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The first order reliability method (FORM) has traditionally been applied in a fatigue reliability setting to
one inspection interval at a time, so that the random distribution of crack lengths must be recharacterized
following each inspection. The FORM presented here allows each analysis to span several inspection
periods without explicit characterization of the crack length distribution upon each inspection. The method
thereby preserves the attractive feature of FORM in that relatively few realizations in the random variable
space need to be considered. Examples are given which show that the present methodology gives estimates
which are in good agreement with Monte Carlo simulations and is efficient even for complex components.

1, Introduction

Probabilistic fatigue methods are often applied in a setting where critical structural components are

subjected to crack inspections by non-destructive evaluation (NDE) techniques, so that cracked components

can be identified and repaired or replaced. These inspections can significantly reduce the probability of

fatigue failure of structures, as well as increase the useful service lives. Quantified measures of reliability

(provided by probabilistic methods) allow maximization of these inspection effects through optimization of

the inspection schedule. These measures of reliability also allow comparisons of various inspection

methods.

A risk analysis methodology for the assessment of structural integrity of aircraft structures has been

outlined by Berens et. al. (1991). This methodology which is based on direct integration of probability of

failure integrals works extremely well when the number of random variables is relatively small and a single

parameter characterization of crack size is adequate. For complicated geometries (involving characterization

of three-dimensional crack growth, for example), other modeling techniques such as Monte Carlo

simulations (MCS) and the tna'st order reliability method (FORM) are useful for calculating probabilities of

failure (see Harkness et. al.(1992) and references therein). Traditionally, these latter techniques have been

applied to one inspection interval at a time. However, that approach requires characterization of the crack

1Current address; Hibbitt, Karlsson, Sorenson and Associates, Pawtucket, Rhode Island
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sizedistribution (i.e., cracksizeprobability densityfunction) following eachinspection,which is costly and

difficult. Techniquesfor recharacterizingcrack sizedistributionsat eachinspectionwith FORM are

discussedin Rahmanand Rice (1992).

An alternativeapproachis given herewhich doesnot requirerecharacterizationof thecrack size

distribution. The first order reliability methodis augmentedto accountfor theeffectsof the inspectionsso

that thecrack sizedistribution needonly becharacterizedat aninitial state.This is of considerableadvantage

sincerecharacterizationsof thecrack lengthdistribution areoften tediousor impractical to obtain. In the

presentwork, it is assumedthat componentswith detectedcracksarerepairedsuchthat their subsequent

likelihood of failure is negligible.

In Section2, the standardFORM andits applicationto fatiguereliability arereviewed. The introduction

of non-destructiveevaluation(NDE) into thefatigue reliability problem is discussedin Section3 alongwith

adescriptionof the augmentationof FORM to efficiently treat multiple inspections.The first part of section

3 is devoted to identifying the quantities of interest in a fatigue reliability analysis with in-service inspections;

techniques to evaluate these quantities are given in the remainder of the section. An important aspect of

FORM is finding the so-called design points. An algorithm for this task which is applicable to both the

standard FORM and the augmented FORM is provided in the Appendix.

Two numerical examples are presented in Section 4. The first example investigates the accuracy of

augmented FORM by comparison to MCS results. A more complex fatigue problem is studied in the second

example where the MCS approach is not computationaUy feasible, yet the augmented FORM requires only

minutes of CPU time on a workstation. In these examples, the inspection schedule is adjusted so that

inspections occur when the probability of failure reaches a specified value. Further discussion and

concluding remarks are given in Section 5.

2. FIRST ORDER RELIABILITY METHOD

2.1. Standard Reliability Statement

We begin by defining a performance function, G(x), which distinguishes between safe and unsafe

realizations of the random variables x (see Fig. 1 a). Performance functions are typically defined so that

positive outcomes indicate safe realizations and negative outcomes indicate unsafe realizations (the limit case

of G(x)=O is often included in the failure domain). The objective of a reliability analysis is to determine the

probability of failure
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Pf = P[G(x) <_0], (2.1)

which is given by

(2.2)

where £_f is the failure space (G(x)__.O), andfx(x) is the joint probability density function for realizations in

the space of random variables x.

