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The controller development and the tracking performance evaluation for the

DSS-13 antenna are presented. A trajectory preprocessor, linear quadratic Gaus-

sian (LQG) controller, feedforward controller, and their combination were designed,
built, analyzed, and tested. The antenna exhibits nonlinear behavior when the in-

put to the antenna and/or the derivative of this input exceeds the imposed limits;

for slewing and acquisition commands, these limits are typically violated. A trajec-

tory preprocessor was designed to ensure that the antenna behaves linearly, just to

prevent nonlinear limit cycling. The estimator model for the LQG controller was
identified from the data obtained from the field test. Based on an LQG balanced

representation, a reduced-order LQG controller was obtained. The feedforward

controller and the combination of the LQG and feedforward controller were also

investigated. The performance of the controllers was evaluated with the tracking

errors (due to following a trajectory) and the disturbance errors (due to the distur-

bances acting on the antenna). The LQG controller has good disturbance rejection
properties and satisfactory tracking errors. The feedforward controller has small

tracking errors but poor disturbance rejection properties. The combined LQG and
feedforward controller exhibits small tracking errors as well as good disturbance

rejection properties. However, the cost for this performance is the complexity of
the controller.

I. Introduction

The DSS-13 antenna, a new-generation 34-m beam-waveguide antenna, is shown in Fig. 1. Future

NASA missions will include low-Earth-orbiting satellites, which require significantly higher tracking rates

(up to 0.4 deg/sec) than the deep space missions (0.004 0.01 deg/sec). Thus, the servos for the antennas
require upgrading in order to follow commands with the required precision. Some upgrade options are

presented in this article and are illustrated with simulation results and with field measurements.

The existing proportional integral (PI) controllers, depicted in Fig. 2, satisfy the requirements for

deep-space X-band (8.4-GHz) tracking. For a higher tracking rate, a simple and reliable choice is the

addition of a feedforward (FF) controller, described in [5,6]. The model-based, linear quadratic Gaussian

(LQG) controllers are an alternative to feedforward controllers. The LQG design approach for the DSN

antennas is presented in [2,3,4,6]. This article addresses the design and the implementation issues of the
feedforward and LQG controllers and compares their performances.
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Fig. 2. Antenna PI controller.

The controllers under consideration were designed for a linear plant. However, the antennas can exhibit

nonlinear behavior (limit cycling) due to limits imposed on the antenna input. In order to ensure proper

performance, a trajectory preprocessor is introduced.

II. Trajectory Preprocessor

In the case of unpredicted commands or severe environmental conditions, the drives could be over-

loaded and damaged. In order to prevent this from happening, limits are placed on the input rates and
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accelerations of DSN antennas. Because of these imposed limits, the antenna dynamics become nonlinear

(for the antenna commands exceeding these limits). The antenna tracking commands are usually within

these limits. However, the limits are often challenged by antenna slewing commands and by wind distur-

bances. When slewing commands exceed these limits, this usually results in antenna limit cycling. To

avoid limit cycles, a slewing controller, which is different from the tracking controller, was implemented.

In order to use the same controller for both tracking and slewing modes, the commands for the slewing
mode must be modified so that they do not violate the rate and acceleration limits, yet still move the

antenna at the highest rate possible. This command modification can be performed with a trajectory
preprocessor located in the control system (Fig. 3). The preprocessor limits the rate and acceleration of
the command as described below.

The basic structure of the trajectory preprocessor is derived from the feedforward controller of a DSN

antenna [5,6]. This controller has been proven to have good tracking performance. For the preprocessor
purposes, the controller is simplified by removing its integral part, and by replacing the linear part of the

antenna model with the integrator. The nonlinear part (i.e., the rate and acceleration limiters) remains
untouched.

