
NASA-CR-197461

Visualization of

Unsteady Computational Fluid Dynamics

/! .d ."- .'2

/ ,-/:P

Final Techincal Report
for

Grant # NAG2-884

Submittted

by

Robert Haimes

Computational Aerospace Sciences Laboratory
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology

Cambridge, MA 02139

November 1994

(NASA-CR-197461) VISUALIZATION

UNSTEADY COMPUTATIONAL FLUID

DYNAMICS Findl Technical Report

(MIT) 140 p

OF NgS-lb38B

Unclas

G3/34 0033551

https://ntrs.nasa.gov/search.jsp?R=19950009973 2020-06-16T08:51:57+00:00Z

Performance Report for:
Visualization of Unsteady CFD

1. Introduction

The current compute environment that most researchers axe using for the calculation of

3D unsteady Computational Fluid Dynamic (CFD) results is a super computer class

machine. The super computer as well as Massively Parallel Processors (MPPs) and
clusters of workstations acting as a single MPP (by concurrently working on the same

task) provide the required computation bandwidth for CFD calculations of transient

problems. The cluster of Reduced Instruction-Set Computers (RISC) is a recent advent

based on the low-cost and high-performance that the workstation vendors are providing.

The cluster, with the proper software can act as a MIMD (Multiple Instruction/Multiple
Data) machine.

Work is in progress on a new set of software tools designed specifically to address

visualizing 3D unsteady CFD results in these compute environments. The parallel version

of Visual3, pV3 required splitting up the unsteady visualization task to allow execution

across a network of workstation(s) and compute servers. In this computing model, the

network is always the bottleneck so much of the effort involved techniques to reduce the

size of the data transferred between machines, pV3 revision 1.00 has been released and
delivered to NASA Ames.

The software used for the movement of data across the network is currently PVM from

Oak Ridge National Laboratory. PVM (parallel virtual machine) is public domain

software that provides the mechanisms required to transform a (heterogeneous) network

of machines to one parallel computer. PVM provides all the required hooks including
master/slave paradigms as well as peer-to-peer models, message passing, synchronization

and the ability to target certain machines to specific tasks.

2. Progress on pV3

pV3 is a long term project that is funded by a number of sources. The bulk of the time

spent on this contract has been devoted to getting pV3 to the base level of functionality.

Revision 1.0 was released toward the end of this contract and is currently being used on
the NAS IBM SP2.

The following design goals for pV3 were met:

High Performance

Take advantage of the proper hardware to get the best performance out of the entire

compute arena. It is viewed as foolish to have overall compute performance of

gigaflops and only the ability to do 2D graphics, pC3 requires graphics hardware so

that scene rendering time is not a limitation and the data presented to the investigator

is of high quality and timely.

"x

Interactive

The goal of any scientific visualization package should be to allow the assimilation of

the vast amounts of data produced by the models and solvers in order to better

understand the underlying physics. The ultimate goal, with this new knowledge, is to

affect design and produce a better car, aircraft, gas-turbine engine, etc. This can only

be done by poking and probing into the data to interrogate areas of interest

Co-processing

An important part of pV3 is the ability to visualize the data as the solver or model

progresses in time. It is also designed to allow the solver to run as independently as

possible. If the solution procedure takes hours to days, pV3 can plug-into the
calculation, allow viewing of the data as it changes, then can unplug with the worst

side-effect being the temporary allocation of memory and a possible load imbalance.

This also has the advantage that all the data need not be stored and then played back

to get a continuous and smooth viewing of the data. The data required can be 10s to

100s of gigabytes putting a huge storage equipment (and financial) burden on the

compute facility. If the solver is fast enough (on the order of an iteration a second or

less), then only a coarse sampling of data in time need be placed on disk.

Visual3 functionality

pV3 provides the same kind of functionality as Visual3 with the same suite of tools
and probes. The data represented to the investigator (the 3D, 2D and 1D windows

with cursor mapping) is the same. Also the same Graphical User Interface (GUI) is
used.

Visual3-1ike programming

Another goal for pV3 that has been met is that the programming be very Visual3-

like. For the desired flexibility and the merging of the visualization with the solver,

some programming is required. The coding is simple; like Visual3, all that is required

of the programmer is the knowledge of the data. Learning the details of the

underlying graphics, data extraction, and movement (for the visualization) is not

needed. If the data is distributed in a cluster of machines, pV3 deals with this,

resulting in few complications to the user.

Though not directly associated with building pV3, work was also done on the suitability

of various integration schemes for tracking unsteady particle paths. Multi-step, multi-

stage, and some hybrid schemes were considered. It was shown that due to initialization

errors, many particle path integration schemes are limited to third order accuracy in time.

Multi-stage schemes require at least three times more data storage than multi-step

schemes of equal order. However, for timesteps within the stability bounds, multi-stage

schemes are generally more accurate. A linearized analysis reveals that the stability of

these integration algorithms are determined by the eigenvalues of the local velocity

tensor. Thus, the results can be interpreted with concepts typically used in critical point

theory. Based on the linear analysis and practical experience, some approximate rules can

be given for the timestep size necessary for accurate particle path integration. A not

surprising result is that the timestep limitation for the particle integration is not unlike the

timestep required for an explicit CFD solver. This makes pV3's co-processing a very

important feature.

3. pV3 Status

The current state of pV3 is that it has almost the same functionality as Visual3. The
following denotes the differences:

Planar Cut - pV3 allows 2D viewing during positioning.
Structure Unsteady - not supported by Visual3.
Cell Based Visualization - pV3 will not support these tools.
StreamLines - completely revised. Allows instantaneous SLs for unsteady cases.
Particles - more general seeding. Allows material lines. Coloring by time.
Histogramming - not implemented, not targeted for Rev 1.00.
Line output files - not implemented, not targeted for Rev 1.00.

3.1 Supported Machines

At pV3 Rev 1.00, the following machines are supported as 'clients' (the computers
containing the volume of data and performing the solver):

• CONVEX

• DEC Alphas running OSF/1
• DEC Stations (MIPS) running ULTRIX
• HP 9000/700 series at HP-UX 9.0 (or higher)
• IBM RS/6000s including the SPls and SP2s
• KSR-1 or KSR-2

• SGI 4D Series, PI, Indigo, Indy, Power Series, Crimson, Onyx or Challenge running
IRIX 5.0 (or higher)

• SUN (Sparc 2 or Sparc 10)

Currently, the only machines supported as the pV3 server are SGI workstations with 3D
graphics support. This is because SGI supplies good 3D graphics performance and

supports 'multi-threading'. The server was designed to run as two independent execution
streams that share the same address space. This allows the graphics to run concurrently
with the network support required for distributed visualization. SUN SPARCs, DEC
Alphas (under OSF/I) and IBM RS/6000s at AIX 4.1 support 'multi-threading', so these
machines are possible candidates for future server ports.

3.2 Presentations

pV3: A Distributed System for Large-Scale Unsteady CFD Visualization, AIAA 94-0321
AIAA Aerospace Siences Meeting & Exhibit, Reno, January 1994.

An Analysis of Particle Path Integration Algorithms for Unsteady Data, NAS New
Technology Seminar series, NASA Ames, August 1994. Submitted to AIAA CFD
Conference, San Diego, July 1995.

3.3 pV3 Demonstrations

AIAA Aerospace Sciences Meeting & Exhibit, Reno, January 1994.

HPCN '94, Munich, April, 1994.
CFD '94 & SS '94, Toronto, June, 1994.

Supercomputing '94, Washington DC, November 1994.

4. Manuals

The three pV3 manuals follow. The Server User's Reference is used by the investigator

sitting in front of the visualization workstation. The Programmer's Guide informs the

person grafting pV3 to the solver what needs to be changed. The Advanced Program-
mer's Guide aids in the customization of the pV3 system including adding new tools and

probes.

pV3 Server User's Reference Manual

Rev. 1.00

for use with Silicon Graphics workstations

Bob Haimes

Massachusetts Institute of Technology

September 1, 1994

License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of

Technology (M.I.T.) under the following license. By obtaining, using and/or copying this

software, you agree that you have read, understood, and will comply with these terms and

conditions:

Permission to use, copy, modify and distribute, this software and its documentation for

any purpose and without fee or royalty is hereby granted, provided that you agree to comply

with the following copyright notice and statements, including the disclaimer, and that the

same appear on ALL copies of the software and documentation:

Copyright 1993-1994 by the Massachusetts Institute of Technology. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS", AND M.I.T. MAKES NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT

NOT LIMITATION, M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT

THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION WILL NOT IN-

FRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER

RIGHTS.

The name of the Massachusetts Institute of Technology or M.I.T. may NOT be used

in advertising or publicity pertaining to distribution of the software. Title to copyright in

this software and any associated documentation shall at all times remain with M.I.T., and

USER agrees to preserve same.

Contents

1 Introduction 5

1.1 pV3 Startup 6

1.1.1 Server Startup 6

1.1.2 Environment Variables 6

1.1.3 Special Files 7

).2 pV3 Time-Outs and Error Recovery 9

2 The pV3 Server Users Interface 10

2.1 Surfaces 10

2.2 Windows 10

2.3 Scalar Visualization Tools 13

2.3.1 Surface rendering 13

2.3.2 Planar Cutting plane 13

2.3.3 Program-defined cutting plane 14

2.3.4 Iso-surfaces 14

2.4 Vector Visualization Tools 15

2.4.1 Bubbles 15

2.4.2 Instantaneous Streamlines 15

2.4.3 Tufts 17

2.4.4 Arrows 18

2.4.5 Vector Clouds 18

2.5 Grid .. 19

2.6 Thresholding 19

2.7 Probes 20

2.8 Help Menus 21

2.8.1 3D Window 21

2.8.2 2D Window 22

2.8.3 1D Window 23

2.8.4 Key Window 24

2.8.5 Dials Window 24

2.9 Dialbox Functions 27

3 Post-Processing 28

3.1 tab2ps 28

3.2 img2tiff 28

3.3 img2ps 29

3.4 img2X 30

4 User Interface Differences with Visual3

5 Warning and Error Messages

31

33

4

1 Introduction

pV3 is the newest in a series of graphics and visualization tools to come out of the Depart-

ment of Aeronautics and Astronautics at MIT. Like it's predecessors Visual3, Visual2 and

Grafie, pV3 is a software package aimed at aiding in the analysis of a particular suite of

problems. In this case it is the real time visualization of 3D large scale solutions of transient

(unsteady) systems.

pV3 (which stands for parallel Visual3), is a completely new system, but builds heavily

on the technology developed for Visual_l. It has been designed specifically for co-processing

visualization of data generated in a distributed compute arena. It is also designed to allow

the solver to run as independently as possible. If the solution procedure takes hours to

days, pV3 can 'plug-into' the calculation, allow viewing of the data as it changes, then can

'unplug' with the worst side-effect being the temporary allocation of memory and a possible

load imbalance.

pV3 provides the same kind of functionality as Visual3 with the same suite of tools

and probes. The data represented to the investigator (the 3D, 2D and 1D windows with

cursor mapping) is the same. Also the same Graphical User Interface (GUI) is used.

pV3 programming is very Visual3-1ike. For the desired flexibility and the merging of

the visualization with the solver, some programming is required. The coding is simple; like

Visual3, all that is required of the programmer is the knowledge of the data. Learning the

details of the underlying graphics, data extraction, and movement (for the visualization)

is not needed. If the data is distributed in a duster of machines, pV3 deals with this,

resulting in few complications to the user.

1.1 pV3 Startup

The PVM daemon(s) and with co-processing, the solver, must be executing. Without the

pV3 server running, every time the solution is updated, a check is made for the number

of members in the group ServerPV3. If none is found, no action is taken. When the pV3

server starts (interactively from an xterm window on the graphics workstation), it enrolls in

that group. The next time the solution is updated, an initialization message is processed and

the session begins. Each subsequent time in the solver completes a time step, visualization

state messages and eztract requests are gathered, the appropriate data calculated, collected

and sent to the server.

When the user is finished with the visualization, the server sends a termination message

and exits. The clients receive the message and clean up any memory allocations used for

the visualization. Then the scheme reverts to looking for server initialization if termination

was not specified at pV3 client initialization.

1.1.1 Server Startup

The server, p V3Server, takes two arguments at the command line (both optional). The first

is the setup file with the default of 'pV3.setup'. The second argument is the color file to be

used at startup (the default is 'spec.col').

examples: % pV3Server case.setup

% pV3Server pV3.setup bw.col

70 pV3Server

1.1.2 Environment Variables

The pV3 server uses three Unix environment variables. Some are the same as the ones

used for Visual3. The variable 'Visual3_CP' defines the file path to be searched for color

files, if they are not in the user's current directory. This allows all of the color files to be

kept in one system directory.

The second variable, 'Visual_KB' is optional. This variable, if defined, must point to a

file that contains alternate keyboard bindings for the special keys used by pV3. The file is

ACSII. The first column is the key name (10 cahracters) and the second is the X-keysym

value in decimal (use 'xev' to determine the appropriate values for the key strokes).

The third is 'pV3_TO' and should be used to change the internal Time-Out constant. If

the variable is set, it must be an integer string which is the number of seconds to use for the

Time-Out constant (the server's default is 60). This may be required if the time between

solution updates is long. See the section on Time-Outs and Error Recovery.

1.1.3 Special Files

.Xdefaults

If the SGI window manager is used, '4DWm' must be told what to do with pV3s

windows. These commands must be placed in the file '.Xdefaults'. See the file

'user.Xdefault s'.

pV3 requires three X fonts. The file '.Xdefaults' in the users home directory is

examined for the font names and are designated "Visual*large", "Visual*medium"

and "Visual*small'. The sample file 'user.Xdefaults' comes with the distribution and

may be concatinated to the user's '.Xdefaults' file.

