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Abstract

Recent advances in imaging technology make it possible to obtain imagery data

of the Earth at high spatial, spectral and radiometric resolutions from Earth orbiting
satellites. The rate at which the data is collected from these satellites can far exceed

the channel capacity of the data downlink. Reducing the data rate to within the chan-

nel capacity can often require painful trade-offs in which certain scientific returns are

sacrificed for the sake of others. In this paper we model the radiometric version of

this form of lossy compression by dropping a specified number of least significant bits

from each data pixel and compressing the remaining bits using an appropriate lossless

compression technigue. We call this approach "truncation followed by lossless compres-

sion" or TLLC. We compare the TLLC approach with applying a lossy compression
technique to the data for reducing the data rate to the channel capacity, and demon-

strate that each of three different lossy compression techniques (JPEG/DCT, VQ and
and Model-Based VQ) give a better effective radiometric resolution than TLLC for a

given channel rate.

1 Introduction

The imaging sensors onboard satellites are capable of scanning the Earth at very high spatial,

spectral and radiometric resolutions. Downlink channel capacity is often a major limiting
factor for the resolution at which the data is collected. Image compression techniques can be

used to reduce the data rate from the imaging sensor to within the downlink channel capacity.
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Ideally, decompressionof the downlinked data should result in the full losslessrecoveryof
the imagedata assensedonboardthe satellite. However,the amount of compressionpossible
from losslesstechniquesis boundedby the entropy of the source.This entropy bound limits
the amount of compressionthat canbe obtainedto the rangeof 2 to 3 for most NASA image
data sources. This is most often insufficient to reducethe sensordata rate to within the
channelcapacity.

Large amounts of compression can, instead, be obtained with lossy compression tech-

niques. In fact, a crude form of lossy compression is most often used in these cases, i.e.

the temporal, spatial, spectral, and/or radiometric resolutions are limited to produce a data

rate that can be handled by the channel capacity. Establishing these limits often requires

painful trade-offs in which certain scientific returns are sacrificed for the sake of others. In

this paper we model the radiometric version of this form of lossy compression by truncating

a specified number of least significant bits followed by lossless compression of the remaining

higher order bits. We call this approach "Truncation followed by Lossless Compression"

(TkI.C) Using the TLLC approach, tile data rate can be set to within the channel capacity

by selecting the appropriate number of least significant bits dropped. We have found that

this method produces reasonable rate distortion values for compression ratios less than 5 or

6. However, for larger compression ratios, the rate distortions increase exponentially as the
amount of truncation increases.

Much better rate distortion behavior can be obtained by using other lossy compression

approaches. For the lossy compression approaches we have studied, the rate distortion perfor-

mance is either linear or sublinear. These lossy compression approaches are the JPEG/DCT

(Joint Photographic Experts Group/Discrete Cosine Transform [1]), VQ (Vector Quantiza-

tion [2], and the more recently developed MVQ (Model-based VQ [3]) approach. For a given

data rate, this improved distortion behavior over TLLC can be looked upon as a gain in
radiometric resolution.

We first describe the TLLC approach in more detail, and give summary descriptions of

the JPEG/DCT, VQ and MVQ lossy compression approaches. We then derive our measure

of gain in radiometric resolution of a particular lossy compression approach over TLLC.

Finally we demonstrate the gain in radiometric resolution provided by the JPEG/DCT,

VQ and MVQ appproaches over the TLLC approach with imagery data from three remote

sensing instruments: the Landsat Thematic Mapper (TM), the Advanced Solid-state Array

Spectroradiometer (ASAS), and the Advanced Very High Resolution Radiometer (AVHRR).

Of these, TM imagery data is at 8-bit resolution, while imagery data from the other two are

at 12-bit pixel resolution with at most 10 significant bits.

