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1. INTRODUCTION 

Project Objectives 

The primary objectives of this research project, as stated in the initial proposal by 

the first author of this report, were to develop the following computational tools for use 

in active tip-clearance control: 

• A discrete-layer plate theory (both semi-analytic and finite element approximations) 

for laminated composites structures with embedded piezoelectric layers . 

• A 3-D general discrete-layer element generated in curvilinear coordinates with con­

stant out-of-plane displacement components for modeling laminated composite piezo­

electric shells with curved surfaces. This tool will be used to represent the general 

geometries of the engine blades and the casing. 

This report describes the theoretical developments and implementation of these models as 

well as additional work completed as part of this study. Conclusions regarding the nature 

and performance of these models are presented, and additional testing and applications 

are suggested. 

Structure of Report 

The primary components of this research were the theoretical development and intro­

duction of finite element models and semi-analytic solutions using discrete-layer approxi­

mations for the analysis of laminated piezoelectric plates and shells. These models form 

the basic thrust and results of .the present study. However, as part of this development, 

it was found necessary to develop an additional component as both a check and a com­

putational alternative for the plate geometry. This additional component involved the 

development of exact solutionsJor the static and dynamic behavior of simply-supported 

laminated piezoelectric plates. Although not included in the original proposal, the de­

velopment of the exact solutions was critical to the successful development of the plate 

element because there are effectively no other results in the literature for laminated piezo­

electric plates other than very simple approximate models. The exact solutions filled a 

needed gap in the understanding of these laminates, and because their development was 

completed under the auspices of this project, the results are included here. 

The following chapter gives a brief review of the literature to describe the current state­

of-the-art in the field of control using active materials, with emphasis given to piezoelectric 
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materials. Also given in this chapter is an overview of the linear theory of piezoelectricity 

and the governing equations to be used in the following chapters. In the third chap­

ter, semi-analytic solutions developed for the plate geometry are described. The fourth 

and fifth chapters give the development of the plate and shell elements, respectively, for 

laminated piezoelectric solids using the discrete-layer theory. The sixth chapter details 

the development of the exact solutions for the static and dynamic behavior of simply­

supported piezoelectric laminates. The seventh chapter contains representative example 

problems for the models developed in the previous chapters. A discussion of potential 

future work and summary are given in the eighth and final chapter. 
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2. BACKGROUND 

This section includes a review of the literature regarding both discrete-layer theories 

and so-called smart structures as these topics apply to the present study. The fundamental 

equations related to the linear theory of piezoelectricity are also included in this section, 

and are provided as a useful foundation for the chapters that follow . 

Literature Review 

_ Piezoelectricity 

In 1880, Pierre and Jacques Curie discovered that the electrical charges on certain 

dielectric crystal could be produced by impressing mechanical sLress. Later in 1881, 

HankIe named this direct and its converse effect "piezoelectricity" . With the knowledge 

of solid mechanic.s and electri.city, the mathematical foundations a.1le! governing equations 

were available and used in the original work of Voight [63]. In additioll to this volume, two 

ot her classical works of Mason [64] and Cady [66], are cited frequently in latter studies of 

piezoelectricity. Both works gave a special attention in the physica.1 properties of crystals, 

as well as practical applications. 

Several works published in 1960's initiated the numerical solution of problems in­

volving piezoelectric solids. In 1967, Eer Nisse introduced the varia.tional calculus and 

a Ritz-approximation for analyzing electroelastic vibration problems [5 , 6]. In his work, 

variational formulas were derived for the equations of motion of piezoelectric cylinders 

and were applie~ to find the resonant frequencies of thick discs. This application gave 

a beginning for latter studies using numerical approximation. The monograph of Tier­

sten [67], provides a comprehensive treatment and application of the linear theory of 

piezoelectricity. In this book, a systematic derivation of the governing equations of linear 

piezoelectricity ~ere given, and results of homogeneous plate vibration problems were 

shown. In later works dealing with piezoelectric vibrations, this lllonograph is without 

question the most oft-cited reference. 

On the basis of the works of Eer Nisse [5, 6], Holland [7] presented an application to 

rectilinear geometry. With specified trial functions, the resonant properties of piezoelec­

tric ceramic rectangular parallelepipeds were discussed, as well as several mode shapes 

were contoured. To avoid the limitation of using Ritz-approximation under complicated 

boundary conditions, Allik and Hughes [9] introduced a finite elemcllt. formulation for the 
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equations of piezoelectricity. A electroelastic tetrahedral element was also developed in 

this work but without further application and numerical results. This work began the ef­

forts of using modern computational techniques to represent the behavior of piezoelectric 

solids. 

Several studies have appeared using finite element approximations to the equations 

of linear piezoelectricity. Kagawa and Yamabuchi [14] developed a computer program to 

solve the axisymmetric vibrations of a piezoelectric circular rod of finite length. Later in 

the 1980's, several piezoelectric structures were analyzed by N aillon et al. [20], as well 

as three-dimensional structures by Ostergaard and Pawlak [25]. Being different from Eer 

Nisse's approximation [6], Kunkel et al. [38] used the finite element method to find the 

natural vibrational mode of axially symmetric piezoelectric ceramic disks. 

Three volumes, which are not referred here but have been cited frequently in recent 

studies, are the works of Nye [68] , Bottom [71] and Zelenka [12]. These books provide 

details and more recent information on the properties of (quartz) crystals. In Zelenka's 

book, Piezoelectric resonators and non-linear properties of crysta.l a.re a.n area of focus. 

Theories of Thick Laminates 

The classical laminated plate theory (CLPT), which is a direct extension of classical­

plate theory (CPT), has been used to solve many composite plate problems for years . 

Because the assumed Kirchhoff hypothesis remains in CLPT, the t llickness effect, which 

is known to cause poor results when analyzing thick plates with the use of CPT, similarly 

occurs when using CLPT to analyze thick laminates. According to the literature reviews 

of several studies [32, 43, 44}, the initial work to take into account the thickness effect 

could be credited to Basset [1] in 1890. After this work, severa.l displacement-based 

refined theories developed by Hidebrand, Reissner and Thomas [2], as well as Mindlin 

[3], were extremely useful to later studies dealing with the transverse stresses in plates. 

Another commonly used book is that of Timoshenko [65], which gives development of 

a generalized plate theory and some elasticity solutions for specific plate geometries. In 

many later studies to refine the CLPT, the above works are frequl'ully cited. 

In Pagano's works [10, 11], limitations of the CLPT for laminated elastic plates were 

investigated. Solutions of several specific composite problems using CLPT were com­

pared with the corresponding elasticity solutions (i.e. exact solutions) . The conclusions 

pointed out the undesirable effects and limitations of CLPT, ami motivated later re-
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finment. To deal with the shear deformation and rotatory inertia effects in arbitrarily 

laminated anisotropic plates, the first-order shear deformation plate theory (FSDT) [2, 3] 

was generalized by Yang et al. [4]. In this generalized FSDT, the normals to the mid­

plane before deformation remains straight (i.e. first-order formulation) but not necessarily 

normal to the mid-plane after deformation. However, a correction to transverse stiffness 

was required to satisfy the boundary conditions (i.e. the zero transverse shear stress on 

the top and bottom surfaces of plate). Several applications using this theory in bending, 

vibration and transient analyses were shown by Whitney et al. [12] and Reddy [17, 19]. 

Following the generalized FSDT, higher order formulations were gi ven to obtain abetter 

description for thick laminates. A variationally consistent high order shear deformation 

laminate plate theory was introduced by Reddy [22, 27]. Using this theory, the correction 

needed in the FSDT was not required. Later, for reasons of efficiency, Putcha and Reddy 

developed a mixed shear flexible finite element [27] to apply the high order theories . An 

analysis of stability and natural vibration for laminated plates were also represented. In 

a:ddition to Reddy's studies, Khdeir presented several applicatiolls u::iillg his refined shear 

deformation theory [40]. Results available in the literature have been adapted frequently 

for comparisons in many later studies. 

Discrete-layer Theories 

Several works employed to develop so-called discrete-layer theories are specially intro­

duced here for their usefulness in this research. The most initial work that use a layerwise 

displacement theory to analyze layered piezoelectric plates and layered anisotropic plates 

could be credited to Pauley [13] in 1974. In his dissertation, a layer-wise analysis was 

used to study the free vibration characteristics of infinite lamillat(-:d piezoelectric plates 

using finite element thickness approximations. However, the analysis was limited under a 

condition of plane strain. Even though this work was a precursor to later development of 

discrete-layer theories and research in laminated piezoelectric structures, no later studies 

have cited this effort. 

In the work of Reddy [32], a general two-dimensional shear deforma.tion theory of 

laminate plates (GLPT) was represented. Based on GLPT, a de:;ired degree of approxi­

mation of the displacements through the laminate thickness can be given. Additionally, 

this work indicated that the GLPT could represent a generalized form of many other 

laminate theories. The CLPT, the generalized FSDT, the higher order theory [22], and 
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several other refined laminate theories can be considered as special cases deduced from 

GLPT. The discrete-layer theories are also extended form the GLPT. 

After GLPT was developed, Reddy et al. [43, 44] presented several applications and 

detailed discussion. In [43], a plate bending element was developed using GLPT. The 

accuracy of using this element ,vas also evaluated by comparison with the exact solutions 

of the generalized plate theory [65] and 3D-elasticity solutions. When using the bending 

element, a layer-wise description of the inplane displacements and stresses of laminate 

can be given, and an improved approximation to the transverse shear deformation was 

obtained. Results of several examples showed that the thickness effect was effectively 

eliminated. Almost at the same time, another work [44] represented the exact analytic 

solutions of GLPT in two cases, cylindrical bending and simple support plate. By com­

paring with the 3D-elasticity solutions, this work confirmed that GLPT allowed accurate 

determination of interlaminar stresses. 

In the work of Robbins and Reddy [53], the GLPT was adapted to laminated piezo­

electric beams. This could be the first work that involved the GLPT into the analysis of 

the smart material. Four different displacement-based finite element models, which were 

derived from GLPT, were represented with numerical results. However, the piezoelectric 

effect was only modeled using an induced strain rather than the equa.tion of piezoelectric­

ity. 

Finally, the recent work of Heyliger and Saravanos [59, 62] represented discrete-layer 

theories that can deal with the thick"piezoelectric laminates. The kinematic assumptions 

were based on the GLPT. To describe the in-plane performance of plates or beams, piece­

wise linear variations of the components were used through the composite thickness . In 

addition, finite element and global/Ritz approximation in plane of laminate were involved 

to solve several test problems. 

Intelligent Structures And Piezoelectric Laminate Theories 

In this section, the primary characteristics of piezoelectric beam, plate, and shell 

theories are introduced. 

Compared with the use of piezoelectrics in transducer applications, the study of dis­

tributed piezoelectric actuators for all solids is quite recent, with ll10st papers appearing 

after 1985. The work of Bailey and Hubbard-[23] may be the fin;!. that introduced dis­

tributed piezoelectric polymers as actuators to control the bending vibration of cantilever 
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beams. Fanson and Chen [28, 29] also demonstrated that the use of piezoelectric materials 

as sensors/actuators in beam vibration control was feasible. The passive structure ele­

ment for the control of large space structures <;:an also be replaced by piezoelectric active 

members. 

Later, Crawley and Luis [30] presented an analytic and experimental development of 

one-dimensional piezoelectric elements. These elements can be placed either on the sur­

face or embedded within structural laminated beams, and function as actuators to excite 

the steady-state resonant vibrations in the cantilevered beams. The given conclusion em­

phasized that the existence of the embedded actuators may not affect the elastic modular 

of the composite structures, but would reduce the ultimate strength of the laminate by 

20%. Finally, the work of Robbins and Reddy [53] is repeated here for ' their analysis or 

simulated piezoelectric laminated beams. 

Beginning in 1987, a series of publications by Lee et al. [39, S-l. -17] initiated efforts 

to develop theoretical models for bending and torsional control ill 1,.I.I11inatecl piezoelectric 

plates. In [39], Lee and Moon presented a set of piezopolymer clevices for the moclel control 

of piezoelectric laminates. Experimental results were followed and Llsed to compare with 

the theoretical predictions. The latter work by Lee [84] introduced in deta.il the gO\'erning 

equations for piezoelectric laminate plates, as well as the reciprocal relationships of the 

piezoelectric sensor/actuator. The assumptions of CLPT were ill\'olved because only 

slender plates were considered. 

Wang and Rogers [52] also used the assumptions of CLPT to nludel laminated plates 

with spatially distributed piezoelectric actuator patches. Using tlte Heavisicle function 

that corresponding to the inplane location of patches, the strain induced by the actuators 

was represented. In addition, the equivalent external forces induced by the piezoceramic 

patches under some voltage field can be determined upon the assumption of free constraint 

for expansion or contraction of the patches. 

In the work of Heyliger and Saravanos [59], discrete-layer theories were developed 

to analyze the laminated composite beams and plates which contain active piezoelectric 

layers or patches. The coupled relationship between the elastic and electric variables were 

explicitly represented in the governing equations. Both the static alld clynamic behaviors 

were also considered. Later, Heyliger and Brooks [60] derived the exact solution for 

piezoelectric laminates in the two-dimensional configuration of cylilldrical bending. These 

results provided useful information to evaluate the developed or future piezoelectric plate 

7 



~-.~--- --

theories. 

Development of piezoelectric shell theories were initiated by a number of Russian 

authors, whose efforst are summarized in the outstanding monograph of Kudrayavstev 

and Parton. Yet only recently have these been extended for active control problems. 

In 1989, Tzou et al. presented a numbers of works regarding piewelectric shell theory 

[42, 49, 51, 55]. In [42], a laminated thin shell with piezoelectric layers was evaluated. 

The governing equations of the dynamic state were derived based 011 Love's hypothesis 

and Hamilton's principle. Later, Tzou [49] introduced a piezoelectric element to analyze 

the distributed sensing and active vibration control of flexible plates ctLld shells. The finite 

element formulation was also given. However, only a zero-curvature shell problem was 

demonstrated. In [51], Tzou and Tseng developed a ::thin" piezoelectric solid element with 

the internal degrees of freedom. This element was used in the fillit<-: element formulations 

to analyze the piezoelectric shell. In 1991, Tzou and Zhong [55] developecl electrornechanic 

equations of motion of generic piezoelectric shell using Hami 1 tOll':j pri !lci p Ie and linea.r 

piezoelectricity. Numerical results using finite difference techniqul" were represented, as 

well as a' comparison with the experimental results. 

In addition to the works of Tzou et al. , Lammering [54] developed a shell deformation 

finite element to analyze a shell structure with surface coated piezoelectric layers. In this 

work, a shear deformation elastic shell theory of the Reissner-iVliudlin type was used to 

develop the finite element formulation. 

The Linear Theory of Piezoelectricity 

To begin the analysis for laminated structures with embedded piewelectric layers, the 

material properties and governing equations for piezoelectric media must to be defined. 

The behavior of piezoelectric material used in the composite is assumed to be linear. A 

brief introduction to the material behavior and related equations is given below. 

Behavior of Piezoelectric Material 

In 1880, the Curie brothers discovered the piezoelectric effect on certain crystalline 

materials. When mechanical stresses are applied on a dielectric crystal, surface electric 

charges are instantaneously created. The converse effect is that the presence of a.n electric 

field results in changing the shape of the crystal. More than a hundred ferroelectric ma­

terials with the piezoelectric effect have been found. Conventiollal piezoelectric materials 
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are crystalline or polycrystalline style. Therefore, they are mostly prod uced in the form 

of ceramics or crystals. The brittle properity leads to disadvantages in usage. 

In 1969, a strong piezoelectric effect in PVDF, polyvinylidene fluoride polymer, was 

discovered by Kawai [84, 16] . PVDF-type materials are flexible. The polymeric properi­

ties are very different to the properities of the conventional p~ezoelectric materials. They 

can be produced and formed into thin-film sheets that are easy to cut or shape for com­

plex configurations. Because of the convenience, structures with highly distributed sen­

sors/actuators (intelligent structure) can be constructed. 

In laminated structures, the embedded or coated piezoelectric layers function as dis­

tributed sensors and actuators. When applied forces result in strains within the structure, 

the surface charges on each layer can be collected through a SUrratT (, \ect.rocle (i.e. it can 

be coated on the layer) to an outside detector. The deformatioll ca.11 therefore be mea­

sured. Conversely, if a voltage field is linked to a certain piezoelectric: layer, the shape 

change within that layer can be used to actuate the structure. Tlte surface electrode, 

which covers the piezoelectric layer, can be placed at any desired luca.tion. Gilly the 

portion of the piezoelectric layer covered by the electrode can ini Lie! te the effect. 

In Figure 1, a piezoelectric film with covered electrodes, and the poling and rolling 

(stretching) directions are shown. Figure 2 presents three possible JdOl"lllat.ions of piezo­

electric laminated plate when applying an electric field. Both figures are taken from the 

work of Lee [84]. 

Equations to Describe the Piezoelectric Medium 

To describe the behavior of a piezoelectric medium, there are fi ve mechanical and 

electromagnetic relations (or equations) involved: 

(1) the stress equations of motion/equilibrium, 

(2) the strain - displacement relations, 

(3) the charge equation of electrostatics, 

(4) the electric field - electric potential relations, and 

(5) the constitutive equations. 

These are given sequentially as follows: 

(Ii = 0) ( 1 ) 

Here Tij are stress components, p is material density, Uj are COlllp\J:I<'Il\.s of accelera.tion , 
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and the body forces Ii are assumed to be zero. 

1 
5-- - -(u - -+ u -- ) I] - 2 I,] ],1 (2) 

Here Sij are strain components and Ui are components of displacernellt. 

(3) 

Here Di are the components of the electric displacement, or electric flux dens'ity, along 

the i direction. 

Here Ek are electric field along k direction and <P is electrostatic putential. ~ 

The piezoelectric constitutive equations present the reiatiolls ailiollg : 

(1) the stress field, the strain field, and the electric field ; 

(2) the electric displacement, the strain field, and the electric field . 

They can be written as follows. 

(4) 

(5) 

(6) 

The elements Cijkl are elastic constants, ekij are piezoelectric coefficients, and eik are 

dielectric constants. In this research, the constitutive relations of all orthotropic layer off­

axis are followed. The elastic stiffness matrix and the matrix of piezoelectric coefficients 

are gIven as 

Cll C12 C13 0 0 C16 

C12 C22 C23 0 0 C26 

C13 C23 C33 0 0 C36 

0 0 0 C44 C45 0 
(7) 

0 0 0 C54 C55 0 
C16 C26 C36 0 0 C66 

and 

[ e~1 
0 0 e14 e15 

eU 0 0 e24 e25 

e32 e33 0 0 
(8) 

The indicial notations Cijk1 change into Cab, also ekij change into tJw (a, b = 1,2,·· · ,6, 

and k = 1,2,3). 
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The total set of 22 equations in 22 variables can fully define a given piezoelectric 

medium. Several additional equations related to linear piezoelectricity are briefly intro­

duced here. 

The equation to describe the total surface charges q(t) at time t, which are collected 

by a surface electrode and sensed by the outside detector, is given by 

(9) 

Here n is the normal vector of the small surface area dS, and D is the electric displacement 

vector in the piezoelectric medium. This equation represents that the D passing through 

the surface with electrode are collected. The internal energy function ca.n be written a.s 

(10) 

The first item of right hand side is the strain energy per unit volurne. The second is 

electrostatic energy density. Finally, the electric enthalpy H per L111it volume is defined 

as 

H(S,E) U - E . D = U - EiDi 

~CijklSijSkl - ekijEkSij - ~cijEi Ej (11) 

The electric enthalpy will be used in Hamilton's principle in the next section. 

Hamilton's Principle for Linear Piezoelectricity 

In this section, the generalized Hamilton's principle for a piezoelect.ric medium is pre­

sented. The variational formulations developed in subsequent chapters depend critically 

on this expression. For the plate geometry, this expression will be gi ven in terms of rect­

angular Cartesian coordinates. For the shell, the variational formulation will be developed 

in both the cylindrical and the curvilinear coordinates. 

In this research, the generalized Hamilton's principle is used as 

Where 

1t1 lt1 
8(K - U)dt + - 8Wdt = 0 

to to 

K = r ~pti. tidV 
Jv 2 

8W = r (f·8u + 8(E· D))dV + r (t·8u - JJ84»dS' Jv Js 

11 
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Here K- is the kinetic energy of the system, U is the internal energy of the piezoelectric 

medium, and oW, virtual work done to the system. The four items on the right hand 

side of equation 14 represent the virtual work done by (1) body force in a virtual dis­

placement, (2) variation of electric field in a electric displacement, as · well as variation 

of electric displacement in a electric field, (3) the prescribed surface tractions in a vir­

tual displacement on medium surface, and (4) the prescribed surface charge a- in a small 

variation of electrical potential ¢>. 

Since the applied electric field E and electric displacement D are interdependent, the 

system is not conservative. The body force f is assumed to be zero here. The expression 

of equation 14 is the governing equation used in this research , and is written as 

1tl j [1 ] 1tl 1 - -D dt -PU(Ui - H(Skl , Ek) dV + dt (tiDUi - a-b<!» dS = a 
to V 2 to 5 

(15) 

Here H(Skl, Ek ) is the electric enthalpy, which replaces the terms of in ternal energy and 

E . D in equation 14. The value will not be changed due to the coordill CLte transformation . 

The variational form of H is expressed as 

8H 8(U - E . D) = 8U - 8(E . D) 

(16) 

These equations will be used extensively in later chapters. Depellding on the problem 

geometry and coordinate system used, the form of these equatiolls will be different and 

are detailed for each case in the following chapters. 
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3. SEMI-ANALYTIC SOLUTIONS 

This section details a discussion of what are termed semi-analyti c solutions for simply­

supported laminated piezoelectric plates. This work was an extellsion of work completed 

by the principal investigator and the technical monitor of this research project (DAS). 

The phrase "semi-analytic" denotes the fact that use of Navier-type displacement fields 

will identically satisfy the in-plane requirements of a simply supported plate for the exact 

solution of the equations of linear piezoelectricity. In this case, as for the exact solutio~ 

included in a later chapter, the problem effectively becomes one-dimensional. 

The new and major thrust of this section is to detail 1) the relati ve accuracy of the . 

two major out-of-plane displacement approximations used in previ()lI'; work in comparison 

with exact solutions, and 2) description of an alternative displa.cement field that was 

found necessary to accurately model piezoelectric plates. This field uses piecewise linear 

variation of the out-of-plane displacement components that are difFerellt tha.n those for the 

in-plane and potential components. This is discussed to some exLt'ut ill Lhe chapters on 

the pl~te and shell elements, but is included here because it wa~ rut' this cla.ss of problem 

that a preliminary numerical algorithm has been completed and results computed. 

Governing Equations 

Geometry 

The geometrical configuration of the laminate is such that the thickness dimension of 

the laminate coincides with the z-direction, with the lengths of the plate in the x and 

y directions denoted as Lx and LlI , respectively. The general probl<-:lll considered in this 

study is to determine the behavior of the elastic and electric field cOillponents throughout 

the' laminate under an applied mechanical or electrical loading. Ea.ch la.yer of the laminate 

can be composed of a purely elastic, piezoelectric, or conductillg lllatel'iai. The forcing 

function is introduced through either an applied surface displacement, traction, potential, 

or electric charge. 

Variational Formulation 

A single piezoelectric layer has the constitutive equations givell by [67] 

Uij = CijSj - ejiEj 

Di = eijSj + f.ijEj 
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Here (Jij are the components of the stress tensor, C ij are the elastic stiffness components, 

Sj are the components of infinitesimal strain, eji are the piezoelectric coefficients, Ei are 

the components of the electric field, Di are the components of the electric displacement, 

and Cij are the dielectric constants. The poling direction in this study is coincident with 

the X3 or z axis. 

The strain-displacement relations are given by 

5i j = ~ (OUi + OUj) 
2 OXj OXi · 

( 18) 

Here Sij are the components of the infinitesimal stain tensor and lI , rq)l"(~sent the displace-

ment components. To be consistent with equation 17, the conventional notation for the 

strain indices has been used, i.e. S11 = 51, 523 = 54, etc. The elect.ric field components 

Ei are related to the electrostatic potential ¢> using the relation 

O¢ 
Ei =-­

OXi 
(19) 

For the materials used in this study, it is assumed that the non -zero components of the 

rotated piezoelectric tensor eij are e31, e32, e33, e24, e1S, e2S, e14, alld e36· The elastic 

stiffnesses Cij are those of an orthotropic material rotated about the z axis, and the 

dielectric constants are given by C11, C12, C22, and C33. 