The X fonts loaded on any system may be examined by the command 'xlsfonts'.

'twm' Setup File

If the 'twm' window manager is used, when a user begins a session, twm reads an

initialization file '.twmrc' in the user's home directory. This file defines certain key

bindings and window attributes. It is necessary for correct pV$ operation for the

user to modify the standard '.twmrc' file as shown in the 'user.twmrc' file on the pV3

distibution, or just use this file as '.twmrc'.

Setup File

When the pV3 server starts, it looks in the user's current directory for the setup

file specified as the first argument on the command line. This is an ASCII file which

contains a number of useful defaults that the user may want to set to different values

than pV3's initial defaults. It also contains a set of viewing positions and cutting

plane positions. Normally this file is generated by pV3 when the user wants to store

certain favorite parameters and viewing positions so that they can be used again on

another data set, which is particularly useful when the user wishes to directly compare

two different data sets with the same computational grid or geometry. However, an

experienced user can also generate this file from scratch. NOTE: This file is NOT

compatible with Visual3's setup file.

Lock File

If the server is running on a multi-processor workstation (PowerSeries or Onyx) a file

is used for the coordination of the 2 threads generated during execution. This file has

the name '.pV3.1ocks' and is open in the current directory. It should be noted that

running two invokations of the pV3 server from the same directory will NOT work.

Both will use the same file for the lock and semaphore arena!

• ColorFiles

A numberof differentcolorfilesaresuppliedon thedistribution. For thosewhowish
to definetheir owncolorfiles,theformat of theseASCII filesis asfollows:

nc nb

rgb

nc

r g b }n b

where nc is the number of colors, nb is the number of background colors (0-4), and

r, g, b are red,green,blue intensity values (0.0-1.0). The four background colors are for

window background; grid color; tuft/streamline/ribbon color; contour line color. The

default values which are used if nb = 0 are black; white; white; white. If nb # 0 then

the specified colors over-ride the defaults for the first nb colors.

When pV3 searches for named color files, it first looks in the current directory, and

then follows the color file path specified by the environment variable 'Visual3_CP'.

8

1.2 pV3 Time-Outs and Error Recovery

The pV3 system was designed to be as error-free and as robu.,t as possible. Because the

client software runs closely coupled to the software generating the data, extra care has been

taken to avoid causing any errors or problems related to this visualization system.

If the pV_ server aborts, the client side software will NOT hang waiting for the com-

pletion of some message stream. In general, the server sends a series of request messages

framed by an 'end-of-requests' message. All messages are received by the client software by

either a tight loop or timed-out receive. In the tight loop, there is first a check to see if the

server is still active. If so, the the next message is pulled of the message queue. If there is

none, the server's presence is checked again, and so on until a message is received. Control

is returned to the solver when either the _end-of-requests' message is received or the server

terminates (either gracefully or just disappears).

In the timed receive, an amount of time is specified for the receive. If this time is

exceeded before a message is collected, it is assumed that something is wrong and the client

shuts down the visualization (just as if the user terminated the session).

The type of message handling is controlled by the server's time-out constant. This is

set by the environment varaible 'pV3_TO'. If the constatnt is set to 0 (zero), then the client

and server do not time out, and are in hard loops. If the value is some positive number,

both the client(s) and server will time out if something gets hung. If the time-out constant

is negative, the server will time-out after the (negated) number of seconds and the client(s)

are put in a hard loops. The default is 60 (seconds).

The choice of what to use depends on the network, the type of machine(s), whether the

machines are dedicated, and the cost of putting software in tight loops waiting for some

response.

If you are using tight loops and pV3 seems to hang, the only way to free things up is

to abort the server. If the server seems hung, hitting Ctrl-Cin the window that started the

server should work.

NOTE: The server runs as two threads (there are two unique PIDs for the task). If

for some reason the IO thread aborts, it may leave the windows up but give a prompt in

the window where the server was started. This can usually be fixed by hitting 'Esc' in the

3D window or by kilSng the process left. If the graphics thread aborts (the windows will

disappear) interrupt the IO thread by hitting Ctrl-C.

2 The pV3 Server Users Interface

In trying to understand the following description of the user interface, it may be helpful

to run one of the demo programs found in the example directory of the distribution. It is

necessary to get PVM going then startup one of the example clients. After the client is

running the server (p V3Server) can be started.

2.1 Surfaces

pV3 deals with three different types of surfaces. The first category is domain surfaces.

These are surfaces that are defined by the client program(s) during pV3 initialization, and

they typically correspond to the surfaces which bound the computational domain. A subset

of this first class, are mapped domain surfaces, for which there is a mapping from points on

the surface to an (_, y_) coordinate system. This allows plotting of surface quantities in a

2D setting.

The second category is dynamic surfaces. These are surfaces whose orientation and

position, relative to the computational domain, can be changed interactively by the user.

Although there are several types of dynamic surfaces, only one dynamic surface can exist

at one time. Also, a dynamic surface cannot be activated when a mapped domain surface

is being plotted in the 2D window.

The third category is static surfaces. These are surfaces which at one time were dynamic,

but then transferred into the surface database, along with the domain surfaces. These static

surfaces are then treated in almost the same way as the unmapped domain surfaces.

NOTE: In Visual3, any static surface in a grid unsteady application deformed with the

grid movement. The surface was associated with the cells and not physical space. In pV3

the static surface acts like it did when dynamic - correctly for grid unsteady and structure

unsteady cases.

2.2 Windows

The user interface is divided into six different windows. As is typical of X-window appli-

cations, the functions invoked by mouse button, keyboard or dialbox input are dependent

upon the position of the cursor. Thus, different functions are available to the user depend-

ing on which window is active, i.e. contains the cursor. An important feature of the user

interface is its help key. Pressing '?' will cause a list of the available commands for the

active window to be displayed in the text window. The six different windows are:

10

• Text Window

The text window is the window from which the pV3 server (p V3Server) was started.

It is a good idea to keep this window in the lower left corner of the screen where it will

not be obscured by the other pV3 server windows. This window is used to output

various messages, including the help menus, and to input filenames, numerical values,

etc.

• 3D Window

The 3D window displays data on three-dimensional surfaces. It also displays three-

dimensional lines such as tufts and streamlines, and other objects that are discussed

later. These objects in the 3D window can be rotated, translated and enlarged using

the dialbox (or pseudo-dials). All motion is relative to screen coordinates and not

object coordinates. One set of key strokes allow the user to store particular viewing

positions, and later restore then using the numeric keypad. The setup file retains this

data so that it can be used at server restart or with other data-sets.

• 2D Window

The 2D window is used to display data on a mapped domain or dynamic surface (for

which there exists a mapping to a (z _, y') coordinate system.)

• 1D Window

The 1D window is used to display one dimensional data which is generated by various

functions in the 2D window or from mapping instantaneous streamlines.

• Key Window

This window displays the color scheme used in the 3D and 2D windows: When the

cursor is in this window, there are many options available. These include the ability

to interactively change the color scheme, load in a new color scheme, or change the

length of displayed vectors.

A traffic light (which is red when the pV3 server is computing, yellow when pV3

waiting for some specific user input, and green when ready to accept new user input)

is active in the left-most portion of this window. Tied to the traffic light color is the

color of the cursor. When the cursor is yellow pV3 is expecting mouse button presses.

• Dialbox Window

The dialbox window serves two functions. The first is to display the functions asso-

ciated with each of the dials of the dialbox. Pressing the middle mouse button will

switch the dialbox display between the 3D, 2D and key windows for which the dials

are active, and in each case eight dials are displayed together with labels describing

11

the dial function (pan, zoom, rotate, etc.) when the cursor is in that window. If

there is no dialbox the dials can be rotated by putting the cursor on the appropriate

dial and holding down the left or right mouse button; in this case the window that

is changed is the one labelled in the base of the dialbox window. Holding down the

mouse button in the center of the dial will cause faster movement. In this mode

the affected window will go into fast-drawing mode where only the surface edges are

drawn. Under many circumstances this produces more interactive positioning than

using the physical dialbox.

Pressing 's' switches the dialbox window to, and from, its secondary role, which dis-

plays the state of the surface and then streamline database. The surface database

lists all of the domain and static surfaces, and for each one has four small boxes

which give the status of the surface attributes. The first box gives the render-

ing status (white=ON, grey=translucent, black=OFF), the second is the grid sta-

tus (white=ON, black=OFF), the third is the grey surface status (white=ON with

colored contours, grey=ON, black=color) and the fourth is the thresholding status

(white=ON, black=OFF). The meaning of some of these terms will become clearer

later when discussing the scalar visualization tools. The user can change the attributes

by pressing any mouse button when the cursor is on one of the boxes. Doing this, or

pressing a mouse button on the surface label, also causes that surface to become the

active surface. The active surface is highlighted in the database, and is important for

certain plotting options discussed later.

NOTE: In Visual3 it was not possible to have contouring on without the underlying

surface also rendered. In pV3, the user can accomplish this by having the rendering

box black and grey surface box white.

The streamline database lists all of the streamline objects, and next to each there are

four small boxes which give the status of important streamline attributes. The first

box gives the rendering status (white=colored, grey=ON, black=OFF), the second

is the direction (white=backward, grey=both directions, black=foreward), the third

is the streamline type (white/cross=tubes with twist, white=tubes, grey=ribbons,

black=streamlines) and the fourth is the particle seeding status (white=ON, black=

OFF). The meaning of some of these terms will become clearer later with the dis-

cussing the vector visualization tools. The user can change the attributes by pressing

any mouse button when the cursor is on one of the boxes. Doing this, or pressing a

mouse button on the streamline label, also causes that object to become the active

streamline object. This object is highlighted in the database, and is important for

certain plotting and control options discussed later.

NOTE: This is completely new for pV3 and does not exist in Visual3!

12

2.3 Scalar Visualization Tools

The one of the data types in pV3 is scalar data, which is simply scalar information defined at

each node of the computational grid(s), pV3 does not know anything about the data other

than an associated function number and label. For example, in fluid dynamic applications,

a function may have label pressure and a second scalar function may have label Mach

number. An important concept in pV3 is the notion of active functions, and the active

scalar function is the function and associated label which corresponds to the scalar data

currently used by pV3. The user can switch to a different scalar function by hitting a

particular key on the keyboard which is bound by the pV3 client initialization procedure.

For example, key 'p' may be bound to the function, labelled pressure.

The following is a list of plotting functions available for use with scalar data:

2.3.1 Surface rendering

Gouraud-shaded (smooth color shading) surface contours of the scalar function can be

rendered on any, or all, of the domain and static surfaces. Column 1 of the surface database

is used to select which surfaces are to be displayed. With the cursor in the key window,

there is a variety of options to interactively change the color scheme used for the rendering.

Key T loads a new color file, while key 'r' restores the original color file. Two dials on the

dialbox (or pseudo-dials) change the upper and lower bounds of the scalar function range

spanned by the color scheme.

If the active surface (as defined earlier) is a mapped domain surface (with an associated

mapping to a (x I, yr) coordinate system), then Gouraud-shaded contours can also be plotted

in the 2D window, by pressing F5 in the 3D window. The active surface is highlighted in

the surface database, but if one is unsure of which it is in the 3D window then pressing F1

will cause the rendering on that surface to blink off and on.

Another option with mapped domain surfaces is F6 in the 3D window, which performs

a surface rendering in both the 2D and 3D windows of the active surface scalar function, a

function that is only defined on mapped domain surfaces as specified by the programmer.

The color map used to render this surface function can be viewed by toggling key's' in the

key window.

2.3.2 Planar Cutting plane

The cutting plane is a dynamic surface, a true planar surface cutting through the 3D field.

The cutting plane is initialized by pressing F3 in the 3D window. This puts the 3D window

into a special mode in which the 3D object is held fixed and the user can use the dialbox

13

to rotate the cutting planeinto the desiredorientation. When ready,pressingF3 again
switchesoff the planarmovementmodeand turnson theregu:_r cuttingplanemode.

Oncethe cuttingplaneis activated,it is controlledfrom the2D window,meaningthat
it respondsto keysand dials that areactivewhenthe cursoris in the 2Dwindow. Using
dials,thecutting planecanbemovedfrom sideto side,up anddown,in a directionnormal

to the plane(usingthe scan dial) and rotated in its own plane. Function key F9 toggles

(switches on and off) rendering in the 2D window, while F6 toggles rendering in the 3D

widow. F10 toggles the display in the 2D window of the grid defined by the intersection of

the cutting plane and the 3D computational grid faces.

The cutting plane can be turned off and on using F2 in the 3D window. The cutting

plane position can also be stored, like the 3D viewing position, by pressing the Ctrl key and

one of the ten numbers in the numeric keypad on the right-hand-side of the keyboard. It

can be restored later by pressing just the number.

2.3.3 Program-defined cutting plane

This is similar to the last option, but instead of being a truely planar surface, it is a surface

corresponding to z _ = const, where z t is a programmer-defined function (in the clients);

the scan capability varies the value of const interactively. This allows the programmer to

define conical, cylindrical or other surfaces not otherwise defined by the pV3 server. The

client programmer also must have defined a mapping to (x', y_) coordinates so that plotting

is possible in the 2D window. The program-defined cutting plane is activated by F4 in the

3D window. The other options in the 2D window are the same as for the regular cutting

plane.

2.3.4 Iso-surfaces

An iso-surface is a dynamic surface with a uniform value of the currentlty active scalar

variable, and is activated by F7 in the 3D window. The iso-surface value is displayed in the

key window and can be varied interactively (in the key window) using the dialbox to scan

the value of z', or key 'z' to set its value, or the right mouse button to pick a value from

the color key.