28



2 Lossy Image Compression Techniques

Lossy compression can produce relatively high compression ratios or low data rates (bit

rates) at a cost of losing some information. Here we define the compression ratio (CR) to be

the ratio of the number of bits in the original image to the number of bits in the compressed

image, The bit rate in bits/pixel can be represented as n/CR, where n is the radiometric

resolution (in bits/pixel) of the original image. A common measure of information loss or

distortion is the mean squared error between the original image and the image reconstructed

from the compressed data. The mean squared error is defined formally as

1 N-1

MSE = _ _ (fl(k) - f2(k)) 2 (1)
k=O

where A(k) and f2(k) are the k th pixels from the original and reconstructed images, respec-

tively, and N is number of pixels in the image. The performance of a lossy compression

technique can be characterized by a rate-distortion curve, which is simply a plot of bit rate

(n/CR) versus distortion (MSE).

In the following subsections we describe the TLLC approach and other lossy compression
techniques that we have used in our tests.

2.1 Truncation followed by Lossless Compression (TLLC)

Truncation followed by Lossless Compression (TLLC) is not a compression approach that

one would use directly. However, as mentioned in the introduction, it is a model for the

design practice of setting the radiometric resolution to a lower value than sensor technology

would allow, so as to keep the data rate produced by the sensor within the limits of channel

capacity for bringing the data from the sensor to Earth.

Let the radiometric resolution of the image data collected at the instrument be n bits/pixel

and the channel capacity be m bits/pixel (m < n). The TLLC approach reduces the bit rate

from n to no more than m by dropping a number of lower order bits b. Here b is chosen such

that the lossless compression of remaining n-b bits results in an output bit rate of no more

than m bits/pixel. The lossless compression approach that consistently performed best in

the cases we tested utilizes the coding model for lossless encoding specified in the JPEG still

image compression standard [1] combined with the Witten-Neal-Cleary version of arithmetic
coding [9].
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2.2 JPEG/DCT

JPEG/DCT([1]) lossy compression algorithm consists of three successive stages: Discrete

Cosine Transform (DCT) transformation, coefficient quantization and lossless compression.

The original image is partitioned into nonoverlapping 8x8 pixel blocks. Each block is in-

dependently transformed using the DCT. The DCT coefficients are then quantized using a

quantization table that is designed using the Human Visual System (HVS) contrast sensivity

function. The first coeffient of DCT transformation is DC coefficient and is proportional to

average brightness of the block. The quantized DC coefficient along with other DC coef-

ficients is compressed using DPCM (Differential Pulse Code Modulation) using 1-D causal

prediction. The quantized AC coefficients are zig-zag scanned to covert 2-D array into 1-D

array and then are lossless compressed by using Huffman table that is transmitted to the

decoder as a part of the header information.

The baseline JPEG/DCT does not include standards for pixel resolutions higher than

8-bits. Since some of the images tested here have 12 bit resolution, we truncated the image

pixels such that the pixel resolution after truncation was 8-bits. After JPEG/DCT com-

pression was applied and the image was reconstructed from the compressed data, each pixel

value was multiplied by the truncation scale factor to scale the pixels values properly for
MSE measurements.

Spectral correlations are not easy to exploit in JPEG/DCT, as there are no standards for

decorrelating the bands of multispectral image data (JPEG/DCT does however, allow red,

green and blue decorrelations by converting them to luminance and chrominance components.

([1], pp.18-20, p.503). Therefore, we compressed each band of the multispectral images

independently in our tests.

2.3 Vector Quantization

Vector Quantization (VQ) is the vector extension of scalar quantization which is found to be

very useful for multispectral image compression ([4] [5]). The VQ vectors are obtained from

image data by systematically extracting nonoverlapping blocks (typically 4x4) and arranging

the pixels in each block in raster scan order. Such vectors allow VQ to exploit two dimen-

stional correlations in the image data. If the image is multispectral, nonoverlapping cubes

(typically 4x2x3) may be used. VQ builds up a dictionary of a few representative vectors,

called codevectors, and then codes the image with the index value of the closest codevec-

tor from the dictionary, called the codebook, in place of of each vector. Each codevector

is represented by an address containing log2M bits, where M is number of codevectors in

the codebook. Assume vectors of size k are drawn from the input image and matched with

those in the codebook. Using the indices of the matched codevectors to represent the input

image vectors results in a decreased rate of (log2M)/k bits/pixel or a compression ration of
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(k * n)/log2M, where n is the radiometric resolution of the image. In all practical situations

the codebook size, M, is much smaller than the number of vectors that make up the input

image.