The starting point for the variational formulation is Hamilton's principle for a piezo­

electric medium [67], expressed as 

Here t is time, V and 5 are the volume and surface occupied by and bounding the solid, 

l and a- are the specified surface tractions and surface charge, respectively, 8 is the vari­

ational operator, the. superscript represents differentiation with respect to time, and H 

represents the electric enthalpy. The electric enthalpy is given by 

(21 ) 

14 
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The weak form of the governing equations, as well as the governing differential equa­

tions themselves, can be found by applying the variational operator in equation 20 over 

a typical element. For the material constants of a typical lamina lIsed in this study, the 

first variation of the electric enthalpy is 

5H - C OU 05u ...!.. C ou 05v C OU 05w C ou (05u 05v) 
- 11 ox ox I 12 Ox oy + 13 ox oz + 16,oX oy + Ox + 

C ov 05u I C ov 05v C ov 05w C ov (05U 05V) 
12-0 -0 T 22-0 -0 + 23-0 -0 + 26-0 -0 + 0 + yx yy y z y y x 

C
ow 05u I C Ow 05v C ow 05w C Ow (oou OOv) 

13 -8 -8 T 23 -8 -8 + 33 -8 -8 + 36 --;:;- -0 + 0 + z x z y z z . uz y x 

C (
OV OU') (OOV 05W) C (OV " ow) (OOU oow) 

44 -+- -+-- + 45 -+- -+ + OZ oy oz oy 0:: oy OZ ox 

C (
ou OU') (OOV oow) C ((fu ow) (oou OOW) 

45 - + - - + -- + 55 - + - - + + 
oz ax oz oy 0:: ox OZ ox 

C (
OU Ov) obu C (OU Ov) 001) 

16 -0 + -0 -0 + 26 -0 + -0 0 + y x x y x y 

C (
au Ov) oow C (OU Ov) (OOU OOv) 

36 -+ - --+ 66 -+- -+ -oy ox OZ oV ox oy ox 

e140El - + - - elSoEl - + - - e240E2 - + -, - - e250E2 - + -(
OV ow) (OU ow) (OV ow) (OU ow) 
OZ oy OZ ox OZ oy OZ Ox 

ou OV iJlI.' _ (OU Ov) e310E3-. - - e320E3- - e330E'j-. - - e360E3 -, - + -
ox oy oz oy ox 

tllEltEl - t2~E20E2 - t33E35E3 - t12E10E2 - t12 E20E l -

(
OOV oow) (OOU OEW) (OOV oow) (aou OOw) e14 E1 - + -- - elSEl - + -.- - e24E2 - + -- - e2s E2 -. - + -
8z oy OZ Ox OZ oy OZ ox 

OOU OOV OOW (OOU OOv) e31E3- - e32E3- - e33E3-.- - e36E3' - + (2:2) 
ox oy oz oy ox 

Using the assumption of periodic motion, the substitution of this expression into equation 

20 yields the final weak form, which pro\'ides the basis for the fillitl:'-e1ement approxima­

tions over an element. It is possible to integrate this expression by parts to gi ve the three 

equilibrium equations and .the conservation of charge equation. For brevity, results of this 

step are not included here. 

Displacement Functions 

There are several cases in both static behavior and free-vibra.tiull C:l.llcdysis for which 
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either exact solutions are available or global in-plane functions call represent the elastic 

and electric fields within the laminate. One such case is for simply-supported plates. In 

this case, the Navier-type boundary conditions along the edges of the plate are given as 

w(x, 0, z) = w(x, Ly, z) = w(O, y, z) = w(Lx, y, z) = ° 
4>(x,O,z) = 4>(x,Ly,z) = 4>(O,y,z) = 4>(Lx,y,z) = ° 

u(x, 0, z) = u(x, Ly, z) = ° 
v(O,y,z) = v(Lx,y,z) = 0 

These conditions are satisfied exactly for the functions 

u(x,y,z) = U(z)cospxsinqy =' Uexp(sz) cospxsill qy 

v(x,y,z) = V(z) sinpx cos qy = Vexp(sz)sinpxcosqy 

w(x,y,z) = W(z)sinpxsinqy = Wexp(sz)sinpxsinqy 

4>(x, y, z) = <I>(z) sin px sin qy = ~ exp(sz) sin px sin (IY 

Finite Element Approximation 

(23) 

(24) 

(25) 

The through-thickness approximation for each displacement COlllponent and the elec­

trostatic potential can be given as 

n 

u(z, t) = L Uj(~)~j(z) 
i=l 

n 

v(z, t) = L Vj(t)~j(z) 
j=l 

n 

w(z, t) = L Wj(t)~j(z) 
i=l 

n 

4>(z, t) = L <I>j(t)~j(z) 
j=l 

(26) 

Hence the variables are represented by linear combinations of a known through-thickness 

distribution ·described using the one-dimensional Lagrangian interpolation polynomials 
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~i(Z) [14,16]. The in-plane distributions are already included in the total approximation. 

Here (n-1) is the number of subdivisions through the laminate thicklless (typically taken 

equal to or greater than the number of layers in the laminate), and U ii is the value of 

component u at height j corresponding to the i-th in-plane approximation function . 

The difference between the two theories considered here is in the form of ~j. For 

the case of constant transverse displacement through the thickness , this function is equal 

to 1. For a variable-w approximation, this function can _be any Lagrangian interpolation 

polynomial. It is also possible to use functions in the z-direction which are non-zero only 

over specified regions. This would be most useful for the functiolls W~ for conducting 

materials, in which case the potential is a constant . Als-o, independent approximations 

for all variables can be used by denoting different ranges and limits of integration for each 

component. 

Substituting these approximations into the weak form and colk-cLillg the coefficients 

allows the governing equations to be expressed in matrix fornl as 

[ 

[Nfll] 
(0] 
[0] 
[0] 

[0] 
[M22] 

[0] 
[0] 

[0] 
(0] 

[NI33
] 

[0] 

[0]] 
(0] 
[0] 
[0] 

The elements of these matrices contain additional submatrices wllose elements are de­

termined by evaluating the pre-integrated elastic stiffnesses, piezoelectric coefficient, or 

dielectric constant through the thickness multiplied by the variolls shape functions or 

their derivatives as determined by the variational statement. These a.re identical to those 

of the plate element, and as such are not stated here. They are documented in the next 

chapter. 

The nature of the submatrices depends on the approximation used for w. For variable 

w, the structure of [Ki3] are similar to those of the other matrices. Depending on the 

approximation functions used, this type of model is either similar or identical to a three­

dimensional finite element model of the equations of piezoelectricity. This aspect and other 

computational issues regarding these types of models for elastic lami Ilel.tes a.re discllssed in 

[61]. For constant w, the submatrices within [K13], [K23], and [K13
] i\re column vectors and 

those in [1\33] become scalars. In general, the submatrices within (f<ii] are each of order 

(n+1), while the [Kii] themselves depend on the order of in-plane a.pproximation. These 

17 
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can be defined by the subscripts a and {3. The final representation of these elements can 

be expressed in fairly compact form and are given in the chapter on the plate element. In 

matrix form, they are written as 

[ 
[M] [0]] { {Li}} · [\I<D.D.J 
[0] [0] {J} + I<<PD. \

I<D.<PJl { {6} } = { {OJ } 
I<<P<P { <p} {O} 

(28) 

Assuming periodic motion and eliminating the potentials results in the eigenvalue 

problem 

. ([R] - w 2 [M]) {6} = {OJ 

where 

(29) 

The numerical results for the preceding theories are given in a later chapter. However, 

it is necessary to note at this point that the case of a constant trausverse displacement 

gave results for both the static and dynamic cases that was wholly inadequate for most 

geometries. Part of the reason for this was the fact that the transverse strain must be zero 

in this case, which implies that the actuation strain is also zero. For any dimension plate, 

this is a hindrance far more severe than for the pure elastic case, as this strain figures 

significantly in the stress computation and in the evaluation of the electric enthalphy 

terms. 

This type of behavior can be asauaged by introducing approximations for w that are 

at least linear through the thickness of the entire laminate. This is accomplished using 

an approximation function for w through the thickness of the laminate that is completely 

independent of the two in-plane components and the electrostatic pot.ential. 

This type of approximation can be thought of in the following [a$hion . Each indi­

vidual layer can be described by one or more "real" layers for purposes of finite element 

discretization through the lamina thickness, composed in this study of linear Lagrangian 

interpolation polynomials. Spanning o\::er these layers is one or more ··pseudo-layers" (see 

Figure 3), which is the range of layers encompassed by the linear approximation for any 

of the variables, which in this case will be the transverse displacement w. For example, 

18 

----- ----~ 

\ 

\ 

f 



i 
I 
! 

,--------~ 

-~~ ---~ ------~ - - - ---~. 

consider a plate with three physical layers, which is mo-deled using three layers (and 4 

nodes) for u, v, and ¢J but a single pseudo-layer for w. Each of the linear basis functions 

for u, v, and ¢J has support only over two layers, with the basis fUllclion for w spanning 

over all layers . 

The shape functions for the i-th layer for each of the true layers are given in terms of 

the global z-coordinate as 

'l/;t _ Zq - Z 

1 - h . , 

(30) 

Here hi is the thickness of each of the true layers, and the t superscript indicates "true" 

and corresponds to the approximations for u , v, and ¢J (and any, aIL or none of these may 

have this type of approximation). 

The approximation functions for the transverse displacement cOlllponent are given by 

(31 ) 

Here Lk is the thickness of the k-th pseudo-layer, and the values for 0, {, and f3 change 

for each true layer, with their values being given by 

(32) 

(33) 

, 
f3i = 1 - L 0i (34) 

j=l 

By analytically integrating the products of the appropriate shape functions and their 

derivatives, the appropriate sub-matrices similar to those computed ea.rlier for the original 
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two theories can be obtained. This approach has the significant ad vantage of allowing a 

transverse normal strain through the laminate thickness but introducing only (potentially) 

one new degree of freedom. By allowing a transverse normal strain , the difficulties of the 

constant-w theory disappear. Examples of this type of behavior are given in a later 

chapter, but indicate one of the major conclusions of this study: it appears that the 

constant-w theory is wholly inadequate for modeling the behavior of piezoelectric solids 

because of the inability to model the normal actuation strain. 

20 



4. THE PLATE ELEMENT 

In this chapter, the theoretical formulation for piezoelectrically Ia.minated composite 

plates are presented. The variational form is obtained using Hamilton's principle for a 

linear piezoelectric solid [67]. The equations resulting from this variatioual statemen twill 

be solved using the discrete-layer theory similar to that described in the preceding chapter, 

in which the three-dimensional elasticity theory is reduced to a two-dimensional laminate 

theory by assuming an approximation of the displacements through the thickness . 

In this study, a piece-wise linear variation is assumed for the in-pla.ne displacement and 

for the electrostatic potential components through the thickness. H.egarding the trans­

verse displacement components, three theories will be presented: 1) it COllstant transverse 

displacement through the thickness, 2) a piece-wise linear varia.liull through the thick­

ness, and 3) an independent piece-wise linear variation through tlte thickness different 

than that of the in-plane and potential components. 

Governing Equations 

ELectric Field-PotentiaL and Strain-Displacement Reiations 

The electric field components are related to the electrostatic potential by [67] : 

(35) 

In Cartesian coordinates, the above expression yields: 

(36) 

In addition, the strain-displacement relations are given by: 

1 
S·· = -(u ·· + u · ·) I) 2 I,) ),1 

(:37 ) 

which turns into the following six components when is expressed in cartesian coordinates: 

au 
Sxx= -ax 

av 
S1I1I= -ay 

ow 
Sz> =-- Oz 
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Constitutive Relations for a Piezoelectric Material 

For a piezoelectric material, the mechanical behavior is coupled together with the 

electrical behavior. This electromechanical coupling is described b,y [GTl: 

Di 

CijklSkl - ekijEk 

eik1Ski + tikEk 

(38) 

(39) 

Here O"ij represent the components of the stress tensor, ekij are the components of the 

dielectric permittivity or the piezoelectric constants of the solicl, tik are the components 

of the dielectric tensor, Di are the components of the electric displacement tensor, and 

Cijkl are the components of the elastic stiffness tensor. 

Since we are interested in a linear theory, it is important to note that: 

Taking into account this symmetry of the material, Nye [68] compressed this notation 

by replacing ij or kl by p or q, ..... here i,j, k, and I take the values 1,L and :3, and p and q 

take the values 1,2,3,4,5, and 6. Hence the equations can be rewritLell as: 

p=1,2,· ·· ,6 

Di i = 1,2,3 

q= 1,2"",6 

k=1,2,:3 

( 40) 

(41 ) 

Now that the elastic, piezoelectric, and dielectric constants are specified by two indices, 

they can be written in matrix form as follows: 

C11 C12 C 13 C14 C15 C16 
Cn C22 C23 C24 C25 C26 

Cij = C13 C23 C33 C34 C35 C36 
C14 C24 C34 C44 C45 C46 

( 42) 

C15 C25 C35 C45 C55 C56 
C16 C26 C36 C46 C56 C66 

[ "II 
e12 e13 e14 e15 

"16 ] 
ekp = e21 e22 e23 e24 e25 e26 

e31 e32 e33 e34 e35 e36 

( 43) 
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[ 

1:11 1:12 1:13] 

I:ij = 1:l2 1:22 1:23 

1:13 1:23 1:33 

( 44) 

At this point, we have 21 independent elastic constants, 18 independent piezoelectric 

constants, and 6 independent dielectric constants. Because of the symmetric properties 

of some piezoelectric materials, these matrices can be further simplified. For instance, for 

a monocliI?-ic material, which can represent an orthotropic layer oriented off-axis, these 

matrices can be reduced to: 

Cll Cl2 C13 0 0 C16 

C12 C22 C23 0 0 C26 

Cij = C13 C23 0 33 0 0 C36 (4.5 ) 
0 0 0 e'14 o.tS 0 
0 0 0 c.IS Css 0 

C16 C26 C36 0 0 C66 

U, 0 0 e14 e1S 

e~ ] 
ekp = 0 0 e24 e2S ( 46) 

e32 e33 0 0 

[ 'u 
0 

,~ ] I:ij = ~ 1:22 (4 7) 

0 

Thus the material with this type of symmetry is described by 1:3 independent ela.stic 

constants, 8 independent piezoelectric constants, and 2 dielectric COllstants. 

Variational Form of the Governing Equations 

In classical mechanics, the Hamilton's principle for a system ,·vith nonconservative 

forces states that: 

51
t 
Ldt + 1t 5Wdt = 0 

to to 
(48) 

where 

In the above expressions, t is time, L is the Lagrangian energy fUlIction, T is the kinetic 

energy, V is the potential energy, OVV is the work done by the nOIln>Il ~erva.live forces in a 

virtual displacement, and 5 is the variational operator. 
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As noted in earlier chapters, Hamilton's principle for a zero body and surface forces 

is given by 

0ltdtl[~pti.ti. - (~C .. S·S. - e··E·S · - ~& •• gE ·ldv - 0 
to v 2 J J 2 'J '] 'J' J 2 ""J 'J -

(49) 

The weak form of the governing equations can be found by substitutillg the elastic strain­

displacement and the electric field-electric potential relations and by operating the vari­

ational operator 0 on Hamilton's principle. Assuming static conditions, the above proce­

dure yields the following for an off-axis, orthotropic piezoelectric layer: 

oH - c au oou c au oov c au OOW c (au oou ou oov) + 
- 11 ~ ~ + 12 ~ ~ + 13 ~ ~ + 16 ~ ~ + ~ ::l ux ux ux uy ux uZ ux uy ux ux 

c av OOu c avaov c avaow c (OV dbu. av Db!) + 
12~~ + 22~~ + 23~~ + 26 ~-;.:;- + -;:)~) uy ux uy uy uy uZ uy uy oy ux 

C Ow oou C OW OOv C Ow oow C (ow· o8u Ow oov ) + 
13~~ + 23~~ + 33~~ + 36 ~~ + -;:;-~ uZ ux uZ uy uZ uZ uZ uy uZ uX 

C
44 

(ov oov + ov oow + Ow oov + OW oow ) + 
OZ OZ oz ay ay OZ oy oy 

C (
ov oow ov aou Ow o5w Ow OOU ) 

45 ---+---+--+-- + 
oz ax az az ay Ox oy oz 

c (ow oov Ow aow au OOV au oow + 
45 ~~ + ~~ + ~-;:;- + :1~) ux uZ ux uy uZ uZ uZ uy 

Css(awaow + awaou + au oow + AU oou) 
ax ax ax oz Oz. Ox Oz OZ + 

c (au oou avaou) c (au aov avaov) c (au oow ov oow) + 
16 J:l~ + J:l~ + 26 J:l"!l + ~~ + 36 J:l~ +-;;)~ uy ux ux ux uy uy ux uy uy uz ux uZ 

C
66 

~u aou + au aov + O~ ~ou + ~v OOV ) + 
(Oy oy ay ox Ox oy ih: 0:1.' 

( 
OV oO<p Ow ao<p) (Ow OO<p au oo<p) + 

e14 ~~ + ~~ + e15 £:l~ + ~~ uZ ux uy ux ux uX uZ uX 

( 
av ao<p Ow ao<p) (ow OOt{) ou OOt{)) 

e24 ~~ + ~~ + e25 £:l-;:;- +:1~ + uZ uy uy uy ux . uy uz uy 

au oo<p av oO<p ow oo<p OtL oO<p OV oo<p 
e31--- + e32--- + e33-- + e36(--- + -. -.-) + 

ox oz ay az az az oy a:; ox oz 

( 
a<p aov a<p aow) (o<p OOW o<p oon ) e14 ---+ -- +elS -- + --- + 
ax a Z Ox oy ox O;t a;/; 0:; 
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( 
Oc.p o8v oc.p o8w) (Oip o8w o<p o8u 

e24 oy OZ + oy oy + e25 oy ox + oy OZ) + 

O<p o8u oc.p o8v o<p o8w (o<p o8u o<p 08v) 
e31-- + e32-- + e33--- + e36 --+--

OZ ax OZ oy OZ OZ OZ oy OZ ox 

oc.p o8c.p o<p o8<p o<p o8c.p 
t11- - - - t22--- - t 'jJ--- (50) 

ox ax oy oy . oz oz 

Discrete-Layer Approximation 

Three theories are presented in this work. The first asssumes a piece-wise linear vari­

ation of the transverse displacement through the thickness . The secolld yields a constant 

transverse displacement through the thickness. The last uses inclepelldent piece-wise lin­

ear approximations for \V and the remaining in-plane and potelltia.l componellts. All 

theories are based on the general laminate theory of Reddy [:32] for elilstic lal1linates. with 

th~ added feature that the electric potential is included as an additiolli·d variable. 

A piece-wise transverse displacement model 

This theory is based on approximations of the displacement and potential variab les in 

the following form: 

n m n 

u(x, y, Z, t) = L Uj(x, y, t)~j(z) = L L Uji(t)wi(x, V )\~j(z) 
j=1 i=1 j=l 

n m n 

v(x,y,z,t) = LVj(x,y,t)~j(z) = LLVji(t)Wr(X ,y)l~j(Z) 
j=1 i=lj=l 

n m n 

w(x, y, z, t) = L Wj(x, y, t)~j(z) = L L ltVji(t)wi(x , y )\~j(z) (51 ) 
j=1 i=lj=l 

In similar way, the approximation for the potential can be written as: 

n m n 

cp(x, y,z, t) = L <I>j(x, y, t)~j(z) = L L <I>ji(t)WnX, V)\~j(z) (52) 
j=1 i=1 j=1 

where u,v, and w represent the displacement components in the x,v , and z directions 

respectively of a material in the underformed laminate, and <p represents the electric 
. . 

potential. In the above equations, two approximations have been made. In the first one, 

th~ transverse variation of the displacement field is defined in terms or the one-dimensional 

Lagrangian interpolation polynomials ~ j(z) which are associated ·\\'it.h the j'h interface 

of the layers through the laminate thickness and are defined only 011 two adja.cent layers . 
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The laminate is divided into n nodes distributed through the thickness at the ph level, 

defined by Z = Zj in the undeformed laminate. At this level of approximation, the 

functions Uj(x, y, t),Vj(x, y, t),1tVj(x, y, t) , and <Pj(x, y, t) represent tile displacement and 

potential components of all points located at the ph plane. In the second approximation, 

the in-plane displacement and electric potential field have been defined in terms of the 

two-dimensional Lagrangian interpolation polynomials W (x, y). The j th plane is divided 

into two-dimensional finite elements and m represents the number of nodes per everyone 

of these elements. At this level of approximation, the functions Uji , Vji, ltVji , and <Pji 

represent the values of the components u,v,and w , and cp at height j corresponding to 

the ith node of the two-dimensional finite element. 

Now substituting equation 51 and 52 into the variational form or [-lamilton's principle 

50, integrating with respect to the thickness coordinate z, and colleeLing terms , the final 

equation in matrix form can be expressed as: 

(53) 

or 

{ 

{Il} } _ {F} 
- {r} 

{r} e 

(54) 

The elements of the stiffness matrix [K]e and force vector {F} e are given below: 

j [[All]ow~ OW~ + [A16](OW~ OW~ + OW~ o.wo)+ 
. A ax ax oy ax ax ay 

[D55]W~Wu + [A66]OW~ OW~l dxdy 
{3 oy oy 

j [[A12]OW~OW~ +[A26)OW~OW~ +[A16]O?~O.W~+ A ax oy oy oy o:t ox 

[D45 ]W u Wv + [A66 ] aw~ a-w~l dxdy 
Q {3 oy ax 
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{q} (56) 

(57) 

The matrices involved in the above equations result from the evaluation of the integra­

tion of the elastic and dielectric constants through the thickness of the hminate. These 

matrices can be written as follows: 

(58) 

Dk;n 
1J 

'£ 1 ZI+1 Ckm dWi~Z) dWj~z) dz 
/=1 Zl d_ d.:. 

(59) 

B~m 
1J 

'£1 ZI+1 CkmWi(z)dWj~Z)dz 
/=1 ZI d.:. 

(60) 

B~m t 1 ZI+1 
Ckm dW~(z) Wj(z)dz 

1J 
/=1 Zl Z 

(61 ) 

E~m 
1J 

N 1ZI+1 dWi(z) -
~ ZI ekm dz Wj(z)dz (62) 

E~.m N 1ZI+1 - dWj(z) L ekm Wi(Z) d dz 1J 
/=1 ZI Z 

(63) 

E~m '£ 1Z'+
1 

ekmWi(Z)Wj(z)dz 1J 
/=1 ZI 

(64) 

E~.m 
IJ 

'£ 1Z'H dWi(z) dWj(z) d ekm Z 
/=1 ZI dz dz 

(65) 

-

G~;n 
I) 

'£ 1Z'+1 dWi(z) dWj(z) d? 
ckm -

/=1 ZI dz dz 
(66) 

(67) 

where N is the number of subdivisions through the thickness and, in general, it will be 

taken equal or greater than the number of layers in the laminate. 

The theory which allows independent piece-wise linear approxima.tions for wand the 

remaining components can be represented by the above discussion, with the provision that 
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now the through-thickness linear Lagrangian interpolation poiyuulilidis will differellt. 

A constant transverse displacement model 

The following approximations for the the displacement and potential variables are 

assumed: 
n m n 

u(x,y,z,t) = LUj(x,y,t)Wj(z) = LLUj;(t)ll1i(x,y)Wj(z) 
j=1 i=1j=1 

n m n 

v(x, y, z, t) = L Vj( x, y, t)Wj( z) = L L Vj;(t)ll1i(x, y) \~j(.:) 
j=l ;=1 j=l 

n 

w( X, y, t) = L VVi (t) W;" (./:, y) 
i::::1 

n m n 

cp(X,y,z,t) = L<Pj(x,y,t)Wj'(z) = LL<Pji(t)\1tf(x,!J)\~ .;(Z) (68) 
j=l i=:=1 j=1 

The only difference between these approximations and those a::;sulIl<., J ill Lhe uther models 

is found in the approximation used for the transverse displacelllelJl ill the .:; directioll. In 

this model, the transverse displacement is considered constant through the thickness and 

therefore the one-dimensional Lagrangian interpolation polynomials ~ j (z) used before is 

equal to one. The Wi represents the transverse displacement corresponding to the i - th 

node of the two-dimensional finite element used in the approximatiolls through the x - y 

plane. 