14

2.4 Vector Visualization Tools

The second pV3 data type is vector data. This is a set of 3D vector values for each grid

node. As with the scalar function, this vector data is associated with an active vector

function, which can be changed by pressing a key that is bound to another vector function.

The following is a list of plotting functions for vector data:

2.4.1 Bubbles

Bubbles are unsteady particle paths. This tool provides the same effect as hydrogen bubbles

in experimental techniques. Bubbles are active with all pV3 unsteady modes (unless the

simulation is paused). A single bubble path may be spawned by simply pressing a mouse

button in the 2D window (assuming seeding is off) which provides an initial point to start

the integration in 3D space. If bubble coloring is on (F12 in the 3D window), the particle

location will be rendered by the current scalar; if not, the current location is rendered with

the default streamline color. The spheroid may also be colored by the time that the bubble

was spawned. This is accomplished by hitting 's' in the key window. The time limits will

probably have to be adjusted (hitting 'f' in the key window).

Several bubble paths may be started from a fine or circle by using key Fll in the 2D

window. Similarly, a grid of bubbles may be spawned using F12 in the 2D window.

If the particle streamer is on (Tab key in the 2D window), bubbles will be continuously

spawned from the current cursor location at every time step. This mimics the experimental

technique of streakfines where dye is continuously injected at a spot in the flow field. With

the streamer on and the boundary layer or line probe is on, particles are emitted along the

line every snapshot in time (the number of particles is the last set by spawning a line of

bubbles - Fll in the 2D window). And, finally if the streamer is on and the tufts are active,

a grid of bubbles is seeded each time step at the tuft locations.

2.4.2 Instantaneous Streamlines

Streamlines are curved 3D fines which are everywhere parallel to the local vector field.

They are obtained by numerical integration of the vector field along a line starting at some

chosen location. Instantaneous streamlines may only be activated for steady-stat'e cases or

when the seeding toggle in on (the key '1' in the 2D window). The starting point is initially

determined by use of a surface plotted in the 2D window. A point in the 2D window

maps back to a corresponding point on the dynamic surface in the 3D window and so can

be used to seed instantaneous streamlines; pressing one of the mouse buttons does this

and (depending on which button is pressed) produces a streamline going upstream and/or

15

downstream.Alternatively,key Fll (and subsequentmouseactionswhichare requested)
definesa line or circlein the 2Dwindow,which is thenusedto specifya setof streamlines
in the 3Dwindow.Key F12initiatesanobjectof streamlinesfrom a regulargrid of points
in the2D window,like it wouldspawna grid of bubbleswith theseedingtoggleoff.

Usingthe streamlinedatabase(in thedial window),groupsof streamlinescanbeplotted
either as linesof constant color (usually white), or colored according to the value of the

local active scalar function. In the latter case, it is helpful to enable the grey status for

background surfaces (using column 3 in the surface database) so that instead of being

rendered in color they are instead rendered in solid grey, making the colored streamlines

clearer.

Each object in the streamline database can also be reset as to the direction (downstream,

upstream or both) and if bubbles are to be seeded from the same locations. It should be

noted that in most cases seeding particles in this manner (and with the instantaneous

streamlines not rendered) is faster than doing it interactively with an active cut in the 2D

window.

The streamline object database also allows each group to be drawn as a line or the

following (by using column 3 in the streamline database):

• Ribbons

Stream ribbons are streamlines that have been given some width. One edge is the

true instantaneous particle path, the other edge is constructed by rotating a constant

length normal vector about the path tangent according to the local streamwise angular

rotation rate. The result is a ribbon whose twist illustrates the streamwise vorticity

of the flow.

If the streamlines are colored, the ribbon is rendered in the default streamline color

(usually white), otherwise the ribbon is colored with the current scalar.

The width of the ribbon may be adjusted by using the dials when the cursor is in the

key window. A specific width may be entered by hitting 'w'. Also, the ribbons may

be rotated by using the dials with the cursor in the Key Window.

• Tubes

A tube is a streamline with a circular crossflow area. The radius of the cross-section

is derived from the local crossflow divergence. The crossflow divergence measures

the local crossflow expansion rate. Thus, the resulting tube displays the local expan-

sion/compression of the current vector field.

If the streamline coloring is on, the tubes will be colored with the current scalar.

Otherwise, the default streamline color is used.

16

Thewidth of the tube maybe adjustedby usingthe dialswhenthe cursoris in the
keywindow.A specificwidth (andmaximumradius)maybeenteredby hitting 'w'
in the key window. Themaximumradius is usefulto limit the sizeof the tube in
stagnationregionsof a flow field wherethe radiuscanbecomeexponentiallylarge.

Tubeswith Twist

Therotationanddivergenceeffectscanberenderedsimultaneouslyby placinglineson
thesurfaceof tubewhichtwist with the local rotation rate. This effectivelycombines

thefunctionalityof the ribbonsand tubes. Thefinal imagedisplaysthe streamline,
therotation rate, the crossflowdivergence,andscalarvariations.

Again, if the streamlinecoloringis on, the tubeswill be coloredwith the current
scalarandthe lineswill be in the defaultstreamlinecolor.Otherwise,the tube is the
defaultcolor and the lines are the current scalar.

As with ribbons and tubes, the rotation angle, the tube size, and the tube maximum

may all be controlled from the key window using the dial box or by the appropriate

key strokes.

NOTES:

(1) If key F5 in the 3D window is in effect, rendering a mapped domain surface in the

2D window, then the instantaneous streamlines which are generated are similar to regular

streamlines except that they are lie in the surface, by taking the projection of the local

vector field onto the surface. Similarly, if key F6 is in effect, rendering a mapped domain

surface with the surface scalar function, then the streamlines are generated using the surface

vector function.

(2) The streamline accuracy is reduced for the segment that crosses interface regions. In-

voking this option also slows down the overall integration speed.

2.4.3 Tufts

Tufts are similar in concept to streamlines. A regular grid of points in the 2D window map

to a corresponding grid of points on the surface in the 3D window. At the points in the 3D

window, tufts are drawn which are short lines with magnitude and direction correponding to

the local vector field. At the points in the 2D window the tufts correspond to the projection

of the 3D vector field onto the 2D plane. Key 'Tab' in the 3D window toggles tufts on and

off. One of the dials in the key window allows interactive change in the scaling parameter

which relates the vector magnitude to the tuft size, and key 'a' allows this scaling parameter

to be input from the keyboard.

17

2.4.4 Arrows

Arrows are the same as tufts except that they are defined only at 2D nodes (the intersection

of a cut and cell edges). To emphasise that they are different, they are drawn as lines with

heads in the 2D window, whereas tufts are drawn as lines with a cross base. Arrows are

shown on cutting planes as well as iso-surfaces and are displayed in the 3D window as line

segments. Arrows are toggled on and off by key F7 in the 2D window.

2.4.5 Vector Clouds

Vector clouds display the local vector field at nodes which meet the current threshold limits.

The vector cloud technique is useful for locating interesting flow features and displaying the

vector fields in these regions. Vector clouds are invoked by hitting F8 in the 3D window

and are always rendered with the current scalar.

Note: Selecting this option (and not carefully pre-setting the thresholding limits) can

produce an enormous amount of network traffic! 7 words are transmitted for each node

within the system that meets the threshold criteria.

18

2.5 Grid

The computational grid can be displayed on any, or all, of the s 'atic and dynamic surfaces.

For the static surfaces this is controlled through column 2 of the surface database. For

dynamic surfaces and data plotted in the 2D window, grid display is controlled by function

key F10 (in the 2D window). The grid lines that are displayed correspond to the intersection

of the plotting surfaces and the faces of the computational grid(s).

2.6 Thresholding

A threshold function is another scalar function which is set, or changed, by pressing the

appropriate keys. The purpose of this function, when enabled, is to restrict all domain and

static surface plotting to only those parts of the surface on which the thresholding function

lies within a certain range. The user can interactively vary the upper and lower threshold

bounds. The user can also select, through column 4 of the surface database, the surfaces

that are to be thresholded.

If the threshold function is chosen to be the same as the scalar function, then this

provides a means to plot the part of a surface on which the scalar function is within certain

limits. If the threshold function is chosen to be geometric (e.g. z) then this produces a

dynamic cutaway, in which the surface is only plotted within a certain geometric volume.

The threshold function can be set in two ways. Pressing a key on the keyboard that

has been defined by the programmer to be associated with a threshold function loads that

functions data into the threshold array. Alternatively, pressing F9 in the 3D window loads

the current scalar function data into the threshold storage.

The thresholding limits, within which plotting will be performed, can be varied interac-

tively using dials in the key window, or input manually using key 't'.

19

2.7 Probes

There are a variety of probes which are available when plotting in the 2D window or from

streamline objects:

• Point (2D - F1)

The point probe is located at the cursor position, and returns, in the text window,

the point's coordinates and the value of the active scalar and vector functions.

• Strip chart (2D - F2)

The strip chart is similar to the point probe, except that instead it produces a plot in

the 1D window of the current scalar function against time.

• Line (2D - F3)

When the line probe is invoked the user is asked to input two points using the mouse.

These define a line in the 2D window, and the output is a plot in the 1D window

showing the variation of the current scalar function along that line.

• Edge Plot (2D - F4)

The edge plot is similar to the line plot, except that in this case the line in the 2D

window is the edge line closest to the cursor when this option is invoked.

• Surface Layer (2D - F5)

This option produces a line plot in the 1D window of the current scalar function along

a llne placed normal to an edge in the 2D window, at the edge position which is closest

to the cursor. As the user moves the cursor, the normal line moves accordingly.

• Streamline Probe (Dial- 'I')

The streamline probe may be started any time there are streamline objects. The

current object is mapped to the 1D window. When the cursor is in the 1D window

a cross-hair or disc appears in the 3D window marking the closest position on the

active streamline. The size of the disc mimics the stream tube thickness. For surface

streamlines the mapped cursor is a cross-hair displayed in both the 2D and 3D win-

dows. This allows the user to both know which streamline is mapped and probe the

streamline. Notes:

1) Tabular output files (visualXYZ.tab) created when this probe is active also contain

the coordinate triads for the streamline.

2) When tubes are on, the disc size is 150% of the tube thickness.

2O

2.8 Help Menus

2.8.1 3D Window

The help menu that is printed when one types '?' in the 3D window is as follows:

3D Window

Mouse Buttons:

m - Center View @ Cursor

Key Strokes:

" - write visual.img File +

Pl - Show Active Surface F2

F3 - Cutting Plane positioning F4

F5 - Toggle Surface Display F6

F7 - Toggle Iso-Surface F8

F9 - Se_ Scalar as Threshold PlO

Fll - Bubble Render Toggle F12

Delete - Delete Bubbles \

Insert - Save Dynamic Surface

Tab - Tufts Toggle Home

PageUp - Reset Clipping PageDown

NumPad - Set view from position #

t - 3D Window Status

] - Ribbon/Tube Toggle

/ - Edge flu_line Toggle

- Box blow-up

- Toggle Cutting Plane

- Toggle Program Cu_ Plane

- Toggle Disp. w/Surface Fn

- Toggle Vector Clouds

- Animate StreamLines

- Bubble Color Toggle

- Material Line Toggle

- Shading Toggle

- Reset View

- Depth Cueing Toggle

Ctrl-NumP - Store view in position #

End - Terminate 2D modes

Pause - Freeze the action

Esc - Terminate pV3 Server

C omment s:

1) At the top of the help menu in real applications there would be a list of the scalar, vector

and threshold function variables and their associated keys, as defined by the application

program.

2) A toggle is a switch that is either on or off, and so pressing the key changes it to the

other status.

3) Clipping is similar to a geometric thresholding. It displays the part of the 3D object that

is behind a plane held parallel to the screen. - -_

4) In the 'NumPad' and 'Ctrl-NumP' descriptions, 'NumPad' and 'NumP' refer to one of

the ten numbers on the numerical keypad on the right of the keyboard. This number is

then referred to as #. This option allows the storing and recall of ten different viewing

21

positions and any cutting planes that are active. The 'NUM LOCK' light must be on for

these key-strokes to be acknowledged.

5) Displaying the active surface, F1, will only work if the surface has some render attribute

on (Box 1 in the surface database). The surface will flash on and off.

6) Depth Cueing only works on those machines that support ,fog.

2.8.2 2D Window

The help menu that is printed when one types '?' in the 2D window is as follows:

2D Window

Mouse Bu¢¢ons:

1 - Bubble/StreamLine going upscream

m - Bubble/SCreamLine going up/downsCream

r - Bubble/StreamLine going downsCream

Key SCrokes:

" - write visual.img File + - Box blow-up

F1 - Poin_ Probe F2 - Scrip Chafe

F3 - Line Probe F4 - Edge Plo¢

F5 - Surface Layer Scan F6 - 3D Window Render Toggle

F7 - Arrow Toggle F8 - Con¢our Toggle

F9 - Render Toggle FIO - Grid Toggle

Fll - Line/Circle of SCreamT.ines F12 - Grid of SCreamLines

DeleCe - Flip X in Window Tab - Bubble SCreamer Toggle

End - Termina%e Line Plo% I - S_reamLine Seed Toggle

t Dynamic Surf Thresh Toggle ' - 2D Window SZaCus

Comments:

1) the 'Delete' option reverses the sign of the x'-coordinate in the 2D window, effectively

turning over the 2D window. This is helpful when the cutting plane surface you are seeing

in the 3D window is the reverse side of the 2D window.

2) 'End' ends all plotting in the 1D window.

3) The StreamLine Seed Toggle allows what would spawn off Bubble(s), to add objects to

the StreamLine database.

