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Computations of drops collisions and coalescence are presented. The computations are made possible by a 
recently developed fiNte differencdfront tracking technique that allows direct solutions of the Navier-Stokes 
equations for a multi-fluid system with complex, unsteady internal boundaries. This method has been used to 
examine the boundaries between the various collision modes for drops of equal size and two examples, one of a 
"reflective" collision and another of a "grazing" collision is shown. For drops of unequal size, coalescence can result 
in considerable mixing between the fluid from the small and the large drop. This problem is discussed and one 
example showed. In many cases it is necessary to account also for heat transfer along with the fluid mechanics. We 
show two preliminary results where we are using extensions of the method to simulate such problem. One example 
shows pattern formation among many drops moving due to thermal migration, the other shows unstable evolution 
of a solidification front. 

INTRODUCTION 

The presence of a free surface that is not constrained to be more or less flat due to the! action of gravity is 
perhaps the most important aspect of fluid flow in microgravity. The absence of gravity generally makes surface 
tension effects important at much larger length scales than we are used to on earth. The large amplitude surface 
motion possible when gravity is small or absent is generally highly nonlinear and thus difficult to analyze by 
conventional means. Such surface motion is, nevertheless, to be expected in microgravity environment and it is 
necessary to understand it tu be able predict its motion, or avoid it if necessary. Experiments in microgravity are at 
best expensive, and usually difficult as well. It is therefore desirable to be able to predict the evolution numerically. 
Such numerical simulations can, occasionally, replace experiments information that can not be measured. In other 
cases numerical simulations WL complement experiments and aid in the design of experiments. 

Numerical simulations of free surface flows have remained one of the frontiers of computational fluid dynamics since 
the beginning of large scale computations of fluid flow. For an early work on drop collision, see ref. 3. Progress has 
however been much slower than for homogeneous flows and numerical simulations have not played the same role in 
multi-fluid and multiphase research as they have done for turbulence research, for example. Recently, however, a 
number of investigators have made considerable progress and this paper reviews briefly our effort in this area of 
relevance to microgravity fluid physics. We start by a description of the numerical methodology, since it is critical 
to the success of our work, and then review a few applications. 

NUMERICAL METHOD 

The numerical method is a hybrid between so called front capturing methods where a sharp front is resolved 
on a stationary grid and front tracking methods where the interface is followed by separate computational elements. 
We use a stationary regular grid for the fluid flow, just as front capturing methods, but track the interface by a 
separate grid of lower dimension. This grid is usually referred to as a front. However, unlike front tracking methods, 
we do not treat each phase separately, but work with the Navier-Stokes equations for the whole flow field. In a 
conservative form those are: 

dpii - + V .pU'ii = -Vp + 1 + V .p(Vii + Vis') + F,S(Z - Z,)da dt F 
Here, is is the velocity vector, p the pressure, and p and p are the discontinuous density and viscosity fields, 
respectively. f is a body force that can be used to initiate the motion. The surface tension forces, F ,  act only on 
the interface between the fluid and appears in the current formulation multiplied by a three-dimensional delta 
function, 6 .  The integral is over the entire front. 
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It is important to note that this equation contain no approximations beyond those in the usual Navier-Stokes 
equations. In particular, it contains implicitly the proper stress conditions for the fluid interface. The above equation 
is discretimi on a staggered grid using second order second order centered finite diffemces for the spatial derivatives 
and a second order time integration scheme for most of our computations. For short simulations, first and second 
order give very comparable results, but for long time simulations the higher order is a must To monitor the 
accuracy we check, among other quantities, how well we conserve mass. While the finite difference method has good 
conservation properties, the front tracking is not inherently conservative. By using second order time integration and 
sufficiently fine resolution we always find that mass is well conserved. The momentum equation is supplemented by 
an equation of mass conservation, which for incompressible flows is simply 

V . i i = O  
Combining this equation with the momentum equation leads to an elliptic equation for the pressure. Unlike the 
pressure equation for homogeneous flows, here it is nonseparable and fast methods used extensively for 
homogeneous flows (EISHPACK, for example) are not applicable. We used a simple SOR for many of our early 
computations (in the so-called Black and Red form €or computations on the CRAY), but now a multigrid package 
(MUDPACK from NCAR) is used for most of our computations. Since the density and the viscosity are different for 
the different fluids, it is necessary to track the evolution of these fields by solving the equations of state which 
simply specify that each fluid particle retains it original density and viscosity: 

-+ JP E .  vp  = 0; -+ JP ii. vp = 0 
dt at 

In our front tracking code we do not solve these equations in this form, but use the front to determine the value at 
each grid point. This can be achieved efficiently by distributing the density gradient (or the jump) onto the grid and 
then reconstructing the density from its gradient. This allows two interfaces to lie close to each other so the gradient 
cancel. Usually it is only necessary to reset the density and viscosity of grid points next to the front. 

