories are given in a later chapter. However,
it 1s necessary to note at this point that the case of a constant transverse displacement
gave results for both the static and dynamic cases that was wholly inadequate for most
geometries. Part of the reason for this was the fact that the transverse strain must be zero
in this case, which implies that the actuation strain is also zero. For any dimension plate,
this is a hindrance far more severe than for the pure elastic case, as this strain figures
significantly in the stress computation and in the evaluation of the electric enthalphy
terms.

This type of behavior can be asauaged by introducing approximations for w that are
at least linear through the thickness of the entire laminate. This is accomplished using
an approximation function for w through the thickness of the laminate that is completely
independent of the two in-plane components and the electrostatic potential.

This type of approximation can be thought of in the following fashion. Each indi-
vidual layer can be described by one or more “real” layers for purposes of finite element
discretization through the lamina thickness, composed in this study of linear Lagrangian
interpolation polynomials. Spanning over these layers is one or more “pseudo-layers” (see
Figure 3), which is the range of layers encompassed by the linear approximation for any

of the variables, which in this case will be the transverse displacement w. For example,
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consider a plate with three physical layers, which is modeled using three layers (and 4
nodes) for u, v, and ¢ but a single pseudo-layer for w. Each of the linear basis functions
for u, v, and ¢ has support only over two layers, with the basis function for w spanning
over all layers.

The shape functions for the i-th layer for each of the true layers are given in terms of

the global z-coordinate as
g Sl &
"/)l hi

Z_
¥ = (30)

Here h; is the thickness of each of the true layers, and the t superscript indicates “true”
and corresponds to the approximations for u, v, and ¢ (and any, all. or none of these may

have this type of approximation).

The approximation functions for the transverse displacement component are given by

UL PR
"pl—ﬂl asz
P o o 31
V3 %+a,Lk (31)

Here Ly is the thickness of the k-th pseudo-layer, and the values for a, v, and 3 change

for each true layer, with their values being given by

..D"
—
w
o
N’

;= —

o

R=y o (33)
i=1

fi=1-Ya (34)
=1

By analytically integrating the products of the appropriate shape functions and their

derivatives, the appropriate sub-matrices similar to those computed earlier for the original
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two ;heories can be obtained. This approach has the significant advantage of allowing a
transverse normal strain through the laminate thickness but introducing only (potentially)
one new degree of freedom. By allowing a transverse normal strain, the difficulties of the
constant-w theory disappear. Examples of this type of behavior are given in a later
chapter, but indicate one of the major conclusions of this study: it appears that the
constant-w theory is wholly inadequate for modeling the behavior of piezoelectric solids

because of the inability to model the normal actuation strain.
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4. THE PLATE ELEMENT

In this chapter, the theoretical formulation for piezoelectrically laminated composite
plates are presented. The variational form is obtained using Hamilton’s principle for a
linear piezoelectric solid [67]. The ;aqua,tions resulting from this variational statement will
be solved using the discrete-layer theory similar to that described in the preceding chapter,
in which the three-dimensional elasticity theory is reduced to a two-dimensional laminate
theory by assuming an approxin{ation of the displacements through the thickness.

In this study, a piece-wise linear variation is assumed for the in-plane displacement and
for the electrostatic potential components through the thickness. Regarding the trans-
verse displacement components, three theories will be presented: 1) a constant transverse
displacement through the tl;ickness, 2) a piece-wise linear variation through the thick-
ness, and 3) an independent piece-wise linear variation through the thickness different

than that of the in-plane and potential components.

Governing Equations
Electric Field-Potential and Strain-Displacement Relations

The electric field components are related to the electrostatic potential by [67] :
Ek = —Qk (35)

In Cartesian coordinates, the above expression yields:

dyp O o
S =Laat S 36
E, % B By Es = (36)
In addition, the strain-displacement relations are given by:
1 37
Sij = 5uij +u5i) (37)

which turns into the following six components when is expressed in cartesian coordinates:

Ou 1 0u Ov
S:n':'a_m Sryzi(_ag+-a_£)
Jv 1 v Ow
Syy:% ) Sy==§(‘a_z'+‘aTJ)
dw 1 du Ow
e 1R Yo



Constitutive Relations for a Piezoelectric Material

For a piezoelectric material, the mechanical behavior is coupled together with the

electrical behavior. This electromechanical coupling is described by [67]:

G =" CssiSh— ChisEy (38)
D

eirtSk + €k Fr (39)

Here o;; represent the components of the stress tensor, ex; are the components of the
dielectric permittivity or the piezoelectric constants of the solid, €;; are the components
of the dielectric tensor, D; are the components of the electric displacement tensor, and
'Cijri are the components of the elastic stiffness tensor.

Since we are interested in a linear theory, it is important to note that:

Con =Cne =050 =Gl
€ijk = €ikj
€5 = Eji
Taking into account this symmetry of the material, Nye [68] compressed this notation

by replacing :7 or kl by p or g, where ¢, 7, k, and [ take the values 1,2. and 3, and p and ¢

take the values 1,2,3,4,5, and 6. Hence the equations can be rewritten as:

Oy o= Gy — € B pi=],2, 76 g =;2,55<,6 (40)
e e,'qu+6.'kEk g 128 k= 1.2:3 : (41)

Now that the elastic, piezoelectric, and dielectric constants are specified by two indices,

they can be written in matrix form as follows:

[ Ci1 Ci2 Ciz Cu Cis Cis ]
Cia Cyp Caz Co Cys Cye
e Ciz Caz Casz Cs Css Css (42)
e Ciu C Cay Cyy Css Cas

Cis Czs C3s Cys Css Cse
L Cie C Ci Css Cse Ces

€11 €12 €13 €14 €15 €16
€kp = | €21 €22 €23 €24 €25 €26 (43)
€31 €32 €33 €34 €35 €36
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€11 €12 €3
€ij = | €12 €2 €23 (44)

€13 €23 €33
At this point, we have 21 independent elastic constants, 18 independent piezoelectric
constants, and 6 independent dielectric constants. Because of the syinmetric properties
of some piezoelectric materials, these matrices can be further simplificd. For instance, for

a monoclinic material, which can represent an orthotropic layer oriented off-axis, these

matrices can be reduced to:

[Cl1 Ci2 Ciz 0 0 Cig]
Ciz C2 C3 0 0 Cg
Ciz Cu3 C33 0 0 Cse
5 = 4
s 0 0. 0 CuiCs 0 39

0 0 0 Cis Css 0
Cie C6 Cs 0 0 Ces

0 0 0 €14 €315 0
€kp = 0 0 0 e ezs 0 (46)
€31+ €32 1 €33 0 0 €36

€11 0 0
€5 = 0 €22 0 (47)
0 0 €33

Thus the material with this type of symmetry is described by 13 independent elastic

constants, 8 independent piezoelectric constants, and 2 dielectric constants.

Variational Form of the G'overning FEquations

In classical mechanics, the Hamilton’s principle for a system with nonconservative
forces states that:

] Ldt+ 5Wdt—0 (48)
to

where

L= T(:z:k) - V(:l:k,t) = L(:z':k,:ck,t)

In the above expressions, t is time, L is the Lagrangian energy function, T is the kinetic
energy, V is the potential energy, §W is the work done by the nonconservative forces in a

virtual displacement, and § is the variational operator.
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As noted in earlier chapters, Hamilton’s principle for a zero body and surface forces

is given by

t e 1 1
) dt/[-2—pu'ju_,- - (§C,'J‘S,'Sj - e,-jE;SJ- e -‘)-ngE,'Ej]du =10 (49)
to v Z
The weak form of the governing equations can be found by substituting the elastic strain-
displacement and the electric field-electric potential relations and by operating the vari-
ational operator § on Hamilton’s principle. Assuming static conditions, the above proce-

dure yields the following for an off-axis, orthotropic piezoelectric layer:
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dp 06v | dp déw Op déw | Oy déu

50 Ty oy T 50 oy 0s

Qp06u 09050, Dpdbu ,  Dpdbu  dpd

e e 0y s o T\ e ol
O 06 dop 06 dp 06y

N3z bz 228y dy “®3z 9z (50)

Discrete-Layer Approximation

Three theories are presented in this work. The first asssumes a piece-wise linear vari-
. ation of the transverse displacement through the thickness. The second yields a constant
transverse displacement through the thickness. The last uses independent piece-wise lin-
ear approximations for w and the remaining in-plane and potential components. All
theories are based on the general laminate theory of Reddy [32] for elastic laminates. with

the added feature that the electric potential is included as an additional variable.
A piece-wise transverse displacement model

This theory is based on approximations of the displacement and potential variables in

the following form:

m n

.’E 'Yy 2,y t ZU(I)yv ZZUJI(t ‘L J \D“ )
=1 =1 y=1
v(z,y,2,t) Z (z,y,1) ‘II;' =Z Vii(t) [I(z)
=1 i=1 3=1
w(:B’yazst) = ZI’VJ(IB,y,t)‘D;”(Z) = ZZI/VJl(t)\I, (3' J \[J ( ) (51)
=1 =1 71=1

In similar way, the approximation for the potential can be written as:

fji T (2, 4)F5(2) (52)
=1;j=1

o(z,y,2, t)—Z‘I’ z,5,t)(z

=1
where u,v, and w represent the displacement components in the 2,y , and z directions
respectively of a material in the underformed laminate, and ¢ represents the electric
potential. In the above equations, two approximations have been made. In the first one,
the transverse variation of the displacement field is defined in terms of the one-dimensional
Lagrangian interpolation polynomials ¥;(z) which are associated with the j** interface

of the layers through the laminate thickness and are defined only on two adjacent layers.
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The laminate is divided into n nodes distributed through the thickness at the j** level,
defined by z = z; in the undeformed laminate. At this level of approximation, the
functions Uj(z,y,t),Vi(z,y,t),W,(z,y,t) , and ®;(z,y,t) represent the displacement and
potential components of all points located at the j* plane. In the second approximation,
the in-plane displacement and electric potential field have been defined in terms of the
two-dimensional Lagrangian interpolation polynomials ¥(z,y). The j** plane is divided
into two-dimensional finite elements and m represents the number of nodes per every one
of these elements. At this level of approximation, the functions Uj;, Vj;, Wji, and @;;
represent the values of the components u,v,and w , and ¢ at height j corresponding to
the #** node of the two-dimensional finite element.

Now substituting equation 51 and 52 into the variational form ol [lamilton’s principle
50, integrating with respect to the thickness coordinate z, and collecting termns, the final

equation in matrix form can be expressed as:

[K]e{A}e =F {F}e (53)
e SR e R {u} be)
K7 (K2 P K| ) oy | ) O i
Do - Gl R {w} {£°}
A MR ME G ISPl B ML 3 {1}

€

The elements of the stiffness matrix [K]. and force vector {£'}. are given below:

oy B\I’ Qv ovy 9 vy
11 o Al S 0) A8 o B
Khe = [, [5G 14 1(a 4 D),
o o
55 U T u 66
D05 + (455 ay]ddy
ov: vy ov 0¥y ow: ovy
12 ) 12 26
R R e
u \I;v
(D] T2 TY + [A%] 8(,;1' aa ] dzdy

u a\u w
[1(13]aa — / |:BIB] a\pa \I/w £ [BSS] oz lIlw s [BtlS]lD




= gy
[B“]\I!‘;%’-] dzdy

[I{M]aﬁ 2 /[[EZS]\IJ [EIS]\II \I’ [E31]aa\11u\pﬁ+

[E36] o \Il“’] dzdy

owr 0y oy 0¥y  9U® 0Vy
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33 il A4 A% o B
[I< ]Oﬂ i / [[ ] ay y [ ]( ax 0y + ay 61.' )+
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[K]aa—/A[[E] Rl ot
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{¢} =

{r°}

/ P dadi
A

/A fi¥idzdy

(56)

(57)

The matrices involved in the above equations result from the evaluation of the integra-

tion of the elastic and dielectric constants through the thickness of the laminate. These

matrices can be written as follows:

_ akm
Ak

o
B
B
Efm
Ef"

hkm

~km
G-

N ayn dUy(2) d¥(2)
Z/;, dz dz

=1

Z/:'“ eom ()T, (2)dz

(60)

(61)

where N is the number of subdivisions through the thickness and, in general, it will be

taken equal or greater than the number of layers in the laminate.

The theory which allows independent piece-wise linear approximations for w and the

remaining components can be represented by the above discussion, with the provision that
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now the through-thickness linear Lagrangian interpolation polyunouiials will different.
A constant transverse displacement model

The following approximations for the the displacement and potential variables are

assumed:
u(z,7,2,1) = z Uite,y,0T5(2) = 3 z Ui ()2, y) T ()
(z,9,2,t) J,i;VJ( RN HE )=§§V()‘I’ (z,y)¥i(=)
w(z,9,8) = 3 WU (2,p)
TOmE Zcb (2,9,8) )=gg%(t)\v?m,y.ﬂvi(:) (68)

The only difference between these approximations and those assutncd in the other models
is found in the approximation used for the transverse displacemeunt in the = direction. In
this model, the transverse displacement is considered constant through the thickness and
therefore the one-dimensional Lagrangian interpolation polynomials ¥(z) used before is
equal to one. The W; represents the transverse displacement corresponding to the z — th
node of the two-dimensional finite element used in the approximations through the z —y
plane.

Proceeding in the same way as that used in the other model. the following element

stiffness submatrices of [K]. and the force vector {F'}. are obtaincd and may be written

as:

o 6\11 U dUY I AWy
11 -t Al ﬂ Al6 o B o 3
[I\ }Orﬁ - /[[ ]a [ ]( ay Oz * O ay 45
(D) Te vy + [A%) 6(;11 08 ] dzdy
ovs ovy 8\11“(7' v v Jwy
~12 > 12 ﬁ 26 16
& ]aﬁ—/[[ ]5:1: dy [Alay fhia ]dt i)J:+
[D**) @ Uy + A% —=2 6\1}“3 : dzdy
0
T
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[K™)ap

[Kn]aﬁ

[K%)ap

[K*)ap

[K%]aﬁ

[1(34]&[3

[K*as

il

A

ovy dTwg

AB45\I/ 55 u
sy L 4 (am e 2

dzdy

6\11"’ u
[E%]\I’ [EIS]‘II 8\D + [ESI]aa\IIa lIl”-{-

[E36] C wl dzdy

J

vy ovy avr gvy  9uv vy

A22 B 26 o B8 o 8
A

[[ ]3 3y+[ ](3:1: 3y+ay am+

AN Y

D44 VTV 66
D05 + (41 TE doay

A
L

ovy
{AB““}\IIQ 5 - {AB“S}\I:aa‘gw"] dady
ovg a@ a@u
E“\IJ" E24\IJ ,3 321 S o

[536] : \p“’] dzdy

s

ovv ovy ou¥ ovy  9Uvovy
AAY e B s el ]
[ dy Oy ( dz 0Oy " dy O *

AAssa\I} ks ]d dy

Oz Oz

OuY 0V} ovY O} DU DU
/A[wE s B ) ppy2La %

dy 6y dzv oz ( )By dy
@
(EE”)BB‘I’ a(;p ]d dy
ov¢ 8\11“’ ¢ vy
/ [[G“] +[G 22] a o £ 1[G wiv]| dady (69)

30




As before, the matrices and vectors involved in the above equations result from the
integration of the elastic and dielectric constants through the thickness of the laminate.

These matrices and vectors can be expressed as :

Ay = z/‘“"ckm (=) Ts(a)s m)

e L (2) dT5(2) :
Dij 3 Z/ dz dz B (72)
TN ﬁ’:/ztﬂ C. d\iﬂ'(z)dz (73)
¥ =1 zZ A dZ
E‘km el i/zt+x d\il,(z)@( ) - (74)
i & 1=17% GEI PR
m L it T d\i'(z) -
Efr = g/ eim Ui(z)—F - dz (75)
e N 2+1
A4 =¥ Cimdz (76)
(=S
N 2141
EE™ =Y / eam¥;(2)dz (77)
1=17%

Transformation Matrices

In this work, it is desirable to simulate the behavior of a shell element derived from the
plate element using an assemblage of flat plates. In this sections it is assumed that the
behavior of a continuosly curved surface can be adequately represented by the behavior
of a surface built up of small plate elements.

Consider a typical plate element as derived in this section of the report. In general,
there are four degrees of freedom per node in the j* level, and depending on the approx-
imation used for the transverse displacement, w, in the z direction we would have either
4*(number of layers +1) when w is a linear function through the thickness of the laminate
or 3x(number of layers +1) +1 when w is considered constant through the thickness of
the laminate as the total number of degrees of freedom per node through the thickness.
The independent approximation case can be considered in this section as well.

The stiffness matrix derived before was based on a system of local coordinates, there-

,

fore a transformation of coordinates from a local system, (x’,y',2") to a global system

(x,y,z) will be necessary in order to assemble the elements and to write the appropiate
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equilibrium equations. Moreover, it will be convinient to read the element node coordi-
nates in the global system and get from these the local coordinates.

Therefore according to figure 14, we have that:
{v'} = [T){V} (78)
where V' are the components of a vector on the local system , V; are the components of

a vector on the global system, and T;; are the cosine angles between the local and global

axes and the matrix is given by:

1 0 0
T =10 Tscosf “sing (79)
0 —sinf cosp
The cosine angles can be calculated by the following expressions:
Yi —¥Yi ; Z;— =3
cosf = sinf = (80)
((z5 — 2)* + (v; — :)?) V(@5 = 22 + (v; — v:)?)

Since we have to transform both the forces and displacements by using the equation

78 and taking into account that [kf,./][{Dwcat} = {Flocat}, we get the final relationship:

([T]T[kleocal][T]){Aglobal} = {Fglobal} : (81)
but
[I(;lobal = [T]T[kleocal [T] (82)
therefore we can write equation 81 as:
[Kgiobatl{ Agtobar} = { Fytobat} (83)

where A; are the components of the displacement vector, F; are the components of
the force vector, k;; are the components of element stiffness matrix in local coordinates,
and Kj;; are the components of the element stiffness matrix in the global coordinates.