A block diagram of the trajectory preprocessor is shown in Fig. 4(a), where SAT denotes saturation,

and RL denotes rate limiter. Consider a trajectory r(t), and let Vmax arid am_ be the maximum rate and

acceleration that are allowed for an antenna command. In this figure, r! is the preprocessed trajectory,

e = r- r I is the preprocessor error, k is its gain, u is the rate command, UL is the limited rate command,

and u] is the limited acceleration and rate command. The first step in verifying the preprocessor is to
check its performance for the lifted limits on rate and acceleration, i.e., for the linear case as shown in

Fig. 4(b). Hence, one obtains

u=÷+kr-kr:, ÷1 =u (la)

and from the above, one obtains ÷1 + kr I = _ + kr,

rI = r (lb)

if the initial conditions for r and r I are the same. It shows that if the command does not violate the rate
and acceleration limits, and if the initial conditions are the same, the preprocessed trajectory is identical

to the original one.

In the nonlinear regime, tlle equations for the discrete-time preprocessor are as follows. The input,

u(i), is

u(i) = k(r(i) - rl(i ) + v(i)) (2a)

where v(i) is the command rate at the ith instant. The input saturation is

{ t'ma_ for u(i) > vm_.
ug(i) = -Vma,: for u(i) < -vm_,:

u(i) otherwise

(2b)

The input rate limiter is
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Fig. 3. Antenna PI controller with trajectory preprocessor.
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Fig. 4. Trajectory preprocessor: (a) block diagram and (b) linearized variant.

uf(i- 1) + Tam,_=
,_(i) = uj(i- 1)- T_r.o_

uL(i)

for uL(i) > uf(i -- 1) + Ta,_a_:

for uL(i) < uf(i-- 1) -- Tama_

otherwise
(2c)

The integration of uf is

rf(i) = rf(i- 1) + Tuf(i), vf(i) = uf(i) (2d)

where v I (i) is the rate of the preprocessed trajectory at the ith instant. In the case of violated limits, it

is difficult to analytically evaluate the performance of the preprocessor, but it can be done by simulating

commands typical for the DSN antennas. Typical commands are step command (slewing an antenna),

rate offset, trajectory acquisition, and medium-rate azimuth trajectory (up to 0.4 deg/sec).

First, the preprocessing of tile step command is illustrated. A step command as in Fig. 5(a), solid

line, is preprocessed for the maximum rate, Vrna_ = 0.4 deg/see, and the maximum acceleration, a,na_: =

0.6 deg/sec 2, which is "acceptable" to a controller. The preprocessed trajectory is shown in Fig. 5(a),
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dashed line. Its rate does not exceed Vr, ax (Fig. 5(b), dashed line), and its acceleration does not exceed

ama:_ (Fig. 5(c), dashed line).
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Fig. 5. Preprocessing of the step command: (a) a step command and preprocessed

command; (b) rate of the preprocessed command; and (c) acceleration of the

preprocessed command.

For the rate offset test, a command with the constant rate of 0.3 deg/sec is preprocessed for the

initial position of the preprocessed trajectory identical to the initial position of the original trajectory

r/(o) = r(0) and the zero initial rate of the preprocessed trajectory v/(O) = 0, while the initial rate
of the original trajectory is nonzero, i.e., v(o) = 0.3 deg/sec (Fig. 6). The original and preprocessed

trajectories shown in solid and dashed lines, respectively, demonstrate that the original trajectory is

quickly approached by the preprocessed one. For the case where both initial conditions (position and rate)

of the preprocessed trajectory are different from those of the original trajectory (r/(0) = 1 deg, vl (0) =

0 deg/sec, and r(0) = 0 deg, v(0) = 0.3 deg/sec), the preprocessed trajectory is shown in Fig. 6, dashed-

dotted line. The original trajectory is acquired with the maximum speed and acceleration, and the
difference between them approaches zero.

3

(D
"o

o
I-
O
IJJ
2 1
n-
l---

0.