The surface tension force, which is computed from the front configuration is, perhaps, the most difficult part of the 
algorithm. Therefore, we have spent considerable time on that and explored various alternatives. The current 
algorithm, which appear to be very satisfactory, is based on computing directly the force on each element by 

Fu= aiix7ds flm 
where i is a tangent to the boundary of the surface element, A is the surface normal, and Q is the surface tension 
coefficient. By computing the surface tension forces this way, we explicitly enforce that the integral over any portion 
of the surface gives the right value, and for closed surfaces, in particular, we enforce that the integral of surface 
tension forces is zero. This is particularly important for long time simulations where a failure to enforce this 
constrain can lead to unphysical motion of bubbles and drops. 

Since the boundary between the fluids (the front) usually undergoes considerable deformation during each run, it is 
necessary to modify the surface mesh dynamically during the course of the computations. The surface mesh is an 
unstructured grid consisting of points that are linked by elements. Both the points and the elements are arranged in a 
linked list, so it is relatively easy to change the structure of the front, including adding and deleting points and 
elements. Topological changes, such as when bubbles coalesce or drops break in two can also be accomplished by 
minimum effort. This is usually considered a major difficulty in implementing methods that explicitly track the 
front, but we have shown that with the right data structure these tasks become relatively straight forward. Although 
topology changes are easily done from a programming point of view, the physics is far from trivial. In reality, drops 
bounce off each other if the time when the drops are close is shorter than the time it takes to drain the film. Usually 
the film becomes very thin before it breaks and it would require excessive grid refinement to resolve the draining 
fully. At the moment we are dealing with this issue in a rather ad hoc way by simply changing the topology of the 
front at a prescribed time. However, considerable analytical work has been done on film draining and rupturing and 
we are currently exploring the possibility of combining such a model with our simulations. 

Although by no means new, the formulation of two (or more) fluid problems in terms of one equation for the whole 
flow field is somewhat unusual. Furthermore, even though it is a rigorous approach, it is not immediately obvious 
that it will lead to an efficient computational method. We have therefore conducted extensive validation tests, not 
only to check the implementation, but also to assess its accuracy. We have compared the code with analytical 
solutions where available, such as the linear oscillations of a drop and the propagation of waves, with other 
computational work such as the simulations of Leal and coworkers (see, e.g. ref. X) and experimental results. The 
actual resolution requirement varies with the parameters of the problem. High Reynolds numbers, for example, 
generally require finer resolution than lower ones, as in other numerical calculations. We have also found that for 
problems where the surface tension varies, such as for contaminated bubbles and drops moving by thermal migration 
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we generally require finer resolution than for flows where the surface tension is constant. However, in all cases have 
we found that the methods converges rapidly under grid refmement, and in those cases where we have has other 
solutions we have found excellent agreement, even for modest resolutions. Examples of these validations are 
contained in various papers and dissertations, see ref. 5-9,11, and 12. 

RESULTS 

We.have investigated the head-on collisions of two drops in detail by axisymmettic computations and also 
done several fully three dimensional calculations of off-axis collisions. Figure 1 shows the head on collision of two 
drops from ref. 9. To move the drops toward each other we apply a body force on each drop that is turned off once the 
drops have reached the desired velocity and before the drops collide. In this case, the drop Weber number, MUz /a, 
and the Reynolds number, pVd/p, are 115 and 185, respectively. As the drops collide, they deform and once they 
are close enough, the f i m  between them is ruptured so the drops coalesce into one drop. The kinetic energy is 
converted into surface tension energy as the drop is deformed into a disk-like shape, and once the it is nearly 
stationary the process is reversed and surface tension pulls the drop back into a spherical shape. In this particular 
case, the initial kinetic energy is sufficiently high and the dissipation sufficiently low that the drop actually splits 
into three. This evolution is observed experimentally, see ref. 2 and 4, for example, and is called reflective collision. 
For lower initial energy the drops do not separate again, but remain one. We have investigated the boundary between 
reflective collision and coalescing collisions (when the drops permanently become one drop) and found good 
agreement with experimental observations. For collisions close to the boundary there is a slight sensitivity to the 
exact time of rupture, but away from the boundary the evolution is not affected by the exact rupture time. 