Therefore for one node in a linear plate element and for both theories, with w varying

and w constant through the thickness, the corresponding displacement vectors will appear

as

? (84)




( Un
U2
Vi1
1 Va2
Wi
(pll
3P

\

/

(85)

and the corresponding transformation matrix [T] will be:

4 0 0 0

61 0 0

0 0. cosB 0
T. — 0 0 0 cosf3

710 0 —sinf 0
0.0 0 —sinf

00 0 0

1 0 0 0 0

0 0 00
0 0 00
sinB 0 0 0
0 smB 0 0
cosd > 0" 00
0 eosf 0 O
0 s T
0 (i1 )

Examples of applications of this element are included in the results chapter of this

report. As of this writing, only the flat plate case had been investigated with the assembly

of plates remaining to be studied.
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5. THE SHELL ELEMENT

In this chapter, the formulation for two laminated piezoelectric shell elements is given:
the cylindrical shell and the general curvilinear shell. Both are based on solutions of the
weak form of the equations of motion using the discrete-layer type theories described in

the two preceding chapters.
Variational Formulation in Cylindrical Coordinates

A special case of a laminated shell is the cylindrical shell geometry, which is best
formulated in cylindrical coordinates. Let u,v,w be the components of displacement along
the r,0, and z directions in cylindrical coordinates, respectively. The strain-displacement

relations and the stress equations of motion are given as

Ju 10v wu Jw

6":—8_7'. 699—‘;0_9"’; ezz—'.-—:' (86)

% aow _ow x| 1du o e .
702_32 r 00 T or ' 0z %a_r'ﬁ or T

w L la(rdrr) l aaro 80.'7'2 g_@_o_
Gl e o r 00 s 9z (88)
o 1 6(7”20g,.) il 30’99 30'9, ‘
2 Or r 00 y 0z (89)
- l a(razr) -1_ 80'29 aazz

£ Or r 00 0z

(90)

Because the normal vector of layer surface will be taken along the r-direction, also this

direction is assumed to be the poling direction of each layer, the matrix of piezoelectric

enn ez €3 0 0 e
0 D= 0 ven e 0 (91)
0 0 O e3 es O

Also, the electric field can be written as

coeflicient is given as

0o. 10¢. 0¢.
E(r,0,2) = —gf—e, - ;%69 - %e,

Hamilton’s principle as writen in equation 14 can be expressed as

(92)

§ (M at [ [2 o = H(Su B v + [* dt [ (F:b6us - 569)dS
g L[i/’uiui— (Ski, k)] +/t0 /s(iu;—a @)dS

i .. ? Y Ou dbu
s I dt/u {_ [pu5u + p‘v5v + pw5w] — Cllg?
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1 10u 5v v, 06v Ow Obw
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@+1au, (86v+_1_g6ﬂ
% “ 70062 7 08
f(@_{_law)(aéw_}_aéu (aw 3u)(_8_£z_)_+lac5w)
"0z ~r 007" or 0z g’ Oz " dz v dl
(Qﬂ 0_u dbw  Obu
o o 8
_C (1@4_@ 3(1@4_@ v
6 00 ar—r)raﬁ or r
0¢ déu  Ou b 1 do dév ~ Ov D9
S e ) - [a Seane i o ‘a—]
0¢ 06w  96¢ Ow
~es(3 5 T 5 52
0¢ 135u obv v 10u Ov v 06¢
“‘[a( S % o e e r)Gr}
1 @ 10w 06¢ O¢, 0bv 186_11)
T [(3z+r39) o0+ 26\ %z 7 o0 )]
1 ow 6_u@ 0¢ 06w  Obu
F % [(a o g0 T o0 B Bz )]

i (8v+13w 08¢ 0¢ 06v 106w
“(3 %7283, 3.5 Tr a0

Oow Ou 0ép 0¢ 06w Obu
635[(3 +02)8z+0(0r +3z—]

: 3¢@ d¢ 06¢ 3¢ 35¢
¥ [SHE or ” ;3522%30— e ¥5: 6z :

t g - o
+ [ dt /S (£:6u + To6v + £.6w — 564)dS = 0 (93)
to
This state provides the basis for finite element approximations to the equations of
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motion as formulated in cylindrical coordinates, and are a special case of that described

below. This more general case is described thoroughly and has a corresponding numerical

algorithm that was completed as part of this proposal.
Variational Formulation in Curvilinear Coordinates

To analyze the laminated piezoelectric shell with arbitrary geometry, curvilinear coor-
dinates ( see Figures 4 and 11) will be used here to overcome the disadvantage from the
integration directly using the global coordinate system. The local and global systems can
be related using mapping technique. Let u, v, w be the components of displacement along
the z-, y-, and z-coordinate directions of a Cartesian coordinate system, respectively. This
coordinate represents the global coordinate system. The curvilinear coordinate system,
described by &-, -, and (-coordinate directions, is the local system [or the general shell.
Let @, v, w be the components of displacement along the €, 7, (-coordinate directions.
A laminated shell with complicated geometry can be separated intu scveral small parts
that function as shell elements, and described using more but simpler curvilinear coordi-
nates. In this section, the variational formulation will be expressed in terms of the local

coordinate system.

The strain-displacement relations and the stress equations of motion using the global

coordinate are given as

du dv ow

€zz = E €yy = a_y €z = I (94)

__a_v._}__a_g _6_w+_0£ —a_u+_'d_b_, (95)
Mo g dy L TR A dy Oz

3 00 ze p 0oy i 00z

3]
I

Il
—
e
D
~—

dz Jy 0z
. R 0. . 0oy OFy
pr = oz s 3y -+ 92 (97)
. _ 0o 00y 00
O o dy 7 0z (98)

The electric field can be written as

Bls,,2) = ~ o5 - 328, - 3¢

=T Ty T 9

Oz (%9)

The strain components in global coordinate system can be changed into the local system
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with the coordinate transformations given by

- - - — a —
€e € € % & 3 €zz €y €z g a1 a
— - - iz z 4
€ng €mn En¢ | = g—ﬁ g% ;a;n' €yz €yy Eyz % gf,’ Ea)l (100)
€ €&n € 3% 3¢ 8¢ s GCayolCes Z 5 5
It can be written as : [g],,, = [J (’—L’)] €] [J (’—U)]T here
< &ﬂ( Evﬂ-( TYz EI"IC :
9z 9y 9z
oA g% % & Ju Jiz i3
[J(gz_):l = 3—3 5% 'a‘% = J21 J22 J23 (101)
9z Qy 9Oz
2 8 2| | U Je e
Equation 100 can be further expressed as :
f Eff : : €zz )
Enn €yy
(elis, =0 TR M. Sare = (102)
€n¢ €yz
€gc €z
\ E{n J \ €y )
J;; ng Ji;, 2J12J13 2J11J13 2J11J12 €xz
J%' Jag J53 2J22J23 22123 2J21J22 €yy
I3 J3a J33 2J32J33 2J31Ja3 2J31J32 €xz
Jarday  JazJaz  Jaajaz  Jaadaa +J2zdaz Jaadas + Jaadar Jardaz + 2202 €y:
Judar JizJaz  Jiziza Jizdaa 4+ Jizds2 Judas + Jisdan Judaz + Ji2da €zrz
Judar Ji2daz Jizjes  Jiadaa +J13da2 Judas + 13 Judaz +Ji12Jd €xy
The (u,v,w) in x,y,z system and (&,,®) in ,7,( system can be related using
u Z,9, 2 u
§1} = [J (——)] v (103)
@ £, ¢ e
The electric field (E;, E,, E;) and (E¢, E,, E.eta) can be related using
B E,
" z1y12
2 Lolal Sl Vo (104)
E( fﬂ),c Ez

The first differential of (u,v,w, ¢)gobat to (z,y,2) and (u,v,w, @)gbu tO (€.1.¢) can be

_ related using the matrix, [J‘l (’—u)]T

&mi
Up Uy Uz e gt Wi o o &
d9r 9y Iz
vﬂ-' v’y v,z — U'E ’U,,, vvc 91’. @. ?__'7_ ( 105)
S 3 ) Iz F
Wz Wy W, We Wg W ac ol &
¢.z ¢,y ¢.- ¢.E QS,n ¢,C ox 9 9
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The (-direction is located along the normal direction (also the poling direction) of the
layer surface, and the é- and 7- direction parallel to the layer surface. Hence equations 100
and 102 can be used to present the elastic stiffness matrix and the matrix of piezoelectric
coefficient in the curvilinear coordinate system. The variation of electric enthalpy, §H,

can be expressed as the following equation.

§H = §[&;, Eiliocat | R)[Cliocat (Rl[E5, Eilipear

= betm, Eilgiosat[T"]" [R)[Cliocat [R)T " [€tm, Bl iobar
= Sleim, Edlgtobat R]((T"17 [B](Cliocat [RI[T™)) (Bl [€1m Erltcsat
= 8leim, Etlgtobat R)([Clotosat) (Bl [€im» Eiljiobar

= S[utm, Buloyz[B)[Clotoat BI [utm, .15,

= 6[uij, b.lenc[ TN B)[Clatosat (BT[] [wi g, 6 ,ilene (106)
Where
leme Bl = &' &y “€ir. & s &y Bw By E.| (107)
[, E4] g | & &m & & & & Ee E, E| (108)
[y $ils =] B2 2 G2 S fu fu Sw fm Qw08 ol B8] L (109)
u u u v v v w w w -0 -3 -390
-1/ zTyz T
AN R
J*| = G R0 B W (111)
] 0 0 JN(Z) _lom
0 0 0 J (Enc) 12x12
SIS 000 0F 080510 05
051500, 0° 00 0#0
0350 " BIT 08 U505 00080
0052 0FE0S0%i00
[Rl={0 00020000 (112)
0RO |0 0T 0RS2F 0S8 P R0
OO R0 G 180, 0
OO0 00805 0 100
L 00 D040 0 0°0 L]

9% 9
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Y 003000 80" 09
0 OS08 0 1:0.0.0
0.0 0°0°1.8°0 0 0
0050 9 0:10 0:0
B 00 0 9000
Gh00 10,00 0 0
k- O GED s 0.0 0 0
9801 0000
ONBS 1L 0.0 0 0 0 0
000000100
0500000 010
LR 0 0 0.0 00 14

- [T]st 0

T r T,Y.2
=0 ),

1) = [T"] [R]
(Clytobat = [T7] " (R Clioert (B [T]

The matrix [Clicar that include the elastic constants, piezoelectric

electric constants can be written as

[ Cii Ci2 Cis 0 0
Cn Cn Cyp 0 0
0 0 0 Cy Ciys
[C]local T 0 0 0 054 055

Cao Ce Ce 0 0
0 0 0 =€14% —€15
0 0 0 ==Coiy' Be= o5
5 ==€a1, —€32 —€33 0 0

Here the moduli and material axes of each layer, [Ciocal, can be obtained.

12x9

Cie
Cae
Cse
0
0
Ces
0
0

0

0

0
—€14
—€1s5

0
—£1

0

0

0

0

0
—€2q
=€25

0

0

0

(113)

(116)

coefficients, and di-

—€31
—€32
=633
0
0
—€36
0
0

(117)

=9x9

The variational formulation using curvilinear coordinate can be derived using the

above relationships, and can be expressed in compact notation as

e /: {_/5 (6 [, Blene {ﬂcnc) 45 & /,, (6 (s Glenc [&’ (’DJ ch H

8 (i js Billne (D] [wiir 8,31 ) det [J (

(D] = [7] (B Clysal BT 7]
[t Blege = [ u S0 6w 86 |

39

m,y)z

£,m¢

ﬂdwﬂ}a

(118)

(119)
(120)



Discrete-Layer Theories

To analyze thick laminated piezoelectric shells, discrete-layer theories are used in cre-
ating the numerical models. The governing equations in matrix form are available for

both cylindrical and general shells.

Background And Motivation

Most theories developed for analyzing laminated piezoelectric composites include limi-
tations which may not represent the true behavior for certain applications. For the analy-
sis of thick laminates under small deflection, the use of Kirchhoff hypothesis as theoretical
background causes an undesirable approximation of both interlaminar and intralaminar
stress cbmponents. In addition to this limitation, many previous studies have made use
of an equivalent force representation of induced strain actuation in the piezoelectric lam-
inate. This kind of approach does not solve the coupled equation of piezoelectricity. To
analyze thick laminated piezoelectric shells, cylindrical or general, the above limitations
need considerable refinement. This is the direction of this research.

In this research, discrete-layer theories developed by Pauley [81], Reddy, Barbero,
Teply [32, 43, 44], Robbins [53], and Heyliger and Saravanos [59] are used. The main
reason for using these approximations is that the coupled relationship between elastic
and electric variables can be exactly represented. Additionally, the limitations from the
Kirchhoff hypothesis can be avoided.

In discrete-layer theories, the kinematic assumptions as shown in Figure 5 defined for

the laminated plate element are :

1. Through the thickness of composite elements, arbitrary variations are allowed within

the in-plane displacement components and the electrostatic potential (i.e. u,v, and

#), and

[SV]

. There are three assumed forms of the transverse displacement component ,w, which

are used to develop two separate theories.
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e A constant transverse displacement through the thickness,

o A distributed transverse displacement which is identical in form to the other

variable through the thickness.

e A distributed transverse displacement of which the form is not completely

layer-wise like the other variable through the thickness as shown in Figure 6.

Within the laminated cylindrical shell element, the first assumption yields reference-
surface displacement components and electrostatic potential that are assumed to have
arbitrary variations through the thickness (r-direction for cylindrical shell, (-direction
for general shell). In the second assumption, the transverse displacement component,
w(r, 8, z) or w(é,n,(), is with the direction normal to the shell surface (r- or ¢- direction).

The theory developed with a constant transverse displacement (i.e. w(r,,z) = w(¥, z)
orw(é,n,¢) =w(&,n)) is for simpler and more economical in computation. However, poor
accuracy is given when calculating the interlaminar stress or analyzing thick laminates.
As with the case of the constant w formulation for the plate, it is impossible to capture
the through-thickness actuation strain using this form of approximation. With the second
assumed form (i.e. w is function of r,0,z or function of &,7,(), the approach is more com-
plex and more expensive, yet much more accurate. Both approaches will be investigated
in this research. With the use of discrete-layer theories, the variational formulation is

further derived for the type of approximation used in this approach.
Governing Equation in Matriz Form for Cylindrical Shell

In this section, a re-arranged variational formulation of governing equation is presented
where a configuration of simultaneous equations is obtained. Secondly, an approximation
of displacement and potential variables is given. The development of the discrete-layer
theory for piezoelectric laminated shell begins with this. Finally, a matrix form is ex-
pressed for further computational models.

Equation 100 can be rewritten as
t

/ l dt/ [piibu + pvév + pwéw] rdrdfdz
to v

t Obu Ou u  Ciu]  u Ou u  CaOu
§e. dt/{—[(’“a“’“:* aa] [C“a Ot

06u [Cig0u  Cog CesOu 36u du
ae[ ot Y ae) T e 0
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-/ " dt [ Eubu + T + Eubw - 564)dS = 0 (123)
to

Here each subscript behind the right brace shows the connection between the variational

form and the matrix form that is going to be derived.

The displacement and potential variables are approximated using linear combinations

of the form
(r,0,2,t ;U (0, z,t);(r) = ‘é;UJu(t)\Il;‘(H,:): HG (124)
(r,0,2,1) = Z:VJ (6,2, tyby(r) = iiwa(t)w3(9,3)¢;(,) (125)
w(r,0,2,1) =?:W’(" 2,8)5(r) i J_gwm(t)\vsz i) (126)
(r,0,2,1) = gdnw 2 s )—ég%(t)@f(ﬂ o2 (r) (127)

If a distributed transverse displacement is assumed in the discrete-layer theory, one-
dimensional Lagrangian interpolation polynomials 3;(r) can be used for the through thick-
ness approximation in the above (y¥(r) = ¢¥(r) = ¥¥(r) = gbf’(r) = 9;(r)). Thus,n -1
is defined as the number of subdivisions through the thickness. For better results, the
number of subdivisions should be larger or equal to the number of layers in the laminate.
The in-surface approximation for the cylindrical shell is assumed using two-dimensional
functions (6, z). The related number m is the total number of functions for the in-surface
approximation. By replacing the variables with the approximations. the governing equa-
tions can be expressed in matrix form as

[Mu] (o] [o] f[o]] [ {u}
0] (M) [0] [0] | {8}
0] [0 (Mol 0] || {8} (7
o] [0} [ (o] [ {¢}

[Ku] (K] (K] (K 7 ( {u} {f1}
(Kn] [Kn] [Ka] Ko | ) {0} | _ ) {F2) (128)
(Kzn] [Ka] [Ka] [Kad {w} {F3}
(Ka] [Ki] [Kas] [Kad) | U {6} {Q})

Both the [M] and [K] matrices are symmetric, so, [K1z] = [Ku]T, [Kia] = [Kal7,
[I(H] = [I(.“]T, [I<23] = [1{32]T, [1{24] = [I(42]T, and [1{34] = [I\’43]T. The structure of

the submatrices ([K11],(K12],-..,) is explained in Figure 7. Here the boxes drawn in the
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submatrix locates the members of submatrix using certain approximate functions ¥, and

U,. Those box areas are noted as [K11)11, [K12)13, etc. The expressions in these cases are

given as follows.

(Mul,, = [ {10293} dodz * (129)
(Manl,y = [ 10293} dodz (130)
(Maal,y = [ (W27} dod - (131)

(K1), _/ {[A“] TUE 4 [Bm] VO + [Bls] oo 00y [Blz] R

90
+ [D%] wrwy + [D*] xp:%i+[13‘6 aaq;“\pb D] Lt g

20
T RN }dadz

[1{12]ab = / {[Blz] \paaaq;b [Ble] ey + [AIS] VLo, + [D?z} ‘I’Z%
ot

%% =) & (B (D%] 2 0

+[B% aaq;“ v} + [D¥] aaq; 36\110 }ded (133)

(K)o = / {[Bls] - 3\1’1, [D23] \p“a\pb [Dse 3;’9 aiw

& W} dfdz (134)

g [Dss

$ [D26

oY amb aT®
0z 00 BB

(K1, = /A {[E“] Uawg + [F?] wrwg + [F] 68‘1;;\1:4’

rne) 0T 9P 3\1‘ ave
25 a b 35 b
+[é e +[G - }dodz | (135)

[I(zz]ab = / {[326] \paaaq;b [BGG] ‘I’Z‘I’Z + [AGG] \pzq}z [D'zs] I’adaq(;b
4 [DSG] \I,u\I,v : [366] \IIU\IIU [D22 %I;_Z%‘I;_E d [D26 aa\I;a lIJ"
ov?