22

2.8.3 1D Window

The help menu that is printed when one types '7' in the 1D window is as follows:

ID Window

Mouse Buttons:

m - Set Cut Plane w/ StreamLine Probe (positioning on)

any - Seed SL/Bubble w/ Edge Plot on

Key Strokes:

r - add Reference line s - Volume/Surface Fn Toggle

x - Change X scaling y - Change Y scaling

End - Terminate Line Plot PrintScrn - Tabular Output

Comments:

1) To set a planar cut perpendicular to the streamline at a given postion, first turn the

streamline probe on and select the appropriate streamline, then turn planar cut positioning

on (F3 in the 3D window). Move the cursor in the 1D window to the correct position, and

to finish, press the middle mouse button.

2) The Reference line is an additional line placed in the 1D window along with the results

of a probe. This line is read from a file in the pV3 tabular file output format and displayed

in grey.

3) The Volume/Surface function toggle allows the specifying of what surface functions are

used for integrations and rendering of surface particles and streamlines when there are

special surface functions. This allows the choice between the special functions and the

normal volume scalar/vector fields.

23

2.8.4 Key Window

Thehelpmenuthat is printedwhenone types

KEY Window

'?' in the key w ndow is as follows:

Mouse Buttons:

m - Set new color at cursor position

r - Set Iso-Surface value

Key Strokes:

a - (Re)Set arrow/tuft size

f - (Re)Set function limits

m - Set S.L. Animations

s - Toggle color schemes

w - Set Tube/Ribbon width

' - Key Window Status

c

1

r

z

Set # of Contours

- Load new color file

- Reset color scheme

- (Re)Set thresh lims

- Set ZPrime

Comments:

1) Option's' allows one to toggle the display of the color schemes, between the color scheme

that is used for all standard scalar rendering, the scheme that is used to display scalar surface

functions, and the color map used for time rendering of particles.

2) The iso-surface and cutting planes correspond to a surface on which zt= const. Option

'z' allows one to explicitly specify the value of this constant.

2.8.S Dials Window

Dials Window (Dials)

Mouse Buttons:

1 - Move Dial Clockwize

m - Change Window Mapping

r - Move Dial CoumterClockwize

Key Strokes:

" - write ImageFile of Screen

d - Dial Sensitivity

S - Send Clients a String

¢ - comparison window

s - Surface List ToEgle

M - Mirror Toggle

24

Dials Window (Surface List)

Mouse Buttons: any - Select

Key Strokes:

d

PageUp

Delete

M

- write ImageFile of Screen

- Dial Sensitivity

- Move Surface List Up

- Remove Current Surface

- Mirror Toggle

c - comparison window

s - Surface List Toggle

PageDown - Move Surface List Down

S Send Clients a String

Box: 1 2

black not rendered no grid

grey translucent

white opaque grid on

3 4

scalar rendered no %hresholding

grey surface

grey w/ contour thresholding on

Dials Window (SL-Particle List)

Mouse Buttons: any - Select

Key Strokes:

" - write ImageFile of Screen

d - Dial Sensitivity

PageDown - Move SL-Par% List Up

Delete - Remove Current SL-Par%

S - Send Clients a String

c - comparison window

s Surface List Toggle

PageUp - Hove SL-Part List Down

l - StreamLine Probe

M - Mirror Toggle

Box: I 2

black off foreward

grey on both

white colored backward

CROSS

3 4

streamline no particles

ribbon

tube particles

tube w/ twist

25

C omment s:

1) This window has two modes; dials and surface/streamline list (database). In dials mode

it displays or emulates the functions of the dialbox dials (if a dialbox) exists. In surface

list mode it displays the surface database, a list of all of the domain and static surfaces

and their attributes. In streamline database mode it displays a list of all of the streamline

objects and their attributes.

2) In dials mode, pressing the middle button displays in succession the meaning of the dials

for each of the principal windows. If dialbox emulation is being used pressing the right or

left mouse buttons has the effect of turning the appropriate pseudo-dial. The middle circle

moves the dial faster than the outer portion of the diM. Holding the button down will cause

pV3 to go into outline mode for faster motion. This can be defeated by holding down the

'Shift' key while pressing on the button.

3) In surface list mode, boxes 1,2,3,4 refer to the four columns of the surface list which are

labelled on the screen as Render/Grid/Grey/Thres.

4) In streamline list mode, boxes 1,2,3,4 refer to the four columns of the list which are

labelled on the screen as Render/Dir/Type/Seed.

5) The comparsion window is an additional window placed on the screen. This window

displays of the contents of an existing pV3 image file. It is open in the upper-left corner

of the screen and may be moved by using the appropriate window manager functions. The

keystroke 'End' hit in this window, closes it and deallocates any memory.

26

2.9 Dialbox Functions

@ @
X rotation Z rotation

@ ©
Y rotation Scan

© ©
Pan Scroll

© @
Zoom Clip

3D window

X rotation: rotate about X-axis

Z rotation: rotate about Z-axis

Y rotation: rotate about Y-axis

Scan: move cutting plane or iso-surface

Pan: move right/left

Scroll: move up/down

Zoom: enlarge/reduce

Chp: move clipping boundary

© ©
Rotation

© ©
Scan

© ©
Pan Scroll

© ©
Zoom

2D window

Rotation: rotate

Scan: move cuttingplane

Pan: move right/left

Scroll: move up/down

Zoom: enlarge/reduce

© ©
Tube max Rib rot

© ©
Tube/Rsize Vsize

© @
Fmin Fmax

© ©
Tmin Tmax

Key window

Tube max: maximum tube size

Rib rot: ribbon rotation

Tube/Rsize: change tube/ribbon size

Vsize: change scaling of tufts/arrows

Fmin: change minimum scalar function value

Fmax: change maximum scalar function value

Tmin: change minimum thresholding value

Tmax: change maximum thresholding value

27

3 Post-Processing

There are two types of output files generated by pV3 activated by the appropriate keys

in different windows. These files are compatible with the post-processors supplied with

Visual3. The first type is tabular output which is generated from the 1D window. This

is an ASCII file suitable for inclusion into most line plotting or spread-sheet software.

The default file name is 'visualXYZ.tab'. A post-processing program 'tab2ps' produces

Postscript output.

The second file type is an image dump of the entire screen or an individual window.

This file is written in a FORTRAN unformatted manner with the default name of 'visu-

alXYZ.img'. This can be converted into Postscript (using 'img2ps') or Macintosh TIFF files

(using 'img2tiff') and viewed on the screen (using 'img2X').

The following section describes the usage of the post-processors supplied with pV3 and

Visual3. It should be noted that the source and make-files for the post-processors have

been included with the distribution. By making small modifications to the sources, other

output devices can be supported with no changes to pV3.

3.1 tab2ps

tab2ps takes as an argument a tabular output file name and produces PostScript on standard

output. The output may be redirected to a file or piped directly to the printer spooler.

examples: % tab2ps visual002.tab I lp

% tab2ps visual002.tab > tab.ps

3.2 img2tiff

img2tiff takes as its first argument the image file name, and the second argument is the

output TIFF file name. The TIFF file can then be transferred to a Macintosh and be used

by any application that can take TIFF as input, i.e. Adobe Photoshop.

example: % img2tiff visual001.img output.tiff

28

3.3 img2ps

img2ps takes as the first argument the image file name. Additi.mal arguments are options

controlling the translation from TrueColor to 8-bit grey scale. The output of img2ps is

PostScript and is written to standard output. The output may be redirected to a file or

piped directly to the printer spooler. The options are as follows:

-cps produce color PostScript output - this is the only option that will produce color, the

default and the other options produce grey scale output

-r produce a red color separation

-g produce a green color separation

-b produce a blue color separation

-cxxxxxxxx color mapping where "x" is either r, g, or b.

-i inverse intensity

-4 4-bit grey scale

examples: 70 img2ps visual001.img [lp

% img2ps visual001.img-r -i > img.ps

70 img2ps visual001.img-cps] lpr

70 img2ps visual001.img-crgbrgbrg I 1p

Notes:

1) Options -r, -g, -b, -c and -cps are mutually exclusive.

2) If options -r, -g, -b, -c or -cps are not selected, the color translation defaults to 3 bits

red, 3 bits green and 2 bits blue (-crrrgggbb).

3) PostScript printers such as Apple's LaserWriter IInt or DEC's LN03 (printers with only 2

MBytes) may only be able to produce hard copy from the 2D window. Use the -4 option for

the 3D window. Do not attempt full screen dumps unless yot_r printer has Mot of memory!

29

3.4 img2X

img2X may be used to view pV3 image file(s) on the screen. It can display as many a 10

images and also write a pV3 image file of the entire screen, img2X may have as many as

10 arguments, each should be the name of an image file. Optionally, each image can be

compressed before drawn. This is done by appending '/n' to the end of the file-name (where

n is the compression factor).

examples: % img2X visual001.img visual002.img/3

70 img2X visual001.img/2

Notes:

1) The compession scheme used is very simple. If n=2, every other pixel is displayed, n=3

picks every third pixel.

2) An image window may be closed by hitting the key 'x' in that window.

3) An image file of the entire screen may be generated by hitting'- ' in any image window.

4) img2X is properly terminated by clicking any mouse button while the cursor is in an

image window.

3O

4 User Interface Differences with Visual3

The following is a list of differences that an experienced Visual3 user should note:

• Planar Cut

During reorientation of the plane (F3 in the 3D window) cut data is plotted in the

2D window in pV3. This cut data may lag behind the current position as accurately

shown in the 3D window. Note: this may cause some confusion, remember to turn off

the re-positioning (F3 in the 3D window) when the desired orientation is reached.

• Cell Visualization Tools

pV3 does not support the plotting options for Cell Based Scalars. Visual3 should

be used to view output of these functions.

• Histogramming

pV3 does not support histogramming or any function that requires the server to look

at the entire 3D data-set. Therefore querying the limits ('q' in the key window) and

auto-scaling are also not supported.

• Line output files

pV3 does not produce line files from the 3D and 2D windows for post-processing.

• Streamlines

The methods used for dealing with streamlines in pV3 are much more general than

in Visual3. This includes:

- A streamline object database

- Streamline probe is initiated from the database and may contains as many lines

as streamlines in the object

- Each object has independent attributes (like the surface database)

- Streamlines are active during unsteady (nonpaused) states

- No streamer

See the Instantaneous Streamline section in Vector Visualization Tools.

31

. Bubbles

The seeding methods used for particle paths are more numerous in pV3.

include:

These

- Seeding from streamline start locations (not requiring an active cut).

material lines if the object is built from a line.

- Streamer (cursor) location

- Line/boundary layer probe locations

- Tuft locations

AllOWS

Notes:

(1) Ghost bubbles are not plotted.

(2) Bubbles can be colored by the seed time in pV3. See the Bubble section in Vector

Visualization Tools.

• Surface Streamlines and Bubbles

In Visual3, surface integrations were initiated when a domain surface was mapped

and seeding was accomplished in the 2D window. Once the surface was unmapped, all

streamlines/bubbles were deleted. In pV3, seeding surface streamlines and surface

bubbles follow the above rules for a domain surface when it is mapped. The seed

points/particles are not deleted when the surface is unmapped. Also, seeding can be

accomplished without mapping by using any mouse click in the 1D window with an

Edge Plot active. This is VERY usefull when the surface is too complex to map to the

2D window. The control of what vector/scalar fields (special surface or volume) are

used for the integration/rendering of the surface streamlines and particles is performed

by the surface function toggle ('s' in the 1D window).

32

5 Warning and Error Messages

• Warning: No Time-Out Set!

The time-out constant was set to no time-out, hard loops are used for both the server

and client(s).

• Warning: Visual*zxz not defined in .Xdefaults!

The font specified is not known to the X windows system. See the section on Special

Files.

• Warning: pV3Cllent group size = zzz, only yyy task(s) active!

The PVM client group has members that are no longer active. This is usually do to

some clients exiting ungracefully.

• Warning: Current ServerpV3 group size = zxz!

The PVM server group has members that are no longer active. The server must have

aborted earlier during the session.

• Warning: zzz clients in group but only using: yyy

An 'init' message was only received from yyy clients but the total number of active

tasks in the PVM group is zzz. It is possible that a task is not calling pV_Update

(see the pV3 Programmer's Guide. Also, it is possible that you may have to increase

the Time-Out constant. See the section on Evironment Variables.

• Warning: ILlegal Message _ zzz from PVMtid

A non-pV3 message was received.

• Warning - MIRROR multi-client mismatch!

MIRROR specified in pV__lxtit does not match between the various clients. Mirroring

is turned off.

• Warning- FLIMS multi-client mismatch!

FLIMS specified in pV_Iuit does not match between the various clients. The first

received is used.

• Warning: pV3 client at different Rev than server! - tid = PVMtid

A client/server mismatch. It is a good idea to rebuild the clients with the library that

matches the server!

33

• Warning: pV3 MAX clients exceeded - set to: zzz

The internal maximum number of clients was exceeded. 3"he case will run with only

zzz clients.

• Warning: Bad Status from client: PVMtid

The client specified has had some type of problem. The data from this iteration will

not be plotted.

• Warning - New Client trying to connect! PVMtid

A client is attempting to connect to a running visualization session. The request is

ignored and the session continues.

• Warning: Max Segs for SL # zzz

The maximum number of streamline segments has been reached for the specified

streamline. The integration is aborted and the streamline is displayed unfinished.

• Warning: ACK from client: PVMtid

An acknowledgement from the specified client has come at an incorrect time.

• Warning: Bad client: PVMtid

A client that is not part of this session has set a pV3 message. This should not

happen!

• Warning: Double Fill from client: PVMtid

The specified client has sent two data streams for this iteration.

• Warning: Clients reporting different times!

Not all clients are reporting the same simulation time.

• Warning - Pending particle/SL inserts!

A Streamline group delete was requested while the server is processing inserts. The

delete request is ignored.

• Warning - StreamLine deletes pending!

• Warning - Particle delete pending!