The random variables x are often non-normally distributed, making the integral in Eq. (2.2) difficult to

evaluate. The random variables x can be mapped to standardized equivalent normal random variables r,

where each component ri is an independent Gaussian variable with zero mean and unit variance. This

mapping can be achieved via the Rosenblatt transformation (see Rosenblatt 1952; Ang and Tang 1984)

re= -l[Fi(xilxl (2.3)

where Fi is the conditional cumulative probability at x i given Xl, X2 ..... xi-1. In standardized space, the

performance function is transformed to g(r)=G(x(r)) and Eq. (2.2) becomes

P: = f f R(r)dr,
a)

(2.4)

where Kff is the failure space (g(r)_q)) as in Fig. lb, andfR(r) is the joint probability density function for

realizations of random variables r. The joint probability density function, fR(r), is simply the product of the

probability density functions for all random variables ri and is given by

_r 1 (12)fR(r) = ll_exPl--2ri . (2.5)

The essence of FORM is to approximate the limit surface g(r)=O by a tangent hyperplane at the most likely

point of failure, rd. In standard FORM the most likely failure point is the point which minimizes the distance

Irl to the failure surface. The resulting "first order" estimate of the probability of failure is then given by

p) = c/,(-fl), (2.6)
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where fl=lrdt and _ is the standard normal cumulative distribution function. Because the random variables r

are Gaussian, the decay offR(r) is exponential and therefore using the closest point provides a good estimat,

for calculating probability of failure using standard FORM. It will be shown in Section 3.3 that the closest

point may not be the most likely failure point when in-service inspections are accounted for.

2.2. Fatigue Reliability

In a fatigue setting, the failure set contains all realizations that result in fatigue lives less than a desired

service life, so an appropriate performance function is

or in standard Gaussian space

G(x) = Ny(x) - N,

g(r) = Nj(x(r)) - N,

(2.7

(2.8

where Nfis the fatigue life (which is influenced by several uncertainties) and N is the desired service life.

Note that the fatigue life may be defined as the number of cycles for a crack to reach some specified critical

size - which may not necessarily correspond to catastrophic failure of the component. Failure is deemed to

occur when the fatigue life is shorter than the desired service life (g<0). Standard FORM described above i:

often effective for estimating failure probability versus service life in the absence of inspections or for

estimating the probability of failure with inspections when the crack length distribution following an

inspection is known. In the latter, a standard FORM analysis is performed for each inspection interval of

interest, and the probability of failure is determined in each analysis. This approach requires knowledge of

the crack size distribution following each inspection. A more efficient method for treating inspections is

introduced in the following Section.

3. FATIGUE RELIABILITY AND IN-SERVICE NDE INSPECTIONS

Consider a fatigue reliability setting where the component is subjected to in-service NDE inspections

according to some schedule. The inspection schedule may be prescribed and the failure probabilities sought

or conversely, the aim of the analysis may be to determine an inspection schedule which will keep failure

probabilities below a specified level. Let N denote the service life (in cycles) and N1 denote the number of
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cyclesto the inspectionprior to N. We seek a method to determine the fatigue reliability (or alternatively

failure probability) over the service life, N. As mentioned previously, standard FORM techniques require a

complete characterization of the probability density function for the crack size following each inspection.

However, an exact determination of the crack size probability density function may be extremely tedious or

impractical to obtain especially for cracks in complicated geometries. Rahman and Rice (1992) discuss a

method based on the standard FORM itself to recharacterize the crack size distribution at each inspection, but

this method may require extensive computations. In the following subsection, we introduce a

straightforward and efficient method based on the initial crack size distribution for determining fatigue

reliability with NDE inspections, i.e., explicit knowledge of the crack size distribution at each inspection is

not required.

3.1. Statement of Reliability Problem with NDE Inspections

The probability of failure is defined here as the probability that the service life of the component exceeds

the fatigue life as a result of undetected cracks. Thus the probability of failure, Pf, after N fatigue cycles, can

be written as

Pf(N) = P[N_V I Oi=O, i=1,2 .... 1] (3.1)

where I is the number of previous inspections at N cycles (N>NI), Oi indicates the outcome of the i-th

inspection which is given by:

Oi={ _ nocrackdetected ithinspection
crack detected i th inspection

and Nfis the fatigue life. The outcome of each inspection is random due to uncertainties in the inspection

technique and the crack length at the time of the inspection.

