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ABSTRACT 

The thermocapillary-driven flow of a liquid in a shallow slot provides a simple model to explore 
the effects of free-surface deflection and end walls on the stability of the flow. Such an investigation 
may be useful in understanding the complex flow seen in processes such as the float-zone refining of 
single crystals. A linear stability analysis of the viscously-dominated slot flow indicates stable basic 
states to both two- and three-dimensional infinitesimal disturbances for capillary numbers below 
43.3. Above this capillary number steady solutions do not exist. We also discuss current work 
involving the development of an inertially-dominated slot-flow model using singular perturbation 
methods. If these flows are unstable, inertial effects would be the only possible cause of the 
instability. 

INTRODUCTION 

Thermocapillary flows are driven by temperature-induced surface tension gradients at the interface 
between two immiscible fluids. For most liquids, the surface tension decreases with increasing 
temperature. Thus, when the interface experiences a positive temperature gradient the bulk fluids on 
each side of the interface must balance an effective negative shear stress. Through this mechanism, 
the thermal fields in the fluids are coupled to the velocity fields. 

One important process in which thermocapillary flows are seen i s  the float-zone processing of 
crystalline materials. Here, an amorphous rod of semiconducting material passes through a ring 
heater producing a local melt-zone along the rod. Ideally, as the material travels past the heater, the 
leading portion of the molten material solidifies and forms a single, uniform crystal. However, since 
the conditions at the freezing end of the zone dictate the uniformity of the material, the presence of 
unsteady thermocapillary flows in the melt-zone can compromise crystal quality. 

The present work describes the first two of a series of analytical models designed to isolate the 
mechanisms that cause thermocapillary-driven flows in finite regimes, such as the float zone, to 
become time dependent. The basic model, originally investigated by Sen and Davis (l), is the flow 
in a single liquid layer bounded by two end walls. This geometry is also called the flow in a shallow 
slot. Sen and Davis (1) provided a steady, asymptotic solution (small depth to width ratios) for a 
viscously-dominated flow in the slot with first-order surface deflections. Sen (2) extended this 
analysis to leading-order surface deflections. In our current work, we find that steady solutions for 
the flow are only possible for capillary numbers below 43.3. A linear stability analysis shows that 
these steady solutions are stable to both two- and three-dimensional infinitesimal disturbances. In our 
second flow model, we consider an inertially-dominated flow in the slot in an effort to investigate the 
role of fluid inertia on the instability of the slot flow. Previous work by Smith and Davis (3) has 
shown that fluid inertia plays a significant role in the stability mechanism for long wavelength surface 
wave instabilities. 

ANALYSIS 

In the earlier work of Sen and Davis (1) and Sen (2), hereafter referred to as SD and Sen 
respectively, the authors analyzed thermocapillary flows in a rectangular slot of aspect ratio A ,  
defined as the depth of theT fluid layer over the width of the slot, in the limit A + 0. Their analyses 
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were based on the assumption that the Reynolds and Marangoni numbers were both O(A). However, 
SD considered capillay numbers of @A4) while Sen looked at capillary numbers of @A3). The 
former scaling resulted in nearly parallel flows in the core matched to return flows in the end layers 
with only small corrections to the flat interface. The latter scaling produced nonparallel core flows 
with O(1) surface deflections. The present work focuses on the stability of the results found in Sen, 
but will make frequent references to the derivations originally developed in SD. 

Written in stream function form, the dynamics of the fluid within the cavity are described by the 
following dimensionless equations (see SD for notation): 

m[( w, + wyw, - WxWyyy)+ A2( wxxt + wyw, - W,w,)] 
(la) 

=vm+2~2vw+~4v-  

The dimensionless boundary conditions are given by 

The constant-volume condition is given by 

and for 

-112 

steady flow, a zero mass-flux condition holds across the depth of the fluid 

q l 6 . ( X , Y ) d Y  = w,(h(x))- W,(O) = 0. 
0 

Finally, for the case where the ends of the interface are of fixed height, we impose 

h(f3) = 1. (4) 

For the viscously-dominated flow, Sen took R = EA,  M = MA, and C = FAA3, where the overbarred 
terms are all O(1). In the limit A + O ,  the core flow was derived by expanding the dependent 
variables of the system in terms of an asymptotic series in A .  Substituting these expansion into 
equations (1-4), and solving the leading-order system in terms of h(x), Sen obtained the following 
approximations for the stream function and the interface position in the core 
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hohom = -3r  / 2. 

At both end walls, the leading-order, inner systems required that the interface remain flat 
throughout the boundary-layers, makiig equation (6) valid across the entire slot and subject to the 
pinned-end conditions (4). 

In the current work, equation (6) was solved using a Chebyshev pseudo-spectral method in 
conjunction with a Newton-Kantorovich iteration scheme. The results of these computations are 
shown in figure 1 for several values of the capillary number. Steady interface solutions were found 
in the range 0 I 143.3. For capillary numbers above this limit, the Newton-Kantorovich scheme 
failed to converge, perhaps indicating the existence of unsteady basic-states. Further investigation of 
this behavior near this limit and for even larger capillary numbers still remains to be done. 