[B26 7+ o4 6;; 38‘11 }d()d (136)

(Kl = | {[Bas]w oD8 _ [ w2 ] e 028

4 [b* + (5]

ou; ouy
0z 06

+ [ [345 2y \Il“’}dez ' (137)
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[K24]qp = L{[Els] Uy — [F‘G] VARV gut [F‘qz

v 3
[G“ 0v; 0¥} + [G* _a&a_lpl} dbdz

Bz 99 9z 0z
[Ka) = / {[B“] v a;ab + [a%] wroy + [D* 3{\3110 a(;pg
+[B]25zuy + [1333 i aiw}ded
| (Kadloy = |, {[F”] w2 s [ wr 2 4 o B O
+ (6% %% + [F a;pa \1:*"} dfdz

s == )t + [i) G008 (1) SO

The sub-matrices [A;;], [Bij], ... are expressed as

N Ti41
Z / pip;rdr

A{_\'m Z/rHl Ckm 31,0, aw,

N
Bim = Z g o/ a¢,¢ dr
=1 a
N Ti4+1
Bt =Y | Cimimg? a‘b’ i
=1
- N o rrig azr)‘
B,!‘jm — Z C;.m z/)er

=17

N Ti4+1
2 ; ckmw,-—az/’—’rdr
T
D'l_cm Z/ e .%"/)‘d)]dr
=
f)f,'m = Z/ e Cimipjdr

ijm = / Ckm"»btz/)ﬂ'dr

I=1"T

= Lo 0; 0%;
E% =Z/,, chmp o Tdr
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ka Z/rl"'l 31/): (152)

T e z i comthi (153)
L Z / "' ekm—"wjrdr (154)
P = Z/ ekmw,__rdr (155)
km H1Ekm
& Z / by (156)
GA:c]m — Z/rl+1 3km"/}i1/)jd7' (157)
=y
- N Ti4+1
G =Y [ eomtpityrar (158)
I=1"Tt
N
S 41 p; 3?,0]
HE _Z/n Cim o airdr (159)
i Z/ i (160)
I=1M
E:cjm = E/ EkmPitp;rdr (161)
I=1v"t

Here N is the total number of layers (N = n — 1).
However, if a constant transverse displacement is assumed, then ¢¥(r) = ¥¥(r) =

wf(r) = ;(r) but ¥¥(r) = constant, say &, and several of the above equations must be

changed.

[Mas],, = / {[1] wewy} dodz - (162)
(K13, _/ {[013] 7Y 3\1’1, ’s [PZB] \I/ + [P36] 38\1;2%

+ [P* a;; ag;}ded (163)
el L = / {[036] 020 [p) q;va‘l’b N a;; a;f’

+ [P aaq; a;;}ded : (164)
(Kaal,, = /A {[P“] a;; a;;w + [P ]a(;pz 3(,iw}ded (165)
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Here the sub-matrices [O;;], [P;], ... , are expressed as

N

Ti41 2
Z / pK3rdr (167)
=1 Tl
-
ij"‘ - Z (i Crm— g Kkrdr (168)
1 In ar
L
=3 / PYChmal, : (169)
=17 r
5 N Ti41
=Y / G (170)
I=1""
= N Ti41
P,-]-m = Z Crm&2rdr (171)
=1t L
N .
e i 2
Qi = ;/ﬂ Exm K" rdr (172)
W 1+1 €L
Si Z / ~Z wipydr (173)
S’f]m = Z/ r exm K dr (174)
I=17"

A Discrete-layer Element for General Shell

To model the laminated shell with arbitrary geometry, a curvilinear representation of
a discrete-layer shell element is developed using the kinematic assumptions of discrete-
layer theories. This is shown schematically in Figure 8. Within the shell, continuity of
the in-surface displacement components at a number of locations through the thickness
(i.e. usually at the joint between layers) is required as shown in Figure 9. For the
two different forms of the transverse displacement (out-of-surface displacement), different
requirements need to be satisfied. If a distributed out-of-surface displacement is assumed,
the same continuity of this displacement component is required as that of the in-surface
components. However, if a constant out-of-surface displacement is assumed, the continuity
of this displacement component is necessary at only one location through the thicknes's,
such as the bottom or top surface of the shell.

The weak form of the governing equation using curvilinear coordinates was shown ear-

lier and is used to allow a much easier integration for the shell with arbitrary geometries.
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To impose co‘ntinuity across the interface of adjoining elements with no loss of generality,
the resulting degrees of freedom are maintained at the local level throughout the analy-
sis. This type of formulation can give a much more accurate representation of adjoining
element sides. With the defined Gauss points, the numerical integration can be accom-
plished by mapping the discrete-layer shell element into a parent element that is similar
to the discrete-layer plate element described for the plate earlier in this report. Quadratic
in-surface approximations will be used in the calculations to allow representation of the
curved edges. This order of approximation can be easily modified if nccessary.

To define the geometry of a laminated shell element and to determine the J acobian
matrices [J] and [J*] matrices, the geometry of shell element [69] is described in standard

fashion as
n Ty

=> Ni(&m€)S w (175)
t=1

Zi

N R

Here (z,y,z) represents the location of a generic point within the shell element, and
(z:,yi,2i) are the locations of element nodes. The function V; indicates the shape function
corresponding to the node :. If the curvilinear coordinate systems used in all layers
are same, then the geometry of this element can be defined using only the locations of
the nodal points on any two layer surfaces, usually the top and bottom surfaces of the
element. However, if more than one curvilinear coordinate systems is required, more
nodes are needed for the approximation. The displacement components (u,v,w) and

electric potential ¢ in local system can be approximated in this fashion by the following

equations,
u(z,y,2,t) = u(€,n,(,1) = D D Usa(t)Ua(é,m)¥}(C) (176)
i a=1j=1
v(z,y,2,t) = v(£,n,(,t) = Via(8)¥a (&, )95 (€) (177)
a=1=1
w(z,y,2,8) = w(&,n, (1) = 3 3 Wia(t)LY(€,m)¥5(C) (178)
a=1 )=
$(z,y,2,1) = $(6,n,C,t) = 3 3 Dja(t)LL(E, n)w(€) (179)
a=13=
The J~ ( ¢) can be expressed as :
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The member D;; of the [D]i2x12 matrix can be calculated by
Dy = JCuayn T
Diiyi+3) = JuCyura it
Diyi+e) = JuCiryurer it
Diyi+9) = JixCrya9)Jit
Diisa)5) = JCray it
Diyayi+3) = -;kC(k+3)(l+3_)jj1
Diiays+6) = JueClrrayire)Ji
Diiss)j+9) = JxClrrayivs) Jo
Dive)) = JuCrrarn i
Diite)i+3) = JikClrroy+3) it
Diveyi+e) = JikClrsoyure)Jit
Diirsyi+9) = JixCliroyiraJit
Diisoriy = JixCesoyy Tt
Diivoyi+3) = JiClrsoyi+3)Jit
Diivoyj+6) = JixCirrori+e) it
Diivo)i+9) = JikClrroye9)Jit
(3,3, k,1 =1,2:3)

By replacing the variables with the approximations, the governing equations can be rewrit-
ten in matrix form. Let %¥(C) = v2(¢) = ¥?(¢) = %;(¢) but $¥(¢) is not necessarily equal
to 1;(¢). The expressions of the [M] and [K] for the general shell are given as follows.

(Murl,y = [ {111 929;) detidedr
(Manl,, = [ {111 929;} detidedn
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Where the members of [A4;;], [B;;], ... , are expressed as
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for, N Ci41 -
o =3 / Dim P d( (220)

3 Gi41 ¥
Cit = Z / Dim—- i ik (221)
O = CJ’F,-’" (222)

= N Ci41 61/;'” a.‘pw
i o Dy
N A

If a distributed transverse displacement is assumed in the approximation, then ; = Y.
Therefore, [A] = [B] = [CL,[A] = [A]" = [B] = [B]T = [C] = [C7), and [4] = [B] = [C).

However, if a constant transverse displacement is assumed (¥}(() = constant), then

“[B] = [B) = 0 and [C] = [C] = [C] = 0. The fundamental behavior of the shell is shown

for several layers in Figure 11.
Static solutions to problems involving this type of approximation ave lairly straight-
forward, However, there are several difficulties involved in dynamic analyses. These are

described separately below.

Dynamic Analyses

The kinetic energy of the system is involved when developing the Hamilton’s princi-
ple into the matrix formulations. Hence, piezoelectric vibration analysis is possible using
solutions of equation 128. The primary problem in this research to lind the free vibra-
tion characteristics (i.e. natural frequencies and corresponding mode shapes) for given

arbitrary shells and cylindrical shells, as well as the behavior of shells under a forced

vibration.
Free Vibrations

Since no external force term is assumed in free vibration problems, equation 128 can
be rewritten as [59]
M) 0] ] (A Koa] K| | f (A}
b + a ¢
[0] [0] é B¥A] {¢}

o [ Kl ~
jae] =shietd) = l (K] } (225)
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{u}
{a} ={ {v} } (226)
{w)}

If periodic motion is assumed, equation 128 becomes an eigenvalue problem, expressed as
{[K] - w* (M1} {2} = {0} (227)

Here [1-(] is formed using static condensation, which is necessary to eliminate the potential

variables. This matrix is given by

[&] = [K28] - [ic2¢] [&*] ™" [&*2] (228)
Here w is the natural frequency and the corresponding {A} presents the mode shape.

Forced Vibrations

It is possible to analyze the behavior of a laminated piezoelectric slicll under a forced
vibration, especially a harmonic excitation. According to the governing cquation in matrix
form, there are several ways to cause excitation in the system : (/) applying traction
forces {f(t)}, (2) applying an electric field {4(t)}, (3) increasing / decreasing charges in
the surface electrode, (4) mix of (1) and (2), and (5) mix of (1) and (3).

If the system is excited by surface traction forces which are harmonic, and no electric
field is applied, equation 224 can be rewritten as

[ B [l Ve [ )=t} o

The equation of motion of this system can be expressed to the form that is the same as

the equation of general laminates.
[M]{A} + [K22] {A} = {£()} (230)

After the displacements, {A}, are solved, [K ¢A] {A} can be used to predict the surface
charge created by shape change of the structure. The displacements can be discovered
by measuring the surface charges which are collected through a surfacc electrode to the
outside detector. Furthermore, if a static electric field is applied, the equation of motion

becomes :
(M]{A} + [K24] {a} = {f(1)} - [K*°] {4} (231)
The surface charges can be predicted by solving [K"A] {A} + [[\""’o] {o}.
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If the system is excited by an applied electric field that is changed harmonically, and
no traction force is applied, equation 224 can be rewritten as

e e P L] T i )= { ey } o

The equation of motion of this system can be written as

(M {A}+ [K58] (A} = - [K2] {4(1)} (233)

The equation of surface charges becomes {Q} = [K"’A] {A}+ [[\’4"”] {a(t)}
The third way to excite the system is harmonically increasing / decreasing the charges

that store in the surface electrode. Equation 224 can be rewritten as
) [0 [ (A} [ [Kee] [k { (A} }_ { (v} } 2
[ 0] 0] ]{ {4} } [ LM K% {¢} 1 {Q1)} e

Above equation can be expressed as
(M {A} + [K] {a} = - [K2°] [K‘f"ﬂ’]"1 (Q(t)} (235)

%] = [1{-“] = [Re2¢) [xe#] 7 [1ce2] (236)

The corresponding voltage can be found using

{8} = [£%] 7 {lQ)] - [K**] {a}} (237)

If the system is excited by traction forces and an applied electric field. which are both
changed harmonically but not necessarily in the same frequency, equation 224 can be

rewritten as

T o) {3} Bl Tctiay WL Mo V4
ol o {{¢(t)}}+HmAa &K"‘”H{{fﬁ(t)}}—{ (oibnoun) | 39

The equation of motion becomes
MI{A} + [K24] (A} = {£(0)} - [K*¢] {4} (239)

The surface charges can be predicted using [KM‘] {A} + [I\"""] {o(t)}. ‘Since the motion
of the intelligent structure can be sensed, it is possible to apply a required electric field to
create or change the damping mechanism of this structure system. This effect is proposed

to control (fully or partially) the vibration in this structure.

54




If the system is excited by traction forces which is harmonic and increasing / decreasing

the surface charges in the electrode harmonically, equation 224 can be rewritten as

[ BB B} o

The equation of motion becomes

(MI{A} + [K] {8} = (£} - [K*¢] [£*] 7 {Qw) (241)

The corresponding voltage can be found using equation 224. These equations also conclude
that if the current that flows into the surface electrode and the voltage in the electrode are
measured, the motion of this structure could be predicted. Furthermore. by increasing /
lecreasing the charges, vibration of the shells could be controlled. Tlis type ol behavior

can be used in the active tip-clearance control of engine blades.

Computational Models

A prototype discrete-layer shell element program has been completed and is included

as part of this report.




6. EXACT SOLUTIONS

Exact solutions are developed for predicting the coupled electromechanical vibration
characteristics of simply-supported laminated piezoelectric plates. The three-dimensional
equations of stress and electric displacement equilibrium are solved using the assumptions
of the linear theory of piezoelectricity. The through-thickness distributions for the dis-
placements and electrostatic potential are functions of eight constants for each layer of
the laminate. Enforcing the continuity and surface conditions results in a linear system
of equations representing the behavior of the complete laminate. The determinant of this
system must be zero at a resonant frequency. The natural frequencies are found numeri-
cally by first incrementally stepping through the frequency spectrum and refining the final
frequencies using bisection. Representative frequencies and mode shapes are presented
for a variety of lamination schemes and aspect ratios.

This chapter is included because it represents the results of a tangential study under-
taken as part of this research that was effectly a matter of necessity. L'ew solutions exist
for laminated piezoelectric plates, and this phase of the study was crucial in determining

the effectiveness of the discrete-layer approximations described as the main part of this

research.

Introduction

The behavior of linear elastic laminated plates composed of dissimilar orthotropic ma-
terials have been studied for a number of geometrical configurations, lamination schemes,
and boundary conditions. The exact solutions of the equations of motion for these solids
have only been obtained for the limited case of simple support. Static solutions have been
comprehensively studied by Pagano [10, 11]. For the dynamic case, the two-dimensional
case of cylindrical bending has been considered by Jones [76, 77] for two-layer cross-ply
and angle-ply laminates, with the exact natural frequencies and mode shapes being ob-
tained for a number of aspect ratios. The three-dimensional laminated plate geometry has
been studied by Srinivas and coworkers [78, 79] using an exact solution for a rectangular
plate with simple support.

Studies of the linear vibrations of finite laminated piezoelectric plates are limited. The
monograph of Tiersten [80] provides a comprehensive study of the governing equations,
fundamental behavior, and exact and approximate solution methodologics for single-ply

piezoelectric plates. Studies involving piezoelectric laminates have for the most part been
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confined either to infinite plates or approximate theories and solution techniques. These
include the studies of Pauley [81], Ricketts [82, 83|, Lee [84], and Yong and coworkers
(85).

The objective of the present study is to develop exact solutions for the static response
and natural frequencies of free vibration for simply-supported, laminated, rectangular
plates composed in part of orthotropic piezoelectric layers. The simply-supported plate is
one of the few geometries for which the in-plane functions can be selected to exactly satisfy
the governing equations and boundary conditions. The through-thickness distributions
are evaluated and found to be a function of eight unknown constants that are frequency
dependent. Imposition of the interface and surface conditions for the complete laminate
results in a linear system of equations that must be iteratively solved lor each frequency.
This study builds on the work of Pagano [11], who developed exact solutions lor static
behiavior of elastic laminates.

The developed solution and results presented here should provide a good basis for
comparison for approximate plate theories. The results could be especially important
for thick plates, in which case many theories provide poor approximations, and will help

establish the limitations and ranges of applicability of other approximate methods.

Exact solution

Governing Equations

The geometrical configuration of the laminate is such that that the thickness dimension
of the laminate coincides with the z-direction, with the lengths of the plate in the x and y
directions denoted as L, and L,, respectively. Each layer of the laminate can have elastic,
piezoelectric, or conducting material properties. The general problem considered in this
study is to determine the behavior of the elastic and electric field components throughout
the laminate under periodic vibration with arbitrary surface conditions.

The constitutive equations for each layer in the laminate are assumed to be those of
a piezoelectric material. These equations can also be used to represent purely elastic or

conducting layers, and are given by [80]

g; = C,'jSJ‘ e e,-,-Ej (242)

D = 6,’,‘51' =tz C(jEJ'
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Here o; are the components of the stress tensor, C;; are the elastic stiffness components,
S; are the components of infinitesimal strain, e;; are the piezoelectric coefficients, E; are
the components of the electric field, D; are the components of the electric displacement,
and ¢;; are the dielectric constants. The standard contracted notation has been used here.
In this study, the poling direction is coincident with the x3 or z axis.

The displacement components u;, where u; = u, u; = v, and uz = w, are related to

the strain components through the relations

1 {ou; Ou;
(RO | e T ] 243
4 2 (E)z, 8:::; ( )
To be consistent with Equation 242, the conventional notation for thic strain indices has

been used, i.e. S;; = Sy, S23 = Sy, etc. The electric field components can be related to

the electrostatic potential ¢ using the relation

20

81‘,’

Ei= (244)

For the materials used in this study, it is assumed that the non-zero components of the
rotated piezoelectric tensor e;; are es;, €32, €33, €24, and e;5. The elastic stiffnesses C;; are
those of an orthotropic material, and the dielectric constants are given by €y, €2, and
€33.