Other functions which may be of particular interest can be derived from Pf. The hazard function (or

failure rate) h(N) is given by

h(N) = [l_/y(N)] %N)

(3.2)

(3.3)
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The factor [1-Pf] in Eq. 3.3 is typically very closeto unity in areliability analysis,sothehazardfunction is
effectively equalto the derivativeof theprobability of failure. Anotheruseful failure probability is the

probability of failure sincethelast inspection(dueto anundetectedcrack),i.e.,

Pfl(Ns) = P[ NI<Nf<__NI Oi=O, i=1,2 .... 1] (3.4)

where I is the number of previous inspections at N cycles, and NI and Oi are as previously defined.

As in the standard FORM the random variable space can be transformed to standardized Gaussian variable

space. The probability density function for realizations ofr in this space isfR(r) (see Eq. 2.5). To derive

an expression for the probability of failure, Pf, at cycle N allowing for NDE inspections, we require the

probability density function associated with realizations, r, for which the associated cracks are undetected.

The probability density function for realizations with undetected cracks after the first I inspections is given

by

fu(r) = fR(r)Pnd(r, N). (3.5)

Here, Pnd(r, N) is the probability that cracks associated with the realization r are not detected in all of the

inspections prior to the current cycle, N, i.e., Pnd(r,N) = P[Oi=O for i=1,2 .... I I r], and is given by

I

P,d(r, N)= I-[ {1- POD[a(r, N i )]) (3.6)
i=1

where POD[a(r, Ni)] is the given probability of detection for the inspection method, and a(r, Ni) is the crack

length upon the ith inspection for the realization r.

The probability of failure is therefore given by

Pf(N)= S fR(r)Pnd(r, N) dr (3.7)

where l_fincludes all r such that g_< 0 (i.e. Nj_N). The probability of failure since the last inspection is

given by

Pfl (N)= SfR(r)Pnd(r, N) dr

I,
(3.8)
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where lffl includesall r such that NI<Nf_N. Note that the computation of Nf is not influenced by the

inspections, i.e. the failure surface g(r)=0 is not influenced by in-service inspections. Rather, it is the

integrands in Eqs. (3.7) and (3.8) which incorporate the effect of inspections on failure probability.

3.2. Evaluation of the Integral for Failure Probability

The integrals in Eqs. (3.7) and (3.8) differ from that which arises in standard FORM in that the

integrands have been multiplied by the non-Gaussian function Pnd(r,N) and, therefore, the integration

technique must be modified to accurately integrate the functions. A simple modification of the standard

FORM integration procedure is introduced here for the evaluation of the integral in Eq. (3.7). As in standard

FORM, the failure surface is approximated by a tangent hyperplane at the most likely failure point, rd (the

so-called design point). The sharp variation of Pnd(r,N) in the direction of the gradient of g prevents the

direct evaluation of the integral via the standard normal cumulative distribution function, as in Eq. (2.6).

Nevertheless, we wish to maintain the essential structure of the FORM integration procedure and thus it is

convenient to discretize the domain @ into subdomains as shown in Fig. 2. By approximating Pnd(r,N) as

constant over each subdomain we obtain

ns " 1Pf(N) = ZI-PJ, d I f R(r)d.Q , (3.9)

where ns is the number of subdomains and PJd is the approximation of Pnd(r,N) in the subdomain @. The

remaining integrandsfR(r) are Gaussian, so the standard cumulative normal function q, is useful for "first

order" approximations of these integrals. Thus, Eq. (3.9) leads to approximations of the form

ns

P](N)= Z { PJdtO)(-Irlj) -O)(-Irlj+/)]}+ P$ 03 (-Irlns), (3.10)
j=l

where rj is the integration point on the surface of the subdomain/2j as shown in Fig. 2. In this numerical

integration scheme, the design point is taken as the first integration point, i.e., rl = rd. Subsequent

integration points are found by

= + O,q,'d, (3.11)

where rj is the position of the jth integration point and _ is the desired step size for the integration. The

number of subdomains, the magnitude of _, and the location, rns of the last integration point depend on the
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accuracy desired and can be deduced through numerical experimentation and comparison with known

solutions. A non-uniform subdomain discretization can be used in place of Eq. (3.11) if desired.