Proceeding in the same way as that used in the other model, (II<' following element 

stiffness submatrices of [K]e and the force vector {F}e are obtaillcd cutd lllay be written 

as: 

j [[A12]aw~ aW~ + [A26]aw~ aW~ + [A 16]O.W: J,\~~ + 
A ax ay ay oy Ox Ox 

[D45]W~W~ + [A66]a~~ °aW!] dxdy 

29 



[J(13]a,6 - 1 [{ AB45} q,u owtr + {AB55} q,u OWW.a ] dxdy 
A a oy a aX 

[J(14]a,6 -
[ OW~ OW~ OW u 1 [E2S]w u _f3 + [ElS]w u _f3 + [E31 ]_Ct W·"?+ 

A a oy a Ox Ox f3 

[E36] OW~ W~ 1 dxdy 
oy f3 

[J(22}af3 - 1 [[A22J ow~ OW~ + [A26J( OW~ OW~ + OW~ 0.wp)+ 
A oy oy Ox oy oy Ox 

[D44 JWV WV + [A66J_O _f3 dxdy OW v OWV] 
Ct f3 Ox Ox 

[J(23]af3 - 1 [{AB44} WV owtr + {AB4S} WV OWWf3] dxdy 
A a oy a OX 

[J(24]af3 -
[OW~ OW~ OW v 1 E14W~_f3 + [E24W~~ + [E32]~W':+ 

A Ox oy oy J 

[E36] OW~ w~] dxd~ 
Ox f3 

[J(33Jaf3 1 [AA44 OW~ owtr AA4S( OW~ owtr OW~ oWi3 - --+ --+--+ 
A oy oy OX 8y 8y Ox 

AASS_a _f3 dxdy aW w 8W
W

] 

Ox Ox 

[f{34]af3 
[ OW tiI OW~ OW tiI OW"" o'l!tu o\ll 'P 

- 1 (EE14)_a _f3 + (EElS)_a _f3 + (££14)_0 _13 + 
A oy oy Ox Ox 8y oy 

(EE2S )_Ct _f3 dxdy OWtil OW~] 
Ox oy 

[J(44]af3 -
[ - OW~ OW~ OW~ OW~ - ] 1 [Gll]_a _f3 + [G22 ]_a _f3 + [G33]W~W'" dxdy 

A OX ox oy oy 13 
(69) 

(70) 
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As before, the matrices and vectors involved in the above equations result from the 

integration of the elastic and dielectric constants through the thickness of the laminate. 

These matrices and vectors can be expressed as : 

N 1zl
+1 L Ckm~i(Z)~j(z)dz 

1=1 ZI 

(71) 

(72) 

(73) 

E~:n 
I] 

(74) 

(75) 

(76) 

(77) 

Transformation Matrices 

In this work, it is desirable to simulate the behavior of a shell elellH:'IIL derived from the 

plate element using an assemblage of flat plates. In this sectiolls it is assuilled that the 

behavior of a continuosly curved surface can be adequately represented by the behavior 

of a surface built up of small plate elements. 

Consider a typical plate element as derived in this section of the report. In general, 

there are four degrees of freedom per node in the ph level, and depending on the approx­

imation used for the transverse displacement, w, in the z direction we would have either 

4*(number of layers + 1) when w is a linear function through the thicklless of the laminate 

or 3*(number of layers +1) +1 when w is considered constant through the thickness of 

the laminate as the total number of degrees of freedom per node through the thickness. 

The independent approximation case can be considered in this sectiolJ a.s well. 

The stiffness matrix derived before was based on a system of local coordinates, there­

fore a transformation of coordinates from a local system, (x',y',z') to a global system 

(x,y,z) will be necessary in order to assemble the elements and to write the appropiate 
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equilibrium equations. Moreover, it will be convinient to read the element node coordi­

nates in the global system and get from these the local coordinates . 

Therefore according to figure 14, we have that: 

{V'} = [T]{V} (78) 

where Y:' are the components of a vector on the local system, Vi are the components of 

a vector on the global system, and Tij are the cosine angles between the local and global 

axes and the matrix is given by: 

Tij = [~ co~{3 Si~{31 
o -sin{3 cos{3 

(79) 

The cosine angles can be calculated by the following expressiolls: 

(80) 

Since we have to transform both the forces and displacements by using the equation 

78 and taking into account that [kiocad {~Iocal } = {Flocad , we get the filial relationship: 

(81) 

but 

(82) 

therefore we can write equation 81 as: 

(83) 

where 6; ate the components of the displacement vector, F; are the components of 

the force vector, k ij are the components of element stiffness matrix in local coordinates, 

and J(ij are the components of the element stiffness matrix in the global coordinates. 

Therefore for one node in a linear plate element and for both theories , with w varying 

and w constant through the thickness, the corresponding displacement vectors will appear 

as 

Un 
U12 

VII 
VI2 (84) 

l 
ltV11 

J 

W12 

<P11 
<P 12 

32 



! 
Un 

1 
UIZ 

ViI 
V12 (85) 

I WI 

J 
4>n 
4>12 

and the corresponding transformation matrix [T] will be: 

1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 cosf3 0 sinf3 0 0 0 

Tij = 
0 0 0 cos/3 0 sin/3 0 0 
0 0 - sin,S 0 cos/3 0 0 0 
O. 0 0 -sin/3 0 cos/3 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 

Examples of applications of this element are included in the results cha.pt.er of this 

report. As of this writing, only the fiat plate case had been investiga.ted with the assembly 

of plates remaining to be studied. 
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5. THE SHELL ELEMENT 

In this chapter, the formulation for two laminated piezoelectric shell elements is given: 

the cylindrical shell and the general curvilinear shell. Both are based on solutions of the 

weak form of the equations of motion using the discrete-layer type theories described in 

the two preceding chapters. 

Variational Formulation in Cylindrical Coordinates 

A special case of a laminated shell is the cylindrical shell geometry, which is best 

formulated in cylindrical coordinates. Let u,v,w be the components of displacement along 

the r,B, and z directions in cylindrical coordinates, respectively. TI1f'strain-displa.cement 

relations and the stress equations of motion are given as 

ou lov u dw 
(86 ) Err =- EBB = --.- +- Ez ~ =-

Or r of) r - a:; 
av low au; au 1 au av v 

(87) 'YBz = oz + -; oB -;r:: = or + oz 'Y,'()=--+-' --
r 00 O'l" r 

1 a(rO"rr) 100"rB OO"n O"BO 
(88) pu - +--+---

r or r 00 OZ l' 

1 o(r2 0"Or) 100"BB oO"()z 
(89) pv - +--+-

r2 or r 00 OZ 
1 o( rO" ZT) 1 00" zB 00" zz 

(90) pw - +--+-
r or r 00 oz 

Because the normal vector of layer surface will be taken along ther-direction, also this 

direction is assumed to be the poling direction of each layer, the nt<Ltrix of piezoelectric 

coefficient is given as 
o o 

Tl (91 ) 

Also, the electric field can be written as 

(92) 

Hamilton's principle as writen in equation 14 can be expressed a::; 

l t1 1 [1 ] lt1 1 - -8 dt -PU(Ui - H(Skl, E k ) dV + dt (t i8ui - a8¢> )dS 
to V 2 to S 

l t1 d 1 { [- r - r - r] C ou o8u = to t v - puuu + pvuv + pwuw - 11 or or 
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This state provides the basis for finite element approximatioll::; to the equation::; of 

35 



motion as formulated in cylindrical coordinates, and are a special case of that described 

below. This more general case is described thoroughly and has a corresponding numerical 

algorithm that was completed as part of this proposal. 

Variational Formulation in Curvilinear Coordinates 

To analyze the laminated piezoelectric shell with arbitrary geomet. ry, curvilinear coor­

dinates ( see Figures 4 and 11) will be used here to overcome the disa.Jvantage from the 

integration directly using the global coordinate system. The local and global systems can 

be related using mapping technique. Let u, v, w be the components of displacement along 

the X-, y-, and z-coordinate directions of a Cartesian coordinate system, respectively. This 

coordinate represents the global coordinate system. The curvilinear coordillate system, 

described by ~-, 7]-, and (-coordinate directions, is the local system for the general shell. 

Let iL, il, w be the components of displacement along the C TI, (-n)ordina.t(-: directions. 

A laminated shell with complicated geometry can be separated illt U sl'\·crc.d sInal1 parts 

that function as shell elements, and described using more but simpler curvilinear coordi­

nates. In this section, the variational formulation will be expressed in terms of the local 

coordinate system. 

The strain-displacement relations and the stress equations of moL ion using the global 

coordinate are given as 

AU ov fJw 
C.XX = - C. yy =-ox oy t zz = a:: 

ow oU avow 
IYz = oz + oy IXZ = ox + oz 

ou i:Jv 
IXY = -0 +-0 y x 

pu 

pv 

pw 

The electric field can be written as 

(94) 

(95 ) 

(96) 

(97) 

(98) 

(99) 

The strain components in global coordinate system can be changed into the local system 
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with the coordinate transformations given by 

It can be written as : [t] = [J (~)] [€] (J (~)]T here e7)( e,7),( xyz e,7),( , 

[J( xy z)] = [i~ ~ ii 1 &T}i (7) (7) (7) 
<, '> ax £1L az 

a( a( a( 

Equation 100 can be further expressed as : 

tee €xx 

tT/T/ €yy 

{f.}{7)( = 
t« = [T] €zz 
(7)( €yz 
t{( €x;: 

Ee,., €xy 

[ J
1, J~z J~3 2JI2 J I3 2JIl J I3 2JIl J I2 

J~I J~z J~3 2J22J23 2J21 J23 2hl Jn 

J 31 J 3Z J33 2J32 1J3 2J3IJ33 2h1J32 

h l J 31 hzh2 J23i33 h2h3 + h31JZ hlh3 + J23 J31 hl1J2 + h2hl 
J Il J31 J I2J 3Z JI3i33 JI2J33 + J I3J32 JIlh3 + J13 J31 J Il J3Z + J 121J1 

J lI JZI J l zhz J13i23 J lz h3 + J I3hz J lIh3 + J 13 hl J ll h2 + Jlz hI 

ax 1 o( 
~ 
o( 
az 
a( 

1{ 
f:u 

fyy 

l::z 

f ll , 

(xz 

fry 

} 
The (u,v,w) in x,y,z system and (u,v,w) in ~,T},( system can be rela.ted lIsing 

The electric field (Ex, E y, Ez) and (Eel ET/l E zeta ) can be related using 

(100) 

(101) 

(102) 

(103) 

(104) 

The first differential of (u,v,W,</J)global to (x,y,z) and (u,v,w,</J)!J1v/) .• 1 to « , 71 , () can be 

related using the matrix, [J- 1 U:~:~ ) r· 
[ u~ U,y u~ 1 [ U, U,7) 

u,( 1 [~ 
£S. a, ] ax ay i:J' 

V,x V,y V,z V,e v ,7) v,( a,., (7) OT) (105) ax ay ::h 
Wx W,y W z we w,7) w( !!1 !!1 a( 
</J:x </J,y </J:z ie </J,T) </J:( ax ay az 
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The (-direction is located along the normal direction (also the poling direction) of the 

layer surface, and the ~- and "1- direction parallel to the layer surface. Hence equations 100 

and 102 can be used to present the elastic stiffness matrix and the matrix of piezoelectric 

coefficient in the curvilinear coordinate system. The variation of electric enthalpy, 5H, 

can be expressed as the following equation. 

5H - - T 
5(€ii, Edlocal (R][C]local (R][€ii, EJ ]local 

- 5[Elm, Edglobal[T*f[R][C]local[R][T-][Elm, Ed~obal 

5[ Elm, Edglobal [R] ([Y-f(R][C]'ocal[R][Y-]) [R][Elm 1 Ed~vbal 

5[ Elm, Ellglobal [Rl ([ Clglob-al) [Rl [Elm , Ell~obal 

5[UI ,m, ¢,dxyz[B][Clg'oa,(Bf[U"ml ¢,d;yz 
-. T -- T T 5[Ui,il ¢,il~rydJ ][B][Clglobal[Bl [J 1 [Ui,il ¢,i]~'i< 

Where 

[Elml Edglobal = [ ~xx Eyy Ezz Eyz Ezx Exy Ex Ey Ez ] 

[€ii, Ei] = [ €~~ local €ryry €(( €rye €~e €~ry E~ Ery Ee ] 

(U ¢ 1 - [ 8u au au a" a" a" 8w aw aw - a", - d'b - ad> ] I,m, I xyz - 8x ay az ax ay 8z ax ay az 8i"" ay- a" 
(Ui,j, ¢;]ery( = [ ~~ au au a" a" 8" aw aw 8w -a", - 8<1> -eat] ary ae a~ ary 8e ~ a;:; a( 8f" &ry 

[ )-'("') 0 0 

o r {rye 

[J.] = ~ 
J-l(EE) 0 0 

~ry( 

0 J-l(~) 0 {rye 
0 0 0 J-1 ~ 

({rye) 12x 12 

1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 

[Rl = 0 0 0 0 2 0 0 0 0 
0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 

9x9 
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1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 1 0 0 0 0 0 0 0 

[B] = 0 0 0 1 0 0 0 0 0 
(113) 0 0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
o 0 0 0 0 0 0 0 1 

12x9 

[T"] = [ [T~'6 a 1 J X.lI.Z [ C.1)'()]3X3 9x9 

(114) 

[T-l = [t,,] [Rl (115) 

[Clglobal = [t"r [Rl [Cllocal [Rl [t-] (116) 

The matrix [C]local that include the elastic constants, piezoelectric coefficients, and di­

electric constants can be written as -

Cll C12 C13 0 0 C16 0 0 -t:;31 

C21 C22 C23 0 0 C26 0 0 -t3:.! 

C31 C32 C33 0 0 C36 0 0 -e33 

0 0 0 C44 C45 0 -e14 -e2-l 0 
[C]local = 0 0 0 CS4 CS5 0 -elS - C25 0 

C61 C62 C63 0 0 C66 0 0 -ej(j 

0 0 0 -e14 -e15 0 -C1 0 0 
0 0 0 -e24 -e25 0 0 -E2 0 

-e31 -e32 -e33 0 0 -e36 0 0 -':::3 
9x9 

Here the moduli and material axes of each layer, [Cllocal, can be obtained . 

The variational formulation using curvilinear coordinate can be derived 

above relationships, and can be expressed in compact notation as 

0 - 1:1 

{- Is (0 [u, cPl~1)( {l}~1)() dS + 1 (0 [u, cP]{1)( P [ii , J];~( + 

a [ui,i, cP,i]{1)( [Dl [ui,i, cP,il~1)() det [J(;: ~:~)] dV{1)( } di 

[D] = [l"] [B][Clg'obaJ[Bf p-r 
a [u, cPJ€1)( = [a'll avow a¢ J 
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[u J] (~( = [u v w 4>] (121 ) 

{D", = { lU (122) 

Discrete-Layer Theories 

To analyze thick laminated piezoelectric shells, discrete-layer theories are used in cre­

ating the numerical models. The governing equations in matrix form are available for 

both cylindrical and general shells. 

Background And Motivation 

Most theories developed for analyzing laminated piezoelectric composites include lirru­

tations which may not represent the true behavior for certain applications. For the analy­

sis of thick laminates under small deflection, the use of Kirchhoff hypothesis as theoretical 

background causes an undesirable approximation of both interlaminar and intralaminar 

stress components. In addition to this limitation, many previous studies have made use 

of an equivalent force representation of induced strain actuation ill the pie:welectl'ic lam­

inate. This kind of approach does not solve the coupled equation of piezoelectricity. To 

analyze thick laminated piezoelectric shells, cylindrical or general, the above limitations 

need considerable refinement. This is the direction of this research. 

In this research, discrete-layer theories developed by Pauley [81], Reddy, Barbero, 

Teply [32, 43, 44], Robbins [53], and Heyliger and Saravanos [59J are used. The main 

reason for using these approximations is that the coupled relationship between elastic 

and electric variables can be exactly represented. Additionally, the limitations from the 

Kirchhoff hypothesis can be avoided. 

In discrete-layer theories, the kinematic assumptions as shown in Figure 5 defined for 

the laminated plate element are: 

1. Through the thickness of composite e)ements, arbitrary variations are allowed within 

the in-plane displacement components and the electrostatic potential (i.e. u,v, and 

<f;), and 

2. There are three assumed forms of the transverse displacement component ,w, which 

are used to develop two separate theories. 
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• A constant transverse displacement through the thickness, 

• A distributed transverse displacement which is identical in form to the other 

variable through the thickness. 

• A distributed transverse displacement of which the form is not completely 

layer-wise like the other variable through the thickness as shown in Figure 6. 

Within the laminated cylindrical shell element, the first assumption yields reference­

surface displacement components and electrostatic ' potential that are assumed to have 

arbitrary variations through the thickness (r-direction for cylindrical shell, (-direction 

for general shell). In the second assumption, the transverse displacement component, 

w(r, e, z) or w(~, TI, 0, is with the direction normal to the shell surfa.ct' (r- or (- direction) . 

The theory developed with a constant transverse displacement (i .e. W(7', 0, z) = w( 0, z) 

or w(~, TI, 0 = w( ~,TI)) is for simpler and more economical in computation. However, poor 

accuracy is given when calculating the interlaminar stress or analyzillg thick laminates. 

As with the case of the constant w formulation for the plate, it i::; illlPo::;sible to capture 

the through-thickness actuation strain using this form of approximation. With the second 

assumed form (i.e. w is function of r,f),z or function of ~,TI,(), the approach is more com­

plex and more expensive, yet much more accurate. Both approaches will be investigated 

in this research. With the use of discrete-layer theories, the variational formulation is 

further derived for the type of approximation used in this approach. 

Goveming Equation in Matrix Form for Cylindrical Shell 

In this section, a re-arranged variational formulation of governing equation is presented 

where a configuration of simultaneous equations is obtained. Secondly, an approximation 

of displacement and potential variables is given. The development of the discrete-layer 

theory for piezoelectric laminated shell begins with this. Finally, a 1l1atrix form is ex­

pressed for further computational models. 

Equation 100 can be rewritten as 

{tl dt 1 [pu5u + pv5v + pw5w] rdrdf)dz 
Jto v 

+ dt - Cu - + C12 - + -- + - C12-. + C22 - + --l tl 1 {a5U [au u CI6 au] 5u [au 'U C26 au] 
to v ar ar r r ae r or r r aD 

+ at5u [C16 au + C26 + C66 au] + at5u Css au} 
af) r ar r2 r2 af) az fJz Will 
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+ - -- - C16 - + C16 - + - --- - C26 - + C26-, {
oou [C120V v ov] OU [C220V v OV] 
or r 00 r or r r 00 r fJ7' 

+ OOU [C26 0V _ C66~ + C66 Ov] + OOU C45 ov} 
Oe r2 Oe r2 r or OZ OZ [K12] 

{ 
OOU C Ow OU C ow OOU C36 Ow OOU [C45 Ow Cow ] }' + -0 13-0 + - 23-0 + of) --0 + -0 - Oe + 55-;:) 

r z r z r z z r ur [K
1
3] 

{ 
OOU o¢> OU o¢> OOU e16 o¢> OOU [e25 o¢> O¢>] } + -ell-+-e12-+---+- --+e35-
Or or r Or of) r or Oz r of) Oz [[(I-t] 

+ - C16 - + C26 - + -- - - C16 - + C26 - + --, { 
OOV [OU U C66 Ou] OV [OU U C660U] 
Or or r r Oe r Or r r 00 

OOV [C12 OU C22 C26 0U ] OOV C Ou} +- --+-+-- +- 45-
Oe r Or r2 r2 of) oz oz [K2d 

+ - ---C66 -+C66 - -- ---C66 -+C(j(j-. { 
OOV [C260V v Ov] 5v [C260V V . dC] 
Or r of) r or r r of) r 01' 

OOV [C22 0V C V C26 0V ] OOV C Ov} + Oe -2 Oe - 26 2 + -oe + -0 44-0 r r r z z [[{22] 

+ {oov C36 Ow _ OV C36 ow + OOV C23 Ow + OOV [C44 Ow + C
45 
~lU]} 

or oz r oz oe r oz oz r oe or [K23] 

+ {oov e16 o¢> _ OV e16 04> + oov e12 o¢> + oov [e24 o¢> + e34 ~¢] } 
Or Or r or of) r or oz r oe oz [K24] 

{ 
OOW C ou oow C55 ou oow [C ou C U C36 all] } + - 55-+---+- 13-. + 23-+--
Or oz of) r oz OZ or r r 00 [K3d 

+ { OOW C45 ov + OOW C44 ov + oow [C23 ov _ C
36 
~ + C36 ov] } 

or oz oe r OZ oz or r r 8f) (1\32] 

+ {oow [C45 Ow + Css ow] + oow [C44 Ow + C4S ow] + 80w C
33 
~w} 

Or r of) Or oe r2 oe r Or oz oz [[(331 

{ 
oow [e25 o¢> O¢>] oow [e24 o¢> e34 O¢>] OOW O¢} + -0 -of) + e35 -0 + of) -2 oe + --0 + ~e13-;:l," 

r r z r r z uZ (;7 [K341 

{ 
oo¢> [ou U e16 ou] oo¢> e25 OU oo¢> OU} + - ell-+e12-+-- +---+-e3S-
Or Or r r Oe of) r Oz OZ Oz [[{til 

+ {OO¢> [e16 OV _ e16~ + e12 Ov] + oS¢> e24 OV + oS¢> e34 Ov} 
Or Or _r T of) Oe r Oz Oz OZ [J(d 

{
OS¢> ow oo¢> [e24 Ow e25 ow] oS¢> [e34 Ow OW]} + -e13-+- ---+-- +- --+e35-
Or Oz Oe r2 Oe r or Oz r Oe 0'" [K

t3
1 

_ { oS¢> Cll a¢> + as¢> C2; o¢> + as¢> C33 a¢>} rdrdf)dz 
or or oe r of) oz oz (l{Hl 
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-
- (1 dt r (trDU + t()DV + tzDW - o-D¢)dS == 0 ito is (123) 

Here each subscript behind the right brace shows the connection between the variational 

form and the matrix form that is going to be derived. 

The displacement and potential variables are approximated using linear combinations 

of the form 

n m n 

u(r, 0, z, t) == L Uj ( 0, z, t )7j;j(r) == L L Uja(t )W~( 0,.: )I~';( r) (124) 
j=l a=l j=l 

n m n 

v(r,O,z,t) == LYj(O,z,t)1/Jj(r) == LLYja(t)w~(e,z)1j;j(''') (125) 
j=l . a=l j=l 

n m n 

w(r,O,z,t) == LWj(ti.,z,t)1/Jj(r) == L LWja (t)W;:'(0 . .:)4!j (1-) (126) 
j=l a=lj=l 

n m n 

¢(r, 0, z, t) == L <I?j(O, z, t)1/Jj(r) == L L <I?ja(t)w~(e, ':)1'['j(1') (127) 
j=l a=l j=l 

If a distributed transverse displacement is assumed in the di::icr<:k-layer th eory, one­

dimensional Lagrangian interpolation polynomials 1/Jj(r) can be used for the through thick­

ness approximation in the above (1/J'j(r) == 1/J'j(r) == 1/Jj(r) == 1/Jj(r) == 1pj(r)). Thus , n - 1 

is defined as the number of subdivisions through the thickness. For better results, the 

number of subdivisions should be larger or equal to the number of layers in the laminate. 

The in-surface approximation for the cylindrical shell is assumed using two-dimensional 

functions (0, z). The related number m is the total number of fUllctiollS for the in-surface 

approximation. By replacing the variables with the approximations. the gO\'ernillg equa­

tions can be expressed in matrix form as 

( 128) 

Both the [l\tJ] and [J(] matrices are symmetric, so, [1(d == [f{21]Y, [f{d == [1(3dT, 

[J(14] == [J(41]Y, [J(23] == [J(32]Y, [J(24] == [J(42]T, and [1(34] == [1(43]T. The structure of 

the submatrices ([1(11],[1(12], ... ,) is explained in Figure 7. Here the boxes drawn in the 
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submatrix locates the members of submatrix using certain approximate functions \II a and 

'lib. Those box areas are noted as [K11 ]11, [Ku]13, etc. The expressions in these cases are 

given as follows . 
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(130) 

(131 ) 

(132) 

(133) 

(134) 

(135) 

(136) 

( 137) 



I 
I 
I 
I 
I 
~ 

-
[K] = 1 {[E I6 ] WvW<P - [1'16] WvW<P + [1'12] OW~ W¢ 

24 ab.A a b a b oB b 

+ W4] 8!: 88~t + [C34] aa~: aa~t} dOdz 

[K] = 1 {[B4S] 'WwOWb' + [ASS] WWWW + [D44] OW: oWb' 
33 ab.A a oB a b oB oB 

[Jj4S] aW;: WW [fJ33] OW;: oWb' } dBd + oB b + OZ OZ Z 

[K] = 1 {[F 2S] WW OW~ [P3S] WW OW~ [C24] ow: owt 
34 ab.A a of) + a OZ + of) of) 

+ [634] OW;:' awt + [PI3] OW;: W<P} dedz 
, ae oz oz b 

[K) = -1-{ [Hll) W<PWcP + [jJ22) OW~ owt + [jJ33] aW~ C)\lJ ;~ } dO /7 
44ab.A a b oe of) OZ 0:: (-

The sub-matrices [Aij], [Bij], __ ,_ are expressed as 

N jT/+l 
Iij = L p'l/;;'fjrdr 

1=1 T/ 

A~!'l = t jr/+1 C , O'lj;i o'lj;j d 
I) km 0 0 r r 

1=1 T/ r r 

N jT/+l o'lj; -
B~m = L Ckm ff'lj;jdr 

1=1 T/ r 

- km t jT/+l o'lj;j 
B jj = Ckm'lj;iT dr 

1=1 T/ r 

• km t jTI+l o'lj;j 
Bij = Ckm -a'lj;jrdr 

1=1 TI r 

- km- N jT/+l o'lj;j 
B jj = L Ckm'lj;iTrdr 

1=1 rl r 

N jrl+1 C Dkm - L km'lj; _'Ij; _d jj - - 1 ) r 
1=1 T, r 

• km N JTI+! 
Djj = I: Ckm'lj;d)jdr 

1=1 T, 
- km N IT'+! Djj = L Ckm'lj;j'lj;jrdr 

1=1 T, 

Ekm . _ f.1T'+1 o'lj;j o'lj;j d -- - ekm--T r 
I] 1=1 rl or or 
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(139) 

(140) 

(141) 

(142) 

(143) 

(144) 

(145 ) 

(146) 

(147) 

(148) 

(149) 

( 150) 

(151) 



N iTI+! o'lj;- ' 
Fi;m = 2: ekm-''l/Jjdr 

/=1 Tl or 
(152) 

- km t i
TI

+
1 o'lj;j Fij = ekm'lj;iadr 

/=1 Tl r 
(153) 

. 