Inserting a group of Streamlines is invalid while the server waits for the pending deletes

to complete. The request is ignored.

• Warning - Another surface delete pending!

34

Only one surface delete can be specified during an iteration. Additional requests are

ignored.

• Warning - Window did not produce Expose Event!

The server waited for a window to give an X Expose event and it did not happen!

• Warning (routine): zzz can not be transfered from PVMtid to PVMtid

During an integration, a request has been made to continue to a task that does not

exist or for some reason can not be reached.

• Warning (routine): Bad client tid: PVMtid

A non-existant task was targetted for an integration transfer.

• Warning (routine): partID zzz out of range.

An illegal particle number was encountered during a interclient transfer.

• Warning (routine): partlD zzz NO History!

A particle that has had no prior history is requesting a transfer.

• Warning (routine): SLXferlD zzz out of range.

An illegal streamline number was encountered during a interclient transfer.

• Warning (routine): SLXferID zzz NO History!

A streamline that has had no prior history is requesting a transfer.

• Warning (routine): SLXferID zzz, client yyy, unmark <= 0

An error occured removing a streamline from the active list.

35

• Error - Cannot attach to lock arena!

The pV3 server cannot set-up the lock areana to the file _.pV3.1ocks _. Is there write

access in the current directory?

• Error - getting new lock!

There is some problem initiating a new lock. Try removing the file '.pV3.1ocks'.

* pV3 Error - No response from any clients!

The pV3 clients currently running have not responded within the time-out constant.

• Error Starting Thread for multi-processing!

The new thread for the visualization could not be initialized.

• Error - Client(s) have exited!

One or more clients have exitted from a running visualization.

e Error in Memory Allocation!

The server has requested a block of memory and has been refused. This is usually do

to the problem's size. Either wait until the workstation was fewer tasks running or

find a bigger (more swap space) machine.

• Error - NPGCUT multi-client mismatch!

• Error - TPGCUT multi-client mismatch!

• Error- NKEYS multi-client mismatch!

• Error - IKEYS multi-client mismatch!

• Error- FKEYS multi-client mismatch!

The specified pV__Init data does not match between the various clients for a case that

has more than one client.

• Error during Particle Initialization!

The server has requested memory for the particle tracking and has been refused.

Either wait until the workstation was fewer tasks running or find a bigger (more swap

space) machine.

• Error during SL Transfer Initialization!

The server has requested memory for the streamline tracking history and has been

refused. Either wait until the workstation was fewer tasks running or find a bigger

(more swap space) machine.

36

• Singular matrix.

This occurs while processing the view transformation matrix. It is considered illegal to

have a singular transformation matrix. The server should not produce this condition.

It usually happens when the setup file has been corrupted. This can also happen if

all the coordinate data passed to the server is identical (the same XYZ position for

all nodes).

• Error - File does not exist!

The requested file does not exist.

• Error - Not a TrueColor Image!

The image file requested for the comparison window is not a TrueColor image (it is

PseudoColor).

• Error - Image depth mismatch!

The image file requested for the comparison window has the wrong color depth.

• Error in ImageFile!

An error has occured during the image file read.

• Error in Reference File - NOT in Tabular form!

A reference line file was specified that was not in Visual3 .tab format. L.

• ERROR in (SUB-)EXTRACT allocation

Memory could not be allocated for the (sub)extract subsystem.

• Extract NSEG ERROR: sub = zzz, nseg = yyy, max = zzz

A streamline sub-extract has been received with an illegal segment number. This is

not fatal but something is wrong!

• Extract TID ERROR: sub = zzz, nseg = yyy, ic = zzz

A streamline sub-extract has been received with a PVMtid for segment yyy, but a

previous message for that segment had the client number zzz. This is not fatal but

something is wrong!

• Extract Client ERROR: sub = zzz, tid = PVMtid

The client tid is not in the active list. This is not fatal but something is wrong!

37

• Extract ERROR: type = www, sub = zzz, size = yyy, len = zzz

A sub-extract has been allocated for yyy words, but the message has zzz words. This

is not fatal but something is wrong!

• ERROR: Timed out waiting for Init Hand-Shake!

• ERROR: Timed out waiting for Client Hand-Shake!

The time-out constant has been exhausted before responce from the client(s). Increase

the constant by the environment variable 'pV3_TO _.

• ERROR - ColorMap OverFlow!

The requested number of colors specified in the colormap file exceeds the internal

colormap storage.

• ERROR - ColorMap File Error!

An error occured parsing the colormap file.

• KeyBoard File Does NOT Exist!

The environment variable 'Visual_KB' has been set and the file indicated does not

exist.

• ERROR reading KeyBoard File!

• ERROR E-O-F in KeyBoard File!

The environment variable 'Visual_KB' has been set and there has been an error parsing

the data in the file.

• pV3: ERROR pvmd Not running!

The PVM system has not been initiated.

• pV3: ERROR No pV3 Clients running!

The server finds no clients.

• pV3: ERROR Server Already running!

Another server isalready running, pV3 currently can have only one active server.

• pV3: bufin.fo error: zzz, yyy

This is not a fatal error but a receive message buffer is giving an error indication. The

message is ignored.

38

pV3 Programmer's Guide

Rev. 1.00

Client Side Programming

Bob Haimes

Massachusetts Institute of Technology

September 1, 1994

License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of

Technology (M.I.T.) under the following license. By obtaining, using and/or copying this

software, you agree that you have read, understood, and will comply with these terms and

conditions:

Permission to use, copy, modify and distribute, this software and its documentation for

any purpose and without fee or royalty is hereby granted, provided that you agree to comply

with the following copyright notice and statements, including the disclaimer, and that the

same appear on ALL copies of the software and documentation:

Copyright 1993-1994 by the Massachusetts Institute of Technology. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS", AND M.I.T. MAKES NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT

NOT LIMITATION, M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT

THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION WILL NOT IN-

FRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER

RIGHTS.

The name of the Massachusetts Institute of Technology or M.I.T. may NOT be used

in advertising or publicity pertaining to distribution of the software. Title to copyright in

this software and any associated documentation shall at all times remain with M.I.T., and

USER agrees to preserve same.

Contents

1 Introduction 5

2 pV3 in the PVM Environment 6

2.1 Message Passing 6

2.2 pV3 Startup 7

2.2.1 Server Startup 7

2.2.2 Environment Variables 7

2.2.3 Special Files 8

3 Programming pV3 10

3.1 Programming Overview 10

3.1.1 Node Numbering 10

3.1.2 Cell Numbering 11

3.1.3 Connectivity 11

3.1.4 Blanking 12

3.1.5 Surfaces 13

3.1.6 Calling Sequences 13

3.1.7 Programming Notation 15

3.2 Programmer-called subroutines 16

3.2.1 pV_Irfit 16

3.2.2 pV_Update 19

3.2.3 pV_Stat 20

3.2.4 pV_Console 20

3.2.5 pV_Termin 20

3.3 Programmer-supplied subroutines 21

3.3.1 pVCell 21

3.3.2 pVSurface 23

3.3.3 pVEquiv 24

3.3.4 pVBlank 24

3.3.5 pVGrid 25

3.3.6 pVScal 25

3.3.7 pVThres 25

3.3.8 pVVect 25

3.3.9 pVStruc 26

3.3.10 pVLocate 27

3.3.11 pVConnect 28

3.3.12 pVZPrime 29

3.3.13 pVXYPrime 29

3.3.14 pVSuxf 30

3.3.15 pVXYSurf 30

3.3.16 pVSSurf 31

3.3.17 pVVSuxf 31

3.3.18 pVString 32

3.3.19 pVCatch 32

3.4 C Programming 33

4 Portability 34

4.1 FORTRAN Programming 34

4.2 C Programming 34

A Error Codes 35

B Multi-client Connectivity Options 37

B.1 pVConnect 37

B.2 pVSurface 38

4

1 Introduction

pV3 is the newest in a series of graphics and visualization tools to come out of the Depart-

ment of Aeronautics and Astronautics at MIT. Like it's predecessors Visual3, Visual2 and

Grafie, pV3 is a software package aimed at aiding in the analysis of a particular suite of

problems. In this case it is the real time visualization of 3D large scale solutions of transient

(unsteady) systems.

pV3 (which stands for parallel Visual3), is a completely new system, but builds heavily

on the technology developed for Visual3. It has been designed specifically for co-processing

visualization of data generated in a distributed compute arena. It is also designed to allow

the solver to run as independently as possible. If the solution procedure takes hours to

days, pV3 can 'plug-into' the calculation, allow viewing of the data as it changes, then can

'unplug' with the worst side-effect being the temporary allocation of memory and a possible

load imbalance.

pV3 provides the same kind of functionality as Visual3 with the same suite of tools

and probes. The data represented to the investigator (the 3D, 2D and 1D windows with

cursor mapping) is the same. Also the same Graphical User Interface (GUI) is used.

pV3 programming is very Visual3-1ike. For the desired flexibility and the merging of

the visualization with the solver, some programming is required. The coding is simple; like

Visual3, all that is required of the programmer is the knowledge of the data. Learning the

details of the underlying graphics, data extraction, and movement (for the visualization)

is not needed. If the data is distributed in a cluster of machines, pV3 deals with this,

resulting in few complications to the user.

In most cases, the calls or routines provided are identical to the Visual3 programming

interface. For someone familiar with Visual3, programming of pV3 requires little new

knowledge.

Changes in the programming interface were required to support added functionality,

and the distributed nature of the compute. Some changes were due to the separation of the

display workstation (the server) from the volume of data (residing in the client or clients).

Visual3 programmers must pay particular attention to the routines pV_Init, pV_Update,

pVSurface and pVBlank.

Because the pV3 server does not contain the entire volume of data (but only the ez-

tracts), compatibility with Visual3's advanced programming could not be perserved. See

the pV3 Advanced Programmers Guide for details.

2 pV3 in the PVM Environment

The software used for the movement of data across the network is PVM from Oak Pddge

National Laboratory. PVM (parallel virtual machine) is public domain software that pro-

vides the mechanisms required to transform a (heterogeneous) network of machines to one

parallel computer. PVM provides all the required 'hooks' including efficient data trans-

fers, message passing, synchronization and the ability to target certain machines to specific

tasks. PVM is available directly from Convex and IBM for their cluster offerings and will

also be available from the traditional Massively Parallel Processor vendors.

2.1 Message Passing

pV3 requires PVM version 3.3.0 or higher. For co-processing in a cluster of workstations

(multiple clients) certain rifles must be followed so that messages for the visualization and

the compute do not interfere with each other.

Open Send Buffer

It is assumed by pV3 that the default send buffer is free and available for use. This

should not be a restriction because either pV_ff_nit or pV_Update should be called at

times when interclient communication is at a completed stage.

Broadcasts

Broadcasts should be avoided. You will end up sending messages to the pV3 server.

The server will report then ignore messages without the proper signature. In general,

any client need not send the pV3 server any messages (all the data communication

necessary is handled internally by pV3).

If a broadcast facility is required, use the multiple-cast send, and send only to known

tasks.

Receives

Do not use a wild-card for the task id in the receive calls to PVM. You will get pV3

requests. The message collection in the routine pV_Update only takes messages from

the pV3 server, leaving other client message traffic alone.

2.2 pV3 Startup

The PVM daemon(s) and with co-processing, the solver, must be executing. Without

the pV3 server running, every time the solution is updated and pV_Update is called, a

check is made for the number of members in the group ServerPV3. If none is found, this

routine returns. When the pV3 server starts (interactively from an xterm window on

the graphics workstation), it enrolls in that group. The next time pV_Update is called,

an initialization message is processed and the session begins. Each subsequent time in

pV_Update, visualization state messages and eztract requests are gathered, the appropriate

data calculated, collected and sent to the server. Like in Visual3, when the code calls

pV_Update, additional routines provided by the programmer are called to supply pV3 with

data about coordinates, scalar and vector fields.

When the user is finished with the visualization, the server sends a termination message

and exits. The clients receive the message and clean up any memory allocations used for

the visualization, pV_Update reverts to looking for server initialization if termination was

not specified at pV3 initialization.

2.2.1 Server Startup

The server, p V3Server, takes two arguments at the command line (both optional). The first

is the setup file with the default of'pV3.setup'. The second argument is the color file to be

used at startup (the default is 'spec.col').

examples: % pV3Server case.setup

% pV3Server pV3.setup bw.col

% pV3Server

2.2.2 Environment Variables

The pV3 server uses three Unix environment variables. Some are the same as the ones

used for Visual3. The variable 'Visual3_CP' defines the file path to be searched for color

files, if they are not in the user's current directory. This allows all of the color files to be

kept in one system directory.

The second variable, 'Visual_KB' is optional. This variable, if defined, must point to a

file that contains alternate keyboard bindings for the special keys used by pV3. The file is

ACSII. The first column is the key name (10 cahracters) and the second is the X-keysym

value in decimal (use _xev' to determine the appropriate values for the key strokes).

The third is 'pV3_TO' and should be used to change the internal Time-Out constant. If

the variable is set, it must be an integer string which is the number of seconds to use for the

Time-Outconstant(the server's default is 60). This may be required if the time between

solution updates is long. See the section in the pV3 Server User's Reference Manual on

Time-Outs and Error Recovery.

2.2.3 Special Files

.Xdefaults

If the SGI window manager is used, '4DWm' must be told what to do with pV3s

windows. These commands must be placed in the file '.Xdefaults'. See the file

'user.Xdefaults'.

pV3 requires tltree X fonts. The file '.Xdefaults' in the users home directory is

examined for the font names and are designated "Visual*large", "Visual*medium"

and "Visual*small". The sample file 'user.Xdefaults' comes with the distribution and

may be concatinated to the user's '.Xdefaults' file.

The X fonts loaded on any system may be examined by the command 'x.lsfonts'.