The most important phase of VQ is the training process in which an optimal codebook (by

some criterion such as least MSE) is learned from the input samples. The most widely used

algorithm is Linde-Buzo-Gray (LBG) algorithm ([6]). Both the training and coding phases of

VQ require finding the codevector which is closest match to a given vector. Computing this

closest match requires computations proportional to the size of the codebook. Computational

cost can be reduced by employing a suboptimal approaches such as Tree Search Vector

Quantization (TVSVQ) and Pruned Tree VQ (PTVQ) ([7]). The computational problems

can also be solved by using a special architectures ([4]). While the codebook training and

data encoding steps of VQ are computationally intensive, the decoding step is not, because

it is a table lookup process that can be performed quickly on a conventional sequential

computers. Obvious drawbacks of VQ are computationally intensive training process for

generating codebooks for a given class of images and the maintainance of these codebooks

at coding and decoding ends. At the encoding end a codebook has to be selected for the

given data and a pointer to this codebook may be provided as a part of the header record in

the compressed file for the decoder to use the same codebook for decoding purposes. This is

one practical difficulty of using VQ for image compression. This problem is solved with the

Model-based Vector Quantization (MVQ) approach, described in the next section, in which

codebooks are generated using statistical models and input image covariance matrix.

2.4 MVQ

In the MVQ. the codebook is generated using a statistical model of mean removed resid-
ual of the vectors. The mean removed vector elements are characterized either Gaussian or

Laplacian error models. For small vectors sizes of 2 or 4, the mean removed vector elements

can be simulated by a uniform random number generator producing independent and iden-

tically distributed (i.i.d) random numbers and then passing them through a Laplacian filter

with mean A. This is a reasonable model of generating mean removed residuals for these

small vector sizes. However, as the vector size increases, the mean removed vector elements

cannot be treated as independent and so a covariance structure of the source is imposed on

Laplacian i.i.d process. For k-element vectors, the covariance matrix, E, of the input image

is a kxk matrix. The diagonal elements of IE are approximately equal and correspond to the

variance of the normalized pixel values in the image. The square root of Too (= _) is used

to generate independent and identically distributed (i.i.d) Laplacian random variables. The

consecutive Laplacian i.i.d random numbers are grouped into vectors of size k = (kl x k_) to
form a vector Wi (i th vector). The covariance matrix, E, of the source is then factorized into

L and U, where L and U are upper and lower triangular matrices, respectively. The factor-

ization is performed by using the Cholesky decomposition algorithm. When the Laplacian

vectors are mapped onto L, the resulting vectors will have same multivariate distribution
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as _E. The vectors thus generated are independent of other vectors. However, the vector

elements have the correlations given by E. Let Wi be the k-element vector generated by

Laplacian i.i.d process. Let the L be the lower triangular matrix obtained by Cholesky's

decomposition of E. Now the codevector Xi (which is i th codebook entry) is given by

Xi = L.Wi

These vectors are used as the code vectors for the source mean removed residual vec-

tors. In the second pass input image is coded using the model codebook. The codebook is

completely specified by a seed point of uniform random number generator, A, and the lower

triangular matrix, L. The lower triangular matrix will have at most (k2 + k)/2 nonzero real

numbers, where k is the size of the vector. Thus, by transmitting seed point of the uniform

random number generator, A, and L in the header of coded file, the decoder can generate

the codebook to decode the VQ coded image.