• N lTI+1 o'lj; -Fi;m = L ekm Ef'lj;jrdr 
1=1 rl r 

(154) 

- km t I T' +
1 o'lj;j Fij = -. ekm 'lj;i -rdr 

/=1 Tl Or 
(155) 

N jrl+1 ek 
G~~ = L --.!!:..'lj; -'lj; -d 

'J ' ] r 
/=1 rl r 

( 156) 

• k N I T'+1 
(157) GiT = L ekm'lj;i'lj;jdr 

I=f rl 

_ N l rl+1 

Gtm = L ekm'lj;j'lj;jrdr ( 1.58) 
/=1 Tt 

Hkm - t jrl+
1 B'lj;j o'lj;j d -- - Ckm--r r 

lJ 1=1 r, Or or ( 159) 

iI~_m = t l
rl

+
1 

ckm 'lj;-'lj; -d ~ 1 ] r 
/=1 r, r 

( 160) 

- km N jrl+1 
(161 ) H jj = L Ckm'lj;j'lj;jrdr 

1=1 Tl 

Here N is the total number of layers (N = n - 1)_ 

However, if a constant transverse displacement is assumed, thell (j''j( r) = 1/;j(r) = 
'lj;j(r) = 'lj;j(r) but 'lj;'j'(r) = constant, say te, and several of the above equations must be 

changed. 

[M331 ab = L {[I] w:wb'} dedz (162) 

[K 1 = r {[613] w" oWb' + [p23] W" oWb' + [p36] OW~ oWb' 
13 ab JA a OZ a Oz Oe OZ 

[p45] OW~ OWb' } ded + OZ Oe z (163) 

[K 1 = 1 {[636] WvOWb' _ [p36] WvOWb' + [p23] oW~ oWb' 23 ab A a OZ a OZ Oe OZ 

+ [p44] 0o~~ o::} dedz (164) 

(K] = 1 {[p441 ow: oWb' [P331 ow: oWb' } ded 
33 ab A oe oe + oz oz Z (165) 
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[K] = 1 {[524] aw;:, awt + [534] aw;:, awt + [013] aW;:' W'''} dOd 
34 ab.A ae ae ae az az b z (166) 

Here the sub-matrices [Oij], [Pij ], ... , are expressed as 

(167) 

(168) 

(169) 

( 170) 

(171 ) 

(172) 

( 173) 

(174) 

A Discrete-layer Element for General Shell 

To model the laminated shell with arbitrary geometry, a curvilinea.r representation of 

a discrete-layer shell element is developed using the kinematic assumptions of discrete­

layer theories. This is shown schematically in Figure 8. Within the shell, continuity of 

the in-surface displacement components at a number of locations tii rough the thickness 

(i.e. usually at the joint between layers) is required as shown in Figure 9. For the 

two different forms of the transverse displacement (out-of-surface displacement), different 

requirements need to be satisfied. If a distributed out-of-surface displa.c~tTlent is assumed, 

the same continuity of this displacement component is required as that of the in-surface 

components. However, if a constant out-of-surface displacement is assumed, the continuity 

of this displacement component is necessary at only one location through the thickness, 

such as the bottom or top surface of the shell. 

The weak form of the governing equation using curvilinear coordinates wa.s shown ear­

lier and is used to allow a much easier integration for the shell with arbiLrary geometries. 
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To impose continuity across the interface of adjoining elements with 110 luss of generality, 

the resulting degrees of freedom are maintained at the local level throughout the analy­

sis . This type of formulation can give a much more accurate representation of adjoining 

element sides. With the defined Gauss points, the numerical integration can be accom­

plished by mapping the discrete-layer shell element into a parent element that is similar 

to the discrete-layer plate element described for the plate earlier in this report. Quadratic 

in-surface approximations will be used in the calculations to allow representa.tion of the 

curved edges. This order of approximation can be easily modified if ttccessary. 
-

To define the geometry of a laminated shell element and to determine the Jacobian 

matrices [JJ and [J-J .matrices, the geometry of shell element [69J is described in standard 

fashion as 

(175) 

Here (x,y,z) represents the location of a generic point within tlw sltell element, and 

(Xi,Yi,Zi) are the locations of element nodes. The function Ni indicates t he shape fUllction 

corresponding to the node i. If the curvilinear coordinate systems Llsed in all layers 

are same, then the geometry of this element can be defined using only the locations of 

the nodal points on any two layer surfaces, usually the top and bottom surfaces of the 

element. However, if more than one curvilinear coordinate systems is required, more 

nodes are needed for the approximation. The displacement cornpollents (u,v,w) and 

electric potential ¢ in local system can be approximated in this fashioll by the following 

equations, 
m n 

u(x,y,z,t) = u(~,7],(,t) = L LUia(t)W~(~,7])1jIj(() (176) 
a=lj=l 
m n 

v(x, y, z, t) = v(~, 7], (, t) = L L Vja(t)W~(~, 7] )1jIj(() (177) 
a=l i=l 

m n 

w(x, y, z, t) = w(~, 7], (, t) = L L Wia(t)w:(~, 7] )1jIj( () (178) 
a=l i=l 
m n 

¢(x, y, z, t) = ¢(~, 7], (, t) = L L ~ia(t)W~(C 7] )'if'j( () (179 ) 
a=li=l 

( 180) 
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The member Dij of the [Dh2X 12 matrix can be calcula.ted by 

D(i)(j) = JikC(k)(I)Jjl (181 ) 

D(i)(j+3) = Jk C Ck)(I+3Jjl ( 182) 

DCi)(j+6) = JikCCk)(I+6)Jjl (183) 

D(i)(j+9) = .hkC Ck)(I+9)Jjl (184) 

D(i+3)(j) = .f;kCCk+3)(I)Jjl (185) 

D(i+3)(j+3) = J ik C(k+3)(1+3)Jjl (186) 

D(i+3)(j+6) = JikCCk+3)(1+6)Jjl (187) 

D(i+3)(j+9) = JikC(k+:J)(I+'J)Jjl ( 188) 

D(i+6)(j) = JikCCk+6)(I)Jjl (189) 

D(i+6)(j+3) = J k C(k+6)(1+3)Jjl (190) 

D(i+6)(j+6) = J ik C(k+6)(1+6)Jjl ( HH) 

D(i+6)(j+9) = J k C(k+6)(1+9)Jjl (192) 

D(i+9)(j) = J ik C(k+9)(I).Jjl ( 19:3) 

D(i+9)(i+3) = J ik C(k+9)(I+3)Jjl (194) 

D(i+9)(j+6) = .hkC(k+9)(1+6)Jjl (19.5 ) 

D(i+9)(i+9) = J ik C(k+9)(I+9)Jjl (196) 

(i,j,k,i = 1,2,3) 

By replacing the variables with the approximations, the governing equations can be rewrit­

ten in matrix form. Let 1/Jj(O = 1/Jj(O = 1/Jj(O = 1/Jj(() but 1/J'j'(O is not necessa.rilyequal 

to 1/Jj(O. The expressions of the [i\lI] and [I<l for the general shell are given a.s follows. 

[M111ab = L {[Illl1~ll1n detjd~d7J 
[M221ab = L {[I] 1l1~ll1n detjd~d7] 
[M33]ab = L {[1] Ill: III b' } detjd~d7] 

[K 1 = 1 {[A 111 01l1: 01l1;: [A 12J 01l1: oWi: [A 13] OW~ W" 11 ab A a~ O~ + a~ Or] + o~ b -

[A21] OW: OW'b [A22] OW: OW'b [A23J OW: \II" 
+ 07] O~ + 07] Or] + 07] b 

+ [A31] W~OO~b + [.432
] w~ao~i: + [A33] 1l1~1l1~} detjd~d1/ 
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+ [C87] OW~ OWb' + [cas] OW~ OWb' + [689] OW: IlJIL 
07] o~ 07] 07] orl b 

+ [697] w: o:/ + [698] W:O~b + [egg] w:wb'} detjd~d11 (207) 

[J< 1 = r _ {[B7lO] OW~ 8wf [B7ll] 8w~ oWf [i3712] o\lf~ \II'" 
34 ab } A O~ 8~ + o~ 87] + f)~ b 

(B8lD] o\Il~ o\Ilt (B811] 8\I1~ 8\I1t [i3812] ow~ IV<£> 
+ 07] o~ + 07] 87] + 07] b 

+ [li'lO] w~a;t + [li'"] w:aa~/t + [li'12] w:wt } detjd(d~ (208) 

[K 1 = 1 {[A 10 10] o\Il: o\Ilt [A 10 11] ow: o\Ilf [;1 10 12] o\{J! \lIef> 
44 ab.A o~ o~ + o~ 07] + f)~ b 

+ [A 1110] o\Il: o\Ilf + [.4.1111] O.\II: o\Ilf + [;11112] 0.~1!~ IlJ ~ 
07] O~ 07] orl 0/, 

+ [,11210] w=Oa~t + [AI"'] w: oa:
t + [AI212].j,:w: } detjd(d1/ (209) 

Where the members of [.4. jj ], [Bjj], ... , are expressed as 
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(211) 

(212) 

(213) 

(214) 

(215) 

(216) 

(217) 

(218) 

(219) 



(220) 

(221 ) 

(222) 

(223) 

If a distributed transverse displacement is assumed in the approximation, then 1/lj = 1f;j. 

Therefore, [A] = [B] = [e],[A] = [;if = [B] = [Ef = [C] = [eT], allLl [il] = [B] = [C] . 

However, if a constant transverse displacement is assumed (1f;j(() = constant), then 

~ [E] = [B] = 0 and [G] = [0] = [C] = O. The fundamental behavior of the shell is shown 

for several layers in Figure II. 

Static solutions to problems involving this type of approxima.Lioll axe [,,,tidy straight­

forward, -However, there are several difficulties involved in dynamic (11I.t.iyses . These are 

described separately below. 

Dynamic Analyses 

The kinetic energy of the system is involved when developing the Hamilton's princi­

ple into the matrix formulations. Hence, piezoelectric vibration analY::iis is possible using 

solutions of equation 128. The primary problem in this research tu lilld the free vibra­

tion characteristics (i.e. natural frequencies and corresponding moJe shapes) for gi ven 

arbitrary shells and cylindrical shells, as well as the behavior of shells under a forced 

vibration. 

Free Vibrations 

Since no external force term is assumed in free vibration problems, equation 128 can 

be rewritten as [59] 

[[~l [~ll { m } + [\~:::l \~:::ll { \~l } = { l~l } (224) 

Here 

(225) 
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{ 
{u} } 

{6}= {v} 
{w} 

(226) 

If periodic motion is assumed, equation 128 becomes an eigenvalue problem, expressed as 

{[RJ - W
2 [M]} {6} = {OJ (227) 

Here [R] is formed using static condensation, which is necessary to elimillate the potential 

\·ariables . This matrix is given by 

(228) 

Here :.:.J is the natural frequency and the corresponding {6} presents tile mode sha.pe. 

Forced Vibrat ions 

It is possible to analyze the behavior of a. laminated piezoelectric sldl ullder a forced 

yibration, especially a harmonic excitation. According to the goverllillg (·qllation in matrix 

form, there are several ways to cause excitation in the system: (1) dVplyillg traction 

forces {f(t)}, (2) applying an electric field {¢(t)}, (3) increasing / ell'creasing charges in 

the surface electrode, (4) mix of (1) and (2), and (5) mix of (1) and (:J). 

If the system is excited by surface traction forces which are harmoll ic, and no electric 

field is applied, equation 224 can be rewritten as 

[
[AI] [0]] { {Li}} [\I{t:.t:.l 
[0] [0] {OJ + ]{rPD. \

]{D.rPll { {D.} } = { 
]{rPrP {OJ 

Ull)} } 
{ l.L1 tI.·1I OLen} 

(229) 

The equation of motion of this system can be expressed to the fOrIll that is the same as 

the equation of general laminates. 

[M]{Li} + []{D.D.J {6} = {f(t)} (230) 

After the displacements, {~}, are solved, []{4>D.] {~} can be used to predict the surface 

charge created by shape change of the structure. The displacemellts ca.n be discovered 

by measuring the surface charges which are collected through a SUrraH' electrode to the 

outside detector. Furthermore, if a static electric field is applied, tlw t.·quation of motion 

becomes 

[NI] { ii } + []{ D.D.] {6} = {f ( t)} - [J{ D.¢] {¢} (2:31 ) 

The surface charges can be predicted by solving []{4>D.] {D.} + []{IP"'] {o} . 
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If the system is excited by an applied electric field that is changed harmonically, and 

no traction force is applied, equation 224 can be rewritten as 

[ 
[M] [0] 1 { { Li } } [[ J( Ll Llj 
[0] [0] {¢(t)} + [J(<I>Ll 

[ J( Ll<l>j ] { { D. } } { 
[J( <I><I> {¢(t)}-

{OJ } (232) 
{unknown} 

The equation of motion of this system can be written as 

(233) 

The equation of surface charges becomes {Q} = [J(<I>Ll] fD.} + [J(<I>¢] {a(t)} . 

The third way to excite the system is harmonically increasing / decreasi ng the charges 

that store in the surface electrode. Equation 224 can be rewritte ll a.s 

Above equation can be expressed as 

[Nl] { Li } + [R] {D.} = - [J( M] [J( <l>cP r 1 {Q ( t ) } 

[R] = [J(~~] - [J(M] [J( <I><f>r
1 

[J( <I>Ll] 

The corresponding voltage can be found using 

(2:35) 

(236) 

(237) 

If the system is excited by traction forces and an applied electric field. which are both 

changed harmonically but not necessarily in the same frequency, e4Ucttion 224 can be 

rewritten as 

[
[M] [O]l{ {Li}} [[J(LlLlj \J(LltJ>j]{ {D.} }_{ 
[0] [0] {¢(t)} + [J(<I>Ll J(<I><I> {¢(t)}-

{I(l)} } (238) 
{lLllknown} 

The equation of motion becomes 

(239) 

The surface charges can be predicted using [J(<I>Ll] {.6} + [1(<1><1>] {¢(l)}. ·Since the motion 

of .the intelligent structure can be sensed, it is possible to apply a required electric field to 

create or change the damping mechanism of this structure systenl. Tllis l'rr(~ct is proposed 

to control (fully or partially) the vibration in this structure . . 
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If the system is excited by traction forces which is harmonic and incrc:a.sing / decreasing 

the surface charges in the electrode harmonically, equation 224 can be rewritten as 

[
[M] [O]l{ {~}} [\f{t:.t:.j 
[0] [0] { J} + f{rJ>t:. \

f{ t:.4>jl { {b.} } = { {Ill)} } 
f{4>4> {q,} {(dl} (240) 

The equation of motion becomes 

(241) 

The corresponding voltage can be found using equation 224. These equ a.l ions also conclude 

that if the current that flows into the surface electrode and the voltage ill the electrode are 

:neasured, the motion of this structure could be predicted. F'urtherlll(m~ . IJY increa.sillg I 
·leereasing the charges, vibration of the shells could be controlleJ. ·Hi . ., LyP(~ of behavior 

can be used in the active tip-clearance control of engine blades. 

Computational Models 

A prototype discrete-layer shell element program has been compieLcd and is included 

as part of this report. 
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6. EXACT SOLUTIONS 

Exact solutions are developed for predicting the coupled electromechanical vibration 

characteristics of simply-supported laminated piezoelectric plates. The three-dimensional 

equations of stress and electric displacement equilibrium are solved usillg; the assumptions 

of the linear theory of piezoelectricity. The through-thickness distributions for the dis­

placements and electrostatic potential are functions of eight constants for each layer of 

the laminate. Enforcing the continuity and surface conditions results in a linear system 

of equations representing the behavior ~f the complete laminate. The determinant of this 

system must be zero at a resonant frequency. The natural frequencies <ere found numeri­

cally by first incrementally stepping through the frequency spectrurn a.lId refining the final 

frequencies using bisection. Representati,"e frequeucies alld mod!" s lJi Ij)("s <l.I"c~ presellted 

for a variety of lamination schemes and aspect ratios . 

This chapter is included because it represents the results of a ta.t1g;(~ IIt.ial study under­

taken as part of this research that was effectly a matter of necessity. Few solutions exist 

for laminated piezoelectric plates, and this phase of the study was crucial in determining 

the effectiveness of the discrete-layer approximations described as the lllain part of this 

research . 

Introduction 

The behavior of linear elastic laminated plates composed of dissimila.r orthotropic ma­

terials have been studied for a number of geometrical configurations, lamination schemes, 

and boundary conditions. The exact solutions of the equations of motion for these solids 

have only been obtained for the limited case of simple support. Static solutions have been 

comprehensively studied by Pagano [10, 11]. For the dynamic case, thc two-dimensional 

case of cylindrical bending has been considered by JO!les [76, 77] for tlVo-layer cross-ply 

and angle-ply laminates, with the exact natural frequencie!:i and Illudc· sllapes beillg ob­

tained for a number of aspect ratios. The three-dimensional laminated plate geometry has 

been studied by Srinivas and coworkers [78, 79] using an exact solu tion for a rectangular 

plate with simple support. 

Studies of the linear vibrations of finite laminated piezoelectric plates are limited. The 

monograph of Tiersten [80] provides a comprehensive study of the governing equations, 

fundamental behavior, and exact and approximate solution methodologies for single-ply 

piezoelectric plates. Studies involving piezoelectric laminates have for t he" most part. been 
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confined either to infinite plates or approximate theories and solution techniques . These 

include the studies of Pauley [81], Ricketts [82, 83J, Lee [84]' and '{oTlg and coworkers 

[85J. 

The objective of the present study is to develop exact solutions for I he static response 

and natural frequencies of free vibration for simply-supported, lamiJJated, rectangular 

plates composed in part of orthotropic piezoelectric layers. The simply-supported plate is 

one of the few geometries for which the in-plane functions can be selected to exactly satisfy 

the governing equations and boundary conditions. The through-thickness distributions 

are evaluated and found to be a function of eight unknown constants t hat are frequency 

dependent. Imposition of the interface and surface conditions for the complete laminate 

results in a linear system of equations that must be iteratively solved fur each frequency. 

This study builds on the work of Pagano [11], who developed exa.ct :,\)llI1.iollS for sta tic 

behavior of elastic laminates. 

The developed solution and results presented here should providl ' ct. good ba.sis for 

comparison for approximate plate theories. The results could be especia.lly important 

for thick plates, in which case many theories provide poor approximatiolls, and will help 

establish the limitations and ranges of applicability of other approximate methods. 

Exact solution 

Gove'I'TI:ing Equations 

The geometrical configuration of the laminate is such that that the thickness dimension 

of the laminate coincides with the z-direction, with the lengths of the plate in the x and y 

directions denoted as L1' and Ly , respectively. Each layer of the larrlinate can have elastic, 

piezoelectric, or conducting material properties. The general probleul considered in this 

study is to determi~e the behavior of the elastic and electric field components throughout 

the laminate under periodic vibration with arbitrary surface condit.iolls . 

The constitutive equations for each layer in the laminate are a.SSllllWd to be those of 

a piezoelectric material. These equations can also be used to repre!:it'llt purely elastic or 

conducting layers, and are given by [SOJ 

(242) 
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Here O"i are the components of the stress tensor, Cij are the elastic stiffness components , 

Sj are the components of infinitesimal strain, eji are the piezoelectric coefficients, Ei are 

the components of the electric field, Di are the components of the electric displacement, 

and f.ij are the dielectric constants . The standard contracted notatioll 1m:; been used here. 

In this study, the poling direction is coincident with the X3 or z axis . 

The displacement components Ui, where U1 = U, U2 = v, and U3 = w, are related to 

the strain components through the relations 

(243) 

To be consistent with Equation 242, the conventional notation for til L' sLrcLill illdi ces has 

been used, i.e. S11 = Sl, S23 = S4, etc . The electric field COl1lPOIH-.'III :-i C<-1 11 be related to 

the electrostatic potential q, .using the relation 

aq, 
E i =-­

ax; 
(244) 

For the materials used in this study, it is assumed that the non-zew l·olllponents of the 

rotated piezoelectric tensor eij are e3h e32, e33, e24, and el5' The ela:;lic stiffnesses Ci j are 

those of an orthotropic material, and the dielectric constants are gin 'lI by tIl, t2"2, alld 

The stress equations of motion are given by 

(245) 

and the charge equation of electrostatics is given as 

Di,i:;::: 0 (246) 

Substituting the constitutive relations, the stress-strain relations, and the field-potential 

relations into Eqs. 245 and 246 gives the governing equations of the laminae in terms of 

the displacement components u, v and wand the electrostatic potellt.ied ¢ as 
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(247) 

(248) 

(249) 

fJ2</J 82u ()2V 82w - ()2V (-flo 
-Ell 8 2 + e31 -fJ 8 + e32 -() fJ + e33 fJ 2 + e3'2::l '-""l - t '1.1. ;.) -; + 

X X Z Y z Z uyuz vir 
(:2.50) 

e24 (~:~ + ~2;Z). + e15 (8~;z + ~:~) - E33 ~:~ = 0 

These represent the coupled governing equations for a single layer witllin the laminate. 

For the problems considered in this study, an arbitrary number of I eLI lli ua.e are a::;:;umed 

to be perfectly bonded together. At the top and bottom surface:; uf the laminate, a 

given load, displacement, potential, or charge can be specified. A II umber of surface 

conditions could be treated using this methodology, but the cases of primary interest are 

those in which both upper and lower surfaces are traction-free. It i:; a.lso of interest to 

consi,der the influence of electric surface conditions, and the cases of specified homogeneous 

potential and transverse electric displacement are treated here. The laminate is assumed 

to be simply supported, and the vertical edges of the laminate are a:;::;u1l1ed to be fixed 

at zero (grounded) potential. Hence along a plate edge, the normal stress, tangential 

displacement, transverse displacement, and electrostatic potential are :;pecified to be zero 

regardless of the remaining conditions on the remaining laminate surface:;. 

At each interface between layers, continuity conditions of displacelllent, traction, po­

tential, and electric displacement must be enforced. Using an indexing scheme, the con­

ditions for the i-th layer can be expressed as, for example, 
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i ( -hi) _ i+l ( hi+l) 
U x,y, 2 -u x,y, 2 (251 ) 

Here i represents the layer number, with i=l the top layer, each layer has an individual 

coordinate system with the origin at the left end in the center of the layer, and hi is the 

thickness of the i-th layer. Similar interface conditions exist for v, w, (? , (7=, Tn , T y z , and 

D z . At a single interface of a laminate with n plies, there are six condi t. ions related to the 

elastic variables and two conditions related to the electrostatic variables for a total of 8(n-

1) interface conditions for the complete laminate. At both the top alld bottom surfaces, 

there are three elastic boundary conditions and one electric conditi()11 for a total of 8 

conditions. The surface conditions require specification of one vari a. bl( · from ea.ch of the 

pairs (U,Txz), (V,Tyz ), (w,O'z), and (¢>,D z ) . Enforcing all conditions lea ds to 8n equ a.tions 

relating the variables within all layers of the laminate. 

A1ethod of Solut ion 

Solutions for the displacement components and the electrostatic putential are sought 

in the form 

u(x,y,z,t) = U(z)exp(jwt)cospxsinqy = Uexp(jwt)exp(sz)cuspx sinqy (252) 

v(x,y,z,t) = V(z,exp(jwt)t)sinpxcosqy = Vexp(jwt) exp(s.:) sill p:r cos qy 

w(x,y,z,t) = W(z,t)exp(jwt)sinpxsinqy = Wexp(jwt)exp(sz) sinp:l:sinqy 

¢>(x,y,z,t) = <.t>(z,t)exp(jwt)sinpxsinqy = ~exp(jwt)exp(sz)sil1p:l:sinqy 

Here the overbarred terms are constants, s is an unknown number . p = 111 ir fL x, q = n 

7r fLy, and z is the local layer coo.rdinate whose origin is at the center of ea.ch la.minae. 