'twin' Setup File

If the _twm' window manager is used, when a user begins a session, twm reads an

initialization file '.twmrc' in the user's home directory. This file defines certain key

bindings and window attributes. It is necessary for correct pV3 operation for the

user to modify the standard '.twmrc' file as shown in the 'user.twmrc' file on the pV3

distibution, or just use this file as '.twmrc'..

Setup File

When the pV3 server starts, it looks in the user's current directory for the setup

file specified as the first argument on the command line. This is an ASCII file which

contains a number of useful defaults that the user may want to set to different values

than pV3's initial defaults. It also contains a set of viewing positions and cutting

plane positions. Normally this file is generated by pV3 when the user wants to store

certain favorite parameters and viewing positions so that they can be used again on

another data set, which is particularly useful when the user wishes to directly compare

two different data sets with the same computational grid or geometry. However, an

experienced user can also generate this file from scratch. NOTE: This file is NOT

compatible with Visual3's setup file.

• Lock File

If the server is running on a multi-processor workstation (PowerSeries or Onyx) a file

is used for the coordination of the 2 threads generated during execution. This file

has the name 'pV3.1ock' and is open in the current directory. It should be noted that

running two invokations of the pV3 server from the same directory will NOT work.

Both will use the same file for the lock and semaphore arena!

• Color Files

A number of different color files are supplied on the distribution. For those who wish

to define their own color files, the format of these ASCII files is as follows:

nc nb

rgb

r$¢

rg b]n b

where nc is the number of colors, nb is the number of background colors (0-4), and

r, g, b are red,green,blue intensity values (0.0-1.0). The four background colors are for

window background; grid color; tuft/streamline/ribbon color; contour line color. The

default values which are used if nb = 0 are black; white; white; white. If nb _ 0 then

the specified colors over-ride the defaults for the first nb colors.

When pV3 searches for named color files, it first looks in the current directory, and

then follows the color file path specified by the environment variable 'Visual3_CP'.

3 Programming pV3

3.1 Programming Overview

Before presenting the subroutine argument lists in detail it is helpful to discuss in general

terms the data structures which the programmer supplies to pV3. The programmer gives

pV3 a list of unconnected cells, poly-tetrahedral strips and structured blocks. The disjoint

cells are of four types; tetrahedra, pyramids, prisms and hexahedra. This element generality

covers almost all data structures being used in current computational algorithms. Any

special cell type which is different must be split up into some combination of these primitives

by the programmer. Linear interpolation is used throughout pV3, so high order elements

must be also be subdivided so that the linear interpolation assumption is valid.

Poly-tetrahedral strips are 'structured' collections of tetrahedra. The strip is started by

a triangular face, one node is added to produce the first tetrahedron, another is added to

produce the second cell (with the previous 3 nodes) and so forth. See Figure 1. Currently,

no one is using this concept for calculating results but there is more than a factor of two

savings in the storage required to represent a complete tetrahedral mesh.

tetra #1 tetra #2 tetra #3 tetra #n (last)

nodes: 1234 nodes: 2345 nodes: 3456 nodes: n n+l n+2 n+3

face nodes face nodes face nodes face nodes

1 123 1 - 1 1

2 2 - 2 2 n+l n+2 n+3

3 341 3 452 3 563 3 n+2n+3n

4 412 4 523 4 634 4 n+3nn+l

Figure 1: Ploy-Tetrahedral Strip

3.1.1 Node Numbering

The node numbering used within pV3 is local. For multiple processor cases, this numbering

need not have any reference outside the data on the client.

10

The node numbering used differentiates between the nodes in the non-block regions

(formed by the disjoint cells and poly-tetrahedral strips) and the structured blocks. Figure 2

shows a schematic of the node space, knode is the number of nodes for the non-block grid.

Each structured block (rn) adds NIm * NJ,-a * NK,.n nodes to the node space (where NI,

NJ and NK are the number of nodes in each direction). The node numbering within the

block follows the memory storage, that is, (ij,k) in FORTRAN and [k]_][i] in C. The pV3

node number = base + i + (j - 1) • glm + (k - 1) • Wire * NJ,_,.

Note: all indices start at 1.

Blocks

1 knode nnode

Figure 2: Node Space

3.1.2 Cell Numbering

The non-block cell types may contain nodes from the non-block and the structured block

volumes. The cell numbering used within pV3 orders the cells by type. Figure 3 shows

a schematic of the cell space. The programmer explicitly defines all non-block cells by

the call pVCell. Again the cells within the blocks are defined by the block size. Each

structured block (m) adds (NI,._ - 1) * (NJ,._ - 1) * (NK,_ - 1) cells to cell space. The

cell numbering within the block follows the memory storage so that a pV3 cell number

= base + i + (j - 1) • (NIm - 1) + (k - 1)* (YI,.n - 1)* (NJ,.n - 1).

Note: i goes from 1 to NIm - 1, j goes from 1 to NJm - 1, and k goes from 1 to NK,n - 1.

Again, the numbering is local to the client for multiple processor applications.

3.1.3 Connectivity

In order to calculate streamlines and particle paths from vector fields pV3 requires informa-

tion about which are cells are neighbors, i.e. share a common face. There are two options; (1)

either the programmer gives pV3 these connections by setting IOPT (of pVJ_uit) negative

and supplying the routine pVConnect, or (2) pV3 calculates this information by processing

all cells with exposed faces. This process compiles a list of all of these faces and checks

11

Tetras Prisms Poly- Blocks

1 Pyramids Hexas Tetras

I
{
I
{

nee{Is

Figure 3: Cell Space

whether the face appears on another cell. If it does appear twice, then it is an interior face,

and a streamline or particle can pass through from one cell to its neighbor. If it does not

appear twice, then it is a surface face on the boundary of the computational domain, and

a streamline will terminate when it hits the face.

Face matching between structured blocks is not possible using this automatic scheme.

The node numbers that make up a face are different in both blocks even if they match in 3

space. The concept of 'node equivalency' allows the face matching to patch between regions.

Node equivalency is simply a list of matching node numbers that get used only during this

face matching procedure. This concept is generalized in pV3 to allow equivalency to nodes

anywhere in the local node space.

Anytime a streamline crosses a structured block, blanked or domain boundary and the

integrator is able to continue (based on 'node equivalency' or other specified options), the

accuracy is reduced for that segment.

3.1.4 Blanking

Blanking is art option (see the description of pV_Irtit) and only used with structured blocks

to indicate that some region of the block is 'turned off'. This information is also used to

give pV3 an indication of how multi-block grids are connected in these areas. A part of

a block is deactivated by flagging the appropriate nodes as invalid. This is done by an

IBLANK array. An invalid node is never used. A cell with an invalid node is considered

not to exist and therefore cuts and iso-surfaces through that cell will not be plotted. Also

streamlines will not pass through cells with invalid nodes.

When blanking is used, all the nodes (nnode - knode) in the structured block space

are given a value; zero corresponds to an invalid mesh point, any non-zero value indicates

an existing node point. The value of one is the indication of an interior point. A negative

value means that the physical space 'continues' in the block number that is the absolute

12

value of this IBLANK entry.

pV3 uses an algorithm for integrating streamlines and particle paths accross blanked

boundaries by finding the closest node to the required position in the target block that

has an IBLANK entry equal to the original block. If the negative blanked region is at the

boundary of the block and all IBLANK entries of the exitting face are the same (and the

case is not grid unsteady) the connectivity information is updated with the connected cell if

found. Future integrations in the current session that pass through this face will not require

the IBLANK node searching.

In the case of C-meshes and other topologies where the blocks abut, it is advisable to use

'node equivalency', if appropriate. Streamlines and particle paths are always faster going

through a volume that has had face matching.

When the visualization is grid or structure unsteady, a new IBLANK array is requested

for each snap-shot in time (after the coordinate triads are retrieved). If the blanking has

not changed, the data need not be updated, and pVBlank should just return.

3.1.5 Surfaces

In principle, all surface faces could be grouped together to form one bounding surface for

plotting purposes. However, in many applications it is more useful to split the bounding

surface into a number of pieces, referred to earlier as domain surfaces. For example, the

outer bounding surface of a calculation of airflow past a half-aircraft (using symmetry to

reduce the computation) would typically be split into four pieces, the far-field boundary,

the symmetry plane, the fuselage and the wing. If the programmer specifies each of these

as separate domain surfaces by grouping the appropriate faces, then pV3 can offer the

capability of plotting on just one or two of the surfaces (e.g. the fuselage and wing) and not

on the others (far-field and symmetry plane).

Internal surfaces are those that get created when the computational domain is sub-

divided and and placed in multiple computational clients. These surfaces need only be

defined to allow the passage of data (during integrations) from one domain to another.

3.1.6 Calling Sequences

pV3 supports steady-state visualization as well as three types of unsteady visualization.

In a multi-client simulation, each client can have a different mode of unsteadyness. Each

mode causes a different internal calling sequence. In general, the application must first call

pV_Irfit to initialize the pV3 client subsystem and then call pV_Update after every time

the solution space has been updated.

13

• Steady-State

Call Callsin Sequence

pVJ.n_it pVCell (optional)
pVSurface

pVEquiv(optional)
pVGrid
pVBlank(optional)
all othersasneeded

pV_Update NOT required

pV_In_itdoesnot return until the visualizationsessionis over.

• Data Unsteady

Call

pVJ_nit

pV_Update

Callsin Sequence

pVCell (optional)
pVSurface
pVEquiv(optional)
pVGrid
pVBlank (optional)

pVScal
pVVect(optional)
all othersasneeded

• Grid Unsteady

Call

pV_Init

pV_Update

Callsin Sequence

pVCell (optional)
pVSurface

pVEquiv (optional)

pVGrid

pVBlank (optional)

pVScal

pVVect (optional)

all others as needed

14

• StructureUnsteady

Call

pVJ_it

pV_Update

Callsin Sequence
NONE

pVStruc
pVCell (optional)
pVSurface
pVEquiv (optional)
pVGrid
pVBlank (optional)
pVScal
pVVect(optional)
all othersasneeded

3.1.7 Programming Notation

pV3 was designed to be accessible from both FORTRAN and C. FORTRAN is more restric-

tive in argument passing and naming, therefore it has shaped the programming interface.

Also the following routine descriptions are from the FORTRAN programmer's point of

view. All subroutines internal to pV3 have names which begin with 'pV_' or 'XFtn' and

the common blocks have names which begin with 'PVC': such names should be avoided

in an application program. It may also be helpful to look at the source code of the demo

programs in the 'examples' directory of the distribution. Each one is well commented and

suitable for use as a template for other applications.

In describing the arguments of the routines in the next sections, the following nota-

tion has been used. The variable name is first followed by 'i' or 'o', indicating input and

output, respectively, showing whether or not the subroutine is to set the variable. The

variable is then followed by an expression indicating the variable type (I=integer, R=real,

C=character) and its dimensionality (e.g. R(2,MNODE) indicates a two-dimensional real

array with the first dimension being 2 and the second MNODE, where MNODE is an integer

variable).

15

3.2

3.2.1

Programmer-called subroutines

pVInit

PV_INIT(TITL, IOPT, NPGCUT, TPGCUT,

NKEYS, IKEYS, TKEYS, FKEYS, FLIMS, MIRROR,

KNODE, KEQUIV, KCEL1, KCEL2, KCEL3, KCEL4,

KNPTET, KPTET, KNBLOCK, BLOCKS, KSURF, KNSURF,

ISTAT)

This subroutine initializes pV3. This process involves enrolling the task in the PVM

group 'pV3Client' which is required for connection to the graphics workstation. Calling

this routine also defines the type of case, the sizes of various parameters and the types of

flmctions defined. Returns immediately for all cases except steady-state (IOPT = 0).

TITL:i: C

IOPT:i: I

*NPGCUT:i: I

*TPGCUT:i: C(NPGCUT)

*NKEYS:i: I

*IKEYS:i: I(NKEYS)

*TKEYS:i: C(NKEYS)

*FKEYS:i: I(NKEYS)

Title (up to 80 characters used)

Unsteady control parameter

IOPT---3 structure unsteady with connectivity supplied

IOPT-----2 unsteady grid/data with connectivity supplied

IOPT---1 steady grid and unsteady data with connectiv-

ity supplied

IOPT--0 steady grid and data

IOPT--1 steady grid and unsteady data

IOPT----2 unsteady grid and data

Number of programmer-defined cuts

Title for each cut (up to 32 characters used)

Number of active keyboard keys

X-keypress return code for each key

Title for each key (up to 32 characters used)

Type of function controlled by each key:

FKEYS():I Scalar

FKEYS():2 Vector

FKEYS():3 Surface scalar

FKEYS():4 Surface vector

FKEYS()=5 Threshold

16

*FLIMS:i: R(2,NKEYS)

*MIRROR:i: I

KNODE:i: I

KEQUIV:i: I

KCELI:i: I

KCEL2:i: I

KCEL3:i: I

KCEL4:i: I

KNPTET:i: I

KPTET:i: I

KNBLOCK:i: I

BLOCKS:i: I(3,KNBLOCK)

KSURF:i: I

KNSURF:i: I

Function rim.its/scales

FKEYS()=I,3,5 Min and max values of function

FKEYS()=2,4 Arrow/tuft scaling (only the first element

is used)

Mirror flag:

MIRttOR=0 No mirroring

MIRROR=I Mirror about the plane X=0.0

MIRttOR=2 Mirror about the plane Y=0.0

MIRROR=3 Mirror about the plane Z=0.0

Number of non-block nodes

Number or node equivalency pairs

Number of tetrahedra

Number of pyramids

Number of prisms

Number of hexahedra

Number of poly-tetrahedral strips

Number of cells in all poly-tetrahedra

Number of structured blocks

NOTE: A negative value indicates that blanking will be

supplied for the blocks.