3 Radiometric Resolution Gain of Lossy Compression

Algorithms

In the TLLC approach, the radiometric resolution of the input image is explicitly reduced

by b bits by the truncation process. We show here that the MSE distortion resulting from

the truncation varies exponentially with b, the loss in radiometric resolution. The relation
between MSE distortion and loss of radiometric resolution can be derived as follows:

When b lower order bits are dropped, the error in pixel may be one of the integers (0, 1,

2 .... , 2 b-l). Assuming a uniform distribution of these error pixel values, the expected mean

squared error (MSE) is given by

1 2b-1

MSE- 2b- 1 _ k2 (2)
k=l

= (2 • 2 2b - 3 * 2b + 1)/6 (3)

The uniform distribution assumption holds best for lower values of b. Equation (3) can be

derived from (2) using the Euler-Maclaurin summation formula [8]. From Equation (3), we

can obtain b in terms of MSE by solving the quadratic equation in 2b and taking log2 giving:

b = 1og2([3 + _/(48 • MSE + 1)]/4) (4)
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Equation (4) can be usedto computethe lossof radiometric resolution due to the mean
squarederror distortion for a give compressionratio. We can thus compare performance
of lossycompressiontechniquesin terms of radiometric efficiency.For a given compression
ratio, let the MSE distortions from two lossymethods (for example,VQ and TLLC) be D1

and D2 , respectively. Let bl and b2 be loss of radiometric resolutions from these methods

that can be computed from Equation (4). Now if bl > b2, there is gain in radiometric

resolution, Ab, by using VQ instead of TLLC, which is given by

bl - b2 = Ab = log2 + x/48" D_ +
(5)

For large distortions Equation (5) can be simplified to give

1[ 1]=  log2 (6)

Using Equation (6) lossy compression techniques can be compared in terms effective radio-

metric gain by using one with lesser distortion than the other compression technique for a

given rate. We have reported here the effective radiometric resolution gain of VQ, MVQ and

JPEG/DCT with respect to TLLC.

4 Experimental Results

Three different multispectral image data sets are used in our experimentation. The first

data set consists of spectral bands 1, 2, and 3 of a 2048-by-2048 pixel subimage of a Landsat

Thematic Mapper (TM) scene collected in 1991 (path/row 46/28) from over the Gifford

Ponchot National Forest in the state of Washington in the United States of America. The

radiometric (pixel) resolution of this data is 8 bits. The second data set is the first two spec-

tral bands from a 409x2048 pixel Global Area Coverage (GAC) data set from the Advanced

Very High Resolution Radiometer (AVHRR) instrument taken from over the western pacific

ocean. The pixel resolution of this data is 12 bits (stored as 16 bits per pixel). The third data

set is made up of bands 22 and 23 from the Advanced Solid-state Array Spectroradiometer

(ASAS) instrument. This data set also has 12 bit pixel resolution. We used for our test a

512x420 pixel image designated 92161553 from Volume 4 of the FIFE CD-ROM series ([10]).

A training data set is required for the VQ method. This training data set should be

disjoint from the test data set, but should be from the same instrument with the same

spectral bands and should have similar scene characteristics. We chose to use the first 512

columns of the TM data set for testing, and trained on columns 513 through 2048 (for all

2048 lines). The AVHRR data was divided into two equal parts. The first 1024 lines were

used for testing, while the second 1024 lines were used for training. As mentioned above, we

used bands 22 and 23 of ASAS data set 92161553 of size 512x420 for testing. For training
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we usedthe samebandsfrom the 512x590pixel data set designated92161621,the 512x600
pixel data set designate92161631,and 512x600data set designated92161727.The training
data was usedto generatecodebooksfor eachinstrument with vector sizesof 4, 8, 16 and
32 sothat compresseddata at four different compressionratios could be obtained.

The JPEG/DCT compressiontechnique usedhere wasimplementedfor 8-bit pixel res-
olution images. To compressthe 12-bit AVHRR and ASAS using JPEG/DCT, the images
werefirst convertedto 8-bit imagesby finding the brightest pixel (g,_) and scalingdown
all the pixels by the factor gr, a,/255. (MVQ can compress images of pixel resolutions 8-16,

and does not need any codebooks for compression.)