We determined the stability to three-dimensional small disturbances of this viscously-dominated 
system by perturbing the steady interface as follows 

where H l x )  is the steady interface solution, i(x) is the disturbance mode shape, s is the disturbance 
growth rate, and a is the disturbance wave number transverse to the flow direction. Note that for two 
dimensional disturbances a = 0. Substituting equation (7) into the stream function equation (5) and 
the three-dimensional form of the kinematic equation (2c), substituting equation (9, evaluated at the 
interface, into equation (2c), and then linearizing yields the general linearized disturbance interface 
equation 

subject to the conditions 
A C L  

x=*+: h = h, = O  

Condition (9b) is the perturbation form of the zero volume flux condition (3b), which becomes 
restricted to the endwalls for unsteady flow. 

The system of equations (8-10) presents an eigenvalue problem in s that was solved using a 
Chebyshev spectral method in combination with an IMSL eigenvalue routine. The results of these 
computations are shown in figure 2. Here, the most dangerous growth rate is plotted against its 
respective capillary number for various wave numbers. Note that all of the disturbance growth rates 
are negative for the viscously-dominated flow, signifying that the steady solutions of this flow model 
are always stable. In addition, for any capillary number, transverse disturbances have a stabilizing 
effect. Finally, it is interesting that for two-dimensional disturbances the growth rate approaches zero 
as the capillary number approaches the upper limit for the existence of steady-flow solutions. 

Since the viscously-dominated slot is unconditionally stable to small disturbances, then will be no 
doubt'as to the origin of resulting instabilities when new effects are added to the model. In our 
second model, we add the effect of fluid inertia. This addition is accomplished by changing the 
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Reynolds number scaling from R = EA to R = EA-'. Physically, this means that we have gone from 
considering an O(1) Prandtl number fluid to an O(A2) Prandtl number fluid. Such a rescaling may 
provide a better approximation to the thermocapillary flows of low Prandtl number fluids such as 
liquid silicon. Substituting this scaling into equations (1) and (2) yields the following leading-order, 
core-flow system 

Clearly, the solution of this system will require a numerical approach, but it is still far simpler than 
the full Navier-Stokes equations, Fortunately, since the thermal field remains conduction-dominated 
to leading order, the inner conditions still require a flat interface in the end layers. Therefore, the 
leading-order outer solution may be obtained by solving for the interface position and stream 
function simultaneously subject to the additional conditions 

The numerical approach used to solve this system of equations will employ a double iteration 
scheme as follows. Using the leading-order solution provided by Sen as an initial guess, a spectral, 
Newton-Kantorovich scheme will be used to solve the nonlinear equation (1 la) subject to conditions 
(12a, b, d) and (13b). This will provide an intermediate solution for the stream function. The 
intermediate solution will then be used to calculate the pressure field from the x-momentum equation. 
Once the pressure is known, condition (12c) may be integrated subject to conditions (13a, c) to give a 
corrected interface shape. This process is repeated until both the stream function and the interface 
shape converge to a solution. 

FUTURE PLANS 

Once the inertially-dominated flow has been computed and explored with regard to its stability, we 
wish to explore other effects that can be easily incorporated into this slot-flow model. These effects 
can be summarized with the following model problems. 

(1) A flat, annular geometry in which the flow is in the radial direction and the transverse 
direction is periodic. In this model we shall explore the effect of the geometric deceleration of the 
flow as it moves radially outward from the center. The interface itself remains relatively flat for small 
capillary numbers. This geometry is also relevant to the space flight experiment of Ostrach (4). 

(2) A vertical, annular geometry in which the flow is in the vertical direction and the transverse 
direction is periodic. With this model, we include the capillary pressure associated with the curvature 
of the interface in this cylindrical geometry. Such curvature has the potential to balance the 
stabilizing effect of surface tension seen in the original flat-slot model. 
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(3) A cylindrical geometry. Here, we let the inner wall of the annular geometry go to zero and 
obtain a long capillary bridge. This geometry is the most relevant to the float-zone geometry, but it 
still keeps the end effects as only a boundary condition on the flow in the core. 

With these three model problems, we shall explore a variety of effects that can contribute to the 
instability of the thermocapillary flow. The advantage of using this succession of models is that the 
individual effects are included one at a time. This will allow an unambiguous study of their relative 
effect on the stability. Such a treatment may succeed in identifying the underlying mechanism of the 
thermocapillary instabilities seen in these systems. 

In each model, we shall consider a viscously-dominated and an inertially-dominated flow field. 
Once the numerical codes are developed to handle the inertial problem in the original flat-slot 
geometry, the inclusion of the effects represented in the other models is relatively straightforward. 

CONCLUSION 

By constructing a series of models that successively includes more and more effects, this research 
will seek to clarify the roles of both fluid inertia and flow geometry in contributing to the nature of 
the instabilities seen in thermocapillary flows. The viscously- and inertially-dominated slot models 
addressed in this paper are just the first two models in this series. 

We have found that the viscously-dominated flow in the flat-slot geometry has steady, two- 
dimensional solutions for capillary numbers less than 43.3, and that these solutions are stable to both 
two- and three-dimensional infinitesimal disturbances. The inertially-dominated flow problem has 
been posed and is now in the process of numerical code development. 
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Figure 1 - The interface shape for various values of the scaled capillary number c. 
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Figure 2 - The growth rate as a function of the scaled capillary number for various values of 
the wave number a. 
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