Substitution of these expressions into the equations of motion and til<: charge equation 

yields the system of equations 

(253) 

The Aij elements of this matrix are 
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A non-trivial solution to this system requires a zero determinant. The resulting char­
acteristic equation is 

Expressi (Jns for the coefficients of this polynomial are given in the Appendix. This eqU(l­

tion can ::Je written as the fourth-order equation 

(2.36 ) 

where 

r' = 8
2 a - fl. b= 

C 
(2.5 7) --A A 

D d - ~ (2.58) c= -
A -A 

The roots of this equation are a function of the material properties, tilt' l"llllillae geometry, 

and the frequency w. The roots can be real, imaginary, or complex, which results in 

different forms for the solutions for each variable. Regardless of the nature of the roots, 

the solutions for a given value of s are based on the original form for the: solution for U(z). 

The remaining components can then be computed using Eq. 2.5:3, whicll is rearrallged in 

terms of the unknown constants as 

[ 

A22 - C44S2 A23S 

-A23S A33 - C33 S 2 

-A24S A34 - e33s2 

A24 S 

A34 - e33 s2 

A44 + (33 S2 

(259) 

General expressions that can be used to evaluate the constants \i', ~'i-', arid 4> are con­

structed as a function of the real, imaginary, or complex roots. These a.re 

(260) 
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(261) 

(262) 

(263) 

The constants di and fii are defined in the Appendix, and will change ill nature depending 

on the type of root. These values and the corresponding solutions for the elastic and 

electric field components corresponding to each type of root are df'\'cloped separately 

below. 

Case 1: Real roots for r 

Given n real roots for r, the 211 roots for ~ can be obtaiued U~illg ('(jllCIl iOIl 25Ci. These 

roots are either real or imaginary depending on the sign of r. Followillg the nomencla.ture 

used in Pagano [10J and Heyliger and Brooks [87], the solution for the displacement 

components and electrostatic potential corresponding to the these roots can be written 

in ei ther case as 

n n n n 

U(z) = L Ui(z) V(z) = L LiUi(z) W ( z) = L kJi W] ( .: ) ¢(::) = L NjH'](.:()l(j 
i=l i=l j=l j=1 

where 

u· - F-C·(z) + C ·S·(z) ]-]] ]] (265) 

Here Fj and Gj are real constants, there is no summation on j, and tlll! functiolls C and 

S and the values mj and Ctj are defined as 

(266) 

(:268) 
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The coefficients Lj , Mj, and Nj are more specific representations of tIle parameters given 

in Eqs. 269-271, and are given in this case as 

(269) 

(270) 

(271 ) 

where the determinant Dj is given by 

(272) 

Using the constitutive equations in (242), the corresponding expressions for the stress 

and electric displacement can be computed as 

n 

O"i = sinpxsinqy '2]-PC'iJ - Ij(', -lL) + (273) 
j = 1 

2 2 

Ci3Qj ~~ (J21 m1 + !nm;Qj + !23) + e3iQj ~j (hl m1 + h2m]Qj + I::dll)z) 
} ) 

n 

Tyz = sinpx cos qy '2)C44 (Ljmj + qMj ) + e24Njq]Wj(Z) 
j=1 

n 

Txz = cospxsinqy L [Css (mj + pMj) + e24Njq] Wj(Z) 
j=1 

n 

Txy = cos px cos qy L C66 (q + pLj) Uj 
j=1 
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n 

Di = sin px sin qy L[-e31P - (:;3"lqL j + (277) 
j=l 

2 2 
mj 4 2 ) mj 4 2 

e33Ctrli:(J21mi + InmiCti + 123 + f.33Cti n.(J31 mi + h2miCti + Il:sl]Wj(z) 
J ) 

Here i=I,2,3 corresponds to x,y, and z for the stress and electric displacement components. 

A special case in which there are real roots for r is the non-piezoelectric elastic layer. 

The eij=O in this case and the elastic and electric fields uncouple. The elastic solution 

has been given by Pagano [10], and the results are not repeated here except to note that 

the elastic field behavior is represented by six roots and six unknowll constants within 

the layer. This corresponds to the 6 interface/boundary conditions (tlll"l'"<-' displa.cements 

and the CTiz stress components) for a single layer. The electrosta.tic IJI·lliI\"jur ill this case 

is represented using the two roots 

(278) 

The potential and transverse electric displacemeht components in this case are given by 

2 

¢(x,y,z) = sinpxsinqy LBiexp(njz) 
j=l 

2 

Dz = -f.33 sinpxsin qy LBjnjexp(njz) 
j=l 

Case 2: Complex roots for r 

(:279 ) 

(280) 

The elastic, ~lectric, and geometric properties for some laminae yield complex roots. 

These appear in conjugate pairs, which result in the final roots for s ill t.11<' \"orm ±(a. ± ib), 

where i = V-I and a and b are positive constants. The solution for U(z) corresponding 

to these roots can be expressed as 

(281) 

where C1, •.. ;C4 are real constants. Following some algebraic manipulatiolls and using Eqs. 

(260-262), the "solution for V(z) can be expressed as 
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Here fl = ~[V(a + ib)] and 0 1 = 8'[V(a + ib)]. Similarly, the final expression for W(z) 

can be expressed as 

W(z) = Cleaz [(af2 - b02 ) cos bz + (-bf2 - a02) sin bz] + 

C2eaz [(bf2 + a02) cos bz + (af2 - b02 ) sin bz] + 

C3e-az [(b0 2 - af 2) cos bz + (-bf 2 - aD2 ) sin b.:] + 
C4e-az [(bf2 + a02) cos bz + (-af2 + bfh) Sill b.:· ] 

(283) 

where f2 = ~[vV(a + ib)] and D2 = 8'[Ij -( a + ib)]. The filial l'XIHl ·""iull fur 9 call be 

obtained in similar fashion to yield 

¢;(z) = Cleaz [(af3 - b03 )cosbz + (-bf3 - aD3)sinb=J + 

C2eaz [(bf3 + a03) cos bz + (af3 - b03 ) Sill b.:] + 
C3e-az [(b03 - af3) cos bz + (-bf3 - a03) sin bzJ + 

C4e-az [(bf3 + aD3) cos bz + (-af3 + b0.:d sill !J.:.] 

where f3 = ~[~(a + ib)] and f3 = 8'[~(a + ib)]. 

(284) 

The functions for displacement and potential in each case must be combined with 

the solutions corresponding to the remaining roots to construct the cOlllplete solution 

for a given layer. The expressions for the stress and electric displaceillent components 

can be obtained by the appropriate differentiation and combination with the constitutive 

equations as given in Eq. 242. Because of their length and relative t'il.'iE' of calculation , 

these are not given here. 

Solution for the Laminate 

The elastic and electric field components within each layer are expressed in terms of 8 

unknown constants. These are determined using the interface alld colltilluity conditions 

at the upper and lower surfaces of each lamina. For an elastic/ J iekrt.ric layer, there 
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are 6 constants corresponding to the elastic part of the solution and "l. constants for the 

electrostatic solution. For most common piezoelectric materials, however, the roots fall 

into one of two categories. For some piezoelectric materials, the four roots for r are real. 

Correspondingly, there are 8 constants (F1 , • •• ,F4 and GI , ••. ,G4 in Eq. 26.3) that uniquely 

define the fields within the layer. For other piezoelectric materials , there are 2 real or 

imaginary roots and 2 complex conjugate roots for r. Hence the eight constants are F 11 

F2 , GI , and G2 from Eq. 265 and CI, .•• ,C4 from Eqs . (281-284). Following the solution 

of the total system of equations for the constants, the solution for any component can be 

computed at any location within the laminate. 

For static solutions, the coefficient matrices are all known as are the right-hand side 

elements. The solution for the unknown coefficients reduces to solving (t linea.r system of 

equations. 

-A resonant frequency w is unknwon a priori, yet the roots and tllrlJllgh-thickness field 

distributions are a function of this value. An iterative scheme was used to eVCl.luate these 

parameters . For the vibration problem, a necessary and sufficiellL cUlIdiLioll for a nOIl­

trivial solution to exist is that the determinant f3 of the coefficient matrix [A] multiplying 

the unknown constants is zero. The [A] matrix contains the final coefficients multiplying 

the unknown constants following imposition of all interface and surface conclitions and is 

written as 

[A] {D.} = {O} (28.5 ) 

where D. is the column vector of coefficients. The zero determinant requirement establishes 

the necessary relationships for the calculation of the natural frequencies and the modal 

sh~pes for the plate. 

To ~valuate the roots of the characteristic equation, the following procedure was used. 

First, the frequency was stepped through a sequence of frequencies that are an increment 

of the lowest expected frequency. This can either be estimated or approximated from 

other plate theories. The sign of the determinant is then computeJ fur each val ue ailcl 

recorded. Once a sufficient number of sign changes have been noted, bisection was used 

to refine the values of the true frequencies using the sign-change values as the bounding 

initial guesses . 

It can be a difficult numerical problem to evaluate the determinant of the ma.trix as 
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it beconles singular, especially if computed on a limited-precision fl\iHilillC'. III this study, 

the determinant f3 was computed using 

(286) 

where .Ai is the i-th eigenvalue of the coefficient matrix [AJ. This matrix is square and of 

order m, where m=8n and n is the number of layers within the laminate. The eigenvalues 

were computed using the QR algorithm in extended precision. Attempls to compute the 

eigenvalues using the diagonals from an LDU decomposition and QR with d\ uble precision 

failed. 

Following computation of the frequencies w, the constants c()rl"(~sp() nJing to these 

frequencies that define the modal displacements and potential are reaJily computed by 

solving the system of equations with the first constant in ~ arbitrarily set to (JIle. The 

red uced [A] matrix is no longer singular after this step, and the rcla t i ve values for the 

remaining constants can be found. The through-thickness mock ,,11<1\)('s ("n Il t he'll be 

calculated using these constants. 

Clearly, a different characteristic equat.ion can be generated 1ft JeLeL"llliuant form [or 

each combination of p and q in Eq. 259. These describe the in-plane 11I0dai characteristics 

of the elastic and electric fields. For each of these equations, there a.re all illfinite num­

ber of eigenvalues corresponding to the through-thickness modes. The cases of interest 

in this study were the thickness modes corresponding to the fundamental in-plane mode 

with m=n=l in Eq. 252. Of particular interest is the relationship 1>("'\ \\. (. '(.~!1 the displace­

ment components and the electrostatic potential, as this informatioll could be used to 

electrically excite or sense the various modes of vibration. 

67 



7. NUMERICAL EXAMPLES AND RESULTS 

This section contains results of applications of the computational and analytic models 

developed as part of this study. This includes 

• Results from laminated piezoelectric plate element . 

• Semi-analytic solutions for plates. 

• Results of exact solutions for simply-supported plates. 

The shell elements were in the process of being tested at the time of writ.ing this report. 

Several simple test cases were being studied (simple electric field, uniforrll strain applica­

tion, etc.). One of the difficulties of benchmarking these elements is the Ia.ck of solutions 

available for laminated piezoelectric shells. Although a proposed area for i"u ture study is 

development of an exact solution for this class of problem, no such solutiulls a re currently 

available. Because of the preliminary status of the results for the slwlL they were not 

included in this report. 

The Plate Element 

In this section, several examples are investigated in order to test the accura.cy, validity, 

a.nd range of applicability of the theories presented in section 4. In ilia.l exa.mples are for 

the purely elastic plate, with later examples to include piezoelectric layers. 

Simply Supported Cross-Ply Plate Under Sinusoidal loading 

A simply supported symmetric cross-ply (0/90/0) laminated rectCl.lIgula.r plate under 

a sinusoidal transverse distributed load on the uppet surface is considered. This example 

is chosen because it has an elasticity solution developed by Pagano [lOJ and therefore, 

provides an excellent tool to check the level of accuracy of the two theories presented 

herein for purely elastic laminates. 

Each of the three layers has equal thickness and IS idealized as a. homogeneous or­

thotropic material with the following properties: 

25 * 106psi 

0.2 * 106psi 
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The domain of the rectangular plate is 0 < x < a , 0 < y < b, a.l1d 0 < z < H with 

b = 3a. The transverse sinusoidal distributed load is given by: 

. 7rX . 7ry 
q(x,y) = qosm(-)sm(-) 

a b 
(287) 

Because of the symmetry of the problem, only a quarter of the plate is modeled 

(0 < x < }, 0 < x < ~) and the corresponding boundary conditions are given by: 

~(x,O,z) 0 

u(aj2,y,z) 0 

v(O,y,z) ° 
v(x,b/2,z) ° 

w(O,y,z) ° 
w(x,O,z) ° (288) 

The deflections and stresses are computed by using two theories. (jill-' considering tv 

varying linearly through the thickness of the plate and the other oue. with w constant 

through the thickness. The stresses are determined using the computed displacements 

and the constitutive relations 38 and 39, and they are evaluated (tl t.he closest gauss 

point to the the following locations: 

Clx{a/2, b/2, H) 

Cly(a/2,b/2,H/3) 

Txy(O, 0, H) 

Txz(O, b/2, 0) 

Tyz (a/2,0,0) (289) 

Regarding the transverse displacement w, it is evaluated at the cellter of the rectan­

gular plate. 

The fortran programs written to compute the deflections and stresses according to the 

two theories presented herein were run for four different meshes: a oxG lillL'ar elell1ellt rllesil 

with 6 and 12 layers in the z-diredion and denoted by L6x6-6 and L6xG-12 respectively, 

and a 3x3 quadratic element mesh with 6 and 12 layers in the z-diwction and denoted 
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Mesh a/h=2 II a/h= 4 a/h = 10 a/h = 20 a/h=50 a/I1= 100 
10 I) II 10 " 10 .;) 10 .'1 10 -J 10 -

L6x6-12 (F) 0.64710 0.17956 0.90463 0046290 0049566 0.22721 
L6x6-12 (F R) 0.65119 0.18103 0 .91918 0.48600 0.647 15 U.50479 
L6x6- 12 (R) 0.65 163 0. 18128 0.92210 0048831 0.65075 0.50767 

L6x6-6 (F) 0.62983 0.17752 0.90058 0046212 0.49571 0.22719 
L6x6-6 (FR) 0.6 0.17894 0.91494 0048513 0.64688 0.50470 
L6x6-6 (R) 0.63405 0.179192 0.91786 0048743 0.65048 0.50759 

Q3x3-12 (F) 0.64553 0.17968 0.91673 0048660 0.64773 0.50256 
Q3x3-12 (R) 0.64570 0.179699 0.91695 0048711 0.65024 U.50742 

Q3x3-6 (F) 0.62823 II 0.17762 0.91255 0048573 0.64744 0.50245 
Q3x3-6 (R) 0.62841 II 0.17765 0.91278 0.48625 0.64998 0.;)0733 

I EXACT -I 0.65327 II 0.18055 I 0.9 1891 I 0048763 I 0.65060 I 0.<)0766 I 

Table 1: Transverse Displacements at the Center of Plate. w Varyillg I.inearly Through 
the Thickness 

by Q3x3-6 and Q3x3-12 respectively. The results are obtained using tile full integration 

(denoted by F), the reduced integration (denoted by R), and the full illkgration for the 

bending terms and the reduced integration for the shear terms (denoted IJ.'· FR.). Tables 1 

and 2 shows the non-dimensionalized transverse displacements at the' center of the plate 

for both theories and for a wide range of thickness/lenght ratio. 

The results for the case where ajh=4 are represented in figures 10 through 26 

Single Layer of PVDF Under Sinusoidal Load and Sinusoidal Polential 

A single square layer of PVDF is considered under two types of loads in using the 

two theories used in the previous section. First, a transverse sinusoidal load, q(x, y) = 

qosin( 7fa.X)sin( ¥-) where qo = 1, is applied on the upper surface. Because of the symmetry 

of the problem, only one quarter or the plate is modelled and the boudary conditions used 

are as follows (see figure 17): 

u(x,O,z) = 0 u(a/2,y,z) = 0 

v(O, y,z) = O v(x, b/2, z) = 0 

w(O,y,z) = O w(x,O,z) = 0 

<p(x,O,z) = 0 <p(O,y,z) = 0 

<p(x,y,O) = 0 c.p(x,y,h) = 0 

The results for the case where a/ h = 10 are represented in figures 27 through 37. 
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Mesh a/h=2 a/h=4 a/h=10 a/h=20 a/h=50 a/h=100 
10- 0 10 a 10 -a 10 -'1 10 -J 10 -

L6x6-12 (F) 0.66942 0.18084 0.90358 0.46131 0.49409 0.22671 
L6x6-12 (FR) 0.67351 0.18232 0.91807 0.48423 0.64409 0.50232 
L6x6-12 (R) 0.67421 0.18226 0.92098 0.48652 0.64766 Q.50518 

L6x6-6 (F) 0.65305 0.17883 0.89952 0.46055 0.49397 U.:l1oTU 
L6x6-6 (FR) 0.65682 0.18026 0.91383 0.48338 0.64388 0.50228 
L6x6-6 (R) 0.65755 0.18053 0.91674 0.48566 0.64745 0.50513 

I Q3x3-12 (F) 0.66766 0_18096 0.91557 0.48480 0.64466 _0.50U13 
Q3x3-12 (R) 0.66714 0.18087 0.91571 0.48539 0.64716 0.50492 

Q3x3-6 (F) 0.65126 0.17893 0.91139 0.48396 0.64443 U.50004 
Q3x3-6 (R) 0.65072 0.17884 0.91153 I 0.48447 0.64695 0.50488 

I EXACT - -I 0.65327 I 0.18005 I 0.91891 I 0.48763 I 0.65060 I 0.5(66 I 

Table 2: Transverse Displacements at the Center of Plate. w -_ COllsLCl.J1t Through the 
Thickness 

In the second case when the sinusoidal potential,cp(x,y) = qo.:; i,,( ~;" ),'j i n(¥) where 

CPo = 1, is applied to the single layer of PVDF, the boundary condit iull are as follo\\"s: 

u(x,O,z) = ° 
v(O,y,z)=O 

w(O,y,z)=O 

cp(x, 0, z) = 0 

cp(x,y,O) = ° 

u(aj2,y,z) = ° 
v(x, b/2, z) = ° 
w(x,O,z)=O 

cp(O,y,z) =0 

The results for this case with aspect ratio equal to 10 ,a/ It = 10. iI.("C presented ill in 

figures 38 through 48_ 

Single Layer of PZT4 Under Sinusoidal Load and Sinusoidal Potential -

A single layer of PZT4 is considered under the same types of loads a.<; those examined 

with the single layer of PVDF. The geometry is shown in figure 17 wich is the same used 

for the example on section .The boundary conditions for the two cascs ,sil1l1soidal load 

and sinusoidal potential ,are the same as those in section respectively. 

The results for both cases, sinusoidal load load and sinusoidal putclIl ial , are shown ill 

figUl"es 49 through 56 and in figures 57 through 64. 

Four Layer PVDF/Graphite/Epoxy/PVDF laminate 

A simple supported square laminate composed of 4 layers, is cOllsi tkl"l't\ ill t.his section . 
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I ajh I Mesh ur uy Try Trz Tyz 

L6x6-12(F) 8.0302 -6.0920 0.8767 -1.0261 -0.2166 0.2112 0.5160 0.1229 
L6x6-12(FR) 8.0747 -6.1332 0.8849 -0 .10341 -0 .2183 0.2129 0.5066 0.1233 
L6x6-12(R) 8.1171 -6.1494 0.8866 -1.0373 -0.2191 0.2134 0.5072 0.1230 
L6x6-6(F) 7.1797 -5.4417 0.8313 -0.9899 -0 .2054 0.2021 0.4940 0.1063 

2 L6x6-6(FR) 
L6x6-6(R) 7.2519 -5.4885 0.8403 -1.0003 -0.2075 0.2041 0.4979 0.1061 
Q3x3-12(F) 8.0676 -6 .1373 0.8801 -1.0324 -0 .2179 0.2121i 0.·1049 0.12:38 
Q3x3-12(R) 8.0693 -6.1397 0.8811 -1.0334 -0.2180 0.21:.! (; (J .·jU::'O U. I ;1:38 
Q3x3-6(F) 7.2169 -5.4850 0.8350 -0.9964 -0.2065 0.20J·I 0. 19·)6 0.1072 
Q3x3-6(R) 7.2180 -548645 0.8354 -0.9970 -0.2066 0.20:34 0.49.); 0.1072 
EXACT 8.5323 -6.4962 0.9181 -1.0709 -0.2255 0.2H):.l 0.5182 0.1272 
L6x6-12(F) 17.7195 -17.0093 1.6819 -1.8451 -0.4182 0.4371 1.3785 0.1224 
L6x6-12(FR) 17.8784 -17.1650 1.7038 -1.8670 -0.4233 0.4421 1.:3927 0.1199 
L6x6-12(R) 17.9508 -17.2284 1.7070 -1.8719 -0.4242 0.4'\:3;1 1.3941 0.1196 
L6x6-6CR) 17.1557 -16.4718 1.6430 -1 .8087 -0.4107 0.4298 1.3756 0.1088 

4 L6x6-6(FR) 17.3022 -16.6154 1.6642 -1.8299 -0.4155 0.434, t.:3895 0.1060 
L6x6-6(R) 17.3748 -16.6793 1.6672 -1.8346 -0.4165 0.4358 1.3910 0.1058 
Q3x3-12(F) 17.8687 -17.1653 1.6911 -1.8574 -0.4218 0.44U, 1.:3865 0.1263 
Q3x3-12(R) 17.8790 -17.1780 1.6948 -1.8611 -0.4220 0.44U, U86, 0.1263 
Q3x3-6(F) -16.6279 1.6529 -1.8218 -0.4141 U.-\:3J:\ 1.:\0:3:3 U.1126 
Q3x3-6(R) -16.6356 1.6559 -1.8244 -0.4143 O.4 :.lJ·\ \.:.l83.) 0.1126 
EXACT 18.3088 -17.5873 1.7405 -1.9086 -0.4301 0.4490 1.4076 0.1291 
L6x6-12(F) 70.0011 -69.9408 4.0293 -4.1974 -1.1556 1.1846 4.0714 0.1246 
L6x6-12(FR) 71.2801 -71.2188 4.1162 -4.2843 -1.1794 1.2084 4.1527 0.1014 
L6x6-12(R) 71.6333 -71.5713 4.1301 -4.3000 -1.1839 1.2133 4.1535 0.1013 
L6x6-6(F) 69.5283 -69.4711 4.0047 -4.1732 -1.1491 1.1781 4.0688 0.1126 

10 L6x6-6(FR) 70.7863 -70.7283 4.0906 ' -4.2591 -1.1725 1.2016 4.1498 0.0892 
L6x6-6(R) 71.1398 -71.0810 4.1044 -4.2748 -1.1771 1.206'1 4.1506 0.0891 
Q3x3-12(F) 71.4377 -71.3816 4.0872 -4.2585 -1.1802 1.2093 4.1476 0.1466 
Q3x3-12(R) 71.5426 -71.4925 4.1117 -4.2821 -1.1806 1.2095 4.1486 0.1471 
Q3x3-6(F) 70 .9790 -70.9259 4.0635 -4.2351 -1.1734 UU1:j -1.1443 0.1341 
Q3x3-6(R) 71.0574 -71.0074 4.0880 -4.2585 -1.1737 UO:li -1.1454 0.1347 
EXACT 72.5977 -72.5396 4.1757 -4.3490 -1.1977 1.2;171 4.2018 0.1490 

Table 3: Stresses on Cross-Ply. w varying through thickness 
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I ajh I ~lesh 
L6x6-12( F) 0.2421 -0 .2422 0.1102 -0.1119 ~0.3442 0.3472 I U.8049 0.1187 
L6x6-12(FR) 0.2553 -0.2553 0.1164 -0.1181 -0.3632 0.3662 I 0.8401 0.0165 
L6x6-12(R) 0.2567 -0 .2567 0.1169 -0.1186 -0.3651 0.368 ~ I U.8406 0.0173 
L6x6-6(F) 0.2418 -0 .2418 0.1105 -0.1122 -0.3435 0.345(j I U.8040 0.1029 

20 L6x6-6(FR) 0.2548 -0.2549 0.1167 -0.1184 -0.3625 0.3656 I U.8391 0.0332 
L6x6-6(R) 0.2563 -0.2563 0.1173 -0.1190 -0.3644 0.361.) I U.8:396 0.0340 
Q3x3-12(F) 0.2559 -0 .2560 0.1155 -0.1172 -0.364.6 0.3676 : O.85'.'j 0.:231 4 
Q3x3-12(R) 0.2567 -0 .2567 0.1167 -0.1184 -0 .3648 0.3676 ; U.S577 I 0.2331 
Q3x3-6(F) 0.2556 -0 .2556 0. 1157 -0.1175 -0.36:3\J O.:J(j(/1 lJ .:{:-)(j :j 0.21:3!1 
Q3x3-6(R) 0.2562 -0 .2563 0.1171 -0.1188 -0.3641 0.:J(j71 -:- lJ·.o:)utj 0.2158 
EXACT 0.2600 -0 .260 1 0.1178 -0.1195 -0.3696 0.:372, . ·1J .o(id(j . 0.2344 