3.3 Location of Design Points

In standard applications of FORM, the most likely failure point can be shown to be the closest point to the

origin on the surface g=0 through the use of Lagrange multipliers (Ang and Tang 1984). The approximation

of the failure surface as a tangent hyperplane at the design point leads to the first order approximation in Eq.

(2.6). In the present application of FORM with in-service inspections, the integrand in Eq. (3.7) contains

the non-Gaussian variable Pnd(r,N) and the most likely failure point is not in general the closest point to the

origin on g=0. The question then arises as to which point provides the most appropriate first order

approximation to the failure surface, i.e. where to locate the design point. One possibility is to take the

closest point to the origin on g=0 as in standard FORM. However, due to variations in Pnd(r,N) along the

surface g=0, an alternative point is suggested which will maximize the integrand in Eq. (3.7).

A procedure for locating the design point at the most likely failure point on g=0 is introduced here. By

suitable choice of parameters, the algorithm can also be used to locate the design point at the closest point to

the origin. Consider/3 such that

¢(-/3) = P_(r, N)_(-Irl). (3.12)

The design point is the point on the surface of constant g which will minimize/3 (or maximize the product

Pnd(r,N)q_(-Ir[)). Typically, the variation in Pnd(r,N) is small in the direction of constant g and the design

point and the closest point are nearly coincidental. However, some problems do show a significant

difference. The Rackwitz algorithm (Rackwitz and Fiessler, 1978) can be used to find the design point for

standard FORM, but this algorithm can be non-convergent for high values of/3 if the failure surface is not

relatively flat. A variation of the Rackwitz algorithm which corrects for this problem and has been

generalized for use with both standard and augmented FORM is presented in the Appendix.
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4. NUMERICAL EXAMPLES

4.1. Edge Crack

We first consider the fatigue of an edge crack in a semi-infinite plate to investigate the accuracy of the

augmented FORM based on comparisons with Monte Carlo simulations (MCS). It is assumed that the

cracks propagate according to the Paris model (Paris and Erdogan, 1963)
da
dN - D(AJ_)m (4.1)

where da/dN is the rate of crack growth, D and m are material parameters, and AK is the amplitude of the

stress intensity factor. The stress intensity factor range for an edge crack of length a, is given by

AK=1.12o'(:rca) 1/2 where cr is the amplitude of the applied stress. Using this relation, Eq. 4.1 can be

integrated to obtain the number of cycles for a crack of initial length ai to grow to a crack of length af

1_m i_m

af 2 _ ai 2
Nf = , (m #2) (4.2)

D(1 - -_-m)(1,12 cr-_/-_) m
2

ln(af/a i)

Nf = zrD(1.12cr)2, (m=2).
(4.3)

The material is taken to be ingot 304 stainless steel with fracture toughness Klc = 48 MPa -_-m. The crack

is cyclically loaded in tension-tension fatigue with an R -ratio of 0 and remote applied stress amplitude of cr

= 250 MPa. Motivated by the experimental findings of McGuire (1993)*, the initial crack size distribution is

taken to be lognormal with mean 0. lmm and standard deviation 0.033mm. The quantity m-1 is also taken to

be lognormal with mean 2.67 and standard deviation 0.75. The coefficient D and the exponent m are also

found to be functionally related as logD=-1.50m -7.29 - the units of D are rn/cycle/(MPa_r-m) m.

It is assumed that the probability of detecting an existing crack of length a upon inspection is (Palmberg et

al., 1987)

t_a/_
POD(a) = (4.4)

1 + t_a/_'

* The experimental data collected by McGuire (1993) are for fatigue crack growth from a hole in a tension-loaded bar. The
statistical data obtained for this configuration are not directly transferable to the edge crack configuration, but do provide a
reasonable representation of fatigure crack growth in this material.
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where the parameters o_ and ]_ depend on the inspection technique.