I I I_ I ' I I I I I

..-,,,
--'-- DIFFERENT POSITION AND

i i i i i RATE INITIAL CONDITIONS

0 1 2 3 4 5 6 7 8 9 10

TIME, sec

Fig. 6. The rate offset command (solid line) and preprocessed commands: the

initial position of the preprocessed and the original commands are identical, but

rates are different (dashed line), and the initial positions end rates of the

preprocessed and the original commands are different (dashed-dotted line).
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Finally, a trajectory, as shown in Fig. 7(a), with a maximum rate of 0.3 deg/sec is preprocessed for

v,n_= = 0.4 deg/sec, a,_ax = 0.6 deg/sec 2, where ttle initial conditions (r/(0) = 22 deg, v/(O) = 0 deg/see)

differ from the original trajectory (r(0) = 24 deg, v(0) = 100 deg/sec). The preprocessed trajectory
is shown in the same figure with a dashed line. After acquisition, the maximal difference between the

original and the preproeessed trajectories is less than 0.1 mdeg [(Fig. 7(b)], which is much smaller than
the noise level in the antenna position error.
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Fig. 7. Preprocesslng a trajectory: (a) original and preprocessed trajectories and

(b) preprocessing error.

I!1. LQG Controller

An LQG controller for the antennas (Fig. 8) consists of an estimator, PI gains, flexible mode gains,
and the trajectory preprocessor. The identification of an estimator gain determination and the reduction
of the controller are described in this section.
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CONTROLLER
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Fig. 8. Antenna LQC controller.
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A. Identification of the Estimator Model

The antenna model used for the design of the estimator has two inputs (azimuth and elevation rates)

and two outputs (azimuth and elevation positions) [4,6]. However, the cross-coupling between azimuth

input and elevation output, and elevation input and azimuth output, is much weaker than the coupling

between azimuth input and azimuth output, and elevation input and elevation output (compare Figs. 9

and 10). This fact allows one to ignore the cross-couplings and to use two separate antenna models (for

azimuth and elevation). This approach simplifies the design and implementation of the LQG controller.
The following test was simulated to justify this approach. An LQG controller A was designed for the

plant without cross-couplings, and an LQG controller B was designed for the plant with cross-couplings.

The resulting controllers A and B were applied to the plant. The performances of both controllers were

nearly identical.
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Fig. 9. Antenna transfer function from azimuth input to azimuth output:

(a) measured, (b) identified, and (c) coherence of measured data.
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Fig. 10. Measured antenna transfer function from elevation input to
azimuth output.
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The analytical models for the DSS-13 antenna, such as those in [6], cannot be implemented as an

estimator due to their uncertainties (such as finite-element model structural mass, friction, or gearbox

stiffness). In order to design a model-based controller, an antenna model must precisely mimic the

antenna dynamics. For this reason, an antenna model was identified using field measurements [12]. The

field measurements were taken as follows: While the antenna was moving with a constant rate, uo, a
random signal, u, was injected. Then the input, u,_ = uo + u, and the output, ym = Yo + Y, were

measured, where Yo and y were responses to uo and u, respectively. The signals u and y were determined

by detrending Um and Ym. Next, the time series data were passed through a Hanning filter to prevent

spectral leakage during a fast Fourier transformation [1].

The magnitude of the transfer function, IIT(f)ll, and the coherence, 7(f), were estimated using the
filtered and detrended input u and output y vectors of 8192 samples each:

iiT(f)ll P v(f)

IIP v(f)ll2
7(f) =Puu(f)Py (f)

(3)

where f is the frequency in Hz, P_(f) is the power spectral density estimate of u(t), Puu(f) is the power

spectral density estimate of y(t), and P_u(f) is the cross-spectral density estinaate of u(t) and y(t). The
magnitude of the transfer function and the coherence are plotted versus frequency in Figs. 9(a) and 9 (c).

The identified azimuth and elevation models were obtained in the state-space form triple (Ai, Bi, Ci),
i = az or el. In later analysis, only the azimuth model is presented in detail, and the subscript i is

dropped to simplify notation (details of the elevation model and cross-coupling models can be found in

[12]). In this model, the state vector z is of dimension n, the input u is of dimension p, the output y is
of dimension q, and the matrices A, B, and C are of dimensions n × n, n × p, and q × n, respectively.

A model is identified using the identification software SOCIT (System/Observer/Controller Identifi-

cation Toolbox) [8,9]. A state-space model, (A, B, C), is identified given the input-output data, sample
period, and the number of observer Markov parameters. The order of the system was chosen to be 24,

based on the system Hankel singular values. Next, the state-space representation was transformed into

balanced coordinates, so that the matrix A was in a diagonally dominant form, with 2 × 2 diagonal

blocks. The diagonal elements of the block represent the system damping, while the off-diagonal ele-

ments represent natural frequencies at those modes. The identified transfer function plot is presented in

Fig. 9(b).