L6x6-12(F) 1.1741 -1.1740 0.4864 -0.4881 -0.15/1 0.158U ; 1.5278 
L6x6-12(FR) 1.5405 -1.5406 0.6387 -0 .6404 -0.2070 0.201:3 i l. TUD 1 
L6x6-12(R) 1.5493 -1.5493 0.6421 -0.6439 -0 .2082 0.2080 ; 1.'!J69 
L6x6-6(F) 1.1740 -1.1741 0.4998 -0.4915 -0. 1577 0.1580 i 1. .'j:l51 

50 L6x6-6(FR) 1.5440 -1.5405 0.6431 -0.6448 -0.2069 0 . 2U7 :~ : 1.7U62 
L6x6-6(R) 1.5492 -1.5493 0.6466 -0 .6483 -0.2081 0.2084 : 1.79:39 
Q3x3-12(F) 1.5373 -1.5374 0.6314 -0.6331 -0.2075 0.2010 1 2.1T27 0.5277 
Q3x3-12(R) 1.5497 -1.5498 0.6417 -0.6434 -0 .2082 0.2085 I :L . W;):I 0.5395 
Q3x3-6(F) 1.5374 -1.5375 0.6358 -0.6:375 -0 .2075 0.201t\ ! :l . l()!.l(j 0.4888 

I 
Q3x3-6(R) 1.5496 -1.5497 0.6461 -0 .6479 -0.2081 0.'208:) . '2 l(i2·1 , 0 .. iOI4 
EXACT 1.5690 -l.5691 0.6457 -0.6475 -0.2109 0.211:! , :! . I!JL7 0.5:39:3 

I 

I 
~ , 

I L6x6-12(F) 2.7435 -2.7436 1.1199 -1.1216 -0.3653 0.365 j' : 1.2:175 
L6x6-12( FR) 6.1300 -6.1301 2.5033 -2.5050 -0.8166 0.8166 : 1.2881 
L6x6-12(R) 6.1651 -6.1652 2.5173 -2 .5100 -0.8212 0.8215 I 1.2702 
L6x6-6(F) 2.7446 -2.7446 1.1285 -1.1302 -0.3653 0.3656 I 1.3565 

100 L6x6-6(FR) 6.1312 -6.1313 2.5223 -2.5240 -0 .8164 0.81 67 I 1.1825 
L6x6-6(R) 6.1664 -6.1665 2.5365 -2.5382 -0.8211 0.8214 I 1.2646 
Q3x3-12(F) 6.0621 -6.0622 2.4590 -2.4607 -0.8146 0.8 149 I 4.3995 l.0025 
Q3x3-12(R) 6.1668 -6.1669 2.5175 -2.5192 -0.8214 0.8217 I ,1.3383 1.0709 
Q3x3-6(F) 6.0634 -6.0635 2.4778 -2.4795 -0.8144 0.8147 I 4.39:36 0.9265 
Q3x3-6(R) 6.1681 -6.1682 2.5366 -2.5383 -0.8213 0.82l(j i -1.:3:320 0.9975 
EXACT 6.2435 -6 .2436 2.5308 -2.5326 -0.83Hl 0 . 8:\:l:!~ I.:\DIG 1.0652 

Table 4: Stresses on Cross-Ply. w varying through thickness 
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I a/h I Mesh ur uy i'r y I Tzz Tyz 

L6x6-12(F) 6.8657 -6.8657 0.9860 -0.9860 -0.2220 0.2220 0.5082 0.1205 
L6x6-12(FR) 6.9080 -6.9080 0.9945 -0.9945 -0 .2238 0.2238 0.5115 0.1209 
L6x6-12(R) 6.9345 -6.9345 0.9972 -0.9972 -0.2244 0.2244 0 .. 5122 0.1205 
L6x6-6(F) 6.1660 -6.1660 0.9588 -0 .9588 -0.2120 0.21:20 0.4957 0.1071 

2 L6x6-6(FR) 6.1960 -6.1960 0.9667 -0 .9667 -0.2136 0.2LHi 0.4987 0.1072 
L6x6-6(R) 6.2231 -6.2231 0.9694 -0 .9694 -0.2142 0.214L 0..t995 0.1069 
Q3x3-12(F) 6.9088 -6.9088 0.9909 -0.9909 -0 .2233 0.2:2:n 0.5099 0.1215 
Q3x3-12(R) 6.9116 -6.9116 0.9917 -0 .9917 -0 .2233 0.2:2:n U.:)m)9 O.IL 17 
Q3x3-6(F) 6.2077 -6.2077 0.9638 -0 .9638 -0.2132 0.213:! 0.4974 0.1081 
Q3x3-6(R) 6.2092 -6.2092 0.9643 -0.9643 -0.2132 0.2 ~ ;~L I 0.:9_7_tt 0.1083 
EXACT 1.62 2.13 0.268 0.230 0.0548 U.U:jli·1 I U.L.) I U.U668 
L6x6-12(F) 17.3295 -17 .3295 1.7392 -1.7392 -0.4307 0.4307 1.3764 0.1186 
L6x6-12(FR) 17.4866 17.4866 1.7610 -1.7610 -0 .4357 0.4351 1.:3905 0.1160 
L6x6-12(R) 17.5540 -1 7.5540 1.7647 -1.7647 -0.4368 0.4368 1.3919 0.1156 
L6x6-6(R) 16.7843 -16.7843 1.7173 -1.7173 -0.4233 0.42:n 1.3711 0.1070 

4 L6x6-6(FR) 16.9292 -16 .9292 1.7385 -1.7385 -0.4282 0.4282 1.:38tt9 0.1041 
L6x6-6(R) 16.9970 -16.9970 1.7422 -1.7422 -0.4292 O.4L~n U863 0.1038 
Q3x3-12(F) 17.4836 -17.4836 1.7499 -1.7499 -0.4342 0.4342 1.3844 0.1225 
Q3x3-12(R) 17.4963 -17.4963 1.7528 -1.7528 -0.4343 0.4:l ·1:~ 1.:j846 0.1229 
Q3x3-6(F) 16.9386 -16.9386 1.7287 -1.7287 -0.4268 0.426$ 1.3789 0.1109 
Q3x3-6(R) 16.9462 -16.9462 1.7310 -1.7310 -0.4268 0.4 26Ei 1.:3791 0.1113 
EXACT 1.10 1.14 0.119 0.109 0.0281 O .OL(i~) 0.351 0.0:334 
L6x6-12(F) 70.0028 -70 .0028 4.0930 -4.0930 -1.1682 UoS:! 4.U68'\ 0 .1266 
L6x6-12(FR) 71.2805 -71.2805 4.1794 -4.1794 -1.1919 l.HW) 4.1496 0.1036 
L6x6-12(F) 71.6336 -71.6336 4.1940 -4.1940 -1.1966 1.1966 4.1504 0.1034 

10 L6x6-6(F) 69.5053 -69.5053 4.0728 -4.0728 -1.1617 1.1617 4.0647 0.1154 
L6x6-6(FR) 70 .7613 -70.7613 4.1582 -4.1582 -1.1851 1.1851 -1.1456 0.0920 
L6x6-6(R) 71.1144 -71.1144 4.1729 -4.1729 -1.1898 1.1898 4.1464 0.0920 
Q3x3-12(F) 71.4394 -71.4394 4.1527 -4.1527 --1.1921 l.lVLI ·1. 14'16 0.1'187 
Q3x3-12(R) 71.5489 -71.5489 4.1751 -4 .1751 -1.1930 l.l!.J:lU 4.1456 0.1496 
Q3x3-6(F) 70.9549 -70.9549 4.1331 -4.1331 -1.1859 !.l85!') ·1.1402 0.1370 
Q3x3-6(R) 71.0357 -71.0357 4.1557 -4.1557 -1.1862 1.1862 4.1413 0.1379 
EXACT 0.725 0.726 0.0435 0.0418 0.0123 0.012U 0.420 0.0152 

Table 5: Stresses on Cross-Ply. w constant 
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r 
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----------~-

I a/h I Mesh 

L6x6-12(F) 
L6x6-12(FR) 
L6x6-12(R) 
L6x6-6(F) 

20 L6x6-6(FR) 
L6x6-6(R) 
Q3x3-12(F) 
Q3x3-12(R) 
Q3x3-6(F) 
Q3x3-6(R) 
EXACT 
L6x6-12(F) 
L6x6-12(FR) 
L6x6-12(R) 
L6x6-6(F) 

50 L6x6-6(FR) 
L6x6-6(R) 
Q3x3-12(F) 
Q3x3-12(R) 
Q3x3-6(F) 
Q3x3-6(R) 
EXACT 
L6x6-12(F) 
L6x6-12(FR) 
L6x6-12(R) 
L6x6-6(F) 

100 L6x6-6(FR) 
L6x6-6(R) 
Q3x3-12(F) 
Q3x3-12(R) 
Q3x3-6(F) 
Q3x3-6(R) 
EXACT 

f.cz 

0.2421 -0.242 1 0. 1121 -0 .11 21 -0. 3444 0.3444 0.8048 0.1276 
0.2552 -0.2552 0. 1183 -0.1183 -0.3633 0.363J U.8406 0.0066 
0.2566 -0.2566 0.1189 -0 .1189 -0 .3652 0.3652 0.8382 0.0073 
0.2417 -0.2417 0.11 20 -0 .11 20 -0.3438 0.3438 0.8039 0.1117 
0.2547 -0.2547 .0.1181 -0 .11 81 -0.3626 0.3626 0.8395 0.0232 
0.2561 -0.256 1 0. 1187 -0.1187 -0.3645 0.3645 0.8:394 0.0239 
0.2558 -0.2558 .0. 1175 -0 .11 75 -0.3637 0.36,11 0.8::>7:3 0.2403 
0.2566 -0.2566 0. 1187 -0.11 87 -0.36'19 0.3fi·gJ 0.8·');'1 0.2422 
0.2554 -0 .2554 0. 11 73 -0 .11 73 -0.36-10 0.:3IHO 1J.85i)2 0.2228 
0.2561 -0.2561 0.1185 -0 .U 85 -0 .3642 0.364:L lJ.$·')6J 0.2250 
0.2600 -0.260 1 0. 1178 -0. 1195 -0.3696 0.371; 0.8(j86 0.2344 -
1.1745 -1.1 74.5 0.4961 -0.496 1 -0 .1513 0.15t:J 1..')2~.l8 

1.5394 -1.5394 0.6504 -0.6504 -0.2062 O.;1Ulj;1 l.8UU6 
1.5482 -1.5482 0.6540 -0.6540 -0 .2074 0.2UI'1 1.7V84 
1.1742 -1.1742 0.4960 -0.4960 -0. 1573 0.1·573 1.52/6 
1.5389 -1.5389 0. 6502 -0.6502 -0 .2061 0.20(j1 l.7915 
1.5477 -1.5477 0.6538 -0 .6538 -0 .2073 0.207:3 1.795:3 
1.5363 -1.5363 0.6432 -0.6432 -0 .2068 0.2068 1. 112'1 0.5536 
1.5485 -1.5485 0.6534 -0 .6534 -0 .2074 0.2U7·1 "2..165U 0.5655 
1.5359 -1 .5359 0.6429 -0.6429 -0 .2067 0.20(il L . lfiD7 O.!) 1 ~9 
1.5480 -1.5480 0.6533 -0 .65J3 -0.207:3 0.207J :! . l(ilV 0.5265 
1.5690 - 1.569 1 0.6458 -0.6475 -0 .2109 0.2112 :!.19n 0.5:\9:3 

2.7489 -2.7489 1.1443 -1.1443 -0.364 7 0.3(i-1I J.:lG52 
6. 1254 -6. 1254 2. 5499 -2.5499 -0.8 127 0.812; I.JU26 
6. 1604 -6. 1604 2. 5644 -2 .5644 -0 .8173 0.8173 l.:2849 
2.7489 -2.7489 1.1442 -1.1442 -0 .3647 0.3647 1.3625 
6. 1249 -6.1249 2. 5497 -2.5497 -0 .8126 0.8126 1.2966 
6.1599 -6. 1599 2. 5642 -2.5642 -0.8173 0.8173 1.2789 
6.0577 -6.0577 2. 5056 -2 .5056 -0.8107 0.8107 11.:3986 1.0551 
6. 1619 -6. 1619 2. 5642 -2.5642 -0 .8175 0.8 175 ·U376 1.1238 
6.0573 -6.0573 2.5052 -2.5053 -0 .8107 0.8lOG 1.3925 0.9772 
6. 1617 -6. 1614 2.5639 -2 .5640 -0 .8174 0.8 \7'1 -1. :3:3\1 1.0485 
6.2435 -6.2436 2. 5308 -2 .5326 -0.8319 0.8:31;1 :\.:3917 1.0652 

Table 6: Stresses on Cross-Ply.w constant 
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I z u * 10 10 

Exact Variable W Constant W Exact Variable W Constant W 
1.0000 -0.530075 -0.524338 -0.537309 0.000000 0.000000 0.000000 
0.9661 -0.441401 -0.436096 -0.454391 0.009646 0.009699 0.002594 
0.9333 -0.311682 -0.366161 -0.390129 0.018931 0.019036 0.004859 
0.9000 -0.318131 -0.313540 -0.341897 0.027862 0.028021 0.006856 
0.9000 -0.318131 -0.313540 -0 .341897 0.027862 0.028021 0.006856 
0.1661 -0.202195 -0.198911 -0 .240958 0.023203 0.023310 0.006476 
0.6333 -0.124831 -0. 122843 -0 .163818 0.019096 0.19158 0.006252 
0.6333 -0.124831 -0. 122843 -0.163818 0.019096 0.19158 0.006252 
0.5000 0.036839 0.037103 0.000000 0.015443 0.015466 0.006171 
0.3667 0.199435 0.198031 0.163878 0.012160 0.012145 0.006252 
0.3661 0.199435 0. 198031 0.163818 0.012160 0.012145 0.006252 
0.2333 0.273535 0.270900 0.240958 0.009165 0.009115 0.006476 
0.1000 0.361385 0.351215 0.341897 0.006388 0.006304 0.006856 
0.1000 0.361385 0.351215 0.341897 0.006388 0.006304 - 0.006856 
0.0667 0.405321 0.400719 0.390129 0.004599 0.004543 0.004859 
0.0333 0.465517 0.460434 0.454397 0.002469 0.002:\:10 0.002:i9 l1 
0.0000 0.544384 0.538712 0.537309 0.000000 0.000000 0.000000 

Table 7: Inplane displacement and electrostatic PO\.('III iiI! 

The laminate is constructed with the upper and .lower layers composed of polyvinylidene 

fluoride, PVDF, oriented at 0 degrees, and with the internal two layers composed of 

a cross-ply of graphite-epoxy oriented at 0, and 90 degrees, respectively [0/90]. The 

geometry of the laminate is shown in figure 18. In this example, two loa.ding cases are 

considered. In the first case, the sinusoidal load is applied to the top surfa.ce with the the 

top and bottom surfaces and the vertical edges of the laminate groulld('d. III the second 

case, te sinusoidal potential is applied to the top surface of the laminate with the bottom 

surface grounded. 

The results for the case 1/ h = 4 are presented on tables 7 through 9 for the case in 

which the sinusoidal load is applied, and on tables 10 through 12 for the case when the 

sinusoidal potential is applied. 

Semi-Ana lyt ic Solutions 

Of primary interest in this section is the basic behaivor of the uisplacelllent, stress , 

electrostatic potential, and electric displacement of a laminate with ellilJt'dded piezoelec­

tric layers. Both the variable-wand constant-w cases are examined below for the static 

behavior, with the added theory of the independent-w approximatioll studied ·for the 

dynamic case. 
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Exact Variable W Constant W Exact Variable 'vV Constant W 
1.0000 10.33504 10.04129 10.10107 -0.659511 -0 .639464 -0.650112 
0.9667 8.652445 8.395070 8.552297 -0.567147 -0.5492:3, -0 .564983 
0.9333 7.324507 7.098908 7.347798 -0.489060 -0.472978 -0.493142 
0.9000 6.299222 6.099411 6.440052 -0.423323 -0.408792 -0.432799 
0.9000 0.855399 0.854236 0.589416 -0.372215 -0 .359438 -0 .380547 
0.7667 0.638399 0.616228 0.368611 -0.193170 -0 .185308 -0.216892 
0.6333 0.449534 0.453350 0.205646 -0.067341 -0.063584 -0.098115 
0.6333 1.553872 1.492,91 1.727943 -0 .067341 -0 .063584 -0,09811 ·5 
0.5000 -0.213979 . -0.210662 0.00000 0.034551 0.034255 0.000000 
0.3667 -1.988776 -1.919539 -1.727943 0.131542 0.127279 0.098115 
0.3667 -0.030955 -0 .03/'.56 -0.205646 0.131542 0.127279 0.098115 
0.2333 -0.212196 -0.193:350 -0.368611 0.247282 0.23905:3 0.2WS92 
0.1000 -0.400353 -0 .394469 -0.589416 0.403180 0.390294 0 .3895·~7 

0.1000 -6.892361 -6.686350 -6.44052 0.458540 0.443884 0.432799 
0.0667 -7 .736448 -7.50579, -7.347798 0.5160,1 0.49993:1 U.4931-12 
0.0333 -8 .884439 -8 .62356T -8.552297 0.58·5:H3 0.567453 U.564983 
0.0000 -10.38138 -10.085-19 -10.10107 0.668041 0.648U98 0.650112 

Table 8: lnplane stress distribution 

I z D. * 10 II 

Exact Variable W Constant W Exact Variabh-· \\. ! C'OIlSI.-,~ 
0.9833 0.030842 0.027313 0.025778 -0.126731 -0 .12U61 ·1 -U .019162 
0.9500 0.086931 0.082322 0.077648 -0.120156 -0.11480:3 -0 .016218 
0.9167 0.136315 0.130711 0.123182 -0.107478 -0.102818 -0.010268 
0.8333 0.435957 0.410734 0.405381 -0.092683 -0.092463 -0 .007448 

I 
0.7000 0.750776 0.726830 0.736019 -0.081694 -0 .081487 -0 .004399 
0.5667 0.831595 0.817600 0.827206 -0.072650 -0.072465 -0.001452 
0.4333 0.849577 0.835698 0.827206 -0.065336 -0.065183 0.001452 
0.3000 0.766156 0.743298 0.736019 -0.059517 -0.0594(j4 0.004399 
0.1667 0.426790 0.403100 0.405381 -0.055236 -0 .055172 0.007448 
0.0833 0.126715 0.121428 0.123182 -0.049454 -0.053851 0.010268 

! 0.0500 0.080648 0.076351 0.077648 -0.043180 -0.04821:3 0.016218 

I 0.0167 0.028558 0.025335 0.025778 -0 .039831 -0.0455:j8 0.019162 

j Table 9: Transyerse shear stress and electric displacelllcllt. 

I 

77 



~--. . - - - '--- - -' --- -----~ 

I z D z *10 II 

Exact Variable W Constant W Exact Variable W Constant W 
1.0000 -0.464016 -0.454333 -0.274944 1.000000 1.000000 1.000000 
0.9667 -0.750174 -0.740068 -0.776016 0.985118 0.985081 0.984102 
0.9333 -1.093318 -1.082760 -1.229627 0.971528 0.971463 0.969594 
0.9000 -1.505134 -1.494176 -1.661744 0.959215 0.959128 0.956455 
0.9000 -1 .505134 -1.494176 -1.661744 0.959215 0.959128 0.956455 
0.7667 -1.016508 -1.006818 -1.105801 0.770200 0.769887 0.767967 
0.6333 -0.609389 -0.600110 -0.660315 0.599521 0.599117 0.597904 
0.6333 -0 .609389 -0.600110 -0.660315 0.599521 0.599117 0.597904 
0.5000 -0.364444 -0.356267 -0.399691 0.443115 0.442720 0.442186 
0.3667 -0.234489 -0.228002 -0.268975 0.297258 0.296946 0.297076 
0.3667 -0 .234489 -0.228002 -0.268975 0.297258 0.296946 0.297076 
0.2333 -0.244599 -0.239503 -0 .298538 0.158478 . 0.158295 0.159094 
0.1000 -0.283474 -0.279194 -0.363899 0.023471 0.023443 0.024929 
0.1000 -0.283474 -0.279194 -0.363899 0.023471 0.02344:3 0.02'1929 
0.0677 -0.311356 -0.307364 -0.371325 0.015630 0.015611 0.016599 
0.0333 -0.367545 -0.363802 -0.351645 0.007809 0.007800 0.008294 
0.0000 -0.454328 -0.450824 -0 .304332 0.000000 0.000000_ 0 .000000 

Table 10: Inplane displacement and electrostatic potelltia.l 

I z U x * 10 Txy * 10 3 

Exact Variable W Constant W Exact Variable W COllstant 'vV 
1.0000 -0 .252476 -0.238020 -0 .307042 0.061703 0.078828 -0 .197721 
0.9667 -0.168379 -0.169224 -0.196349 -0 .508764 -0.480931 -0.5/'2105 
0.9333 -0.074172 -0.076568 -0.079646 -1.072601 -1.033926 -1.223532 
0.9000 0.032380 0.014740 -0.017074 -1.643345 -1.593534 -1.783186 
0.9000 0.017152 0.018635 0.026079 -1.444943 -1.401145 -1 .567900 
0.7667 0.012998 0.012217 0.017026 -0.941803 -0.908786 -1.007435 
0.6333 0.009345 0.007959 0.010671 -0.616103 -0 .590772 -0.656807 
0.6333 0.067112 0.065187 0.072009 -0.616103 -0.590772 -0.656807 
0.5000 0.041152 0.039400 0.044246 -0.436790 -0.416920 -0.469842 
0.3667 0.027072 0.025825 0.030211 -0.330848 -0.314971 -0.363867 
0.3667 0.005157 0.004695 0.005225 -0.330848 -0 .314971 -0.363867 
0.2333 0.004410 0.004098 0.005279 -0.303844 -0 .289910 -0 .346856 
0.1000 0.003844 0.004317 0.006324 -0.346085 -0.332338 -0.410615 
0.1000 -0.116128 -0.115099 -0.117675 -0.393606 -0.377970 -0.466996 
0.0667 -0.109948 -0.109214 -0.115478 -0.500968 -0.483674 -0.562701 
0.0333 -0.098760 -0.098185 -0.118428 -0.605557 -0.586605 -0.595639 
0.0000 -0.082135 -0.081793 -0.127015 -0.709345 -0.688722 -0 .566045 

Table 11: Inplane stress dis tri bu tion 
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I z Tyz * 10 3 Dz * 10 10 

Exact Variable W Constant W Exact Variable W Constant W 
0.9833 -0.540721 -0.497105 -0.568975 -0.506163 -0.500145 -0498431 
0.9500 -1.510913 -1.455750 -1.668638 -0.462265 -0.456622 -0,454952 
0.9167 -2.336173 -2.270831 -2.602503 -0.418973 -0.413703 -0.412115 
0.8333 -1.757666 -1.768708 -2.025278 -0 .376004 -0.371419 -0.369941 
0.7000 -0.398307 -0.407344 -0.474639 -0.339528 -0.335167 -0.333779 
0.5667 0.194760 0.192967 0.205508 -0.311136 -0.306955 -0.305625 
0.4333 0.330157 0.324822 0.354593 -0.290150 -0.286109 -0.284803 
0.3000 0.677038 0.660715 0.739205 -0.276072 -0.272126 -0 .270814 
0.1667 1.211837 1.192111 1.364158 -0.268567 -0.264672 -0.263323 
0.0833 1.236155 1.218844 1.410369 -0.266737 -0.262607_ -0.261199 
0.0500 0.733438 0.724337 0.841775 -0.266039 -0.261917 -0 .260464 
0.0167 0.242057 0.241098 0.279375 -0.265690 -0.261570 -0 .260096 

Table 12: Transverse shear stress and electric desplacement 

Quasi-static response 

In this section, the static response of piezoelectric laminates is stlldj(~d and compared 

.with the exact three-dimensional solution. Two different types of loading are considered. 

The first is an applied sinusoidal transverse load of the form 

. ilX . r.y 
F(x,y) = l osm -L sID-

L x y 

(290) 

where fa is the peak intensity of the load at the center of the plate. This could simulate 

the sensory characteristics of a laminate by determining the behavior of the electric field 

as a function of loading. The second type of loading simulates the active response of 

a laminate under a sinusoidal surface potential similar in nature to that described in 

Equation 287 except that now fa is the peak potential at the plate center. Both of these 

cases have exact solutions [87] and demonstrate not only the fundamental behavior of the 

laminate but also the accuracy of the discrete-layer approach as a fUlIC'tio1l of the number 

of layers used within the laminate. 

Two geometries are used in this example: a single layer of PZT-4 and a 5-ply hybrid 

laminate. The 5-ply laminate geometry consists of a symmetric [0/90/0] cross-ply of an 

elastic, orthotropic plate with the material properties Cll = 134.9 (all in GPa), C22 = 
14.35, C33 = 14.35, Cl2 = 5.156, C13 = 5.1·56. C23 = 7.133, C44 = 3.606, Css = 5.654, C66 

= 5.654, Ell / Eo = 3.5, E22/ Eo = E33/ Eo = 3.0. These three layers are all of equal thickness. 