The stress equations of motion are given by

Oiji = PUi (245)

and the charge equation of electrostatics is given as

Di,i = 0 (246)

Substituting the constitutive relations, the stress-strain relations, and the field-potential
relations into Eqs. 245 and 246 gives the governing equations of the laminae in terms of

the displacement components u, v and w and the electrostatic potential ¢ as
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These represent the coupled governing equations for a single layer within the laminate.

=0

For the problems considered in this study, an arbitrary number ol laiinae are assumed
to be perfectly bonded together. At the top and bottom surfaces of the laminate, a
given load, displacement, potential, or charge can be specified. A number of surface
conditions could be treated using this methodology, but the cases of primary interest are
those in which both upper and lower surfaces are traction-free. It is also of interest to
consider the influence of electric surface conditions, and the cases of specified homogeneous
potential and transverse electric displacement are treated here. The laminate is assumed
to be simply supported, and the vertical edges of the laminate are assumed to be fixed
at zero (grounded) potential. Hence along a plate edge, the normal stress, tangential
displacement, transverse displacement, and electrostatic potential are specified to be zero
regafdless of the remaining conditions on the remaining laminate surfaces.

At each interface between layers, continuity conditions of displacement, traction, po-
tential, and electric displacement must be enforced. Using an indexing scheme, the con-

ditions for the i-th layer can be expressed as, for example,
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; ( e ) = yit! (my%ﬂ) (251)

Here i represents the layer number, with i=1 the top layer, each layer has an individual
coordinate system with the origin at the left end in the center of the layer, and h; is the
thickness of the i-th layer. Similar interface conditions exist for v, w, 0. 0., 7., Ty;, and
D.. At a single interface of a laminate with n plies, there are six conditions related to the
elastic variables and two conditions related to the electrostatic variables for a total of 8(n-
1) interface conditions for the complete laminate. At both the top and bottom surfaces,
there are three elastic boundary conditions and one electric condition for a total of 8
conditions. The surface conditions require specification of one variable from each of the
pairs (u,7zz), (v,7y:), (W,0:), and (¢,D;). Enforcing all conditions leads to 8n equations

relating the variables within all layers of the laminate.
Method of Solution

Solutions for the displacement components and the electrostatic potential are sought

in the form

u(z,y,2,t) = U(z) exp(jwt) cos pzsin gy = U exp(jwt) exp(sz) cus prsingy  (252)
v(z,y,2,t) = V(z,exp(jwt)t) sin pz cos gy = V exp(jwt) exp(sz) sin p cos qy
(

w(z,y,z,t) = W(z,t)exp(jwt) sin pz sin gy = W exp(jwt) exp(sz) sin pz sin qy

(
é(z,y,2,t) = ®(z,t) exp(jwt) sin pzsin qy = ® exp(jwt) exp(sz) sin pa sin qy

Here the overbarred terms are constants, s is an unknown number, p = m #/L,, g = n
7 /Ly, and z is the local layer coordinate whose origin is at the center of each laminae.
Substitution of these expressions into the equations of motion and the charge equation

yields the system of equations

Ay — Csss? Ayz Aizs Ajgs U 0
Ay Agz — Cyqs° Agas Azgs Vg 1 (253)
—Ai3s —Anxzs - Asz— Cazs® Azq — eass” w 0
—Aqgs —Aoys Azq — 6335)'2 Asq + 63382 (0] 0
The A;; elements of this matrix are
An = Cup® + Cesq” — pw* Arp = pq(Crz + Ces) A1z = =p(Ciz + Cs3) A = —(ean + e1s)p
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Ay = Cep® + Ca2g® — pw? Azz = —q(Caz + Cas) Aza = —qlesz + e21)  (254)

Az = Cssp2 I C44q2 s PW2 Ay = 615192 + 624612 Ay = —6111'2 o 622(12

A non-trivial solution to this system requires a zero determinant. The resulting char-
acteristic equation is

As® +Bs®+Cs*+ Ds’+ E=0 (253)

Expressions for the coefficients of this polynomial are given in the Appendix. This equa-

tion can e written as the fourth-order equation

4+ o + dr? +er+ f=0 (256)
where
r =3 a=—§ b:% (257)
D ¥
= 71— d = % (200)

The roots of this equation are a function of the material properties. the laminae geometry,
and the frequency w. The roots can be real, imaginary, or complex. which results in
different forms for the solutions for each variable. Regardless of the nature of the roots,
the solutions for a given value of s are based on the original form for the solution for U(z).
The remaining components can then be computed using Eq. 253, which is rearranged in
terms of the unknown constants as
A — Cys® Asgs Axs ] { 4 } : { =~ }
—Aszs Aaz — Ca3s® Azq — ea3s® w y=U Ayss (259)
—Agys A3zq — e3zs? Ay + €335° @ Apns

General expressions that can be used to evaluate the constants V, W, and ¢ are con-

structed as a function of the real, imaginary, or complex roots. These are

o 2 J
Py +Df(*23 Hidg (260)
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Wi(s) = 2 Lo J;”){Ssz higy (261)
Hip Al o %
D(s) = dys® + ds* + das” + dy e

The constants d; and f;; are defined in the Appendix, and will change in nature depending
on the type of root. These values and the corresponding solutions for the elastic and
electric field components corresponding to each type of root are developed separately

below.

Case 1: Real roots for-r

Given n real roots for r, the 2n roots for s can be obtained using equation 256. These
roots are either real or imaginary depending on the sign of r. Following the nomenclature
used in Pagano [10] and Heyliger and Brooks [87], the solution for the displacement
components and electrostatic potential corresponding to the these roots can be written

in either case as

n n n

Uz = in(z) Viz)= ZLJ-U,-(Z) W(z) = Z M;W,(=) #(z) = Z N W, (16 |

j=1 3=1 =1 Jj=1

U; = F;Cj(2) + G;55(2) (265)
W; = G;Cj(2) + a;F;S;(2)

Here F; and G; are real constants, there is no summation on j, and the functions C and

S and the values m; and «; are defined as

Cj(z) = cosh(m;z) S;(z) =sinh(m;z) a; =1 (r>0) (266)
C;(2) = cos(m;z) Sj(z) =sin(m;z) a;j =-1 (r<0) (267)
m; = |Sjl (268)




The coefficients L;, M;, and N; are more specific representations of the parameters given

in Eqs. 269-271, and are given in this case as

1
L;= D. (fum; + fxga,-m§ Tt f13) (269)
J
LY 4 2 :
M; = D. (f?lmj + faeo;m; + f23) (270)
i
i 4 2
N; = D. (fSImJ' + faa;m; + fss) (271)
J

where the determinant D; is given by

D; = dejTl?.? - dgmj + dgajmf + d, (272)

Using the constitutive equations in (242), the corresponding expressions for the stress

and electric displacement can be computed as

o; = sin pz sin qy Z[—PC“ —qCnl; + (273)

m'-f o p
Cisa; F;(lem‘; =t f22m?aj + fa3) + 33iaj'17j_(f31n1; S fz'z”lfuj + Ja)]U5(2)
= inpe cosay (Cu(Lym; + M) + eacNial() (274)
Tzz = COS pT sin qij:; (Css (m; + pM;) + e2aN;q] Wi(2) (275)
Tzy = COS DT COS qyzn:Cee(q + pL;) U; (276)

=1
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D; =sinpzsingy ) [—emp — emql; +  (277)
1=1
2

2
m? : ;
CssajD—J'(fnm‘} + fzszaj + fa3) + Gssajﬁ(fsxm; + f32m§01j + [a)]W;(2)
i i

Here i=1,2,3 corresponds to x,y, and z for the stress and electric displacement components.

A special case in which there are real roots for r is the non-piezoelectric elastic layer.
The e;;=0 in this case and the elastic and electric fields uncouple. The elastic solution
has been given by Pagano [10], and the results are not repeated here except to note that
the elastic field behavior is represented by six roots and six unknown constants within
the layer. This corresponds to the 6 interface/boundary conditions (three displacements
and the o;, stress components) for a single layer. The electrostatic behavior in this case

is represented using the two roots

€11p% + €22¢?
i, = 11P° + €229 . (278)

€33

The potential and transverse electric displacement components in this case are given by

2
#(z,y,2) = sin pa sin qy Z B; exp(n;z) (279)
i=1
2
D; = Resnpsaiu s Bn ecin;e) (280)
i=1

Case 2: Complez roots for r

The elastic, electric, and geometric properties for some laminae yicld complex roots.
These appear in conjugate pairs, which result in the final roots for s in the form £(a + ib),
where i = /=1 and a and b are positive constants. The solution for U(z) corresponding

to these roots can be expressed as

U(z) = c1* cos bz + c,e** sin bz + cze™*% cos bz + c4e™** sin bz (281)

where c,...,c4 are real constants. Following some algebraic manipulations and using Egs.

(260-262), the solution for V(z) can be expressed as
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V(z) = c1€*(T'1 cos bz — Qy sin bz) + c2e**(Q cos bz + Ty sin bz) + (282)
cze™**(I'y cos bz + Qu sin bz) + c4e™**(~ Qs cos bz + Ty sin bz)

Here T'; = R[V(a + ib)] and Q; = [V (a +ib)]. Similarly, the final expression for W(z)

can be expressed as

W (z) = c1® [(al; — bQs) cos bz + (—bT'; — aQ;) sin bz] + (283)
¢2€* [(BT'2 + afy) cos bz + (aT'y — bQy) sin bz] +
cae” ¥ (b — aTl'y) cos bz 4 (—bI'y — af)y)sin bz] +
cae” ¥ [(bT2 + afy) cos bz + (—al'; + bQ,) sin b=

where Ty = R[W(a +1b)] and Q; = [l (a+ib)]. The final expression for ¢ can be

obtained in similar fashion to yield

#(z) = c1e®* [(al's — bQ3) cos bz + (—bT'3 — aQs) sin bz] + (284)
co€®* [(bT'3 + aQ) cos bz + (alg — bQ3) sin bz] +
cze”** [(bQ3 — al'3) cos bz + (—bI'3 — aQ3) sin bz| +
cqe™** [(bT'3 + aQ3) cos bz + (—al's + bQy) sin hz]

where I3 = R[¢(a + ib)] and I's = S[¢(a + ib)].

The functions for displacement and potential in each case must be combined with
the solutions corresponding to the remaining roots to construct the complete solution
for a given layer. The expressions for the stress and electric displacement components
can be obtained by the appropriate differentiation and combination with the constitutive

equations as given in Eq. 242. Because of their length and relative ease of calculation,

these are not given here.
Solution for the Laminate

The elastic and electric field components within each layer are expressed in terms of 8
unknown constants. These are determined using the interface and continuity conditions

at the upper and lower surfaces of each lamina. For an elastic/diclectric layer, there



are 6 constants corresponding to the elastic part of the solution and 2 constants for the
electrostatic solution. For most common piezoelectric materials, however, the roots fall
into one of two categories. For some piezoelectric materials, the four roots for r are real.
Correspondingly, there are 8 constants (Fi,...,F4 and Gy,...,G4 in Eq. 263) that uniquely
define the fields within the layer. For other piezoelectric materials, there are 2 real or
imaginary roots and 2 complex conjugate roots for r. Hence the eight constants are Fy,
F,, G, and G, from Eq. 265 and c,...,c4 from Egs. (281-284). Following the solution
of the total system of equations for the constants, the solution for any component can be
computed at any location within the laminate.

For static solutions, the coefficient matrices are all known as are the right-hand side
elements. The solution for the unknown coeflicients reduces to solving a linear system of
equations.

-A resonant frequency w is unknwon a priori, yet the roots and through-thickness field
distributions are a function of this value. An iterative scheme was used 10 evaluate these
parameters. For the vibration problem, a necessary and sufficient coudition for a non-
trivial solution to exist is that the determinant # of the coefficient matrix [A] multiplying
the unknown constants is zero. The [A] matrix contains the final coefficients multiplying

the unknown constants following imposition of all interface and surface conditions and is

written as

[Al{A} = {0} (285)

where A is the column vector of coefficients. The zero determinant requirement establishes
the necessary relationships for the calculation of the natural frequencies and the modal
shapes for the plate.

To evaluate the roots of the characteristic equation, the following procedure was used.
First, the frequency was stepped through a sequence of frequencies that are an increment
of the lowest expected frequency. This can either be estimated or approximated from
other plate theories. The sign of the determinant is then computed for each value and
recorded. Once a sufficient number of sign changes have been noted, bisection was used

to refine the values of the true frequencies using the sign-change values as the bounding

initial guesses.

It can be a difficult numerical problem to evaluate the determinant of the matrix as
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it beconies singular, especially if computed on a limited-precision machine. In this study,

the determinant # was computed using

B =12 (286)

where ); is the i-th eigenvalue of the coefficient matrix [A]. This matrix is square and of
order m, where m=8n and n is the number of layers within the laminate. The eigenvalues
were computed using the QR algorithm in extended precision. Attempts to compute the
eigenvalues using the diagonals from an LDU decomposition and QR with dc able precision
failed.

Following computation of the frequencies w, the constants corresponding to these
frequencies that define the modal displacements and potential are readily computed by
solving the system of equations with the first constant in A arbitrarily set to one. The
reduced [A] matrix is no longer singular after this step, and the relative values for the
remaining constants can be found. The through-thickness mode shapes can then be
ca.lculated-using these constants.

Clearly, a different characteristic equation can be generated in determinant form for
each combination of p and q in Eq. 259. These describe the in-plane miodal characteristics
of the elastic and electric fields. For each of these equations, there are an infinite num-
ber of eigenvalues corresponding to the through-thickness modes. T'he cases of interest
in this study were the thickness modes corresponding to the fundamental in-plane mode
with m=n=1 in Eq. 252. Of particular interest is the relationship between the displace-
ment components and the electrostatic potential, as this information could be used to

electrically excite or sense the various modes of vibration.
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7. NUMERICAL EXAMPLES AND RESULTS

This section contains results of applications of the computational and analytic models

developed as part of this study. This ipcludes
e Results from laminated piezoelectric plate element.
e Semi-analytic solutions for plates.
o Results of exact solutions for simply-supported plates.

The shell elements were in the process of being tested at the time of writing this report.
Several simple test cases were being studied (simple electric field, uniform strain applica-
tion, etc.). One of the difficulties of benchmarking these elements is the lack of solutions
available for laminated piezoelectric shells. Although a proposed area for future study is
development of an exact solution for this class of problem, no such solutions are currently
available. Because of the preliminary status of the results for the shell. they were not

included in this report.

The Plate Element

In this section, several examples are investigated in order to test the accuracy, validity,
and range of applicability of the theories presented in section 4. Initial examples are for

the purely elastic plate, with later examples to include piezoelectric lavers.
Simply Supported Cross-Ply Plate Under Sinusoidal loading

A simply supported symmetric cross-ply (0/90/0) laminated rectangular plate under
a sinusoidal transverse distributed load on the upper surface is considered. This example
is chosen because it has an elasticity solution developed by Pagano [10] and therefore,
provides an excellent tool to check the level of accuracy of the two theories presented

herein for purely elastic laminates.
Each of the three layers has equal thickness and is idealized as a homogeneous or-

thotropic material with the following properties:

E, = 25x10%psi E, = E;=1.0%10%st
Gaz = 0.2%10%psi G2 = Gi13 = 0.5 + 10°psi
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Vipg = Vo3 = V13 = 0.25

The domain of the rectangular plateis0 <z < a¢ ,0<y < b, and 0 < z < H with

b = 3a. The transverse sinusoidal distributed load is given by:
N 7 & e -
o(z,3) = gosin(Z)sin(%Y) (2587)

Because of the symmetry of the problem, only a quarter of the plate is modeled

(0 <z <% 0<az<2)and the corresponding boundary conditions are given by:
u(z,0,2) =

u(e/2y,2) =

v(0,y,2) =

v(2,6/2,2). =

w(0,y,z) =

OOIESL BSOSO &y

w(z,0,2) = (288)

The deflections and stresses are computed by using two theories. one considering w
varying linearly through the thickness of the plate and the other one. with w constant
through the thickness. The stresses are determined using the computed displacements
and the constitutive relations 38 and 39, and they are evaluated at the closest gauss

point to the the following locations:

oz(a/2,b/2,H)
oy(a/2,b/2,H/3)
Ty (0,0, H)
72:(0,6/2,0)

)

7y2(a/2,0,0 (289)

Regarding the transverse displacement w, it is evaluated at the center of the rectan-
gular p]ate.‘

The fortran programs written to compute the deflections and stresses according to the
two theories presented herein were run for four different meshes : a 6x6 lincar element mesh
with 6 and 12 layers in the z-direction and denoted by L6x6-6 and L6x6-12 respectively,

and a 3x3 quadratic element mesh with 6 and 12 layers in the z-dircction and denoted
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Mesh a/h=2 a/h=4 | a/h=10 | a/h=20"| a/h=50 | a/L=100
107° 1072 167 107 10~° e

L6x6-12 (F) 0.64710 || 0.17956 | 0.90463 | 0.46290 | 0.49566 | 0.22721
L6x6-12 (FR) | 0.65119 || 0.18103 | 0.91918 | 0.48600 | 0.64715 | 0.50479
L6x6-12 (R) 0.65163 || 0.18128 | 0.92210 | 0.48831 | 0.65075 | 0.50767
L6x6-6 (F) 0.62983 || 0.17752 | 0.90058 | 0.46212 | 0.49571 | 0.22719
L6x6-6 (FR) 0.6 0.17894 | 0.91494 | 0.48513 | 0.64688 | 0.50470
L6x6-6 (R) 0.63405 || 0.179192 | 0.91786 | 0.48743 | 0.65048 | 0.50759
Q3x3-12 (F) 0.64553 || 0.17968 | 0.91673 | 0.48660 | 0.64773 | 0.50256
Q3x3-12 (R) | 0.64570 || 0.179699 | 0.91695 | 0.48711 | 0.65024 | 0.50742
Q3x3-6 (F) 0.62823 || 0.17762 | 0.91255 | 0.48573 | 0.64744 | 0.50245
Q3x3-6 (R) 0.62841 || 0.17765 | 0.91278 | 0.48625 | 0.64998 | 0.50733

[EXACT [ 0.65327 || 0.18055 | 0.91891 | 0.48763 | 0.65060 | 0.50766 ]

Table 1: Transverse Displacements at the Center of Plate. w Varying Lincarly Through

the Thickness

by Q3x3-6 and Q3x3-12 respectively. The results are obtained using tlie full integration
(denoted by F), the reduced integration (denoted by R), and the [ull integration for the
bending terms and the reduced integration for the shear terms (denoted by I'R). Tables 1
and 2 shows the non-dimensionalized transverse displacements at the center of the plate
for both theories and for a wide range of thickness/lenght ratio.