Structured block definitions:

BLOCKS(I,m) = NI

BLOCKS(2,m) = NJ

BLOCKS(3,m) = NK

Number of domain surface faces

NOTE: A negative value is a flag to indicate that faces

not connected to cells should be allowed.

Number of domain surface groups

17

ISTAT:i/o: i On input this setsthe startup/terminatestate:

ISTAT=0 do not wait for graphicsworkstation(server)
to start

ISTAT=I wait for serverto startupfor the first time

ISTAT--2 donot wait for server/ terminate with server

ISTAT=3 wait for server to startup / terminate with

server

Only ISTAT = 1 and ISTAT = 3 are valid for steady-

state cases (IOPT = 0).

On output any non-zero value is the indication ofa startup

error and the task is not included in the pV3 client pool.

See the Appendix for a list of the error codes.

Notes:

*) Multi-client cases: these parameters must match in all clients!

1) The X-keypress return codes for alphanumeric keys is identical to their usual ASCII

integer codes.

2) A domain surface group is a collection of faces, which do not have to form a single

connected surface, but form instead a logical grouping referred to earlier as being a domain

surface, pV3's initialization phase (IOPT = 0, 1, 2) examines each exposed face of each

primitive, and determines whether or not it is shared with a neighboring cell. If not, it

must be a surface face, but the user may choose to not declare it as such (see pVSurface).

In this case, pV3 takes all undeclared surface faces, splits them up into disjoint collections

and calls the collection the 'Others' surface group. Therefore, the final number of domain

surface groups can exceed KNSURF by one.

3) If NKEYS is negative, the absolute value of NKEYS is used for the number of keys and

streamline/ribbon/tube/bubble calculations are disabled. This frees up a large amount of

memory for IOPT -- 0, 1, 2 cases (the cell connection information is discarded).

4) For structure unsteady cases, the parameters that describe the sizes of the node and cell

space are the maximum sizes used during the simulation. The current sizes are set by a call

to pVStruc from within pV_Update.

5) There will probably be a synchronization switch added to account for multi-client unsteady

calculations that are not time-accurate. This will be added to ISTAT.

18

3.2.2 pV_Update

PV_UPDATE(TIME)

This subroutinemust be calledafterthe solverhas updated the solutionspace.This iswhen

the data isextractedand communication between theclient(s)and the graphicsworkstation

isdone. The callto thisroutineisnot needed if]OPT = O.

TIME:i: R The currentsimulationtime. This setsthe time in pV3

forparticleintegration.

This routine is where all interaction with the graphics workstation is performed. There-

fore the overall response and the interactive latency depends on how often this routine is

called. About one call per second is optimal. If the soultion is updated significantly faster

then most of the compute cycles will be used for the visualization, moving the solution

slowly forward in time. In this case it is advisable to call pV_Update only every N times

the solver updates the solution.

The more difficult case is when the solution update rate is much slower than optimal.

In this situation, there are two choices; (1) live with large lags between user requests and

screen response or (2) setup another task between the solver and the pV3 server. This

software's responsibility is to communicate with the solver. It should be the task to make

all pV3 calls.

This secondary task can communicate with the solver using PVM (and therefore must

be on the same machine to avoid large network transfers). Or, if the machine supports multi-

threading, the task can be a second thread and perform double-buffering of the solution

space, so no data need be transferred. These methods are a trade-off of memory usage

for interactivity. Multi-thread examples can be seen in the distribution in the directory

'examples/mthread'.

19

3.2.3 pV_Stat

PV_STAT(ISTATE)

This subroutine allows the programmer to query the status of the pV3 system.

ISTATE:o: I the status:

ISTATE < 0 : error code from pV3 - positive errors are

designated by - (1000 ÷ code)

ISTATE--0 client not initialized

ISTATE--1 no server

ISTATE--2 server active

3.2.4 pV_Console

PV_CONSOLE(STRING)

This subroutine allows the programmer to have a string printed in the text window of the

ru__ing pV3 server application. The string will be prefaced by the PVM tid for multi-

client cases.

STRING:i: C'80 character string to be output to the server

If the server is not running, this call does nothing.

3.2.5 pV_Termln

PV_TERMIN

This subroutine gracefully removes the client from the pV3 system by leaving the group

'pV3Client' and deallocating associated memory.

No Arguments pV_Init must be called again to use pV3

2O

3.3 Programmer-supplied subroutines

The first set routines are the principal ones which will be used in most appli-

cations.

3.3.1 pVCell

PVCELL(CEL1, CEL2, CEL3, CEL4, NPTET, PTET)

This subroutine supplies pV3 with the grid data structure. It is not required for a grid

that contains only structured blocks.

CELl:o: I(4,KCEL1)

CEL2:o: I(5,KCEL2)

CEL3:o: I(6,KCEL3)

CEL4:o: I(8,KCEL4)

NPTET:o: I(8,KNPTET)

PTET:o: I(KPTET)

Node pointers for tetrahedral cells

Node pointers for pyramid cells

Node pointers for prism cells

Node pointers for hexahedral cells

Poly-Tetrahedra strip header:

NPTET(I_n) = the pointer to the end of the strip n,

i.e. it points to the last entry in PTET for the poly-

tetrahedral strip

NPTET(2_n) = the first node in the poly-tetrahedra

NPTET(3_n) = the second node in the poly-tetrahedra

NPTET(4,n) = the third node in the poly-tetrahedra

NPTET(5-8,n) are used by pV3

The rest of each poly-tetrahedra, 1 node per cell

Notes:

1) ff KCELn is zero, the corresponding CELn must NOT be filled. And the same holds

true for NPTET and PTET.

2) The correct order for numbering nodes for the four disjoint cell types is shown in Fig. 4.

The Poly-Tetrahedra numbering is shown in Fig. 1.

21

2

face nodes

1 123

2 234

3 341

4 412

Tetrahedron

1

6 \

/

\
4

/

5

2

1/

face nodes

I 1234

2 235

3 345

4 451

5 512

Pyramid

_ce nodes

i 1234

2 2561

3 3465

4 461

5 523

Prism

_ce nodes

1 1234

2 2376

3 3487

4 4851

5 5678

6 6512

Hexahedron

Figure 4: Disjoint cell types and node/face numbering

22

3.3.2 pVSurfaee

PVSURFACE(NSURF, SCON, SCEL, TSURF)

This subroutine supplies pV3 with the surface data structure.

NSURF:o: I(3,KNSURF)

SCON:o: I(KSURF)

SCEL:o: I(4,KSURF)

NSURF(1,n) is the pointer to the end of domain surface

group n, i.e. it points to the last entry in both SCON and

SCEL for that group.

NSURF(2,n) is the startup drawing/mapping state (the

following are additive):

0 off

1 render

2 grid

4 grey flag

8 thresholded

16 contours

32 translucent

256 2D mapping is provided (see note 1)

NSURF(3,n) is the global surface number (needed for multi-

client cases only). A non-positve number is the indication

that the surface is an internal boundary caused by do-

main decomposition. The number must be the PVM

tid (negated) or zero. Zero is a special flag (along with

SCON = -1) to allow an integration to try all other

clients. The global surface number must be less than 3599!

The cell number to connect. This is the cell number in

the local cell space of the PVM tid (specified above)

for the connecting cell. If the value is -1, then an at-

tempt is made to pass the particle into that domain or if

NSURF(3,n) is zero all domains (except the current). A

-1 if NSURF(3,n) is greater than zero, or for single client

cases indicates that a re-enter attempt should be tried in

this volume of data. A value of zero signals that there is

no connection.

node numbers for surface faces. For quadrilateral faces

SCEL must be ordered clockwise or counter-clockwise; for

triangular faces, SCEL(4,n) must be set to zero.

23

TSURF:o: C*20(KNSURF) titlesfor domain surfaces (optional)

Notes:

1) If the 2D mapping bit is set in NSURF(2,n), that is a flag to indicate that this surface has

a 2D mapping, pVSurf, pVXYSurf, and optionally pVSSurf and pVVSurf will be provided

and will respond to this surface.

2) The correct order for numbering faces for the four disjoint cell types is shown in Fig. 4.

The face definitions for Poly-Tetrahedral cells is displayed in Fig. 1. For structured blocks;

face #1 is for exposed cells with cell index k = 1, face #2 is for i = NI,,_ - 1, face #3 is for

cells with j = NJm - 1, face #4 is for i = 1, face #5 is associated with k = NKm - 1, and

face #6 is for j = 1.

3) See Appendix B for a table of NSURF(3,n) and SCON options.

3.3.3 pVEquiv

PVEQUIV(LISTEQ)

This subroutine supplies pV3 with node equivalency data. Required for KEQUIV _ 0

cases.

LISTEQ:o: I(2,KEQUIV) Node equivalency pairs.

Notes:

1) For multiple (more than 2) node matching, always have the lowest node number in each

entry, e.g, for a node at an edge between 4 blocks that line up, 3 node equivalency pairs

are required, each matching the lowest node number with the others.

3.3.4 pVBlank

PVBLANK(IBLANK, TBCON)

This subroutine supplies pV3 with blanking data. Required for KNBLOCK < 0 cases.

IBLANK:o: I(NNODE-KNODE) Blanking data:

< 0 node is valid and connected to this local block number

(negated) - flU TBCON for multi-client cases.

= 0 off, invalid node

> 0on

TBCON:o: I(NNODE-KNODE) PVM tid for block number. Zero indicates this client

(multi-client cases only)

24

3.3.5 pVGrid

PVGRID(XYZ)

This subroutine supplies pV3 with the grid coordinates.

XYZ:o: R(3,NNODE) (z, y, z)-coordinates of grid nodes, using left-handed co-

ordinate system. If right-handed coordinates are desired

reverse sign of the z values.

3.3.6 pVSeal

PVSCAL(JKEY,S)

This subroutine supplies pV3 with scalar function values (FKEY=I).

JKEY:i: I

S:o: R(NNODE)

Key index, relative to ordering specified in pV_InJt.

(i.e. first key is 1, second is 2, third is 3, etc.)

Scalar function values.

3.3.7 pVThres

JKEY:i: I

XYZ:i: R(3,NNODE)

T:o: R(NNODE)

Notes:

PVTHRES(JKEY,XYZ,T)

This subroutine supplies pV3 with threshold function values (FKEY=5).

Key index

(z, y, z)-coordinates of grid nodes

Threshold function values

1) XYZ is passed by pV3 to the user subroutine, in case it is needed to calculate T but, for

storage reasons, the user's program has not kept a copy of XYZ. XYZ must not be changed

by pVThres.

3.3.8 pVVect

PVVECT(JKEY,V)

This subroutine supplies pV3 with vector function values (FKEY=2).

JKEY:i: I Key index

V:o: R(3,NNODE) Vector function values (Vz, Vy, Vz). If right-handed co-

ordinates are desired reverse sign of the Vz values.

25

3.3.9 pVStrue

PVSTRUC(KNODE, KEQUIV, KCEL1, KCEL2, KCEL3, KCEL4,

KNPTET, KPTET, KNBLOCK, BLOCKS,

KSURF, KNSURF, HINT)

This subroutine is required for structure unsteady cases (IOPT = -3) only. This routine

supplies the sizes of the current state of the problem.

KNODE:o: I Number of non-block nodes / static flag

KEQUIV:o: I Number

KCELI:o: I Number

KCEL2:o: I Number

KCEL3:o: I Number

KCEL4:o: I Number

KNPTET:o: I Number

KPTET:o: I Number

KNBLOCK:o: I

BLOCKS:o: I(3,KNBLOCK)

KSURF:o: I

KNSURF:o: I

HINT:o: I

or node equivalency pairs

of tetrahedra

of pyramids

of prisms

of hexahedra

of poly-tetrahedral strips

of cells in all poly-tetrahedra

Number of structured blocks

Structured block definitions:

BLOCKS(1,m) = NI

BLOCKS(2,m) = NJ

BLOCKS(3,m) = NK

Number of domain surface faces

NOTE: A negative value is a flag to indicate that faces

not connected to cells should be allowed.

Number of domain surface groups

Hint on what to do with particle locations:

0 - nothing - if the old cell number is still valid, use it to

start

1 - nearest node - use the nearest node to find a valid

cell

2 - nearest surface node - use the nearest surface node

to find a valid cell

3 - use supplied info - call pVLocate to get the new cell

26

Notes:

1) If KNODEis -1 that is a specialflag to indicatethat the structurehasNOT changed

for this iteration. With this flag set, no other paramaters should be modified, in that pV3

reverts to the grid unsteady calling sequence.

2) Gets called every time in pV_Update even if no visualization is active.

3) Flag for blanking must be set in pV_Init.

4) Performance is enhanced by using HINT = 3. The other options exist in the case that

a translation from the old structure does not exist. In these cases, pick the option that,

in general, gives a cell number closest to the target. HINT = 2 is initially less compute

intensive, but may require many cell walks to get to the actual location. Calls to pVConnect

will be used to locate the the actual cell once the integration begins.

3.3.10 pVLocate

PVLOCATE(PXYZ,KCOLD,KCNEW)

This subroutine supplies pV3 with the cell locations for particles in an IOPT = -3 and

HINT = 3 case. This will be called for each active particle and many of the StreamLine

seed positions.

PXYZ:i: R(3)

KCOLD:i: I

KCNEW:o: I

The current (pre-integrated) position of the particle.

Cell number in the old structure that contained the point

PXYZ.

The new cell number that contains PXYZ, used to con-

tinue (or start) the integration (this does not have to be

the actual cell that contains the point, but should be

close). A zero indicates that there is no ne_v cell (the

domain no longer exists at the location). If the location is

now in another client, return a valid cell number (in this

client) that will cause the integration to continue to the

target client when pVConnect is called.