The antenna model includes an integrator (note that the input is the rate and the output is the

position). Thus, some of the system poles are at zero. The SOCIT software, not developed for the
systems with poles at zero, consistently identified a model with all nonzero poles. Nevertheless, some of

the poles were located close to zero. This feature was corrected by shifting the close-to-zero poles to zero.

Also, the identified model showed overdamped modes. This was readily corrected by reducing the modal

damping in the balanced representation.

The signals were measured with a sampling frequency of 80 Hz. Since the transfer function of the

identified model should reflect the antenna dynamics for frequencies below 10 Hz, these signals were
oversampled. The excess data in the oversampled signal were used to reduce noise intensity through

averaging. In this way, a typical signal record of 8192 samples was reduced to 1638 samples.
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B. Balanced LQG Controller

The design of the balanced LQG controller for the DSN antennas was described in detail in [4,6].
The closed-loop system with an LQG controller is shown in Fig. 8, with the estimator state-space triple

(A, B, C), the estimated state of flexible part xel, the control input u, the output y, the estimated output
Ye, the command r, the servo error e, the proeess noise v of intensity V, and the measurement noise w

of intensity W. Both v and w are uncorrelated V = E(vvT), E(ww T) = I, E(vw T) = O, E(v) = 0, and

E(w) = 0, where E(.) is the expectation operator. The triple (A, B,C) is stabilizable and detectable.
The identified plant model was augmented with the new state (integral of the error); thus its order is

increased to n = 25. The task is to determine the controller gain (ke) and estimator gain (ke) such that

the performance index (J),

(0J, )J = Z xTQx + uTu) dt (4)

is minimized, where Q is a positive semidefinite state-weight matrix. The minimum for J is obtained
for the feedback u = -kex, where the gain matrix kc = BTsc is obtained from the solution S of the

controller Riccati equation [10]

ATse + SeA - ScBBTSc q- Q = 0 (5a)

The optimal estimator gain is given by ke = S,C 7", where S, is the solution of the estimator Riccati

equation

AS, + S,A T - s, cTcs, + V = 0 (5b)

Denote a diagonal positive definite matrix M = diag (Pi), i = 1,..., n,lti > 0. A state-space repre-

sentation is LQG balanced if

S, = ,5', = M (6)

In this case, Pi, i = 1,..., n, are the LQG characteristic values of (A, B, C) (see Jonckheere and Silverman

[7] and Opdenacker and Jonckheere [ll] for weights Q = CTC and V = BB T, and Gawronski [3] for a

general case of weights).

Let (A, B, C) be a state space triple of the open-loop antenna in the Moore balanced representation.

For a diagonal weight matrix Q = diag (qiI_.), i = 1,..., n, the solution Sc of Eq. (5a) is as follows [3]:

Sc _ diag (sciI2)

1)
sci= 27i2

1 + 2qi'x/2

(7a)

and for a diagonal V = diag (vi[2),i = 1,..., n, the solution S, of Eq. (5b) is

S_ _ diag (s,iI_)

s,i - (fl, i- 1)
27/2

/3_, = 1 + 2vi7-----_/2

(Tb)
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It is shown in [3] that for flexible structures the Moore and the LQG balanced representations are

approximately collinear, i.e., such that the transformation T from the first to the second requires only
reselling of the components

T _ diag (tlI2,t2I_,... ,tnI2)

h = (s_is,i) 1/4

and the approximate balanced solution is a geometric average of S_and S_,

M = _ _ diag (PiI2)

/ti=_

i= 1,...,n

a result useful in the controller reduction.

(8a)

(8b)

C. Reduced-Order Controller

Although the size of the controller is equal to the size of tile plant, it is crucial from an implementation

point of view to obtain a controller of the smallest possible dimension that preserves the stability and

performance of the full-order controller. In order to ensure the stability of the closed-loop system, the

open-loop system (plant model) cannot be excessively reduced in advance. Therefore, controller reduction
becomes a part of the controller design.