The compression results on the TM data set are given in Table 1.1. The table provides

MSE distortions for different compression ratios using the four different compression meth-

ods (TLLC, JPEG/DCT, VQ, and MVQ). The plots of CR vs. MSE are shown for the

above four techniques on the TM data set are shown in Figure 1. The gain in radiometric

resolution using JPEG/DCT, VQ and MVQ compared to TLLC are derived from the plots.

For three CR's, the MSE's are measured from the plots and the Ab is computed from Equa-

tion (6). The radiometric resolution, Ab , for different CR's are given in Table 1.2 and the

plots are shown in Figure 2. The results on AVHRR data are given in Table 2.1 and 2.2 and

ASAS data results are given in Table 3.1 and 3.2. The rate distortion curves for AVHRR

data and ASAS data using three lossy compressions compared to TLLC techniques in the

plots shown in Figures 3 and 5 respectively. The gain in the radiometric resolution obtained

by employing lossy compression techniques compared to TLLC are shown in Figure 4 for

AVHRR data and Figure 6 for ASAS data.

Table 1.1: CR Vs. MSE on TM data

TLLC JPEG

CR MSE CR MSE

3.8 0.5 2.3 0.32

5.83.3613.43.49

7879 17'1 21.3 5.7370.133.19.86

23.1 489

VQ
CR MSE

8.81 3.23

17.9 5.76

34.1 8.55

Table 2.1: CR Vs. MSE on AVHRR data

TLLC

CR MSE

4.0 3.5

5.2 17.1

7.2 76.1

10.6 323

17.0 1317

MVQ

CR MSE

12.5 15.1

22.6 27.2

40.1 41.2

JPEG

CR MSE

3.5 8.5

17.5 237

28.2 351

46.3 500

VQ
CR MSE

8.4 51.6

16.4 179

37.8 400

MVQ

CR MSE

4.6 131

8.77 443

20.0 574

Table 1.2: Ab w.r.t TLLC for TM

CR

JPEG

10.0 0.95

15.0 1.48

20.0 1.65

Ab w.r.t TLLC

VQ MVQ

1.20 0.46

1.60 0.65

1.75 0.76

Table 2.2: Ab w.r.t TLLC for AVHRR

CR Ab w.r.t TLLC

JPEG VQ MVQ

10.0 0.95 1.20 0.46

15.0 1.48 1.60 0.65

20.0 1.65 1.75 0.76
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Table 3.1: CR Vs. MSE on ASAS data
TLLC

CR MSE
5.96 0.5
8.36 3.47
12.41 17.4
19.48 77.3
32.0 304

JPEG
CR MSE
12.7 6.5
22.3 16.8
35.O 28.0
53 50

vQ
CR MSE

8.2 10.9

15.8 23.4

33.5 37.0

MVQ

CR MSE

7.0 22.0

12.8 81.5

30.0 100.3

40.3 200.1

Table 3.2: Ab w.r.t TLLC for ASAS

CR

JPEG

15.0 0.95

20.0 1.30

25.0 1.52

30.0 1.64

Ab w.r.t TLLC

VQ MVQ

0.3 0.00

0.8 0.00

1.18 0.43

1.38 0.65

5 Conclusions

The data rates possible from remote sensing instruments can often far exceed the channel

capacity for downlinking this data to Earth. The required data rate reduction is often

obtained by reducing the resolution of the instrument. We have modeled the radiometric

version of this approach by dropping a number of least significant bits and applying an

appropriate lossless compression method. We refer to this technique as Truncation followed

by Lossless Compression (TLLC). We have shown in our study that using lossy compression

techniques such as JPEG, VQ and MVQ would give a gain in radiometric resolution compared

to TLLC for a given data rate. In our experiments on Landsat TM data, we have found

that radiometric resolution improvements of 1 to 1.5 bits for bit rates ranging from 0.8 - 0.5

or compression ratios of 10-20 with the VQ or JPEG techniques. Similar improvements are

obtained for AVHRR data using VQ and JPEG techniques. However for ASAS data, the

improvements are seen only for compression ratios exceeding 10 in the case of JPEG and

VQ and 20 for MVQ.
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