Two layers of the piezoceramic material PZT-4 of equal thickne!:>s a.l'(~ IJUllllvd to the upper 
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and lower surfaces of the laminate. The total laminate thickness is defined as h, with the 

thickness of each of the piezoelectric layers taken as O.lh. The plate is square, with the 

length/thickness ratio of the plate specified as 4. 

The boundary conditions along the vertical edges are those consistent with the func­

tions described in Equation 25 . Hence along an edge the transverse and tangential dis­

placements are zero as are the normal stress and electrostatic potential. The top and 

bottom surfaces of the laminate are grounded for the transverse load case, with the bot­

tom of the laminate stress-free. For the sinusoidal unit potential, the bottom surface of 

the laminate is grounded with the upper and lower surfaces of the laminate stress-free. 

Three different discretizations are used in the thickness direction of the laminate. Each 

of the laminae are divided into 1, 2, and. 4 layers with linear interp()lal iOllS used within 

each layer. Hence the total laminate is divided into 5, 10, and 20 layers. The in-plane 

functions are selected to coincide exactly with the distri bu tions gl ven Jfi Equation 2.5, 

which also match the forms for the exact solutions: 

The through-thickness distributions of u, w, rfy, CTy , CTz,Tyz , and Dz are shown in Figures 

65-80 for the single layer of PZT-4 using a 12 layer discretization. This example clearly 

demonstrates the poor behavior of the constant-w theory and the excellent agreement 

with the variable-w theory. 

The results for the 5-ply laminate in Figures 81-102. The in-plane displacements for 

both applied load an potential contain distinct breaks in slope at the interface locations. 

This is especially true for the applied potential , for which the displacement gradient in 

the PZT layer is very high compared to the other layers. The transverse displacement 

w also has a highly non-uniform behavior over th.e thickness of the laminate. These 

distributions indicate that even for a relatively simple lamination scheme, the assumption 

of linear global behavior for the displacements or potential would be highly detrimental 

for a plate of this thickness. Also of note are the excellent results obtained using the 

minimal number of discrete-layers through the thickness. Even the 5-layer approximation 

(one layer per laminae) provides excellent results for all field distributions . The stress 

variables in this case are computed at the sub-layer centroids using the constitutive laws 

for the material. The worst agreement for the 5-layer case is the transverse displacement 

for the applied potential loading, for which the val!-les differ from the exact solution by 

about seven percent. This also influences the CT z and Tyz stress distribllLiolls. All other 

values are in very good agreement for both load cases. 
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The distribution of the normal . component of electric displacement is fairly uniform 

through the thickness of the cross-ply by changes dramaticlly within the piezoelectric 

layers because of the electromagnetic coupling. Assuming linear ma.terial behavior, this 

behavior could be used to model the laminate response in a sensory fa-;hion for the case 

of the applied loading. 

Dynamic Analysis 

Exact solutions for the free-vibration of simply-supported piezoelectric plates are avail­

able [89], and provide a good benchmark for comparative purposes. The primary quanti­

ties of interest are the resonant frequencies and the through-thickness modal distributions 

corresponding to these frequencies. Two sets of boundary conditioll ::; are considered in 

this analysis. In the first, the top and bottom surfa.ces are groundeu during the vibra­

tion. In the second, the electric displacement on these surfaces are zew. These cases are 

termed closed-circuit and open-circuit, respectively. The fundamenta.l in-pla.ne mode with 

m=n=l is the focus of this example. 

A square plate composed of a single layer of the piezoceramic PZT-4 is considered 

first. The length of each side is taken as Lx = Ly = a.The height is t"lken as h, and three 

a/h ratios are studied: 4, 10, and 50. The fundamental through-thicklless frequency is 

of most interest, and is given as a function of the number of layers useu to describe the 

piezoelectric layer. The results are shown in Table 13. The frequenci es axe represented in 

the tables in terms of the parameter w hlp. 

A second plate is composed of two dissimilar piezoelectric ma.lvriil.b modeled after 

PZT-4 [68] and PVDF [16]. The densities of the two materials are taken to be the same. 

A three-ply laminate is constructed with the configuration [PZT IPVDF /PZT], with the 

PVDF layer oriented at 0 degrees. The thickness of each PZT layer is 0.2.5h. Both open 

and closed circuit conditi~ns are considered, with the length/thickness ra.tios of 4 and 50 

studied. The convergence of the first six modes as a function of a number of sub-layers is 

shown and compared with the exact frequencies in Table 14. For both of these examples, 

it is clear that even a small number of layers yields frequencies accura.le " 'ell within several 

percent. 

A final example is a 5-ply laminate identical to that considered in the static analysis 

in the previous sub-section. The first six thickness mode frequencies a.re listed in Table 

15, and are again very accurate with respect to the exact solutiou. The mode sha.pes can 
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also be easily calculated, and exhibit trends similar to the static example in terms of the 

convergence. The through-thickness distributions of the displacements and potential for 

the closed-circuit boundary conditions can be easily computed for a/lt=4 and a/h=50 . 

The plots are indistinguishable from those generated using the exact solution, and are 

given in the next section. 

Exact Solution 

Although both the static and dynamic cases have been investigated, the dynamic case 

is of most interest and can be obtained as a special case of the static solution with w = 

o. The focus of the results in this report is for the dynamic case. 

In all cases studied, the plates are square with simply supported eclgl':'s and Lx = Ly = 

a. The plate surfaces are assumed to be traction-free unless otherwise noted. Although 

other surface conditions can easily be considered along with rectangular plate geometries, 

these were selected for simplicity. Two sets of electric boundary conditions are typically 

applied: homogeneous potential or homogeneous electric displacemellt. The frequencies 

for these examples are expressed in terms of the frequency parameter -, = (;.)h/ ft, where 

w is the initial frequency in radians per second. 

The frequencies were determined using bisection with the bounding guesses determined 

two different ways. In the first, the frequency was stepped in increments of one percent of 

the elastic plate frequency neglecting the electromechanical coupling and using classical 

lamination theory [88]. At locations where the determinant changed sign, bisection was 

used to refine the roots to the required accuracy. A second method used as a check was the 

discrete-layer theory developed by the authors [89], which is extremely accurate and gave 

excellent estimates for the exact values of the frequencies. For the most part, these two 

different sets were in very good agreement. The only exceptions existed in the stepping 

method where there could be sign change in determinant and convergence obtained for 

a frequency, but there was no analogous root predicted by the discrete-layer theory. In 

these cases, the resulting exact eigenfunctions did not satisfy the appropriate interface 

and boundary conditions. The source of this anomaly is un~nown. Such modes and their 

frequencies are not included in the results that follow. 

The Piezoelectric Single Layer 

A single homogeneous layer of a piezoceramic is considered first. This problem is useful 

to demonstrate the nature of the thickness modes and to partially demonstrate the in flu-
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ence of aspect ratio 'and the electric boundary conditions. The rnakri .. .1 properties used 

here, selected to model PZT -4, are shown in the Table Al in the Appeudix along with the 

properties for all materials used in this study. The material used here is material 2. Four 

thickness (a/h) ratios were considered: 1, 4, 10, and 50. The frequencies corresponding 

to the first six thickness modes are shown in Table 16 for both ¢=O and Dz=O conditions, 

which are referred to as cases I and II, respectively. It is clear from these results that as 

the aspect ratio decreases (thick plates), the influence of the electric boundary conditions 

becomes more pronounced, with the homogeneous electric displacenwlIl providing higher 

frequencies for all cases. 

The mode shapes corresponding to the frequencies of vibration are also of significant 

interest, as these describe the nature of the motion and the extent of electromechanical 

coupling. The three displacement components are normalized with respect to the largest 

value of u, v, or w through the thickness for a particular mode. The potential was' also 

normalized with respect to its largest value as well for plotting purposes. A scaling factor 

a was used to denote the relationship between the potential and the di~placernents . This 

value is the magnitude of the potential at the middle surface of the pla.te (z=O) divided 

by the u displacement component at the top of the plate (z=h/2) . If the potential is zero 

at the mid-surface, the location used for the computed scale factor is at z=O.25h. This is 

noted in the table by placing parentheses around the value. 

The first mode for this laminate is the so-called flexural mode. It is distinguished 

by the symmetric distributions for the transverse displacement and potential and the 

antisymmetric distribution of in-plane displacement. As the thickness ratio increases, 

the in-plane displacements become more linear and the transverse displacemellt becomes 

more uniform. The second mode is a purely extensional mode wi th t.he eigenfunctions 

described by u(z) = -v(z) = 1, w(z) = ¢(z) = O. There is no electromechanical coupling 

in this mode, and the same frequency is obtained for both case I aud case II surface 

conditions. The third mode yields displacement functions that tend toward u(z) = v(z) 

= 1 and w(z) == 0 as the plate becomes thin. The in-plane functions are symmetric and 

the transverse displacement is antisymmetric. The potential-distribut.ion changes little 

relative to the aspect ratio. The fourth mode is also purely elast.ic.: "'itlt IILl couplillg and 

is the first thickness shear mode. This is distinguished by in-plane displa.cement functions 

given by u(z) == -v(z) = sin 7rzjh and zero transverse displacement and potential. These 

modes demonstrate the deviations in the displacement and electrost a.Lic potential from 
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the kinematic assumptions of some simplified laminate theories (linear u, v, and <I> and 

constant w) as the plate a/h ratio decreases. 

In general, the modes for the two types of electric boundary colldition have similar 

features. The features can change depending on the electric boundary conditions. For 

example, for a/h= 1 the second thickness shear mode corresponds to mode 6 (case I) and 

mode 5 (case 2). This mode has features similar to the first thickness-shear mode except 

u(z) = -v(z) = sin 37rz/h. 

Three-ply Symmetric Laminate 

A second example is a laminate composed of two dissimilar materials with a mismatch 

in both elastic and electric properties. The materials, denoted as 1 allJ l. . eLl'<:' a.Japtecl from 

the properties of the transversely isotropic PZT-4 and the orthotropic PVDF. Two aspect 

ratios of 4 and 50 are considered, with both types of electric boundary conditions, I and 

II, considered. Two lamination schemes are studied. The first has the layup of [1/2/2/1]' 

and the second [2/1/1/2]' where the numbers indicate the piezoelectric material. Each 

layer has equal thickness of 0.25h. The frequency parameters are shown in Table 17. In 

this case, there are no cases for which the elastic and electric fields uncouple . It is also 

not possible to classify these modes as pure shear or extensioll becaLl~I' ur tile clissil11ilar 

materials. 

Plots of the first six through-thickness modes for [1/2/2/1] are shown in Figures 103-

114 for the two aspect ratios. It is clear from these plots that the influence of the dissimilar 

properties on the displacements and the potential decreases as the aspect ratio increases. 

It is also clear that even for thin laminates the modal potential cannot be accurately 

represented by a simple linear function through the laminate thicklless. This requires 

specific attention in constructing approximate solutions to this cla.:;:; II probll-·I I!. 

Hybrid Composite Laminate 

In many structural applications, several layers of piezoelectric material are bonded to 

a substructure of elastic composite plies. This type of configuration is considered here, 

with single layers of piezoceramic material PZT (material 2) bonded to the upper and 

lower faces of an elastic, syrrunetric cross-ply. The 5-ply laminate [PZT/O/90/0/PZT] is 

considered, with the cross-plies formed -by a composite material and denoted as material 

3 in Table AI. 

The natural frequencies for case I and II electric boundary conditions are shown in 
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Table 18. The through-thickness displacement and potential functions are presented for 

the first (flexural) mode in Figures 115-116 for a/h=4 and a/h=.50. The line definitions 

are given by u (solid), v (dash-dot), w (dash), and the potential (clot). In addition, 

representative plots of the intralaminar (0"1, 0"2, 0"6) and interlaminar (0"3, 0"4, O"s) stress 

components and transverse electric displacement (Dz) are also given for the same mode 

in Figures 117-120, respectively, Here the lines are o"x (solid), O"y (dash), O"xy (dot) in 

Figures 117-118 and o"z (solid), Txz (dash), Tyz (dot) and Dz (dash-doL) ill Figures 119-

120 for both two thickness ratios. As the plate becomes thin, the in-plaue displacements 

tend to the same distribution, with the transverse displacement tending to a constant 

through-thickness value. Also, the in-plane stresses tend to become more linear, with the 

transverse normal stress decreasing in relative magnitude as expected. 

Single-layer PZT-4: Independent-w theory 

The final example of this report contains perhaps the most illlpurl (lliI l·.\i1111pk or litis 

study, and provides an example of the theory constructed to combat tile poor peri"orl11allCC 

of the constant:..w theory described in earlier sections. By allowing a transverse normal 

stl:ain that is still less computationally intensive than the total variable-w theory, the 

actuation strain can be captured to yield results that are much closer to reality than the 

constant-w case. 

As a simple demonstration, the closed-circuit free-vibration behavior of a single layer 

of PZT-4 is examined using 1) variable-w theory with two layers , 2) ll-\"C:? approximations 

using two layers and \V-approximation using a single layer, and :3) the l'XC:tct solution. The 

results of the first 6 frequencies are shown in Table 19. Clearly, the illclependent-w theory 

yields a higher fundamental mode, but is indicative of the ralatively good accuracy with 

a small number of w-Iayers. Many of the higher modes (pure extension and those with 

no coupling) exactly capture the frequency of the plate. 

This theory was just completed and debugged code produced at the end of this study. 

The full power and versatility of this theory and element await full exploration. 
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a/h 4 10 50 
N Open Closed Open Closed Open Closed 

1 110,189 104,105 20,485.7 20,217.4 848.586 8·18.094 
2 102,599 100,294 18,761.5 18,656.2 773.651 77:3.458 
4 99,454 97,915 18,255.4 18,180.8 753.622 7.53.525 
8 98,456 97,186 18,122.4 18,055.7 748.576 748.452 
16 98,311 96,994 18,088.9 18,024.0 747.299 747.177 
32 98,251 96,946 18,080.6 18,016.0 746.979 746.859 
64 98,236 96,934 18,078.4 18,014.0 746.898 746.779 

I Exact II 98,232 I 96,930 11 18,077.8 118,013.4 II 746.873 I 746.752 II 

Table 13 Convergence of fundamental frequency for single-layer of PZT-4 . . 

Mode 
a/h=4: C 

., 
1 2 3 4 5 -i (j 

N=4 74.7732 197.353 329.301 342.387 447.6~:5 i :~ ~19A:9 
N=8 72.8253 195.402 311.843 :338.628 4J2.9,0 ,:) .34.0:30 
N=16 72.3376 194.920 307.606 337.504 426.810 .5:30 .:343 
N=32 72 .2152 194.800 306.5.58 337.207 425 .1 60 :)29.432 
N=64 72.1846 194.770 306.296 337.132 424.742 ·529.205 
Exact 72.1744 194.760 306.209 337.107 424.602 .529.129 

a/h=4: 0 1 2 3 4 5 6 
N=4 74.8023 197.483 329.691 :342.481 447.73:3 .5 .50.079 
N=8 72.8451 195.52.5 312.190 3:38.118 4:33.04!:J .1:34.49:3 
N=16 72.3554 195.042 307.940 337.59:3 426.81.) .5:30.769 
N=32 72.2325 194.921 306 .888 3:37 .296 425.22:3 .')29.849 
N=64 72.2017 194.891 306.626 :337.221 424.80-[ 529.620 
Exact 72.1915 194.881 306.539 337.196 424.664 529.543 

a/h=50: C 1 2 3 4 5 6 
N=4 0.637707 16.4328 28.5365 292.035 379.322 400.300 
N=8 0.634494 16.4315 28.5356 273.945 359.391 379.362 
N=16 0.633687 16.4312 28.5353 269.56:3 354.6 -L~ :3'il.982 
N=32 0.633485 16.4311 28.5353 268.479 35:3.469 :370.048 
N=64 0.633434 16.4311 28.5353 268.208 353 .111 :3(jg .5 5~ 
Exact 0.633417 16.4311 28.5352 268.118 35:3.07!:) :369.:396 

a/h=50: 0 1 2 3 4 5 6 
N=4 0.637786 16.4426 28.5566 295.866 390.811 400.301 
N=8 0.634566 16.4413 28.5556 277.248 369.149 :379.363 
N=16 0.633757 16.4410 28.5554 272.717 363.958 371.982 
N=32 0.633555 16.4409 28.5554 271.595 362.674 370.048 

N=64 0.633506 16.4409 28.5553 271.315 362.35-l :369 .560 
Exact 0.633487 16.4409 28.5553 271.222 362 .248 :369.:396 

Table 14 Convergence of frequencies for 3-ply piezoelectric lamin a.te . 
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Mode 

a/h=4: C 1 2 3 4 .3 6 
N=5 57.2531 194.840 255.648 282.168 368.461 %~ .·3L3 

N=10 57.1249 192.190 252.024 276 .853 36.t.2 i<:) :38:3.:).32 
N=20 57.0875 191 .524 251.085 275.425 362.9:39 381.629 
N=32 57.0855 191.350 250.845 275.040 362.592 :381.171 
N=64 57.0773 191.313 250. 786 274.969 362.516 381.072 
Exact 57.0745 191.301 250.769 274.941 362 .. 522 :381.049 

a/h=4: 0 1 2 3 4 5 6 
N=5 57.2707 194.843 255.648 282.168 368.50·5 :389 .. 334 
N=10 57.1403 192.192 252.025 276.853 364.2.52 :383.:364 
N=20 57.1023 191.526 251.086 27.5.425 362.9,1 :381.641 
N=32 57.1005 191.3.53 250.84.5 27·5.040 :362.6n . :181.184 
N=64 57.0921 191.316 250 .786 274.969 362 .5.t~1 :381.084 
Exact 57 .0893 191.304 250.770 274.941 362.522 :381.049 

a/h=50: C 1 2 3 4 .J 6 

N=5 0.619025 15.683·5 21.4947 212.811 214.690 :38-1.9.5:3 
N=10 0.618348 15.6820 21.4933 210.561 211 .. 39G :3'~.94:3 

N=20 0.618175 15.6817 21.4929 209.925 210.7~i :3,8.·57.3 
N=32 0.618156 15.6816 21.4928 209 .754 2l0 .·3L'il :ri~ . :207 

N=64 0.618127 15.6816 21.4928 209.718 210..5:38 :~IS . !32 

Exact 0.6181 18 15.6816 21.4928 209.704 210. :)1~ :3, S.! 0·[ 

a/h=.50: 0 1 2 3 .:1 :) I (j 

N=5 0.619038 15.68:35 21.4949 212.827 214.736 :38-1.9·53 
N=10 0.618351 15.6821 21.4935 210 .568 211.64.5 :3,9.944 

N=20 0.618179 15.6817 21.4931 209.929 210.841 378.'),.5 

N=32 0.618160 15.6816 21.4930 209.758 210.632 378 .207 

N=64 0.618141 15.6816 21.4930 209.721 210 .. 58~ :3,8.1:33 
Exact 0.618120 15.6816 21.4930 209.707 210.·57:1 :3,8.10·5 

Table 15 Convergence of frequencies for 5-ply hybrid laminate. 

87 



I II 
a/h=l I a I 0-

1 713,061 -1.744e+9 724,602 -1.675e+9 
2 777,021 0 777,021 0 
3 889,902 (-1.515e+11) 912,912 (-1.498e+9 ) 
4 925,431 0 925,431 0 
5 1,243,819 -1.534e+9 . 1,270.594 0 
6 1,270,594 0 1.293,504 (-2.57e+10) 

a/h=4 I a I a -. 

1 96,929.9 -4.87e+8 98,231.7 -7.78e+8 
2 194,255 0 194,255 0 
3 327,663 (2.276e+ T) 355,110 ( 4.57e+9) 
4 538,885 0 538,885 0 
5 609,186 -1.08e+8 690,767 2.5.5e+9 
6 958,922 (-2.66e+8) 960,103 (-3.48e+8) 

a/h=10 I a I a 
1 18,013.4 -1.78e+S 18 ,077.8 -3.40e+8 
2 77,702.1 0 77 ,702 .1 0 
3 133,695 (1.27e+6) 145,:2:21 (1.74e+8) 
4 508,625 0 508,625 0 
5 522,320 -4.87e+/ 604,752 6.:26e+9 
6 988,021 (-1.76e+8) . 990,953 (-2.88e+8) 

a/h=50 I a I a: 
1 746.752 -3.48e+ 7 746.873 -7.78e+8 
2 15,540.4 0 15,540.4 0 
3 26,828.0 (9.94e+3) 29,153.3 (3.48e+ 7) 
4 502,895 0 502,895 0 
5 503,469 -1.01e+T 586,240 3.101:'+ to 
6 1,004,344 (-4.56e+ 7) 1,004,612 (-7.21e+ 7) 

Table 16. Frequency parameters for single-ply piezoelectric layer for differing electric 

surface conditions. 
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II II 
Frequency parameter I 

a/h=4 a/h=50 
Mode I II I 11 

1 72,174.4 72,191.5 633.417 633.487 
2 194,760 194,881 16,431.1 16,440.9 
3 216,505 216,505 17,320.4 17,320.4 
4 306,209 306,539 28,535.2 28,55.5.3 
5 337,107 337,196 268,118 271,222 
6 424,602 424,664 353,079 362,248 

17a. [1/2/2/1] lamination scheme. 

II II 
Frequency parameter I 

ajh=4 ajh=.50 
Mode I II I II 

1 58,248.7 58,354.0 725.219 725.241 
2 192,408 192,436 16,430.2 16,438.8 
3 271,757 271,758 28,535.7 28,5.55.1 
4 329,584 329,593 159,732 159,865 
5 363,048 364,072 226,218 226,643 
6 406,665 407,771 35:3,386 36:3,810 

17b. [2/1/1/2] lamination scheme. 

Table 17. Frequency parameters for laminate with dissimilar piezoelectric layers. 
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II II 
Frequency parameter I 

a/h=4 a/h=50 
Mode I II I II 

1 57,074.5 57,089.3 618.118 618 .120 
2 191,301 191,304 15,681.6 15,681.6 
3 250,769 250,770 21,492.8 21,493.0 
4 274,941 274,941 209,704 209,707 
5 362,492 362,522 210,522 210,573 
6 381,036 381,049 378,104 378,105 

Table 18. Frequency parameters for 5-ply elastic/piezoelectric laminate. 

II II Frequency parameter I . 
Mode Variable w Linear w . Exact 

1 100,293.4 104145.2 96 ,929.9 
2 194,255 194,255 194,255 
3 328,560 328,560 327,663 
4 587,312 587,312 508,625 
5 673.8.51 706,727 522,320 
6 1,125,404 1,125 ,404 988,021 

Table 19. Comparison of frequencies for variable w, linear w, and exact, single layer 

PZT-4. 
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8. SUMMARY AND FUTURE 'YORK 

Developed Algorithms 

The following algorithms have been developed as part of this research to aid in the 

simulation of active tip clearance control using adaptive composites: 

• Semi-analytic solutions using variable, constant, and independent approximations 

for out-of-plane transverse displacements for laminated piezoelectric plates. 

• Finite element approximations using constant and variable variations. Implementa­

tion of independent-w theory is straightforward. Both static and dynamic problems 

can be modeled. 

• Exact solutions of simply-supported laminated piezoelectric plates: static and dy­

namic behavior. 

• Discrete-layer shell elements for arbitrary geometry. 

Deliverables to NASA-Lewis are the source code for the plate and bea.m elements, and 

have been delivered to NASA via internet. All other source codes for the semi-analytic 

and exact solutions is also available. 

Summary of Results 

Inspection of the results included here and as part of this study, the primary thrusts 

of the working algorithms are: 

• Excellent accuracy for variable-w theory and promising results for the independent­

w theory. 

• As currently formulated, the constant-w theory is not suitable for coupled problems 

in electro elasticity because of the inability to model transverse normal strain. For 

elastic problems, however, this methodology yields very acceptable results. 

• Exact solutions developed will provide extremely useful benchmarks for the enclosed 

theories and those developed by others. 
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• Flat-plate results for plate element are good and encoutaging. The application to 

an assemlage of flat plates to approximate a curved surface has not been made, but 

can be with the inclusion of developed transformation matrices . 

• Elements developed here can be incorporated into general purpose finite element 

code to simulate the control process for a wide array of problems. 

• Results of shell element are promising, but this application has not been extensively 

tested because of lack of comparative solutions available in literature and elsewhere. 

Future Work 

The potential applications of the elements -developed here are numerous. Before this 

occurs, additional testing of both the plate and shell elements would be prudent and 

is necessary for the shell element. What follows are suggestions for future work by the 

present investigators or others: 

• Complete implementation and testing of plate element with independent-w theory. 

• Use of rotated plate elements as collection of flat plates to model cun·ed shell. 

• Development of exact solution for laminated piezoelectric cylindrical shell for pur­

poses of benchmarking general shell element. 

• Further testing of shell element and comparison of each discrete-Ia.yer theory. 