For a flexible structure, such as a DSN antenna, an LQG balanced approach [3] produces a stable
reduced-order controller, for which the reduction index o'i

,)

Cri = 77t_i (9)

ranks tile importance of the controller states. It combines tile open- and closed-loop characteristic values
of a system.

The plots of tile index o'i for azinmth and elevation are shown in Fig. 11. In the azimuth-axis case,

the index _ri is small for i _> 10 when compared to _ri for i <__9. Thus, the azimuth-axis controller order
is chosen to be 9.

The state-space representation (A, B, C) of the reduced azimuth-axis estimator is given in the Ap-

pendix, along with the controller gains k_ = [k_,, ki, k]] and the estimator gains ke.
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Fig. 11. Reduction index for the estimator model.
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IV. Feedforward Controller

The tracking accuracy of fast moving objects can be improved if a PI controller is augmented with

a feedforward loop (see [5,6]). A block diagram of tile PI controller with tile feedforward loop is shown

in Fig. 12. Ill this block diagram, G, K, and F denote transfer functions of the antenna's rate loop, PI

controller, and feedforward gain, respectively; r is a command; y is tile output (elevation and azimuth

angles); e is the tracking error in azimuth and elevation; and u is the plant input.

FEED- [

FORWARD

CONTROLLER,F _+CONTROLLER,
K

Fig. 12. Antenna PI-and-feedforward controller

In tile absence of disturbances, perfect tracking (e = 0) is obtained for the feedforward gain F such

that GF = I. In the case of the DSN antennas, this condition is satisfied in a low frequency range of

0 _< f < 1 Hz for F = s, since for these frequencies the plant transfer function G can be approximated

with an integrator G = l/s.

The DSS-13 antenna PI controller, with proportional gain kp = 0.5 and integral gain ki = 0.5 in

azimuth and elevation, was investigated. The closed- loop transfer function (azimuth command to azimuth

encoder) for a system with and without the feedforward gain is compared in Fig. 13.
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The figure shows that for frequencies up to 1 Hz, the system with the feedforward gain has better

tracking properties when compared to the system without feedforward gain (good tracking properties are
characterized by the unit value of the magnitude of the transfer function).

V. LQG-and-Feedforward Controllers

The controller performance is usually tested for tracking errors when following a command and for

servo errors due to wind disturbances. Therefore, the tracking and disturbance rejection properties have to

be traded off. The feedforward controller for the DSN antennas has good tracking properties, confirmed

by both simulations and field measurements. Also, its performance during the slewing maneuver is

satisfactory, since no limit cycling is observed. However, the feedforward controller's ability to compensate

for wind action is insufficient, and its disturbance rejection properties are equivalent to those of a PI

controller. On the other hand, the LQG controller is effective in suppressing wind-induced vibrations,
but has weaker tracking properties.

When comparing the properties of feedforward and LQG controllers, one can conclude that by com-

bining the two it is possible to improve both the tracking and disturbance rejection properties. The

properties of a combination of the LQG and feedforward controllers were derived for a system configured

as shown in Fig. 14. In this block diagram, G is the plant transfer function, Gy is the estimator transfer

function from y to y_, Gyu is the estimator transfer function from u to y_, G,_ is the estimator transfer

function from y to u_, and Gu is the estimator transfer function from u to u_. In determining the feed-

forward transfer function F, note that good tracking properties are required for low frequencies only (in

our case, for frequencies up to 1 Hz). For these frequencies, G_u _ 0 and Gy _ 1; thus, Ye "_ Y. For the

system as in Fig. 14 (assume transfer function of the trajectory preprocessor equal to 1, i.e., r = vf),

e= r--ye

y--Gu

u = Fr + Ke + GIG_u + GfG_yy

Ye = Gyuu + Gyy

(10)

COMMANDn;_._[ TRAJECTORY

PREPROCESSOR

rf _ ONTROLLER

+

ONTROLLER__

yo u°

_ ANTENNA

FLEXIBLE
MODE

CONTROLLER
U

t_
ESTIMATED OUTPUT, Ye

ESTIMATOR

OUTPUT, y

Fig. 14. Antenna LQG-and-feedforward controller.
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From these equations, one obtains

e

H- GyuF- GyGF

H + GuGK + Gy_,K r

H = 1 + GIGu + GIG_,yG

(11)