The results for the case where a/h=4 are represented in figures 19 through 26
Single Layer of PVDF Under Sinusoidal Load and Sinusoidal Potenlial

A single square layer of PVDF is considered under two types of loads in using the
two theories used in the previous section. First, a transverse sinusoidal load, ¢(z,y) =
gosin(ZE)sin(Y) where g, = 1, is applied on the upper surface. Because of the symmetry
of the problem, only one quarter or the plate is modelled and the boudary conditions used

are as follows (see figure 17):

)=0 5 u(a/2,y,2) =0
Ji=0 5 v(z,b/252) =10
w(0,y,2) =0 ; w(z,0,2)=0
)=0 ; ¢(0,9,2)=0
)=0 5 ¢(z,y,h)=0
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Mesh a/h=2 | a/h=4 | a/h=10 | a/h=20 | a/h=50 | a/h=100
10~ 107° HIF> 10~* i1 10~~

L6x6-12 (F) | 0.66942 | 0.18084 | 0.90358 | 0.46131 | 0.49409 | 0.22671
L6x6-12 (FR) | 0.67351 | 0.18232 | 0.91807 | 0.48423 | 0.64409 | 0.50232
L6x6-12 (R) | 0.67421 | 0.18226 | 0.92098 | 0.48652 | 0.64766 | 0.50518
L6x6-6 (F) 0.65305 | 0.17883 | 0.89952 | 0.46055 | 0.49397 | 0.22670
L6x6-6 (FR) | 0.65682 | 0.18026 | 0.91383 | 0.48338 | 0.64388 | 0.50228
L6x6-6 (R) 0.65755 | 0.18053 | 0.91674 | 0.48566 | 0.64745 | 0.50513
Q3x3-12 (F) | 0.66766 | 0.18096 | 0.915657 | 0.48480 | 0.64466 | .0.50013
Q3x3-12 (R) | 0.66714 | 0.18087 | 0.91571 | 0.48539 | 0.64716 | 0.50492
Q3x3-6 (F) 0.65126 | 0.17893 | 0.91139 | 0.48396 | 0.64443 | 0.50004
Q3x3-6 (R) 0.65072 | 0.17884 | 0.91153 | 0.48447 | 0.64695 | 0.50488

[EXACT [0.65327 [ 0.18055 | 0.91891 | 0.48763 | 0.65060 | 0.5766 |

Table 2: Transverse Displacements at the Center of Plate. w Constant Through the
Thickness

In the second case when the sinusoidal potentialp(z,y) = qosin(=)sin(3t) where
¥, = 1, is applied to the single layer of PVDF, the boundary condition are as follows:
)=0 ; u(a/2,y,2) =0
Y=07%; ‘vz, b/2;2) =0
w(0,y,2) =0 ;. w(z,;0,2)="0
)=0 ;5 ¢(0,y,2) =0
)=0

The results for this case with aspect ratio equal to 10 ,a/h = 10. arc presented in in

figures 38 through 48.
Single Layer of PZT4 Under Sinusoidal Load and Sinusoidal Potential

A single layer of PZT4 is considered under the same types of loads as those examined
with the single layer of PVDF. The geometry is shown in figure 17 wich is the same used
for the example on section .The boundary conditions for the two cases.sinusoidal load
and sinusoidal potential ,are the same as those in section respectively.

The results for both cases, sinusoidal load load and sinusoidal potcuatial, are shown in

figures 49 through 56 and in figures 57 through 64.
Four Layer PVDF/Graphite/Epozy/PVDF laminate

A simple supported square laminate composed of 4 layers, is considercd in this section.
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| /b |

10

Mesh
L6x6-12(F)
L6x6-12(FR)
L6x6-12(R)
L6x6-6(F)
L6x6-6(FR)
L6x6-6(R)
Q3x3-12(F)
Q3x3-12(R)
Q3x3-6(F)
Q3x3-6(R)
EXACT
L6x6-12(F)
L6x6-12(FR)
L6x6-12(R)
L6x6-6(R)
L6x6-6(FR)
L6x6-6(R)
Q3x3-12(F)
Q3x3-12(R)
Q3x3-6(F)
Q3x3-6(R)
EXACT
L6x6-12(F)
L6x6-12(FR)
L6x6-12(R)
L6x6-6(F)
L6x6-6(FR)
L6x6-6(R)
Q3x3-12(F)
Q3x3-12(R)
Q3x3-6(F)
Q3x3-6(R)
EXACT

8.0302
8.0747
8.1171
7.1797

7.2519
8.0676
8.0693
7.2169
7.2180
8.5323

17.7195
17.8784
17.9508
17.1557
17.3022
17.3748
17.8687
17.8790

18.3088

70.0011
71.2801
71.6333
69.5283
70.7863
71.1398
71.4377
71.5426
70.9790
71.0574
72.5977

Oz

-6.0920
-6.1332
-6.1494
-5.4417

-5.4885
-6.1373
-6.1397
-5.4850
-548645
-6.4962
-17.0093
-17.1650
-17.2284
-16.4718
-16.6154
-16.6793
-17.1653
-17.1780
-16.6279
-16.6356
-17.5873

-69.9408
-71.2188
-71.5713
-69.4711
-70.7283
-71.0810
-71.3816
-71.4925
-70.9259
-71.0074
-72.5396

0.8767
0.8849
0.8866
0.8313

0.8403
0.8801
0.8811
0.8350
0.8354
0.9181

1.6819
1.7038
1.7070
1.6430
1.6642
1.6672
1.6911
1.6948
1.6529
1.6559
1.7405
4.0293
4.1162
4.1301
4.0047

4.0906-

4.1044
4.0872
4.1117
4.0635
4.0880
4.1757

Oy
-1.0261
-0.10341
-1.0373
-0.9899

-1.0003
-1.0324
-1.0334
-0.9964
-0.9970
-1.0709
-1.8451
-1.8670
-1.8719
-1.8087
-1.8299
-1.8346
-1.8574
-1.8611
-1.8218
-1.8244
-1.9086

-4.1974
-4.2843
-4.3000
-4.1732
-4.25901
-4.2748
-4.2585
-4.2821
-4.2351
-4.2585
-4.3490

Try
-0.2166
-0.2183
-0.2191
-0.2054

-0.2075
-0.2179
-0.2180
-0.2065
-0.2066
-0.2255
-0.4182
-0.4233
-0.4242
-0.4107
-0.4155
-0.4165
-0.4218
-0.4220
-0.4141
-0.4143
-0.4301

-1.1556
-1.1794
-1.1839
-1.1491
-1.1725
-1.1771
-1.1802
-1.1806
-1.1734
-1.1737
-1.1977

0.2112
0.2129
0.2134
0.2021

0.2041
0.2126
0.2126
0.203-1
0.2034
0.2193
0.4371
0.4421
0.44:32
0.4298
0.4347
0.4353
0.4407
0.4407
0.4333
0.4334
0.4490
1.1846
1.2084
1.2133
1.1781
1.2016
1.2064
1.2093
1.2095
1.2025
1.2027
1.2271

l

7_-13
0.5160
0.5066
0.5072
0.4940

0.4979
0.5049
0.5050
0.-1956
0.4957
0.5182
1.3783
1.3927
1.3941
1.3756
1.3895
1.3910
1.3865
1.3367
1.33833
1.3335
1.4076
4.0714
4.1527
4.1535
4.0688
4.1498
4.1506
4.1476
4.1486
4.1443
1.1454
4.2018

Table 3: Stresses on Cross-Ply. w varying through thickness

Tyz
0.1229
0.1233
0.1230
0.1063

0.1061
0.1238
0.1233
0.1072
0.1072
0.1272
0.1224
0.1199
0.1196
0.1088
0.1060
0.1058
0.1263
0.1263
0.1126
0.1126
0.1291

0.1246
0.1014
0.1013
0.1126
0.0892
0.0891
0.1466
0.1471
0.1341
0.1347
0.1490




[ a/h | Mesh Gz 3y Ty FETSR 2"
L6x6-12(F) [ 0.2421 [ -0.2422 [ 0.1102 [ -0.1119 | -0.3442 | 0.3472 | 0.8049 | 0.1187
L6x6-12(FR) | 0.2553 | -0.2553 | 0.1164 | -0.1181 [ -0.3632 | 0.3662 | 0.8407 | 0.0165
L6x6-12(R) | 0.2567 | -0.2567 | 0.1169 | -0.1186 | -0.3651 | 0.3682 | 0.8406 | 0.0173
L6x6-6(F) 0.2418 | -0.2418 | 0.1105 | -0.1122 | -0.3435 | 0.346G | 0.3040 [ 0.1029

20 | L6x6-6(FR) | 0.2548 | -0.2549 | 0.1167 | -0.1184 | -0.3625 | 0.3656 | 0.3397 | 0.0332
L6x6-6(R) 0.2563 | -0.2563 | 0.1173 | -0.1190 | -0.3644 | 0.3675 | 0.8396 | 0.0340
Q3x3-12(F) | 0.2559 | -0.2560 | 0.1155 | -0.1172 | -0.3646 | 0.3676 | 0.8515 | 0.2314
Q3x3-12(R) | 0.2567 | -0.2567 | 0.1167 | -0.1184 | -0.3643 | 0.367s ; 0.8577 | 0.2331
Q3x3-6(F) 0.2556 [ -0.2556 | 0.1157 | -0.1175 [ -0.3639 [ 0.366% ~ 0.3565 | 0.2135
Q3x3-6(R) 0.2562 | -0.2563 | 0.1171 | -0.1188 | -0.3641 | 0.3671 ~ 0.3566 | 0.2153
EXACT 0.2600 | -0.2601 | 0.1178 | -0.1195 | -0.3696 | 0.3727 . 0.8636 | 0.2344
L6x6-12(F) | 1.1741 | -1.1740 | 0.4864 | -0.4381 | -0.1577 | 0.1530 | 1.5273 |
L6x6-12(FR) [ 1.5405 | -1.5406 | 0.63387 | -0.6404 | -0.2070 | 0.2073 ; 1.7991
L6x6-12(R) | 1.5493 | -1.5493 | 0.6421 | -0.6439 | -0.2082 | 0.2085 ; 1.7969
L6x6-6(F) 1.1740 | -1.1741 | 0.4998 | -0.4915 | -0.1577 | 0.1580 | 1.5257

50 [ L6x6-6(FR) | 1.5440 | -1.5405 | 0.6431 | -0.6448 | -0.2069 | 0.2073 : 1.7962
L6x6-6(R) 1.5492 | -1.5493 | 0.6466 | -0.6483 | -0.2081 | 0.2084 ; 1.7939 .
Q3x3-12(F) [ 1.5373 | -1.5374 | 0.6314 | -0.6331 | -0.2076 | 0.2079 [ 2.1727 | 0.5277
Q3x3-12(R) | 1.5497 | -1.5498 | 0.6417 | -0.6434 | -0.2082 | 0.2085 | 2.1654 | 0.5395
Q3x3-6(F) 1.5374 | -1.5375 | 0.6358 | -0.6375 | -0.2075 | 0.207s | 2.1696 | 0.4833
Q3x3-6(R) 1.5496 | -1.5497 | 0.6461 | -0.6479 | -0.2081 | 0.2085 ~ 2 1621 [ 0.5014
EXACT 1.5690 | -1.5691 | 0.6457 | -0.6475 | -0.2109 | 0.2112 . 2.1927 | 0.5393

i L6x6-12(F) | 2.7435 | -2.7436 | 1.1199 | -1.1216 | -0.3653 | 0.3657 | 1.2475
L6x6-12(FR) | 6.1300 | -6.1301 | 2.5033 | -2.5050 | -0.8166 | 0.8165 | 1.2881
L6x6-12(R) | 6.1651 | -6.1652 | 2.5173 | -2.5100 | -0.8212 | 0.8215 | 1.2702
L6x6-6(F) 2.7446 | -2.7446 | 1.1285 | -1.1302 [ -0.3653 | 0.3656 | 1.3565

100 [ L6x6-6(FR) | 6.1312 | -6.1313 | 2.5223 | -2.5240 | -0.8164 | 0.81G7 | 1.2825
L6x6-6(R) 6.1664 | -6.1665 | 2.5365 | -2.5382 | -0.8211 | 0.8214 | 1.2646 :
Q3x3-12(F) | 6.0621 | -6.0622 | 2.4590 | -2.4607 | -0.8146 | 0.8149 [ 4.3995 | 1.0025
Q3x3-12(R) | 6.1668 | -6.1669 | 2.5175 | -2.5192 | -0.8214 | 0.8217 | 4.3383 | 1.0709
Q3x3-6(F) 6.0634 | -6.0635 | 2.4778 | -2.4795 | -0.8144 | 0.8147 | 4.3936 | 0.9265
Q3x3-6(R) 6.1681 | -6.1682 | 2.5366 | -2.5383 | -0.8213 | 0.8216 | 1.3320 | 0.9975
EXACT 6.2435 | -6.2436 | 2.5308 | -2.5326 | -0.8319 | 0.8322 ' 1.3916 | 1.0652

Table 4: Stresses on Cross-Ply.

w varying through thickness



| a/h |

10

Mesh

L6x6-12(F)
L6x6-12(FR)
L6x6-12(R)
L6x6-6(F)
L6x6-6(FR)
L6x6-6(R)
Q3x3-12(F)
Q3x3-12(R)
Q3x3-6(F)
Q3x3-6(R)
EXACT
L6x6-12(F)
L6x6-12(FR)
L6x6-12(R)
L6x6-6(R)
L6x6-6(FR)
L6x6-6(R)
Q3x3-12(F)
Q3x3-12(R)
Q3x3-6(F)
Q3x3-6(R)
EXACT
L6x6-12(F)
L6x6-12(FR)
L6x6-12(F)
L6x6-6(F)
L6x6-6(FR)
L6x6-6(R)
Q3x3-12(F)
Q3x3-12(R)
Q3x3-6(F)
Q3x3-6(R)
EXACT

6.8657
6.9080
6.9345
6.1660
6.1960
6.2231
6.9088
6.9116
6.2077
6.2092
1.62
17.3295
17.4866
17.5540
16.7843
16.9292
16.9970
17.4836
17.4963
16.9386
16.9462
1.10

70.0028
71.2805
71.6336
69.5053
70.7613
71.1144
71.4394
71.5489
70.9549
71.0357
0.725

Oz
-6.8657
-6.9080
-6.9345
-6.1660
-6.1960
-6.2231
-6.9088
-6.9116
-6.2077
-6.2092
218
-17.3295
17.4866
-17.5540
-16.7843
-16.9292
-16.9970
-17.4836
-17.4963
-16.9386
-16.9462
1.14

-70.0028
-71.2805
-71.6336
-69.5053
-70.7613
-71.1144
-71.4394
-71.5489
-70.9549
-71.0357
0.726

0.9860
0.9945
0.9972
0.9588
0.9667
0.9694
0.9909
0.9917
0.9638
0.9643
0.268
1.7392
1.7610
1.7647
1.7173
1.7385
1.7422
1.7499
1.7528
1.7287
1.7310
0.119
4.0930
4.1794
4.1940
4.0728
4.1582
4.1729
4.1527
4.1751
4.1331
4.1557
0.0435

Ty

-0.9860
-0.9945
-0.9972
-0.9588
-0.9667
-0.9694
-0.9909
-0.9917
-0.9638
-0.9643

0.230
-1.7392
-1.7610
-1.7647
-1.7173
-1.7385
-1.7422
-1.7499
-1.7528
-1.7287
-1.7310
0.109

-4.0930
-4.1794
-4.1940
-4.0728
-4.1582
-4.1729
-4.1527
-4.1751
-4.1331
-4.1557
0.0418

Fay
-0.2220
-0.2238
-0.2244
-0.2120
-0.2136
-0.2142
-0.2233
-0.2233
-0.2132
-0.2132
0.0548
-0.4307
-0.4357
-0.4368
-0.4233
-0.4282
-0.4292
-0.4342
-0.4343
-0.4268
-0.4268
0.0231
-1.1682
-1.1919
-1.1966
-1.1617
-1.1851
-1.1898
-1.1927
-1.1930
-1.1859
-1.1862
0.0123

0.2220
0.2238
0.2244
0.2120
0.2136
0.2142
0.2233
0.2233
0:2132
0.2132
0.056:1
0.4307
0.4357
0.4363
0.4233
0.4282
0.4292
0.4342
0.434:3
0.4268
0.4268
0.026Y9
1.1682
1.191Y
1.1966
1.1617
1.1851
1.1398
1.1927
1.1930
1.1859
1.1862
0.0120

Table 5: Stresses on Cross-Ply. w constant

7_-21
0.5082
0.5115
0.5122
0.4957
0.4987
0.4995
0.5099
0.5099
0.4974
0.4974

0.257
1.3764
1.3905
1.3919
1.3711
1.3849
1.3863
1.3844
1.3846
1.3789
1.3791
0.351
4.0684
4.1496
4.1504
4.0647
4.1456
4.1464
1.1446
4.1456
-1.1402
4.1413
0.420

Tyz
0.1205
0.1209
0.1205
0.1071
0.1072
0.1069
0.1215
0.1217
0.1081
0.1083
0.0668
0.1186
0.1160
0.1156
0.1070
0.1041
0.1038
0.1225
0.1229
0.1109
0.1113
0.0334
0.1266
0.1036
0.1034
0.1154
0.0920
0.0920
0.1487
0.1496
0.1370
0.1379
0.0152