• Application to active tip clearance control and other problems requiring adaptive 

composite laminates. 
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Figure 5: Through-thickness approximations for discrete-la.yer theories. 
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Figure 8: Discrete- layer element for general shells . 

Figure 9: Continuity requirements at through-thickness locations. 
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Figure 11: Form of approximations for general shell e le ll l<:' ll\.. 
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Figure 12: Geometry and layer numbering. 
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Figure 13: Geometry and layer numbering. W constant through t hickness 
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Figure 40: Displacement in z-direction,applied potential,a/h = lO,PVDF 

114 

-1 

I 
l 



~ 
a • 
I • 

-5j 
.f. 

~ • 

! 
! 

0-'" O~lS D.lD 

- CXA:T 
••• • LSxti- 12-r. YO'\.abl • • 
- - -- LIi.6-12-r. conelonL • 

0..45 D.IO 0.1'$ 0. " 1. C15 1. 21 1.:15 1. 50 
Pot.ent.i.oL D~.vi.~\.i. on , <l> 

Figure 41: Potential distribution,applied potential,a/ h = 1O.PVDF 

-CXA:T 
• •• • L6x6-12-r. YO'\.abl • • 
---- LIi.6-12-r. c"""lonL • 

q.-----~----------~~---, 

a • 
I • 

Figure 42: Normal stress d istribution on x-direction,appliecl potential 

a/h = 10,P VDF 

11 ·5 



- CXICT 
.... L6.¥6-t2-r. vcri...obl... '" 

---- L6x6-12-r, cone\.anL v 

~~~--~------------------, '. rf 
D····.. I . \ : 

\~ 
i I 

,; 
\\ 
\ . 
\\ 
\ \ 
\ \ 

\ ' .. ' 
\ 

Figure 43: Normal stress distributioll on y-direcLion,a.ppli(~d [JI)t.eIlLial 
a/ h = lO ,PVDF 

-oxceL 
.. ,. lS.S-l2f"I,v vori.ablo 

Figure 44: Normal stress distribut ion on z-direction,appliecl potent ial 
a/ h = lO ,PVDF 

116 I 
I 

J 



I 
1 

- DCJ'CT 
• • • • L.Sx:6-12-r, veri-abl e II 

---- L6.6-12-r, conel.on~ v 

~~----------~~~,~:------------~ 
' .. .. ~ 

D : '\ . . ! \~ 

! 
~ 
! 
/ 

Figure 45: In-plane stress distributiol1,appJied potential,a/ h 

- DCJ'CT 
• • • • L6.6-12-r, ....... abl. v 

---- L6.6-12- r , c.",.l.on~ v 

q~------------~~--------~ 

a • 
! 

-5 i ! . 
A 
.; 

i .. 
B /~ 
';+---r--,--~--~~~"'--~~~~---r~ 

..... 4 -U ... 1 U I . t 
T __ ~ St.re •• , '(xz 

LI ,1.1 '1.0 
.IO~ 

Figure 46: Out-plane s tress dis trib ut ioll,appJied potent ial,a/" 

117 

lOYVDF 

LO,PVDF 



- OCI'ICT 
.•.• L6.S-12-r. V"CI"'i.abl,._ '" 

---- L6..6-12-r. c .... ~~ w 

~I~------------------------~~ 

D 
.; 

( ..•.... ..--...... _ ......... . 

I 
.; 

..... -

1:1.0 ...... -11.1 

Figure 47: Out-plane stress distribution,applied poteutial,aj Ii 

-OICT 
•••• L6x6-12-f ....... \.obL. " 
... - ...... L6.6-t2-r, cone\,..On'- " 

~~--------~---------------, 

D 
.; 

I 
.; 

\ 

\ 
\ 
\ 
i 
\ 

\ 
\ 
\ 
; 

\ 
\ 

i 
1 

. . 

. 

1O,PVDF 

Figure 48: Electric displacement distribution,applied potential,aj h = lO,PVDF 

118 



I 

! 
i 
I 
I 
I 
I 

I 
1 

I 
! 
I 

--- ----- ~-----.- .. --- - -- .. ~ -----~ --- - --------

~ 
a 
,; 

I 
,; 

~-... § 
!a 

ft 
,; 

~ 
,; 

I 
oj 

~o ".0 

- CXI'CT 
•••• USxe-12--r, YCI"'\.obl.. v 
---- L6.6-12-f. o"""t.anL w 

· ].D -1..11 -1 . 0 D. D 1-0 2." 1. 0 
Di.apLoc....,\. ion .-~ect.i.on, U 

4.0 S. O 
-10" 

Figure 49: Displacement in x-direction,applied load ,a/ h = 1O.PZT4 

Q 

a a 

I 
,; 

~§ 
!a 

ft 
,; 

~ 
,; 

• 10.1 14.0 

- CXI'CT 
•••• L6.6-12-f • ...".i.abl. w 
---- L6.6-12-f. conet.anL w 

~ ~ ~ ~ ~ ~ ~ ~ ~ 
D~apt.~ .. ion &-~reoLi.on, W _10· 

Figure 50: Displacement in z-direction,applied load,a/ h = 1O.PZT4 

119 



• 
a 
,; 

I 
,; 

.z;-.. ~ 
!a 

ft 
,; 

~ 
,; 

I 
oj 

LCII LOt 

-OI'CT 
• .• • L6ac&-12-r # ~abl. III 

---- U;.s-12-r, c_l.cn~ • 

~'~~:;<"""'\ 
/ l 

! : 

. ,.,,,.::::.::< ....................... / ..... 

O.C12 D.Cd I .ot O.eB 0.01 O.Gr 0 .01 0.01 LID 

Po\.ent.~ol O~.t.ri.bvt.i.on, (1) 

Figure 51: Potential clistributioll,applied load,a/ h = lUYZT-l 

I 
,; 

- OI'CT 
••.• u;.s-12-r, VO"i.ab~ •• 
---- L6x6-12-r, conelCW\L " 

.. a..o "&..0 -Is... '"'10.0 -t... LI La 10.0 lS.a 3D.' 31.0 
~ sv-., Clxx 

Figure 52: Normal stress distribution Oll x-directioIl ,applied loa.d,lL/ h = lO,PZT4 

120 



I 

I 
! 

- ea.oc:t. 
.... LS.6-12rJ,1II' vcri.abL • 

. ,---------------~------~ 
! 
I .. 

l.(D 1.11 0..3D 1l.4S • .• 0.7S ... UBi 1. . I.S 1.511 
MoMoaI. sv-... a zz 

Figure 53: Normal stress distribution on z-direction,appli f'd 1o;·ld .1I 1 II 

-DC/CT 
•••• L6x6-12-r, vori.cbL •• 

---- L6x6-12-r, c"","lonl • . ~~--~------------------~ 
.......... . ......... . 

a ···'·'······ ... . ................. \' .. .. 

I .. 
........... "\ 

.......... \\ .. 

...... ,"".2 ..... ...,.. '"'I .' LI I.' ,.I S.. '.1 
T~ ~ '\.reoo , "x~ 

I.' 

IO.PZT4 

Figure 54: In-plane stress distribution,applied loa.d,a/ h = I U,PZT4 

121 



~ 
D 
.; 

I 
.; 

~i 
!. 

ft 
.; 

~ • 
! ... .. , 

- OI'CT 
••• • L!.!i-12-r, ..".i.abl . v 

---- L6w6-12 .. r, CQnllt.ont. '" 

0 .1 t . 1 1.2 1.1 ... 2.1 "'4 a.1 1 .0 
T,..O"IItIvr .. s,.ar St.r •••• ""X2 

Figure 55: Out-plane stress distribution,applied load,a/ h = 1O,PZT4 

- DCR:T 
••• • u;,.s- 12-r, ..".,abl. v 

---- L,S.6-12-r, c~t.ont. " 

.~------------------------~~ 

D 
.; 

I 
.; 

I 

. ' 
............ 

.. -.# 

. .!/ 

. ' ... 
........... 

. ' .... 
... 

·+.»-.• --.~rA---.,.r .• --.~ .. -.o--~,-~T ... ---ur---.. rA--~'U--~~.-.~10 
eLoc,",,_ Oi.~_~, 0% 0101

• 

Figure 56: Electric displacement distributioll ,a.ppiieci ioa.ci.cJ / /, 

122 

IO.PZT-1 



I 
( 

---- ------ -- ---------- -

- CCICT 
.... L6x6-12-r, ".".i.obl. v 
---- L6x6-12-r, c."..lcn~ v 

;.-----~.-.~\~. ----------~ 

• 

Figure 57: Displacement in x-direction,applied potential ,aj II 

-CCICT 
.... L6x6-12-f, ".".i.obl. v 

---- L6x6-12-r, c."..lcn~ v 

lO,PZT4 

Figure 58: Displacement in z-direction,applied potential,a/ h = LO,PZT4 

123 



• 
! 
I • 

'5§ 
!. 

§ 
• 
~ • 
B • 

0.0 D. I 

-~ 
•••• LS.6-12-f, Y<ri.able v 
---- L6xS-12-f, c_~on~ v 

0.2 l.l 0.. O.S D.' 0.7 0. ' . 0.' 1.0 
PO .. ."t.i.~ Oi.evi.tN«.i.on, en 

Figure 59: Potential distribution ,applied potential,a/ h = lO ,PZT4 

• 
a • 
I • 

'5§ 
!. 

§ 
• 
~ 
• 
B • -.., -, .. 

-~ 
•••• L5x6-12-f, vcri.able v 
---- L5-6-12-f, Contll.On~ v 

~ ~ ~ ~ ~ - ~ - -~l SVfte. (Jxx 

Figure 60: Normal stress distribution on x-direct ion,applied potential 
a/ h = 10,PZT4 

124 -



i 

I 
I 

~ .. _--_._- - - ------ --------
~~- - ---------- --

_...oc~ 

•••• L6x6- 14!fI .v vcri.abL • 

• !r----= .... = ...... =-=-_=_=_ =---------------~ 

D 
,; 

I • 

~ 
,; 

.... _ _ .. _-_ .. __ ·· .... --1 
i 
i 
i 
i 
j 
f 

I ~ 
·+---~=· · ·~· · ··~ .. ···=··-=···~~··-=·~--~--r-~----~---------~-------~----~--~--~ 

o.a --0.. ~.OI4 -0.=1 "1I.C1311 -G. D -0.00: -1I .OfI ~.1J5I, --a. DIS -G.arD 
Nor~ S\.r ••• aZZ 

Figure 61: Normal stress distribution on z-c1irediol1,appliecl potentia.l 
a/h = 10 ,PZT4 

• 
D • 
I • 

-5j 
!-

B • 
! 
! .... -'.$ 

. 

. 
. 

-0fCT 
•••• u;.6-12-f ...... i.abl. v 
- --- L6x6-12-f. C"""t.cn~ v 

-,.. ...5 ...... -s..s ...... .....1 "'1 .0 ·, .S ·'.0 
T ____ 51- Sv. ... "'x~ 

Figure 62: In-plane stress distribution ,applied potential,a/ h = lO,PZT4 

125 



-DCICT 
.... L5a6-12-r, var~obl. v 

---- L6.6-12-r, c ..... \.ctI~ v 

~~-------,-~-~~~ ~--------~ 
I .... , ! ) ................ . 
I .' 

j' ............ / 
~.# ••• 

-5§ j ...... . !; .................... "[ 
.; ........ \ 
II L... \ I ! ........................... >:\ 

I 
.; 

.0» ... ..fDt ~Oll .... OIZ 1.1D1 La Lilli 1.012 1 .01' La:H G. OlD T ............ __ Sv-. •• , 1:
xz 

Figure 63: Out-plane stress distribution,applied potential ,a / It = IO,PZT·l 

-DCICT 
•••• L6xS-12·r • ..".i.abL. v 

---- L6x6-12-r, conet...onL v 

~r-----------.---------------~ 

D \\ 

; \\ 
5: \ \ 
~ \\ 
• l \ 

: i 

\\ 

Figure 64: Electric displacement distribution,applied potentiai,LL/" = lO,PZ'f.1 

L~ _____ _ 
126 



I 
I 
( 

~ .. 
~ .. 
~ .. 

H~ .. 
m .. . 
~ .... 
~ 
Q 

a 
r? 

~ .. 
m 
Q 

~ 
Q 

N~ 
r:i 

m 
c? 

'" .. 
~ 
'" ci 

~ 
~ 

• 

1.8512 2.9627 -2.5918 -1.1!ID -0.3718 0.7397 
MI0·" u 

Figure 65 : u-displacement for single layer PZT-4 ( load). 

57.8786 71.3219 

Figure 66: w-displacement for single layer PZT -4 (load ). 



B 
ci 

l!l ... 
R 
ci 

~ A 
ci 

A 

N~ 6 

Q 

A 

I 6 

Q 
I 

. R a 
Q 

~ 
~ 

O.1XUXIlO 0.0031761 O.lXI63S2IS O. CIl!I5293 0 . 0127057 0 . 0158821 
phi. 

Figure 67: Potential for single layer PZT-4 (loa.d) . 

N~ 
Q 

ci 
I 

~ 
i 
~+-~~----~------~~------~--------~--------~ 

-0.11197 0. 11197 2.1592 1.09117 
ai.gx 

Figure 68: In-plane normal stress for single layer PZT-cJ ( llitHI) . 

128 



! 
i 
i 

1 

f 

I 

j 

l 
r 

I 

; 
ci 

m 
ci 

I 
ci 

N~ 
ci A 

~ A 

9 A 

... ... A ... ::: 
ci A 

~ 
9 

-1.6709B -1.OO2S9 -G.lJi4II O.lJi4II 1.DD2S9 1.6709B 
ai.gz 

Figure 69: Out-of-plane normal stress for single layer PZT- ,l lIOitd). 

~ 
i 
9+-~----'--------r------~------~------~ 

O.caDI O.lt111S9 0.37711 0.5eS7I 0.7S1l7 0.942911 
t.ouxz 

Figure 70: Out-of-plane shear stress for single layer PZT-4 (load). 

129 



~---- - -

~ 
ci • 
m 

A 

.. 
·1 .. 
N~ .. 
~ A 

<? A 

... to I=l ... ... 

.,; to 

~ to 

<? 
-1.24725 -0.71303 -o. 17lIII2 0.JSS39 0.88960 I.U3I!I 

lOU)(~ 

Figure 71: In-plane shear stress for single layer PZT --l ( Iod.d ). 

§ 
i A 

9+------------------r~------------_,--------------------r_----------------~----------------, -11 .1125 -1.1112 l . 191X1 1I.09ll 11I.1SlI35 
dz 

Figure 72: Normal electric disp lacement for single layer PZT- ~ (Ioa.d) . 

130 



i 

f 

I 
I 

I ~ -- .. ,-------

I 

I 

N~ 
ci 

m 

i 

6 

~+---------~--------~--------~-------+--r_------~ 
-19.1717 -11.Il700 -12.7192 -10.S681 

ci 

N~ 
ci 

I 
ci . 
9 
i 

u 

Figure 73: u-displacement for single layer PZT-4 (pote l1ti;t1) . 

~+----------'--------~--------~~--~----r_------~~ -45.3823 -21.6123 -11I.!Il21 -12.11125 -7.1225 
v 

Figure 74: w-displacement for single layer PZT-4 (potelltial) . 

1:31 

--~'-.--'.'------



B 
a 

~ 
R ... 
a 

I 
a 

N~ 
a 

I 
a 
I 

,., ,., ,., ,., ,., 
a 

~ 
~ 

0. 0 0.2 0 . 1 0.6 0.8 1.0 
phi. 

Figure 75: Potential for single layer PZT-4 (potellti ct.l ). 

6 

6 

§ 

J 
6 

~+---------~-------T---------r--~----~------~ -1.0118 -Z.175S 
ai.gx 

Figure 76: In-pla.ne normal stress for single la.yer PZT--J lpul.\"I'l.ia.I). 

132 



,-
~ a • 

9 6 

a 6 

i 6 

a 6 

N~ 
6 

a 6 

~ 6 

a 6 

! 
I 

... 
6 a ... 

Q 6 

i 
I 

6 

a 
I 

12.6353 16.!IS7" 21.079S -0.0310 ".1911 8."1::12 
ai.gz 

Figure 77: Out-of-plane normal stress for single layer PZT-·! (Iwl clltia.I), 

I a • 
m 6 

... 
a • 

i 6 

a 

N~ 
a 6 

~ 6 

a 6 I 

m a 6 

a 6 

t? 
-o.JiDliS -0.201151 -o.D62S7 O.1I1W 0.21SS1 0.3Si511 

t.ouxz 

Figure 78: Out-of-plane shear stress for siugle la.yer PZ'l' --1 (pUII'IIt. ia.I) , 

13:3 



--_ ... _--

A 

a 

H~ 
a 

A 

m 
A 

A i A 

~+---------~--------~----------~--------~--------~ -8. 67821 -7 .~11l7 -6. 1!2SS3 -5.119919 -1.!17211S -1.04651 
t.oux~ 

Figure 79: In-plane shear stress for single layer PZT-4 (pulclltiat). 

m 
a 

H~ 
a 

A 

A 

A 

-23. 1110 -21.050 -111.940 -11.790 
dz 

Figllre 80: Normal electric displacement for single layer PZ'I'-·I ( lHit ('IIt.ia.\). 

134 



[ 

I 
I 
! 

~~--------------------~ ci 

I ci .. .......................................................... ...................... ... . 

~! . . 
Ca 

'! ................................................................................. . 
~ 

i .................................................. .......................................... ..... : ....................... . 
~+-------~-------r-------T------~--------~--~~~ 6.1918 13.0101 - 19 .5817 -13.06l3 -6.5150 -0. 0266 

U 

Figure 81: u-displacement for 5-ply, applied load. 

~~------------~----~ Q 

! Q ..................................................... .................................. ............................... ............................... .... .. . 

! .............................................................................................. ....... . 
~ 
... 
§ i ............................................................ ........................................... ..................... .. 
~+-------~------~-------T------~--------~--~~ -2Il.SJ81 -13.mll -6.2935 0.8289 7.9513 15.0737 

y 

Figure 82: v-displacement for 5-ply, app lied load. 

135 



~~----------------~~ 
ci 
... ................................................................................................................................... ) .. .................. . 
... , 
~ / - , 
d / 

" I ./ .. , .... 
. ............................................................................................................ . 

o 

i~ 
CD • 
Co 

~ . .................... ... .... . ................... H ••••••• • •••• • • •• •••••• 8 .................................................................................... :.> 

ci ! 

~ .. /. m. ~ .................................................................. :.:.> 

~ : 

100.0 105.0 110.0 115.0 
W 

120.0 125.0 

Figure 83: w-displacement for 5-ply, applied load . 

i 
dr-==~·:.:.::.:" .... " ...... :.:; ...... · ~==~ ....................... ... ....................................................................................................................... !T· ...... ·· .......... ··· .. ···· .. · 
~ 
d 

I . ! 
d .............................................................................................................................. .............................. . 

I ................................................ .................................. : ...................................... : .......... : ........................ . 
r? 
R 
~ ! ...................................................................... : .............. ~~ :: .. ::: .. : .................................................... .. 
r? 

0.0 5.1 11.15 17.1 23.2 
Phi. 
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APPENDIX 

Property 1 2 3 
El (GPa) 237.0 81.3 132.38 

E2 23.2 81.3 10.756 

E3 10.5 64.5 10.756 
1/12 0.154 0.329 0.24 
1/13 0.1 78 0.432 0.24 

1/23 0.177 0.432 0.49 

G .... 2.15 25.6 3.606 
Css 4.4 25.6 5.6537 
C66 6.43 30. 6 5.6537 

e24 (C 1m2) -0.01 12.72 0 
e31 -0. 13 -5.20 0 
e32 -0.14 -5.20 0 

e33 -0.28 15.08 0 
~ 12.5 1475 3.5 
fn 

tu 11.98 
fn 

1475 3.0 
~ 11.98 
fn 

1300 3.0 

Table Al. Elastic, piezoelectric, and dielectric properties of piezoelectric materials. 
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Definitions of coeeficients used in exact solution: 

(291) 

B = All C 44 e~ + All C44 C33 C33 - 2 A 13 C44 A14 e33 + Css A~4 C33 - CS5 C44 C33 A44 -(292) 

Ai3C44 C33 + 2 Css C 44 A34 e33 + Css A22 e~3 ~+ Css C44 A33 C33 + c.s.~ A'n C33 C33 + 
Ai4c44 C33 - 2 Css A 23 A24 (:':33 - Css A~3C33 

C = -2 A12 A23 A 13 C33 - All An e;3 - Css A~3A44 - Css A~4A33 + CS5 C'.j4 A33 A44 4(29:3) 

Ai2e~3 - 2 Css A22 A34 e33 - Css C44 A;4 + 2 Css A 23 A24 A34 - All A22 C33 C33 -
I 

All C 44 A33 C33 + All C44 C33 A44 + Css A22 C33 A44 - ~ Css A22 A33 C33 - Ai3C44 A44 + 
Ai2C33 C33 + 2 A12 A24 A14 C 33 -:2 A12 A24 A 13 e33 - All A~4C33 -1 A 1'.1 .-l :n .414 e33 + 

2 All A 23 A24 e33 + Ai3A~4 + 2 A 13 C44 A14 A34 - 2 All C 44 A34 e33 + :2 AI ;; An A14 e33 + 

Ai4A~3 + Ai3A 22 C33 + All A~3C33 - 2 A 13 A24 A14 A 23 - Ai4A22 C3:j - Ai4C44 A33 

D = -All C44 A33 A44 - All A22 C33 A44 + 2 Au A22 A34 e33 + All A2:2 A:J:J t33 + C55 A22 A~4 -(:2!) .I) 

CS5 A22 A33 A44 + Ai3A22 A44 - 2 A12 A24 A14 A33 + 2 A12 A24 A 13 A 34 + :2 A12 A23 A14 A34 -

2 A12 A 23 A 13 A.14 - 2 Ai2A34 e33 - Ai2A33 C33 + Ai2C:J:1 A l .l + All A~4A33 -

2 All A 23 A24 A34 + All A~3A44 + All C44 A~4 + Ai4An AS3 - 2 A 13 A22 A14 A34 

D2 = -C44 A33 C33 + C 44 C33 A44 - 2 C 44 A34 e33 + 2 A 23 A 2.1 e3:.s - (297) 

A22 e~3 + A~3C33 - A22 C33 C33 - .4~ . /·:J:3 
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D3 = A22 A33 t:33 - A22 C33 Al4 - 2 A 23 A24 A34 + 2 A22 A34 e33 + (298) 

A~3A44 - C44 A33 A44 + A~4A33 + C44 A~4 

122 = (A22 t:33 - C44 A44 + A~4) AI3 - AI2 (A 23 t:33 + A24 e33) + (304) 

(A22 e33 + C .... A34 - A 23 A 24 ) AI" 

h2 = A13 (A22 e33 + C44 A34 - A 23 A 24 ) + AI2 ( - A 23 e33 + A24 C33 ) + (307) 

A14 (- A22 C33 - C44 A33 + A~3) 

(308) 

166 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of Information Is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and corrpleting and reviewing the collection of Information . Send comments regarding this burden estimate or any other aspect of this 
collect ion of Information, including sugll;stions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arl ington, A 22202·4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704·0t88), Washington, DC 20503. 

,. AG ENCY USE ONLY (Leave blanK) 12. REPORT DATE 
1

3
. 

REPORT TYPE AND DATES COVERED 

October 1994 Final Contractor Report 
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS 

Discrete-Layer Piezoelectric Plate and Shell Models for Active 
Tip-Clearance Control 

WU-505-63-5B 
6. AUTHOR(S) G-NAG3-1520 

P.R. Heyliger, G. Ramirez, and K.C. Pei 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

Colorado State University 
Department of Civil Engineering E-9133 
Fort Collins, Colorado 80523 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS{ES) 10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

National Aeronautics and Space Administration 
Lewis Research Center NASA CR-195383 
Cleveland, Ohio 44135-3191 

11. SUPPLEMENTARY NOTES 

Project Manager, Dale A. Hopkins, Structures Division, NASA Lewis Research Center, organization code 5210, 
(216) 433-3260 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 

Unclassified - Unlimited 
Subject Category 39 

13. ABSTRACT (Maximum 200 words) 

The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added 
or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical develop-
ment is the accomplishment of active tip-Clearance control in turbomachinery components. Two distinct theories and analytical 
models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational 
models, and (2) a three-dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated 
composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of 
piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development 
and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-
thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire 
plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing 
elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials 
were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the 
plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the 
discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations 
and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Compari-
sons between the different approaches are provided when possible, and initial conclusions regarding the accuracy and limitations 
of these models are given. 

14. SUBJECT TERMS 15. NUMBER OF PAGES 

Laminates; Composite structures; Piezoelectricity; Smart materials; Smart structures; 169 

Finite element method; Plates; Shells; Actuators; Sensors 16. PRICE CODE 

A08 
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT 

OF REPORT OFTHIS PAGE OF ABSTRACT 

Unclassified Unclassified Unclassified 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std . Z39-18 
298-102 