When the drops do not approach each other along the same axis, the evolution is fully three-dimensional. If the off- 
axis distance is small, the evolution is similar to a head on collision, but if the distance is large a new collision 
mode, usually called grazing collision, becomes possible. Figure 2 shows such a collision. The drops are initially 
accelerated toward each other by a body force. This force is turned off once the drops have reached the desW velocity 
and before they collide. As the drops collide, they deform, and once the film of ambient fluid between them is thin 
enough it is ruptured and the drops allowed to coalesce. If the offset is small, the coalescence is permanent for the 
Reynolds and Weber numbers used here, but when the offset is large, as is the case in figure 2, the drops tear apart 
again. We have compared the boundaries between permanent coalescence and grazing with experimental observations 
and find excellent agreement [see ref. 7 and 8 for details]. Both the axisymmetric and the three-dimensional 
computations have shed considerable light on the collision process and the role played by losses of surface tension 
energy during the actual coalescence when the thin fiim between the drops is ruptured. 

Another problem that we have investigated in some detail is the coalescence and subsequent mixing of two, initially 
stationary drops of unequal size. This study was motivated by experiments conducted by Anilkumar, Lee and Wang 
(ref. 1) who brought two drops together slowly and made a video recording of the evolution after the film between 
them ruptures and surface tension forces pull the small drop into the larger one. For high viscosity drops the motion 
is quickly dissipated and the fluid from the small drop remains near the point where the drops touched. For lower 
viscosity, however, the fluid from the small drop is injected much more violently into the larger one, forming a jet 
that often reaches across the larger drop. In general, the penetration depth depends on the nondimensional viscosity 
and the size ratio of the drops, since for two drops of the same size, no jet formation occurs by symmetry. This 
problem requires a careful resolution of inertia, viscous and surface tension effects. We have investigated this 
problem in some detail and provided a msonably complete picture of how the evolution depends on the parameters 
of the problem. Figure 3 shows the process. The initial configuration is shown on the left and the final 
configuration is on the right. 

As the multi-fluid problem has been brought under control, we have moved toward more complex physics. A 
problem of a long standing interest to the microgravity community is the thermal migration of bubbles and drops. 
Here, two complications arise. First, we must solve for the temperature field and second, surface tension is now no 
longer a constant but depends on the temperature. We have dealt with variable surface tension before for problems 
involving surface active materials (or surfactants) so the added complication here is only the heat transfer parr Figure 
4 shows a few frames from a two-dimensional calculation of the motion of six drops in a temperature gradient. The 
drop surface and isothermals are shown. The top and bottom boundaries are rigid walls at constant temperame, but 
the horizontal boundaries are periodic. The evolution seen here is typical for many drops at these parameter values. 
The drops line up across the channel until there is not mom for more. The rest then forms a new line. If there are not 
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enough drops to fit across the channel, the drops position themselves as far apart from each other as possible. 
Preliminary simulations of fully h-dimensional drops indisate that the interactions are much weaker in three- 
dimensions, but we have not conducted a systematic study yet. 

For material processing and thermal management the fluid mechanics is often, if not always going to be 
accompanied by phase changes. In preparation for simulations of fluid systems undergoing a change of phase such as 
during boiling or solidification, we have developed a method based on the same single domain formulation used for 

where an initially undercooled melt solidifies. We are currently combining this methodology with our fluid dynamics 
method. 

. 

' the fluid flow for solidification. Up to now we have only simulated solidification and figure 5 shows an example 

CONCLUSIONS 

We have discussed our development of numerical method suitable for the predictions of free surface flows in 
microgravity and the application of these methods to several problems. These applications have already lead to a 
better understanding of some aspects of drop collisions and coalescence and also demonstrate the versatility of the 
method. Overall, it seems reasonable to state that the fluid problem is under good control with the exception of how 
to handle the rupture of thin films. Our current ad hoc strategy seems to work well in some cases, but it is highly 
desirable to have a more general way of determining when the film ruptures. We believe that the rupture time is the 
most important information needed. and that for a large class of problems the details of the post rupture motion, 
including the formation of small drops can be safely ignored. In most cases the fluid motion is only a part of the 
process of interest and heat transfer and phase change must be dealt with in order to establish the understanding 
needed for a complete predictive capability. We have taken preliminary steps in this direction and examined the 
thermal migration of drops and solidification. I 
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Figure 1. The head on collision of two drops computed by an axisymmetric version of our method. Here We115 
and Re185. The drops are sufficiently energetic so they break up again after initial coalescence. 

Figure 2. Fully three-dimensional grazing collision of two drops. Here, We = 23 and Re = 68. The line along which 
each drops moves are separated by 0,825 drop diameters. 

Figure 3. Coalescence and mixing of two stationary drops of unequal size. 
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Figure 4. The thermal migration of several two-dimensional drops. The initial conditions are to thetleft. The drops 
and the isotherms are shown. 
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Figure 5. The evolution of an unstable solidification front. The h n t  is shown at several times as it advances into 
the undercooled melt. 
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