[ a/h | Mesh Oz - 4 ay Tex | Forer A Taatn ]
L6x6-12(F) 0.2421 | -0.2421 | 0.1121 | -0.1121 | -0.3444 | 0.3444 | 0.8048 | 0.1276
L6x6-12(FR) | 0.2552 | -0.2552 | 0.1183 | -0.1183 | -0.3633 | 0.3633 | 0.8406 | 0.0066
L6x6-12(R) 0.2566 | -0.2566 | 0.1189 | -0.1189 | -0.3652 | 0.3652 | 0.8382 | 0.0073
L6x6-6(F) 0.2417 | -0.2417 | 0.1120 | -0.1120 | -0.3438 | 0.3438 | 0.8039 | 0.1117

20 | L6x6-6(FR) 0.2547 | -0.2547 | 0.1181 | -0.1181 | -0.3626 | 0.3626 | 0.8395 | 0.0232
L6x6-6(R) 0.2561 | -0.2561 | 0.1187 | -0.1187 | -0.3645 | 0.3645 | 0.8394 | 0.0239
Q3x3-12(F) 0.2558 | -0.2558 [.0.1175 | -0.1175 | -0.3637 | 0.3647 | 0.8573 | 0.2403
Q3x3-12(R) 0.2566 | -0.2566 | 0.1187 | -0.1187 | -0.3649 | 0.3649 | 0.8574 | 0.2422
Q3x3-6(F) 0.2554 | -0.2554 | 0.1173 | -0.1173 | -0.36-10 [ 0.3640 | 0.8562 | 0.2228
Q3x3-6(R) 0.2561 | -0.2561 | 0.1185 | -0.1185 | -0.3642 | 0.3642 | 0.8563 | 0.2250
EXACT 0.2600 | -0.2601 | 0.1178 | -0.1195 | -0.3696 | 0.3727 | 0.8G36 | 0.2344
L6x6-12(F) 1.1745 | -1.1745 | 0.4961 | -0.4961 | -0.1573 | 0.1573 | 1.5298
L6x6-12(FR) | 1.5394 | -1.5394 | 0.6504 | -0.6504 | -0.2062 | 0.2062 | L.8006
L6x6-12(R) 1.5482 | -1.5482 | 0.6540 | -0.6540 | -0.2074 [ 0.2074 | [.7984
L6x6-6(F) 1.1742 | -1.1742 | 0.4960 | -0.4960 | -0.1573 | 0.1573 | 1.5276

50 | L6x6-6(FR) | 1.5389 | -1.5389 [ 0.6502 | -0.6502 | -0.2061 | 0.2061 | L.7975
L6x6-6(R.) 1.5477 | -1.5477 | 0.6538 | -0.6538 | -0.2073 | 0.2073 | 1.7953 1
Q3x3-12(F) 1.5363 | -1.5363 | 0.6432 | -0.6432 | -0.2068 | 0.2068 | 2.1724 | 0.5536
Q3x3-12(R) 1.5485 | -1.5485 | 0.6534 | -0.6534 | -0.2074 | 0.2074 | 2.1650 | 0.5655
Q3x3-6(F) 1.5359 | -1.5359 | 0.6429 | -0.6429 | -0.2067 | 0.2067 | 2.1697 | 0.5139
Q3x3-6(R) 1.5480 | -1.5480 | 0.6533 | -0.6533 | -0.2073 | 0.2073 | 2.1619 | 0.5265
EXACT 1.5690 | -1.5691 | 0.6458 | -0.6475 | -0.2109 | 0.2112 | 2.1927 | 0.5393
LOx6-12(F) | 2.7439 | -2.7489 | 1.1443 | -1.1443 | -0.3647 | 0.361 | 1.3652
L6x6-12(FR) | 6.1254 | -6.1254 | 2.5490 | -2.5490 | -0.8127 [ 0.812; | [.3026
L6x6-12(R) | 6.1604 | -6.1604 | 2.5644 | -2.5644 | -0.8173 | 0.8173 | 12349
L6x6-6(F) 2.7489 | -2.7489 | 1.1442 | -1.1442 | -0.3647 | 0.3647 | 1.3625

100 [L6x6-6(FR) | 6.1249 | -6.1249 | 2.5497 | -2.5497 | -0.8126 | 0.8126 | 1.2966
L6x6-6(R) | 6.1509 | -6.1500 | 2.5642 | -2.5642 | -0.8173 [ 0.3173 | 1.2780 | .
Q3x3-12(F) | 6.0577 | -6.0577 | 2.5056 | -2.5056 | -0.8107 | 0.8107 | 1.3986 | 1.0551
Q3x3-12(R) | 6.1610 | -6.1610 | 2.5642 | -2.5642 | -0.8175 | 0.8175 | 1.3316 | 1.1238
Q3x3-6(F) 6.0573 | -6.0573 | 2.5052 | -2.5053 | -0.8107 | 0.8106 | 1.3925 | 0.9772
Q3x3-6(R) 6.1617 | -6.1614 | 2.5639 | -2.5640 | -0.8174 | 0.8174 | -1.3311 | 1.0485
EXACT 6.2435 | -6.2436 | 2.5308 | -2.5326 | -0.8319 [ 0.8322 | -1.3917 | 1.0652

Table 6: Stresses on Cross-Ply.w constant

(S]]



[z [ ux* 10710 ] @ |
Exact Variable W | Constant W Exact Variable W | Constant W
1.0000 | -0.530075 | -0.524338 -0.537309 0.000000 0.000000 0.000000
0.9667 | -0.441401 | -0.436096 -0.454397 0.009646 | 0.009699 0.002594
0.9333 | -0.371682 | -0.366761 -0.390129 0.018931 0.019036 0.004859
0.9000 | -0.318131 | -0.313540 -0.341897 0.027862 | 0.028021 0.006856
0.9000 | -0.318131 | -0.313540 -0.341897 0.027862 | 0.028021 0.006856
0.7667 | -0.202195 | -0.198911 -0.240958 0.023203 | 0.023310 0.006476
0.6333 | -0.124831 | -0.122843 -0.163878 0.019096 0.19158 0.006252
0.6333 | -0.124831 | -0.122843 -0.163878 0.019096 0.19158 0.006252
0.5000 | 0.036839 0.037103 0.000000 0.015443 | 0.015466 0.006177
0.3667 | 0.199435 0.198031 0.163878 0.012160 | 0.012145 0.006252
0.3667 | 0.199435 0.198031 0.163878 0.012160 | 0.012145 0.006252
0.2333 | 0.273535 0.270900 0.240958 0.009165 | 0.009115 0.006476
0.1000 | 0.361385 0.357215 0.341897 0.006388 | 0.006304 | 0.006856
0.1000 | 0.361385 0.357215 0.341897 0.006388 | 0.006304 |. 0.006856
0.0667 | 0.405321 0.400719 0.390129 0.004599 | 0.004543 0.004859
0.0333 | 0.465517 0.460434 0.454397 0.002469 | 0.002440 0.002594
0.0000 | 0.544384 0.538772 0.537309 0.000000 | 0.000000 0.000000

Table 7: Inplane displacement and electrostatic potential

The laminate is constructed with the upper and lower layers composed of polyvinylidene
fluoride, PVDF, oriented at 0 degrees, and with the internal two layers composed of
a cross-ply of graphite-epoxy oriented at 0, and 90 degrees , respectively [0/90]. The
geometry of the laminate is shown in figure 18. In this example, two loading cases are
considered. In the first case, the sinusoidal load is applied to the top surface with the the
top and bottom surfaces and the vertical edges of the laminate grounded. Iu the second
case, te sinusoidal potential is applied to the top surface of the laminate with the bottom
surface grounded.

The results for the case I/h = 4 are presented on tables 7 through 9 for the case in
which the sinusoidal load is applied, and on tables 10 through 12 for the case when the
sinusoidal potential is applied.

Semi-Analytic Solutions

Of primary interest in this section is the basic behaivor of the displacement, stress,
electrostatic potential, and electric displacement of a laminate with embedded piezoelec-
tric layers. Both the variable-w and constant-w cases are examined below for the static
behavior, with the added theory of the independent-w approximation studied for the

dynamic case.
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Lz Iz | Tzy e}
Exact Variable W | Constant W Exact Variable W | Constant W
1.0000 || 10.33504 10.04129 10.10107 -0.659511 | -0.639464 -0.650112
0.9667 || 8.652445 8.395070 8.552297 -0.567147 | -0.549237 -0.564983
0.9333 || 7.324507 7.098908 7.347798 -0.489060 | -0.472978 -0.493142
0.9000 || 6.299222 6.099411 6.440052 -0.423323 | -0.408792 -0.432799
0.9000 || 0.855399 0.854236 0.589416 -0.372215 | -0.359438 -0.3805647
0.7667 || 0.638399 0.616228 0.368611 -0.193170 | -0.185308 -0.216892
0.6333 || 0.449534 0.4533350 0.205646 -0.067341 | -0.063584 -0.098115
0.6333 || 1.553872 1.492791 1.727943 -0.067341 | -0.063534 -0.098115
0.5000 |} -0.213979 | . -0.210662 0.00000 0.034551 0.034255 0.000000
0.3667 || -1.988776 | -1.919539 -1.727943 0.131542 0.127279 0.098115
0.3667 || -0.030955 -0.037736 -0.205646 0.131542 0.127279 0.098115
0.2333 || -0.212196 | -0.1933350 -0.368611 0.247282 0.239053 0.216892
0.1000 |[ -0.400353 [ -0.394469 -0.589416 0.403180 0.390294 0.389347
0.1000 || -6.892361 | -6.686350 -6.44052 0.458540 0.443584 0.432799
0.0667 || -7.736448 | -7.505797 -7.347798 0.516071 0.499933 0.493142
0.0333 || -8.884439 | -8.623567 -8.552297 0.585343 0.567453 0.564983
0.0000 || -10.38138 -10.08349 -10.10107 0.668041 0.648098 0.650112
Table 8: Inplane stress distribution
B Tye ] D, +10° 1" o
Exact Variable W | Constant W Exact Variable W | Constant W
0.9833 | 0.030842 0.027313 0.025778 -0.126731 -0.120614 -0.019162
0.9500 | 0.086931 0.082322 0.077648 -0.120156 | -0.114803 -0.016218
0.9167 | 0.136315 0.130711 0.123182 -0.107478 | -0.102818 -0.010268
0.8333 | 0.435957 | 0.410734 0.405381 -0.092683 | -0.092463 -0.007448
0.7000 | 0.750776 | 0.726830 0.736019 -0.081694 | -0.081487 -0.004399
0.5667 | 0.831595 0.817600 0.827206 -0.072650 | -0.072465 -0.001452
0.4333 | 0.849577 | 0.835698 0.827206 -0.065336 | -0.065183 0.001452
0.3000 | 0.766156 0.743298 0.736019 -0.059577 | -0.059464 0.004399
0.1667 | 0.426790 0.403100 0.405381 -0.055236 | -0.055172 0.007448
0.0833 | 0.126715 0.121428 0.123182 -0.049454 | -0.053851 0.010268
0.0500 | 0.080648 | 0.076351 0.077648 -0.043180 | -0.048213 0.016213
0.0167 | 0.028558 0.025335 0.025778 -0.039831 | -0.045558 0.019162

Table 9: Transverse shear stress and electric displacement



D T Tyz l D, « 10~ 11
Exact Variable W | Constant W Exact Variable W | Constant W
1.0000 | -0.464016 | -0.454333 -0.274944 1.000000 1.000000 1.000000
0.9667 | -0.750174 | -0.740068 -0.776016 0.985118 0.985081 0.984102
0.9333 | -1.093318 | -1.082760 -1.229627 0.971528 0.971463 0.969594
0.9000 | -1.505134 | -1.494176 -1.661744 0.959215 0.959128 0.956455
0.9000 | -1.505134 | -1.494176 -1.661744 0.959215 0.959128 0.956455
0.7667 | -1.016508 | -1.006818 -1.105801 0.770200 0.769887 0.767967
0.6333 | -0.609389 | -0.600110 -0.660315 | 0.599521 | 0.599117 0.597904
0.6333 | -0.609389 | -0.600110 -0.660315 0.599521 0.599117 0.597904
0.5000 | -0.364444 | -0.356267 -0.399691 0.443115 0.442720 0.442186
0.3667 | -0.234489 | -0.228002 -0.268975 0.297258 0.296946 0.297076
0.3667 | -0.234489 | -0.228002 -0.268975 0.297258 0.296946 0.297076
0.2333 | -0.244599 | -0.239503 -0.298538 | 0.158478 { 0.158295 0.159094
0.1000 [ -0.283474 | -0.279194 -0.363899 0.023471 0.023443 0.024929
0.1000 | -0.283474 | -0.279194 -0.363899 0.023471 0.023443 0.024929
0.0677 | -0.311356 | -0.307364 -0.371325 0.015630 0.015611 0.016599
0.0333 | -0.367545 | -0.363802 -0.351645 0.007809 0.007800 0.008294
0.0000 | -0.454328 | -0.450824 -0.304332 0.000000 0.000000. 0.000000
Table 10: Inplane displacement and electrostatic potential
[ z op x 107! | Tan wgll) =
Exact Variable W | Constant W Exact Variable W | Constant W
1.0000 | -0.252476 | -0.238020 -0.307042 0.061703 0.078828 -0.197721
0.9667 | -0.168379 | -0.169224 -0.196349 -0.508764 | -0.480931 -0.572105
0.9333 | -0.074172 | -0.076568 -0.079646 -1.072601 [ -1.033926 -1.223532
0.9000 | 0.032380 0.014740 -0.017074 | -1.643345 | -1.593534 -1.783186
0.9000 | 0.017152 0.018635 0.026079 -1.444943 | -1.401145 -1.567900
0.7667 | 0.012998 0.012217 0.017026 -0.941803 | -0.908786 -1.007435
0.6333 | 0.009345 0.007959 0.010671 -0.616103 | -0.590772 -0.656807
0.6333 | 0.067112 0.065187 0.072009 -0.616103 | -0.590772 -0.656807
0.5000 [ 0.041152 0.039400 0.044246 -0.436790 | -0.416920 -0.469842
0.3667 | 0.027072 0.025825 0.030211 -0.330848 | -0.314971 -0.363867
0.3667 | 0.005157 0.004695 0.005225 -0.330848 | -0.314971 -0.363867
0.2333 | 0.004410 0.004098 0.005279 -0.303844 | -0.289910 -0.346856
0.1000 | 0.003844 0.004317 0.006324 -0.346085 | -0.3323338 -0.410615
0.1000 | -0.116128 | -0.115099 -0.117675 -0.393606 | -0.377970 -0.466996
0.0667 | -0.109948 | -0.109214 -0.115478 | -0.500968 | -0.483674 -0.562701
0.0333 | -0.098760 | -0.098185 -0.118428 -0.605557 | -0.586605 -0.595639
0.0000 | -0.082135 | -0.081793 -0.127015 -0.709345 | -0.688722 -0.566045

Table 11: Inplane stress distribution
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| z | Tyz * 107° [ D, 10710 )
Exact Variable W | Constant W Exact Variable W | Constant W
0.9833 | -0.540721 | -0.497105 -0.568975 | -0.506163 | -0.500145 -0498431
0.9500 | -1.510913 | -1.455750 -1.668638 | -0.462265 | -0.456622 -0.454952
0.9167 | -2.336173 | -2.270831 -2.602503 | -0.418973 | -0.413703 -0.412115
0.8333 | -1.757666 | -1.768708 -2.025278 | -0.376004 | -0.371419 -0.369941
0.7000 | -0.398307 | -0.407344 -0.474639 | -0.339528 | -0.335167 -0.333779
0.5667 | 0.194760 0.192967 0.205508 -0.311136 | -0.306955 -0.305625
0.4333 | 0.330157 0.324822 0.354593 -0.290150 | -0.286109 -0.284803
0.3000 | 0.677038 0.660715 0.739205 -0.276072 | -0.272126 -0.270814
0.1667 | 1.211837 1.192111 1.364158 -0.268567 | -0.264672 -0.263323
0.0833 [ 1.236155 1.218844 1.410369 -0.266737 | -0.262607. -0.261199
0.0500 | 0.733438 0.724337 0.841775 -0.266039 | -0.261917 -0.260464
0.0167 | 0.242057 0.241098 0.279373 -0.265690 | -0.261570 -0.260096

Table 12: Transverse shear stress and electric desplacement

Quasi-static response

In this secfion, the static response of piezoelectric laminates is studied and compared
with the exact three-dimensional solution. Two different types of loading are considered.

The first is an applied sinusoidal transverse load of the form

L ot TR LY 200
F(z,y) = f,sin T, sin i (290)

where f, is the peak intensity of the load at the center of the plate. This could simulate
the sensory characteristics of a laminate by determining the behavior of the electric field
as a function of loading. The second type of loading simulates the active response of.
a laminate under a sinusoidal surface potential similar in nature to that described in
Equation 287 except that now f, is the peak potential at the plate center. Both of these
cases have exact solutions [87] and demonstrate not only the fundamental behavior of the
laminate but also the accuracy of the discrete-layer approach as a function of the number
of layers used within the laminate.

Two geometries are used in this example: a single layer of PZT-4 and a 5-ply hybrid
laminate. The 5-ply laminate geometry consists of a symmetric [0/90/0] cross-ply of an
elastic, orthotropic plate with the material properties C;; = 134.9 (all in GPa), Cn =
14.35, C33 = 14.35, C;2 = 5.156, Cy3 = 5.156. Co3 = 7.133, Cy4y = 3.606, Css = 5.654, Ces
= 5.654, €11/€, = 3.5, €22/¢€, = €as/e, = 3.0. These three layers are all of equal thickness.

Two layers of the piezoceramic material PZT-4 of equal thickness are houded to the upper
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and lower surfaces of the laminate: The total laminate thickness is defined as h, with the
thickness of each of the piezoelectric layers taken as 0.1h. The plate is square, with the
length/thickness ratio of the plate specified as 4.