The servo error is eliminated (i.e., e = 0) if the numerator of the above transfer function is zero. This is

true for the following feedforward transfer function:

F = 1 + GyG_, + GIG,,uG (12)
sGuu + Gu

For the low frequencies (f < 2 Hz), the following is true: G = l/s, GIG_, is constant (GIGu = ku, where

k_ is the de gain of GIGu), Guu _- O,G u = 1, and GIG_ u _- k_us. Thus, F in Eq. (12) represents a
differentiator

F = k]f8

kff : 1 + k u + kuy

(13)

with the gain k]! = 1 + k_, + k_ u, called the feedforward gain.

The result, Eq. (13), was tested as follows: The LQG controller was configured as in the previous
section; the dc gains were k_, = 2.23, k_y = -0.58. The maximal tracking errors of this LQG controller

with a feedforward gain were observed in the simulations for different values of the gain kfl and are shown

in Fig. 15. The minimum tracking error is achieved for the feedforward gain kl! = 1 + ku + kuu = 2.65.

Vh Performance Evaluation

The position errors due to disturbances and for a trajectory that approaches antenna rate and accel-
eration limits are used as performance measures of the antenna position controllers. The performance of

the LQG and feedforward controllers for the DSS-13 antenna (Fig. 1) was evaluated through simulations
and tested in the field. For this antenna, the rate limit is set to 0.36 deg/sec, and the acceleration limit

is set to 0.2 deg/sec 2. The acquisition and tracking of the trajectory shown in Fig. 7(a) was measured.
At time 0 sec, the spacecraft is at position 24 deg, and tile antenna is at position 22 deg. The trajectory

preprocessor was activated in this case, and the preprocessed trajectory is shown in Fig. 7(a), dashed
line.

For the PI controller (kp = 0.5, ki = 0.5), the tracking error is shown in Figs. 16(a) and (b). Figure

16(a) shows the transient tracking error due to the initial step. Figure 16(b) is a zoom of the same

tracking error plot in Fig. 16(a), which gives a higher resolution view of the magnitude of the tracking
error. The maximal value of the error is 28 mdeg (see also Table 1), which is beyond the required accuracy

of 5 mdeg.

The acquisition of the trajectory for the same PI controller with a feedforward gain and without a

trajectory preprocessor is shown in Fig. 17(a). After acquiring the target, the maximal tracking error is

2.5 mdeg [Fig. 17(b)]. However, there are poorly damped oscillations present in these data plots.
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Table 1. Tracking and disturbance errors, mdeg.

PI FF LQG LQG + FF

Tracking error, maximal 28.6 0.7

Disturbance error, rms 3.2 3.6

Measured error, maximal 28.0 2.5

3.6 0.1

0.4 0.5

3.7 1.5

50



(9
"O
E
of
O
re
re 0
W

O
> -2O
re
UJ
O3

-40

40

20--

I

I I

I I I I
(a)

I I I I

q)

E

0
re
re
w
0
>
rr
W

-5
0

I I I I I I
20 40 60 80 1O0 120

TIME, sec

Fig. 17. Servo error of the PI-and-feedforward controller: (a) general view and
(b) zoomed.

The performance of the LQG controller with the PI gains kp = 12, k i = 10 was measured and is shown

in Fig. 18. The maximal tracking error is 3.7 mdeg, as in the case of the feedforward controller, but the

flexible deformations were much more effectively damped by the LQG controller. The LQG controller

with the PI parameters kp -_ 12, k i : 10 and a feedforward loop (for the feedforward gain ky I - 3) was

tested. The results are shown in Fig. 19. They show a very small tracking error of 1.5 mdeg and flexible

mode suppression that is similar to the LQG controller.
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Fig. 18. Servo error of the LQG controller: (a) general view and (b) zoomed.
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The accuracy of the antenna model was tested by comparing measured (solid-line) and simulated

(dashed-line) data in Fig. 20 for the case of the LQG controller with PI gains kp = 12, ki = 10. The

figure shows good agreement between the two data sets (which would improve in the absence of encoder

faults).
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Fig. 20. Comparison ofthe measured and simdatederrorofthe LQG controller.