Figure 3 shows a comparison of augmented FORM and MCS results with evenly-spaced inspections

modeled at 2.25x105, 2.75x105, 3.25x105, and 3.75x105 cycles. Monte Carlo results obtained using 10

million realizations are not very dependable for Pj(N) below about 2x10 -6. To obtain dependable MCS

results, the POD curve A in Fig. 4 is used (o_=0.0032 mm-/_,/_=3.5) to yield probabilities of failure greater

than 2x106. The integration over the failure space is performed using the integration technique presented in

Section 3.2 with ns=100 and T_=0.01. As can be seen from the figure, excellent agreement is obtained

between the two methods.

In a fatigue reliability setting, it is generally desirable to have failure probabilities much lower than those

in Fig. 3. The probability of failure can be kept below a desired level by scheduling inspections at uneven

intervals as well as improving the probability of detection through better NDE inspection techniques. Fig. 5

shows results for inspections modeled at 2.25x105, 2.55x105, 3.15x105, and 2.75x105 cycles and using

the POD curve B in Fig. 4 (o_= 1.0 mm-/_,/_=3.0) and using the same integration parameters for Eq. (3.11)

as before (ns= 100, _=0.01). Using this inspection schedule and POD relation, the peak probability of

failure is kept below 10 -5. The augmented FORM and MCS estimates are in close agreement; however, as

previously stated, MCS results are not very dependable for Py(N) below about 2x10 -6.

4.2. Semi-Elliptical Surface-Breaking Crack

For complicated component geometries and crack shapes, a closed form expression for fatigue life is

generally not available. This requires that the fatigue life for each realization of random variables r be

determined by numerical integration, with the stress intensity factors updated as crack growth is simulated.

This makes MCS infeasible for studies of extreme reliabilities. The augmented FORM requires the

consideration of relatively few realizations, so these analyses are feasible when parameterizations or

interpolation schemes for the stress intensity factors are available (see Newman and Raju 1986, for

example).

A semi-elliptical surface-breaking crack in a plate as shown in Fig. 6 is considered, with the dimensions

(in ram) h=b=5.0, t=2.5. It is assumed that there are no initial cracks in the component. Instead, a random

distribution of the cycles to initiation, Ninit, of a crack of depth 80_m is considered. It is assumed the crack

remains planar and semi-elliptical as it propagates. Post-initiation crack growth is modeled by applying the

Paris law to the crack depth, a, and half crack width, c
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Failure is assumed to correspond to the crack

da = o( Aga ) m
dN

dc O(Agc)m
dN

reaching a critical depth, af.

(4.5a)

(4.5b)

The stress intensity factors at points A and C, parameterized according to Newman and Raju (1986), are

given by

K a = S, (rca/ Q)1/2 F a (4.6a)

K c = S t (rca/ Q)l/2 F c ' (4.6b)

where St is the applied tensile stress, Q is the shape factor for an ellipse, and Fs is a boundary correction

factor.

For this example, the initial crack length (ai) is taken to be a deterministic variable at ai=80 gm and the

initial half crack width (ci) is taken as ci=l.lai. The maximum allowable crack length, af, is taken as af=

1.25 mm, which is 50% of the plate thickness.

The time required for a crack to reach the initiation depth, Ninit, is taken to be a lognormally-distributed

random variable with mean 106 and standard deviation 0.5x106. The stress amplitude (St) is taken to be a

normally distributed random variable with mean 250 MPa and standard deviation 7.5 MPa. The

distributions for m and D are the same as in the previous example. The POD for the inspection technique

considered in this example is shown in curve C in Fig. 4 (ct= 100 mm-/3 and fl=5).

Augmented FORM results are shown in Figs. 7 and 8 for probability of failure and probability of failure

since the last inspection, respectively. Note that the entire set of data points shown was obtained with less

than two minutes of CPU on an HP 9000 series 750 computer. Inspections were simulated at 4.2x105,

5.1x105, 5.8x105, and 6.5x105. As in the last example, the inspections times have been adjusted so the

probability of failure peaks at about 10 -5 before an inspection is performed.

Note that the reliability results are given over a range of fatigue lives considerably below the mean value

of Ninit. This shows that even though the initiation times are usually great, it is the few relatively short

initiation times which are important to the reliability and to the scheduling of inspections.
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5. SUMMARY AND DISCUSSION

A technique to incorporate periodic in-service inspections in a FORM analysis of fatigue life has been

presented. The attractive feature of FORM is preserved in that relatively few realizations in the random

variable space need to be considered. This is especially important when fatigue reliability of complex

components is studied, since closed form expressions for the fatigue life are not available and numerical

integration is required to determine the fatigue life corresponding to a combination of random variables.