The boundary conditions along the vertical edges are those consistent with the func-
tions described in Equation 25. Hence along an edge the transverse and tangential dis-
placements are zero as are the normal stress and electrostatic potential. The top and
bottom surfaces of the laminate are grounded for the transverse load case, with the bot-
tom of the laminate stress-free. For the sinusoidal unit potential, the bottom surface of
the laminate is grounded with the upper and lower surfaces of the laminate stress-free.

Three different discretizations are used in the thickness direction of the laminate. Each
of the laminae are divided into 1, 2, and. 4 layers with linear interpolations used within
each layer. Hence the total laminate is divided into 5, 10, and 20 layers. The in-plane
functions are selected to coincide exactly with the distributions given in Equation 25,
which also match the forms for the exact solutions.

The through-thickness distributions of u, w, ¢, oy, 0;,7,., and D are shown in Figures
65-80 for the single layer of PZT-4 using a 12 layer discretization. This example clearly
demonstrates the poor behavior of the constant-w theory and the excellent agreement
with the variable-w theory.

The results for the 5-ply laminate in Figures 81-102. The in-plane displacements for
both applied load an potential contain distinct breaks in slope at the interface locations.
This is especially true for the applied potential, for which the displacement gradient in
the PZT layer is very high compared to the other layers. The transverse displacement
w also has a highly non-uniform behavior over the thickness of the laminate. These
distributions indicate that even for a relatively simple lamination scheme, the assumption
of linear global behavior for the displacements or potential would be highly detrimental
for a plate of this thickness. Also of note are the excellent results obtained using the
minimal number of discrete-layers through the thickness. Even the 5-layer approximation
(one layer per laminae) provides excellent results for all field distributions. The stress
- variables in this case are computed at the sub-layer centroids using the constitutive laws
for the material. The worst agreement for the 5-layer case is the transverse displacement
for the applied potential loading, for which the values differ from the exact solution by
about seven percent. This also influences the o, and 7, stress distributions. All other

values are in very good agreement for both load cases.
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The distribution of the normal component of electric displacement is fairly uniform
through the thickness of the cross-ply by changes dramaticlly within the piezoelectric
layers because of the electromagnetic coupling. Assuming linear material behavior, this

behavior could be used to model the laminate response in a sensory fashion for the case

of the applied loading.
Dynamic Analysis

Exact solutions for the free-vibration of simply-supported piezoelectric plates are avail-
able [89], and provide a good benchmark for comparative purposes. The primary quanti-
ties of interest are the resonant frequencies and the through-thickness modal distributions
corresponding to these frequencies. Two sets of boundary conditions are considered in
this analysis. In the first, the top and bottom surfaces are grounded during the vibra-
tion. In the second, the electric displacement on these surfaces are zero. These cases are
termed closed-circuit and open-circuit, respectively. The fundamental in-plane mode with
m=n=1 is the focus of this example.

A square plate composed of a single layer of the piezoceramic PZ'T-4 is considered
first. The length of each side is taken as L; = Ly = a. The height is taken as h, and three
a/h ratios are studied: 4, 10, and 50. The fundamental through-thickness frequency is
of most interest, and is given as a function of the number of layers used to describe the
piezoelectric layer. The results are shown in Table 13. The frequencies are represented in
the tables in terms of the parameter w h/p.

A second plate is composed of two dissimilar piezoelectric matcrials modeled after
PZT-4 [68] and PVDF [16]. The densities of the two materials are taken to be the same.
A three-ply laminate is constructed with the configuration [PZT/PVDF/PZT], with the
PVDF layer oriented at 0 degrees. The thickness of each PZT layer is 0.25h. Both open
and closed circuit conditions are considered, with the length/thickness ratios of 4 and 50
studied. The convergence of the first six modes as a function of a number of sub-layers is
shown and compared with the exact frequencies in Table 14. For both of these examples,

it is clear that even a small number of layers yields frequencies accurate well within several
percent. -

A final example is a 5-ply laminate identical to that considered in the static analysis
in the previous sub-section. The first six thickness mode frequencies are listed in Table

15, and are again very accurate with respect to the exact solution. The mode shapes can
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also be easily calculated, and exhibit trends similar to the static example in terms of the
convergence. The through-thickness distributions of the displacements and potential for
the closed-circuit boundary conditions can be easily computed for a/lhi=4 and a/h=>50.
The plots are indistinguishable from those generated using the exact solution, and are

given in the next section.
Exact Solution

Although both the static and dynamic cases have been investigated, the dynamic case
is of most interest and can be obtained as a special case of the static solution with w =
0. The focus of the results in this report is for the dynamic case.

In all cases studied, the plates are square with simply supported edges and L, =L, =
a. The plate surfaces are assumed to be traction-free unless otherwise noted. Although
other surface conditions can easily be considered along with rectangular plate geometries,
these were selected for simplicity. Two sets of electric boundary conditions are typically
applied: homogeneous potential or homogeneous electric displacement. The frequencies
for these examples are expressed in terms of the frequency parameter 4 = wh/,/p, where
w is the initial frequency in radians per second.

The frequencies were determined using bisection with the bounding guesses determined
two different ways. In the first, the frequency was stepped in increments of one percent of
the elastic plate frequency neglecting the electromechanical coupling and using classical
lamination theory [88]. At locations where the determinant changed sign, bisection was
used to refine the roots to the required accuracy. A second method used as a check was the
discrete-layer theory developed by the authors [89], which is extremely accurate and gave
excellent estimates for the exact values of the frequencies. For the most part, these two
different sets were in very good agreement. The only exceptions existed in the stepping
method where there could be sign change in determinant and convergence obtained for
a frequency, but there was no analogous root predicted by the discrete-layer theory. In
these cases, the resulting exact eigenfunctions did not satisfy the appropriate interface
and boundary conditions. The source of this anomaly is unknown. Such modes and their

frequencies are not included in the results that follow.

The Piezoelectric Single Layer

A single homogeneous layer of a piezoceramic is considered first. This problem is useful

to demonstrate the nature of the thickness modes and to partially demonstrate the influ-




ence of aspect ratio and the electric boundary conditions. The matcrial properties used
here, selected to model PZT-4, are shown in the Table Al in the Appendix along with the
properties for all materials used in this study. The material used here is material 2. Four
thickness (a/h) ratios were considered: 1, 4, 10, and 50. The frequencies corresponding
to the first six thickness modes are shown in Table 16 for both ¢=0 and D.=0 conditions,
which are referred to as cases I and II, respectively. It is clear from these results that as
the aspect ratio decreases (thick plates), the influence of the electric boundary conditions
becomes more pronounced, with the homogeneous electric displacement providing higher
frequencies for all cases.

The mode shapes corresponding to the frequencies of vibration are also of significant
interest, as these describe the nature of the motion and the extent of clectromechanical
coupling. The three displacement components are normalized with respect to the largest
value of u, v, or w through the thickness for a particular mode. The potential was also
normalized with respect to its largest value as well for plotting purposes. A scaling factor
a was used to denote the relationship between the potential and the displacements. This
value is the magnitude of the potential at the middle surface of the plate (z=0) divided
by the u displacement component at the top of the plate (z=h/2). If the potential is zero
at the mid-surface, the location used for the computed scale factor is at z=0.25h. This is
noted in the table by placing parentheses around the value.

The first mode for this laminate is the so-called flexural mode. It is distinguished
by the symmetric distributions for the transverse displacement and potential and the
antisymmetric distribution of in-plane displacement. As the thickness ratio increases,
the in-plane displacements become more linear and the transverse displacement becomes
more uniform. The second mode is a purely extensional mode with the eigenfunctions
described by u(z) = -v(z) = 1, w(z) = ¢(z) = 0. There is no electromechanical coupling
in this mode, and the same frequency is obtained for both case I and case II surface
conditions. The third mode yields displacement functions that tend toward u(z) = v(z)
= 1 and w(z) = 0 as the plate becomes thin. The in-plane functions are symmetric and
the transverse displacement is antisymmetric. The potential-distribution changes little
relative to the aspect ratio. The fourth mode is also purely elastic witli no coupling and
is the first thickness shear mode. This is distinguished by in-plane displacement functions
given by u(z) = -v(z) = sin 7z/h and zero transverse displacement and potential. These

modes demonstrate the deviations in the displacement and electrostatic potential from
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the kinematic assumptions of some simplified laminate theories (linear u, v, and ¢ and
constant w) as the plate a/h ratio decreases.

In general, the modes for the two types of electric boundary condition have similar
features. The features can change depending on the electric boundary conditions. For
example, for a/h= 1 the second thickness shear mode corresponds to mode 6 (case I) and

mode 5 (case 2). This mode has features similar to the first thickness-shear mode except

u(z) = -v(z) = sin 37z/h.
Three-ply Symmetric Laminate

A second example is a laminate composed of two dissimilar materials with a mismatch
in both elastic and electric properties. The materials, denoted as | aud 2. are adapted [rom
the properties of the transversely isotropic PZT-4 and the orthotropic PVDF. Two aspect
ratios of 4 and 50 are considered, with both types of electric boundary conditions, I and
I1, considered. Two lamination schemes are studied. The first has the layup of [1/2/2/1],
and the second [2/1/1/2], where the numbers indicate the piezoelectric material. Each
layer has equal thickness of 0.25h. The frequency parameters are shown in Table 17. In
this case, there are no cases for which the elastic and electric fields uncouple. It is also
not possible to classify these modes as pure shear or extension becausc ol the dissimilar
materials.

Plots of the first six through-thickness modes for [1/2/2/1] are shown in Figures 103-
114 for the two aspect ratios. It is clear from these plots that the influence of the dissimilar
properties on the displacements and the potential decreases as the aspect ratio increases.
It is also clear that even for thin laminates the modal potential cannot be accurately
represented by a simple linear function through the laminate thickness. This requires

specific attention in constructing approximate solutions to this class ol problem.
Hybrid Composite Laminate

In many structural applications, several layers of piezoelectric material are bonded to
a substructure of elastic composite plies. This type of configuration is considered here,
with single layers of piezoceramic material PZT (material 2) bonded to the upper and
lower faces of an elastic, symmetric cross-ply. The 5-ply laminate [PZ1/0/90/0/PZT] is
considered, with the cross-plies formed by a composite material and denoted as material

3 in Table Al.

The natural frequencies for case I and II electric boundary conditions are shown in
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Table 18. The through-thickness displacement and potential functions are presented %or
the first (flexural) mode in Figures 115-116 for a/h=4 and a/h=>50. The line definitions
are given by u (solid), v (dash-dot), w (dash), and the potential (dot). In addition,
representative plots of the intralaminar (o1, 02, 06) and interlaminar (o3, 04, 05) stress
components and transverse electric displacement (D) are also given for the same mode
in Figures 117-120, respectively, Here the lines are o, (solid), o, (dash), oz, (dot) in
Figures 117-118 and o, (solid), 7z, (dash), 7, (dot) and D, (dash-dot) in Figures 119-
120 for both two thickness ratios. As the plate becomes thin, the in-plane displacements
tend to the same distribution, with the transverse displacement tending to a constant
through-thickness value. Also, the in-plane stresses tend to become more linear, with the

transverse normal stress decreasing in relative magnitude as expected.

Single-layer PZT-4: Independent-w theory

The final example of this report contains perhaps the most important example of this
study, and provides an example of the theory constructed to combat the poor performance
of the constant-w theory described in earlier sections. By allowing a transverse normal
strain that is still less computationally intensive than the total variable-w theory, the
actuation strain can be captured to yield results that are much closer to reality than the
constant-w case.

As a simple demonstration, the closed-circuit free-vibration behavior of a single layer
of PZT-4 is examined using 1) variable-w theory with two layers, 2) u-v-& approximations
using two layers and w-approximation using a single layer, and 3) the exact solution. The
results of the first 6 frequencies are shown in Table 19. Clearly, the independent-w theory
yields a higher fundamental mode, but is indicative of the ralatively good accuracy with
a small number of w-layers. Many of the higher modes (pure extension and those with
no coupling) exactly capture the frequency of the plate.

This theory was just completed and debugged code produced at the end of this study.

The full power and versatility of this theory and element await full exploration.
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a/h 4 10 50
N Open | Closed Open Closed Open | Closed
1 110,189 | 104,105 || 20,485.7 | 20,217.4 || 848.586 | 3:18.094
2 102,599 | 100,294 || 18,761.5 | 18,656.2 || 773.651 | 773.458
4
8

99,454 | 97,915 | 18,255.4 | 18,180.8 || 753.622 | 753.525
98,456 | 97,186 || 18,122.4 | 18,055.7 || 748.576 | 748.452

16 98,311 | 96,994 |l 18,088.9 | 18,024.0 || 747.299 | T47.177
32 98,251 | 96,946 || 18,080.6 | 18,016.0 || 746.979 | 746.859
64 98,236 | 96,934 | 18,078.4 | 18,014.0 || 746.898 | 746.779

| Exact || 98,232 | 96,930 | 18,077.8 [ 18,013.4 || 746.873 | 746.752 ||

Table 13 Convergence of fundamental frequency for single-layer of PZT-4.

Mode
a/h=4: C || ~ 1 2 3 4 5 6
N=4 74.7732 | 197.353 | 329.301 | 342.387 | 447.653 | 549.479
N=8 72.8253 | 195.402 | 311.843 | 338.628 | 432.976 | 534.030

N=16 72.3376 | 194.920 | 307.606 | 337.504 | 426.810 | 530.343
N=32 72.2152 | 194.800 | 306.558 | 337.207 | 425.160 | 529.432
N=64 72.1846 | 194.770 | 306.296 | 337.132 | 424.742 | 529.205
Exact 72.1744 | 194.760 | 306.209 | 337.107 | 424.602 | 529.129

a/h=4: O 1 2 3 4 5 6
N=4 74.8023 | 197.483 | 329.691 | 342.481 | 447.733 | 550.079
N=8 72.8451 | 195.525 | 312.190 | 338.718 | 433.049 | 534.493

N=16 72.3554 | 195.042 | 307.940 | 337.593 | 426.875 | 530.769
N=32 72.2325 | 194.921 | 306.888 | 337.296 | 425.223 | 529.849
N=64 72.2017 | 194.891 | 306.626 | 337.221 | 424.801 | 529.620
Exact 72.1915 | 194.881 | 306.539 | 337.196 | 424.664 | 529.543

a/h=50: C 1 2 3 4 5 6
N=4 0.637707 | 16.4328 | 28.5365 | 292.035 | 379.322 | 400.300
N=8 0.634494 | 16.4315 | 28.5356 | 273.945 | 359.391 | 379.362
N=16 | 0.633687 | 16.4312 | 28.5353 | 269.563 | 354.642 | 371.982
N=32 |l 0.633485 | 16.4311 | 28.5353 | 268.479 | 353.469 | 370.043
N=64 || 0.633434 | 16.4311 | 28.5353 | 268.208 | 353.177 | 369.539
Exact || 0.633417 | 16.4311 | 28.5352 | 263.118 | 353.079 | 369.396

a/h=50: O 1 2 3 4 5 6
N=4 0.637786 | 16.4426 | 28.5566 | 295.866 | 390.811 | 400.301
N=8 0.634566 | 16.4413 | 28.5556 | 277.248 | 369.149 | 379.363
N=16 0.633757 | 16.4410 | 28.5554 | 272.717 | 363.958 | 371.982
N=32 0.633555 | 16.4409 | 28.5554 | 271.595 | 362.674 | 370.048
N=64 0.633506 | 16.4409 | 28.5553 | 271.315 | 362.354 | 369.560
Exact 0.633487 | 16.4409 | 28.5553 | 271.222 | 362.248 | 369.396

Table 14 Convergence of frequencies for 3-ply piezoelectric laminate.
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Mode

a/h=4: C 1 2 3 4 b} 6
N=5 57.2531 | 194.840 | 255.648 | 282.168 | 363.461 | 389.525
N=10 57.1249 | 192.190 | 252.024 | 276.853 | 364.213 | 383.352
N=20 57.0875 | 191.524 | 251.085 | 275.425 | 362.939 | 381.629
N=32 57.0855 | 191.350 | 250.845 | 275.040 | 362.592 | 381.171
N=64 57.0773 | 191.313 | 250.786 | 274.969 | 362.516 | 381.072
Exact 57.0745 | 191.301 | 250.769 | 274.941 | 362.522 | 381.049

a/h=4: O 1 2 3 1 5 6
N=5 57.2707 | 194.843 | 255.648 | 282.168 | 368.505 | 389.534
N=10 57.1403 | 192.192 | 252.025 | 276.853 | 364.252 | 333.364
N=20 57.1023 | 191.526 | 251.086 | 275.425 | 362.971 | 381.641
N=32 57.1005 | 191.353 | 250.845 | 275.040 | 362.623 | 381.184
N=64 57.0921 | 191.316 | 250.786 | 274.969 | 362.548 | 351.034
Exact 57.0893 | 191.304 | 250.770 | 274.941 | 362.522 | 381.049

a/h=50: C 1 2 3 4 5 6
N=5 0.619025 | 15.6835 | 21.4947 | 212.811 | 214.690 | 334.953
N=10 0.618348 | 15.6820 | 21.4933 | 210.561 | 211.596 | 379.943
N=20 0.618175 | 15.6817 | 21.4929 | 209.925 | 210.791 | 373.575
N=32 0.618156 | 15.6816 | 21.4928 | 209.754 | 210.582 | 373.207
N=64 0.618127 | 15.6816 | 21.4928 | 209.718 | 210.538 | 378.132
Exact 0.618118 | 15.6816 | 21.4928 | 209.704 | 210.522 | 378.101

a/h=50: 0 || 1 2 3 1 5 G
N=5 0.619038 | 15.6835 | 21.4949 | 212.827 | 214.736 | 384.953
N=10 0.618351 | 15.6821 | 21.4935 | 210.568 | 211.645 | 379.944
N=20 0.618179 | 15.6817 | 21.4931 | 209.929 | 210.841 | 378.375
N=32 0.618160 | 15.6816 | 21.4930 | 209.758 | 210.632 | 373.207
N=64 0.618141 | 15.6816 | 21.4930 | 209.721 | 210.589 | 378.133
Exact 0.618120 | 15.6816 | 21.4930 | 209.707 | 210.573 | 378.105
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[ I1

a/h=1 v a 5 «

| 713,061 -1.744e+9 724,602 | -1.675e+9

2 777,021 0 777,021 0

3 889,902 | (-1.515e+11) || 912,912 | (-1.498e+9)

4 925,431 0 925,431 0

5 1,243,819 | -1.534e+9 || 1,270.594 0

6 || 1,270,504 0 1.293,504 | (-2.57e+10)
a/h=4 v o v a

1 96,929.9 -4.87e+38 98,231.7 | -7.78e+3

2 194,255 0 194,255 0

3 327,663 | (2.276e+7) || 355,110 | (4.57e+9)

4 538,885 0 538,885 0

5 609,186 -1.08e+38 690,767 2.55e+9

6 958,922 | (-2.66e+3) 960,103 | (-3.48e+3)
a/h=10 Y a v a

1 18,013.4 -1.78e+8 18,077.8 -3.40e+8

2 77,702.1 0 77,702.1 0

3 133,605 | (1.27e+6) | 145221 | (1.74e+3)

4 508,625 0 508,625 0

b) 522,320 -4.8Te+7 604,752 6.26¢+9

6 988,021 (-1.76e+3) 990,953 | (-2.88e+3)
a/h=50 v ! o a

.| 746.752 -3.48e+T7 746.873 -7.78e+8

2 15,540.4 0 15,540.4 0

3 26,828.0 | (9.94e+3) 29,153.3 | (3.48e+7)

4 502,895 0 502,895 0

5 503,469 -1.0le+7 586,240 3.10e+10

6 || 1,004,344 | (-4.56e+7) || 1,004,612 | (-7.21e+7)

Table 16. Frequency parameters for single-ply piezoelectric layer for differing electric

surface conditions.