The disturbance rejection properties of the presented controllers were simulated. The use of simulations

instead of field measurements is justified for two reasons. First, it is difficult, if not impossible, to

repeat the same disturbance conditions in the field so that fair comparisons could be made. Secondly,

the accuracy of the antenna model has been proved experimentally. The disturbance white noise, w,

with standard deviation 0.005 deg/sec, was added to the input u. This noise intensity is approximately

equivalent to a 50-km/hr wind acting on the antenna. The simulation results (rms error, mdeg) are shown

in the second row of Table 1. The results show good disturbance rejection properties of the LQG and

LQG-with-feedforward controllers, when compared with PI and PI-with-feedforward controllers. Note

the good coincidence of simulated and measured results for the PI and the LQG controllers. For these
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controllers, the signal-to-noise ratio was high. On the other hand, for the feedforward and the LQG-with-

feedforward controllers, the signal-to-noise ratio was low. Hence, this signal was engulfed in noise, and
the evaluation of tracking error from the noisy measured data could only be approximated within the
noise level.

VII. Conclusions

The new controllers were designed and tested to improve the DSN antenna tracking performance.

The measures of such improvement are the reduction in position error for a trajectory that approaches

antenna rate and acceleration limits, and the reduction in position error due to disturbances. The results

of running the new control algorithms on the DSS-13 antenna show an improvement in the performance

of the LQG, feedforward, and LQG-with-feedforward controllers over the existing PI controller. On

the other hand, the feedforward controller achieves good performance while remaining simple (avoids

the complexity of the estimator and preprocessor), but its ability to suppress disturbances is limited.
The LQG controller alone shows greatly improved disturbance rejection properties. However, the most

improved performance was observed for the combined LQG-and-feedforward controller. It had very small

tracking and disturbance-induced errors.

The trajectory preprocessor was introduced as a necessary part of the implementation of the LQG

controller, so that tracking and slewing could be accomplished with one algorithm. In the current oper-

ation, the PI controller requires separate modes for tracking and slewing, due to the limit cycling that

occurs in the latter. However, the preprocessor can also be implemented with the existing PI controller

to combine tracking and slewing into a single mode.
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Appendix

Controller Data

T..ofo..o......__o_,,_n.....o_.ca,v_..._sfort'.o_s_...._..o.trip.o(A...C_.whoso_ =[_ _f],and
T,. J

for the gains kv, ki, k f, ke :

A

1 -0.01955

0 0.95945 -0.20718 -0.00937 -0.00554 -0.00758 -0.00154 -0.00485

0 0.20718 0.97580 -0.00508 -0.00194 -0.00415 -0.00051 -0.00222

0 -0.00037 0.00508 0.85543 -0.49999 -0.00046 -0.01739 -0.00905

0 0.00554 -0.00194 0.49999 0.85764 -0.04976 0.00209 -0.01013

0 -0.00758 0.00415 -0.00046 0.04976 0.91026 -0.38398 -0.01464
0 0.00154 -0.00051 0.01739 0.00209 0.38398 0.92094 -0.00771

0 0.00485 -0.00222 0.00905 -0.01013 0.01464 -0.00771 0.93139

.0 0.00974 -0.00489 0.01219 -0.02416 0.02037 -0.01805 -0.33443

0.18642 -0.03930 0.12127 0.01232 0.08334 -0.07823 -0.09326-

O.O0974

O.O0489

0.01219

0.02416

O.O3O37
0.01805

¢33443

0.83555.

B T = 0.01 x [0.231 1.785 - 0.395 0.485 - 0.211 0.395 -0.055 - 0.230 - 0.479]

cp=[100000000]

Cf = [08,<1 Is]

kv= 12

ki= 10 "

k] = [17.163 13.586 6.300 1.829 4.929 1.869 0.231 -3.299]

k T = [0.9955 -0.1098 0.2217 -0.1710 0.2090 -0.1000 0:1682 0.0131 -0.0785]

55