Previous applications of FORM to multiple inspection intervals have required that the probability density

function for the crack length be determined at an initial state as well as after each inspection. The augmented

FORM only requires knowledge of the initial distribution of crack lengths (or the distribution of cycles to

crack initiation), which is a significant advantage. Recharacterizing the crack length distribution after each

inspection requires the consideration of a great deal of realizations. Therefore, the _tdvantage of FORM is

greatly diminished, if not lost, if the crack length distribution must be recharacterized at various stages of the

fatigue life.

Demonstrations of the augmented FORM were given for two components to show the accuracy and

versatility of the method. The first component had a simple configuration which allowed comparisons with

Monte Carlo simulations. These comparisons showed that the augmented FORM yields accurate probability

of failure estimates. In the second component, the augmented FORM was shown to be efficient for even

complex components when other methods, such as MCS and standard FORM, were computationally

infeasible.

The method has also been shown to be an effective tool for scheduling inspection times based on a

maximum probability of failure. The probability of failure was kept below a specified level by performing

non-uniform inspections, rather than evenly spaced inspections. This and related aspects of the method are

subjects of our ongoing research in this area.
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APPENDIX: ALGORITHM TO LOCATE DESIGN POINTS

A variation on the Rackwitz algorithm (Rackwitz and Fiessler, 1978) is presented in the following four

steps (Harkness, 1993):

1) define failure function G(x), initialize iteration count: v----0; estimate design point

coordinates 4; transform 4 to x 0 .
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_-_fl{ and compute:
_G

2) evaluate g, and _r/ at xiv, r'Vl

I i =- --/_--Or i --,Or i where X = vrfll/Vrgl

3) increment iteration count: v= v+l; update ri values in two steps:

a) d emp = ry -1 - (G - G VrG ) ; adjusts magnitude of r

b) ry = r_emp(_ + (1-- _)Ii) , 0<4<1; adjusts direction ofr

4) transform r.v to x v"1 i ' check for convergence:

If not converged, go to step 2.

If converged, design point found; reliability index fld = r v.

This algorithm minimizes fl on _ surface of constant g (equal to g*). Other distinctions between this

algorithm and the Rackwitz algorithm are:

1) G=G* is not enforced on each iteration. Instead, step 3a just brings r v toward the limit surface. In

practice, Cry-G* after several iterations (i.e., after v>4) with the algorithm presented above.

2) The iteration parameter _ is introduced to avoid the large angular corrections in r v

which lead to non-convergence.

An intermediate value of the iteration parameter, such as 4=0.7, is recommended. For practical purposes,

convergence can be assumed to have occurred when each of the standardized variables changes by less than

0.01 in an iteration. Convergence is typically achieved within ten to twenty iterations with this algorithm,

and lack of convergence is uncommon.

The algorithm can be used to find design points for standard or augmented FORM. The algorithm calls

for partial derivatives of fl=irl and G with respect to ri. For standard FORM, these derivatives are given by

tgfl _ ri (A.1)
cgri fl

9G _ 9G Ox i

¢_r i ¢_x i ¢_r i "
(A.2)

If G = Nf- N and the desired service life is deterministic, then

0G_ 0Ns
OX i _X i

(A.3)
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and

Oxi =0"/H, (A.4)
ar,

where tr/N are the equivalent normal standard deviations in the Rosenblatt transformation (see Ang and

Tang, 1984). With these substitutions,

OG
= --tr i . (A.5)0x,

For augmented FORM, the derivatives of fl with respect to ri are modified to account for the affect of the

Pnd(r,N) function on the design points (see Section 3.3). The derivatives can now be calculated as

0fl = & + .R 0R (A.6)
Or, # Or,

where R = 4,62 _ ir12. The derivatives of the "augmented component" R can be calculated using finite

differences.

For both standard and augmented FORM, [Vrfl [ = 1.
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Figure la. Failure surface in original space
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Figure lb. Failure surface in standardized space
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