Frequency parameter v
alh=4 a/h=50
Mode I 11 I II
1 72,174.4 | 72,191.5 || 633.417 | 633.487
2 194,760 | 194,881 | 16,431.1 | 16,440.9
3 | 216,505 | 216,505 || 17,320.4 | 17,320.4
4 306,209 | 306,539 || 28,535.2 | 28,555.3
5 337,107 | 337,196 || 268,118 | 271,222
6 424,602 | 424,664 || 353,079 | 362,248

17a. [1/2/2/1] lamination scheme.

Frequency parameter v
a/h=4 a/h=50
Mode I 1 [ 11
1 58,248.7 | 58,354.0 || 725.219 | 725.241
2 192,408 | 192,436 || 16,430.2 | 16,438.8
3 271,757 | 271,758 || 28,535.7 | 28,555.1
4 329,584 | 329,593 || 159,732 | 159,865
5 363,048 | 364,072 || 226,218 | 226,643
6 406,665 | 407,771 || 353,386 | 363,810

Table 17. Frequency parameters for laminate with dissimilar piezoelectric layers.
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Frequency parameter ~y
a/h=4 a/h=50
Mode I 1I I II
1 57,074.5 | 57,089.3 || 618.118 | 618.120
2 191,301 | 191,304 | 15,681.6 | 15,681.6
3 250,769 | 250,770 | 21,492.8 | 21,493.0
4 274,941 | 274,941 || 209,704 | 209,707
5 362,492 | 362,522 || 210,522 | 210,573
6 381,036 | 381,049 | 378,104 | 378,105

Table 18. Frequency parameters for 5-ply elastic/piezoelectric laminate.

|

Frequency parameter «

Mode Variable w Linear w . Exact
1 100.293.4 | 104145.2 | 96,929.9
2 194.255 194,255 194,255
3 328.560 328,560 | 327,663
4 587.312 587,312 | 508,625
5 673.851 706,727 | 522,320
6 1,125,404 | 1,125,404 | 988,021

Table 19. Comparison of frequencies for variable w, linear w, and exact, single layer

PZT-4.
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8. SUMMARY AND FUTURE WORK

Developed Algorithms

The following algorithms have been developed as part of this research to aid in the

simulation of active tip clearance control using adaptive composites:

e Semi-analytic solutions using variable, constant, and independent approximations

for out-of-plane transverse displacements for laminated piezoelectric plates.

¢ Finite element approximations using constant and variable variations. Implementa-

tion of independent-w theory is straightforward. Both static and dynamic problems

can be modeled.

e Exact solutions of simply-supported laminated piezoelectric plates: static and dy-

namic behavior.

o Discrete-layer shell elements for arbitrary geometry.

Deliverables to NASA-Lewis are the source code for the plate and beam elements, and

have been delivered to NASA via internet. All other source codes for the semi-analytic
and exact solutions is also available.
Summary of Results

Inspection of the results included here and as part of this study, the primary thrusts

of the working algorithms are:

e Excellent accuracy for variable-w theory and promising results for the independent-

w theory.

e As currently formulated, the constant-w theory is not suitable for coupled problems
in electroelasticity because of the inability to model transverse normal strain. For

elastic problems, however, this methodology yields very acceptable results.

o Exact solutions developed will provide extremely useful benchmarks for the enclosed

theories and those developed by others.
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o Flat-plate results for plate element are good and encouraging. The application to

an assemlage of flat plates to approximate a curved surface has not been made, but

can be with the inclusion of developed transformation matrices.

e Elements developed here can be incorporated into general purpose finite element

code to simulate the control process for a wide array of problems.

o Results of shell element are promising, but this application has not been extensively

tested because of lack of comparative solutions available in literature and elsewhere.

Future Work

The potential applications of the elements developed here are numerous. Before this
occurs, additional testing of both the plate and shell elements would be prudent and
is necessary for the shell element. What follows are suggestions for future work by the

present investigators or others:

e Complete implementation and testing of plate element with independent-w theory.
o Use of rotated plate elements as collection of flat plates to model curved shell.

¢ Development of exact solution for laminated piezoelectric cylindrical shell for pur-

poses of benchmarking general shell element.
e Further testing of shell element and comparison of each discrete-layer theory.

o Application to active tip clearance control and other problems requiring adaptive

composite laminates.
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Figure 2: Laminated piezoelectric plate and possible deformation.
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Non-layer-wise description for either u, v, w or ¢.

e 8

Figure 3: Description of pseudo-layer within laminate geoictry.
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Figure 4: Curvilinear coordinates in a general shell.
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Layer-wise description for u, v and ¢.
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Layer-wise description for u, v, w and ¢.

Figure 5: Through-thickness approximations for discrete-layer theories.
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Figure 6: Assumed form for independent-w approximation.
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Figure 7: Structure of sub-matrices.
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Figure S: Discrete-layer element for general shells.

Figure 9: Continuity requirements at through-thickness loc
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Figure 11: Form of approximations for general shell element.
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Figure 13: Geometry and layer numbering. W constant througl thickness
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X,y ,z : global system of coordinates

x’,y', 2" : local system of coordinates

B : angle of rotation between x and x

Figure 14: local and global coordinates.
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Figure 15: Geometry of Rectangular Plate

101



Figure 16: Bousdary Conditions for the Quarter Platc
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Figure 17: Geometry of PVDF Square Plate
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Figure 18: Geometry of PVDF/GRAPHITE/EPOXY/PVDF Square Plate
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Figure 19: Displacement in x-direction
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Figure 20: Displacement in y-direction
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Figure 21: Displacement in z-direction
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Figure 22: Normal Stress Distribufion on x-direction
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Figure 23: Normal Stress Distribution on y-direction
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Figure 24: In-Plane Stress Distribution
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Figure 25: Out-plane Stress Distribution
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Figure 26: Out-plane Stress Distribution

107




— EXACT
veee LBxB~12-F, voricble v
==== L6x6-12-F, constont w

0.0 0.a0% 1.0002

T T P T T T T
78 A8 -3 “l.4 o0 e as .2 s..

-2.8 7.0
Displocement in x-direction,U =10

Figure 27: Displacement in x-direction,applied load,a/h = 10, PVDF
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Figure 28: Displacement in y-direction with applied load,a/h = 10,PVDF
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Figure 29: Displacement in z-direction,applied load,a/h = 10,PVDF
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Figure 30: Potential Distribution,applied load,a/h = 10,PVDF
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Figure 31: Normal stress distribution on x-direction,applied load.«/h = 10,PVDF

— EXACT
vess LBxB=12-F, voricble v
===~ 6x6-12-F, constont v

[
3

Lh
034 on'fnc o.0em  0.08

48 44 -3 32 -8 00 I8 32 &8 64 80
Normol Strees, O Yy

Figure 32: Normal stress distribution on y-direction,applied load.«//h = 10,PVDFI
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Figure 33: Normal stress distribution on z-direction,applied load.«/h = 10,PVDF
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Figure 34: In-plane stress distribution,applied load,a/h = 10.PVDF
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Figure 35: Out-plane stress distribution,applied load,a/h = 10,PVDI
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Figure 36: Out-plane stress distribution,applied load,a/h = 10.PVDI
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Figure 37: Electric displacement distribution,applied load,a/h = 10,PVDF
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Figure 38: Displacement in x-direction,applied potential,a/h = 10.PVDF
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Figure 39: Displacement in y-direction,applied potential,a/h = 10,PVDF
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Figure 40: Displacement in z-direction,applied potential,a/h = 10,PVDIF
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Figure 41: Potential distribution,applied potential,a/h = 10.PVDF
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Figure 42: Normal stress distribution on x-direction,applied potential

a/h = 10,PVDF
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Figure 43: Normal stress distribution on y-direction,applied potential

a/h = 10,PVDF
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Figure 44: Normal stress distribution on z-direction,applied potential

a/h = 10,PVDF

116




— EXACT
vees LBxB-12-F, voricble v
==== LBx6~12-F, constonL v

.00 l.‘ﬂ- 1.0

th
l.}m ?;Dl

0.00 -0.08 -0.08 0.0¢ -0.02 -0.00 -0.018 -0.018 -0.014 -0.012

ln-plone Sheor Stress, ‘fxs

Figure 45: In-plane stress distribution,applied potential,a/h = 10,PVDF
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Figure 46: Out-plane stress distri'butiou,a,pplied potential,a/h = 10,PVDF
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Figure 47: Out-plane stress distribution,applied poteutial,a/i = 10,PVDF
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Figure 48: Electric displacement distribution,applied potential,a/h = 10,PVDF
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Figure 49: Displacement in x-direction,applied load,a/h = 10.PZT4
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Figure 50: Displacement in z-direction,applied load,a/h = 10,PZT4
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Figure 51: Potential distribution,applied load,a/h = 10.P7T'4
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Figure 53: Normal stress distribution on z-direction.applied load.«/h = 10.P7T4
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Figure 54: In-plane stress distribution,applied load,a/h = 10.PZ14
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Figure 55: Out-plane stress distribution,applied load,a/h = 10,PZT4
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Figure 56: Electric displacement distribution,applied load.a/li = [0.PZT4
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Figure 57: Displacement in x-direction,applied potential,a/h = 10,PZT4
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Figure 58: Displacement in z-direction,applied potential,a/h
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Figure 59: Potential distribution,applied potential,a/h = 10,PZT4
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Figure 60: Normal stress distribution on x-direction,applied potential

a/h =10,PZT4
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Figure 61: Normal stress distribution on z-direction,applied potential
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Figure 62: In-plane stress distribution,applied potential,a/h = 10,PZT4
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Figure 63: Out-plane stress distribution,applied potential,a/k = 10,PZT4
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Figure 64: Electric displacement distribution,applied potential,u// = 10,PZT
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Figure 65: u-displacement for single layer PZT-4 (load).
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Figure 66: w-displacement for single layer PZT-4 (load).
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Figure 67: Potential for single layer PZT-4 (load).
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Figure 68: In-plane normal stress for single layer PZ'1-4 (load).
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Figure 69: Out-of-plane normal stress for single layer PZT-4 (load).
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Figure 70: Out-of-plane shear stress for single layer PZT-4 (load).
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Figure 71: In-plane shear stress for single layer PZ1-1 (load).
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Figure 72: Normal electric displacement for single layer PZT-4 (load).
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Figure 73: u-displacement for single layer PZT-4 (potential).
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Figure 74: w-displacement for single layer PZT-4 (potential).
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Figure 75: Potential for single layer PZT-4 (potential).
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Figure 77: Out-of-plane normal stress for single layer PZT-4 (potential).
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Figure 78: Out-of-plane shear stress for single layer PZ'1-1 (potential).
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Figure 79: In-plane shear stress for single layer PZT-4 (potential).
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Figure 81: u-displacement for 5-ply, applied load.
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Figure 82: v-displacement for 5-ply, applied load.
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Figure 83: w-displacement for 5-ply, applied load.
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Figure 84: Potential for 5-ply, applied load.
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Figure 94: w-displacement for 5-ply, applied potential.
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Figure 96: Normal (x) stress, 5-ply, applied potential.
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Figure 98: Normal (z) stress, 5-ply, applied potential.
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Figure 99: Shear (xz) stress, 5-ply, applied potential.
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Figure 102: Normal electric displacement, 5-ply, applied potential.
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Figure 104: Mode 1, 3-ply, a/h
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Figure 106: Mode 2, 3-ply, a/h
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Figure 112: Mode 5, 3-ply, a/h=50.
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Figure 117: In-plane stresses, mode 1, 5-ply, a/hi=1.
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Figure 118: In-plane stresses, mode 1, 5-ply, a/h=>50.
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APPENDIX

Property 1 2 3
E, (GPa) |{ 237.0 | 81.3 | 132.38
E, 23.2 | 81.3 | 10.756
E, 10.5 | 64.5 | 10.756
V12 0.154 | 0.329 | 0.24
3 0.178 | 0.432 | 0.24
Va3 0.177 | 0.432 | 0.49
Gaq 2.15 | 25.6 | 3.606
Gss 4.4 25.6 | 5.6537
Ges 6.43 | 30.6 | 5.6537
e (C/m?) || -0.01 | 12.72 0
eal -0.13 | -5.20 0
€32 -0.14 -5.20 0
€33 -0.28 15.08 0
- 125, (41475 3.5
=4 11.98 | 1475 3.0
- 11.93 | 1300 3.0

Table Al. Elastic, piezoelectric, and dielectric properties of piezoelectric materials.
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Definitions of coeeficients used in exact solution:

A = —Cs5C44 Ca3 €33 — Cs5 Cag €35 (291)

B = A1 Cas €33 + A1y Cas Caz €33 — 2 A13 Caa Ara €33 + Css A24C3 — Cs5 Caa Ca3 Aus +292)
A};Cuas €33 + 2 Css Cag Asa €33 + Css Az €35 + Css Cag Asg €33 + Css Az Caz €33 +
A"{)4C44 C3s — 2 Css Azz Az €33 — Css A§3533

Cot=3 Auiilis idiess = Av; A el —Csg A2 Ay — Cog Al Ass 3 Cis s Aoy Aie i03)
A}ye33 — 2 Css Agg Asa €33 — Css Caa A, + 2 Css Agg Agy Ay — Ary Ana Caz €33 —
A1 Caq Ass €33 + A1y Cag Ca3 Aus + Css Apy Cz Ay — Css Agg Agg €33 — A}3Caq Aga +
A},Cazess + 2 A12 Aoy A1a Caz — 2 Arp Agg Arsess — A1y A3 Cas — 2 A, Ays Ay eas +
'2 A1 Az Agseas + A2 A2, +2 A13 Cug Arg Azg — 2 Ayy Cuy Asgeaz + 2 Apy Azg Argexs +
AN A e 4+ Ayy A2 — 2 s Ay Avy Asei— A% A Clag—tA% 80 A

D = —Ay Cyy Az Agy — A1y Aga Caz Agg + 2 Apy Ay Asqeaz + Anr Agy Ay eas + Css Agg A2, 291)
Css Aza Az Aga + A% Az Ay — 2 Arg Agg Ary Ass + 2 Ajg Agg Ara Asg + 2 Ayg Ags Ay Azy —
2A10 Agz A1z Agy — 2 A2, Ay a3 — AZ Az €33 + AL, C'yy Ay + Ay AS Agy —
2 A1y Ags Agg Asq + A1y AL Aus + Ayy Cag A% + A2 Ay Az — 2 Ay Agg Ay Asy

E = Ay1 Ay Agy Asg + A% A, — Ay Agp A3 — Al Az Auy (295)
D, = Cy 6:2;3 + Cyq Ca3 €33 (296)
Dy = —Cyq Asz €33 + Cya Ca3 Aga — 2Clyq Azy 33 + 2 Az A2y €35 — (297)

2 2 Dk
Asop €33 + A23633 — Ayy Ca3 €33 — .4“(;3;3
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D3 = Ay Az €az — Azp Caz Aus — 2 Agz Aoy Azy + 2 Agp Asqeas +
A§3A44 — Caq Azz Aga + A§4A33 + Cua /1;2;4

Dy = Agg Ass Ags — Ay Al

fi1 = A (033 €33 + €§3) — (Ags €33 + Agq €33) A1z + (— A2z eas + Aui Caz) A

fiz = —A12 (Asz a3 — Caz3 Auq + 2 Ay eaz) — (Azz Auy — Azq Azq) Ars + (Auy Ags — A2q Asz) AB01)

fis = —Anz (Ass Au — A3,)
fa1 = —Cyg €33 A1z — Cag €33 Ara

f22 = (A‘22 €33 — C44 A44 + A§4) A13 - A12 (A'23 €33 + A24 633) +
(A22 ess + C44 A34 = A23 A24) .‘\1,.,

faz = — A1 (Asz Agg — Azg Ass) — Aoz Azq Arg + Azg Agy Ay
fa1 = —A13Cu €33+ A14Caq Ca3

faz = A1z (Agg €3z + Cuq Azy — Agz Ags) + A1z (—Azz ez + Az Ca3) +
Ay (—Azz Caz — Caq Azs + fl§3)

f33 = A12 (A23 A34 > A'24 A33) + Altl A22 A33 i A13 A‘22 A'A-I
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