27

3.3.11 pVConnect

PVCONNECT(KC OUT,KFOUT,KCIN,IDTIN)

This subroutine supplies pV3 with cell connectivity for cases where IOPT < 0. This is not

called for the interior of structured blocks or poly-tetrahedral strips.

KCOUT:i: I

KFOUT:i: I

KCIN:o: I

IDTIN:o: I

Exitting cell number for the integration

The face number of the cell

The entering cell number inorder to continue the integra-

tion. A zero indicates that there is no entering ceil (the

entire domain has been exitted). A negative number is an

indication that the integration should attempt to re-enter

the domain. The number must be the index to SCEL of

the exitting face for single client cases or when IDTIN is

-1. This insures that a re-entry will not occur to that

face.

Multi-client only. A -1 is the flag that the cell number

is in this client. Zero flags an attempt to reenter any

other client's domain (all values of KCIN except zero are

ignored). Any other value specifies the PVM tid for the

client that has the cell. Re-entries (negative KCINs) will

be attempted in this client.

Notes:

1) See Appendix B for a table of IDTIN and KCIN options.

28

The next two routines are needed for the programmer-defined cutting planes.

3.3.12 pVZPrime

PVZPRIME(IDCUT,XYZ,NNODE,ZP, ZPRIME,XPC,YPC,HALFW)

This subroutine is called when the programmer-deft_ned cutting plane is imtiallzed, to set

up the 2D data.

IDCUT:i: L

XYZ:i: R(3,NNODE)

NNODE:i: I

ZP:o: R(NNODE)

ZPRIME:o: R

XPC:o: R

YPC:o: R

HALFW:o: R

Selected cut number (I to NPGCUT). It will be positive

to request ZPRIME, XPC, YPC and HALFW.

(z, y, z)-coordinates of grid nodes (as set in pVGrid)

total number of nodes

z _ values

starting z r value

desired zt value at center of 2D window

desired y_ value at center of 2D window

desired half-width for square 2D window

Notes:

1) The last four variables should be set only if IDCUT > 0.

2) For IOPT=+/-1, it is assumed that ZP does not change with time.

3.3.13 pVXYPrime

PVXYPR.IME(ZPttIME,KN,XYZ,N,XYP)

This subroutine supplies pV3 with the (z I, y_) values at selected dynamic surface nodes.

ZPRIME:i: R

KN:i: I(N)

XYZ:i: R(3,NNODE)

N:i: I

XYP:o: R(2,N)

current z _ value

set of pointers to surface nodes

(z, y, z)-coordinates of grid nodes (as set in pVGrid)

number of selected surface nodes

(21, yl) values at surface nodes

Notes:

1) There is no ordering of the nodes in KN, and in fact it may contain the same node more

than once.

29

The next two routines are needed only for the mapping of domain surfaces.

3.3.14 pVSurf

PVSURF(ISURF,XP C,YPC,HALFW)

This subroutineiscalledonce when a mapped 2D surfaceisrequired.This willonly be

calledforthose surfacesthathave been describedas mapped (seepVSurface, Note 1).

ISURF:i: I

XPC:o: R

YPC:o: R

HALFW:o: R

the global surface number

desired z _ value at center of 2D window

desired y_ value at center of 2D window

desired half-width for square 2D window

3.3.15 pVXYSurf

PVXYSURF(KN,XYZ,N,XYP)

This subroutine supplies pV3 with the (x', y') values at selected mapped domain surface

nodes.

KN:i: I(N)

XYZ:i: R(3,NNODE)

N:i: I

XYP:o: R(2,N)

set of pointers to surface nodes

(x, y, z)-coordinates of grid nodes (as set in pVGrid)

number of selected surface nodes

(x', yt) values at surface nodes

Notes:

1) There is no ordering of the nodes in KN, and in fact it may contain the same node more

than once.

3O

The next two routines are needed for mapped domain surfaces and for surface

integrations using the special surface functions.

3.3.16 pVSSurf

PVSSURF(JKEY,KN,XYZ,N,S)

This subroutine supplies pV3 with surface scalar values (FKEY=3) at selected mapped

domain surface nodes.

JKEY:i: I

KN:i: I(N)

XYZ:i: R(3,NNODE)

N:i: I

S:o: R(N)

Key index

set of pointers to surface nodes

(z, y, z)-coordinates of grid nodes (as set in pVGrid)

number of selected surface nodes

Scalar function values at surface nodes

Notes:

i) There is no ordering of the nodes in KN, and in fact it may contain the same node more

than once.

3.3.17 pVVSurf

PVVSURF(JKEY,KN,XYZ,N,V)

This subroutine supplies pV3 with surface vector values (FKEY=4) at selected mapped

domain surface nodes.

JKEY:i: I

KN:i: I(N)

XYZ:i: R(3,NNODE)

N:i: I

V:o: R(3,N)

Key index

set of pointers to surface nodes

(z, y, z)-coordinates of grid nodes (as set in pVGrid)

number of selected surface nodes

Vector function values at surface nodes

Notes:

1) There is no ordering of the nodes in KN, and in fact it may contain the same node more

than once.

31

The following routines are used to communicate within the pV3 system.

3.3.18 pVString

PVSTRING(STRING)

This subroutine allows the programmer to provide a label for all plots, in addition to the

title supplied to pV_InJt. This is particularly useful for labelling plots with the time in

unsteady applications.

STRING:o: C'80 character string label

3.3.19 pVCatch

PVCATCH(STRING)

This routine allows the the client to get a text string from the the running pV3 server

application. This is usefull for steering.

STRING:i: C'80 character string sent from the server

32

3.4 C Programming

UsingpV3 with Crequiresthat theprogrammerdo some things that may not be intuitive.

This is because FORTRAN is supported with the same bindings.

The following rules must be followed:

argument passing

FORTRAN expects all arguments to be passed by reference, not value. Character

variables also have their length appended to the stack (end of the call) in the order

that character arguments appear in the caU. These lengths are passed by value.

character strings

FORTRAN character strings have a specified length (hence passing the length), ff the

string is not fully used, it is padded with blanks. The null byte that terminates a C

string gets interpretted by FORTRAN as a zero character. To avoid passing the null

either overpad the string with blanks, specify the length as the position before the

null, or remove the null. For programmer supplied routines with character arguments

the strings must be padded with blanks to the specified length.

arrays

FORTRAN array indexing, by default, starts at 1. Also in FORTRAN, the left-most

index produces addresses that are consecutive in memory. Therefore, when filling

multiple dimension arrays, reverse the order of the indices as documented and start

at index zero.

Note: key, node and cell numbering MUST start at 1. This gives an offset of 1 between

the index and the number.

defalut types

The translation between FORTRAN INTEGERs and REALs and their C counter-

parts depends on the FORTRAN default size. In all cases float may be used for

REALs. int (or long) must be used for INTEGER.

33

4 Portability

4.1 FORTRAN Programming

For the most part FORTRAN source that runs on one implementation of pV3 will work

on others.

4.2 C Programming

Unfortunately pV3 is not source code compatible for C across all machines. This has to

do with supporting FORTRAN.

The C programmer that wishes to have their pV3 application running on many plat-

forms should be aware that:

• main program

On IBM and HP workstations, normal C conventions apply. For DEC and SGI ports

the name of the main program must be 'MAIN__', on KSR machines the name is

'main_', and on all others the name is ¢MAIN_'.

• routine names

For IBM and HP ports, all pV3 entry points are the FORTRAN names in lower-case.

On all other platforms, the external entries are lower-case with an underscore ('_')

appended to the end.

• integers

pV3 uses the default FORTRAN INTEGER for all integer arguments. This almost

always corresponds to an int. KSR is the only exception. In this case all pV3 integers

must be long!

See the file 'osdepend.h' in the examples subdirectory of the distribution for a method

to avoid these problems.

34

A Error Codes

Any error generated at the call to pV_In_it invalidates the client for inclusion in the visual-

ization.

If any of these errors are generated during a Structure Unsteady visualization, that

volume is invalid for the current time step. The user will see no data coming from this

client. The structure is checked again at the next call to pV_Update.

The following codes report a more detailed message to standard output:

-1

-2

-3

-4

-5

-6

-7

-8

Maximum Number of Surface Faces Execeded! The size

for the temporary face structure was too small. To in-

crease the storage, give KSURF a larger value so that the

face matching procedure can run to completion.

Degenerate face! A degenerate face was found. If the

cell is really degenerate (has the same node numbers in

multiple entries) use the appropriate cell type!

Face Hit by 3 (or more) Cells/Surfaces! The is part of

more than 2 objects. Any face must be touched by either

2 cells (an internal face) or a cell and a surface face. If

you are trying to put a domain surface where pV3 thinks

the face is internal, change the node numbering on one of

the cells to indicate a new face. This will probably require

that additional nodes be added to the node space.

Surface Face with no Connecting Cell! A face has been

specified that is not part of the volume, it is not a face of

a cell.

Maximum Number of Surface Faces Execeded while con-

structing the surface 'Others'! This can occur if the num-

ber of cells is small compared to the number of surface

faces. To increase the storage, give KSURF a larger value

so that the face matching procedure can run to comple-

tion.

Memory Allocation Error!

Structure Check error. A more detailed list is given on

standard output.

Edge Table Overflow! The size for the temporary edge

structure was too small. To increase the storage, give

35

-9

The following codes generate no

-102

-I01

-I00

1

i0

II

12

13

KSURF a larger value so that the edge matching proce-

dure can run to completion.

Maximum Number of Edge Lines Exceeded!

additional information:

The client library was not built properly! You should not

see this error.

Some PVM error was encountered during initialization!

This happens when either the PVM daemon is not run-

ning, or the PVM group subsystem cannot be initialized.

The pV3 client system is already initialized!

Control Parameter Out of Range! IOPT is greater than 2

or less than -3.

NKEYS is less than 1!

NKEYS is greater that the maximum (currently 64)!

FKEYS(i) out of range! An entry in FKEYS is less than

one or greater than five.

FLIMS(1,i) equals FLIMS(2,i)! A set of entries in FLIMS

have the same value. This is not legal for pV3.

Memory Allocation Error! pV3 has requested a block of

memory and has been refused. This is usually do to the

problem's size.

Degenerate Block! One of the block sizes is less than two.

KPTET is less than zero!

NPTET(1,MAX) <> KPTET! The last entry in NPTET

does not match the value KPTET.

KNODE <> 0 but no non-structured block cells!

NSURF(1,KNSURF) > KSURF! The last entry in NSURF

is larger than the size given at initialization.

Structure Unsteady - no change flag set without any prior

defmition!

Structure Unsteady - current size greater than initially

specified.

36 - "

B Multi-client Connectivity Options

There are a limitted number of segments allowed for streamlines. When that limit is reached

(currently 4 times the number of clients) a warning is displayed and that streamline will

terminate.

If the interface between clients is ragged (such as found with tetrahedra meshes), a

command to enter the domain (cell number = -1) may fail.

An attempt to (re)enter (cell number = -1) a client is MUCH more compute intensive

than specifying the cell number (or even a cell that is close to the target)!

B.1 pVConnect

When the programmer is responsible for the connectivity (any negative IOPT in pV_Init)

the routine pVConnect must be supplied. It is called during particle integrations to move

data from one cell to the next. There are many options based on where the the target cell

resides.

• IDTIN = -1

The integration continues in the current client.

KCIN Comment

negative

zero

positive

• IDTIN = 0

try to re-enter in this client

value must be index to SCEL of exitting face (negated)

stop - hit boundary

continue to this cellnumber

Try to enter into all other clients. KCIN is ignored unless zero.

• IDTIN = positive number

Continue the integration into client with this PVM tid.

KCIN

-1

zero

positive

Comment

try to enter in the clientspecifiedby IDTIN

stop

continue to this cellin IDTIN

37

B.2 pVSurface

The programmer can also specified the multi-client topology by the data returned from

the routine pVSurface. In this case internal surfaces must be constructed to patch regions

together. The surfaces define the connectivity with the following options:

• NSURF(3,n) = negative number

The absolute value of the number is the PVM tid to continue the integration.

SCON(i) Comment

-1 try to enter in the client specified by -NSURF(3,n)

zero stop - hit boundary

positive continue to this cell in -NSURF(3,n)

• NSURF(3,n) = 0

Try to enter into all other clients. SCON(i) must be -1.

• NSURF(3,n) = positive number

The integration continues in the current client.

SCON(i) Comment

-1 try to re-enter in this client

zero stop

38

Advanced Programmer's Guide

for

pV3 Rev. 1.00

Bob Haimes

August 3, 1994

DISCLAIMER: This programming interface is in its infancy. The goal is to mimic

Visual3s advanced programming interface as much as possible. Attempts will be made not

change anything already defined in this manual.

License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of

Technology (M.I.T.) under the following license. By obtaining, using and/or copying this

software, you agree that you have read, understood, and will comply with these terms and

conditions:

Permission to use, copy, modify and distribute, this software and its documentation for

any purpose and without fee or royalty is hereby granted, provided that you agree to comply

with the following copyright notice and statements, including the disclaimer, and that the

same appear on ALL copies of the software and documentation:

Copyright 1994 by the Massachusetts Institute of Technology. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS", AND M.I.T. MAKES NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT

NOT LIMITATION, M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT

THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION WILL NOT IN-

FRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER

RIGHTS.

The name of the Massachusetts Institute of Technology or M.I.T. may NOT be used

in advertising or publicity pertaining to distribution of the software. Title to copyright in

this software and any associated documentation shall at all times remain with M.I.T., and

USER agrees to preserve same.

Contents

1 Introduction

2 pV3 Server Event Handling

The Use of Pointers in the pV3 server using FORTRAN

3.1 MALLOC

3.2 FREE

9

9

9

4 Server Side Extracts

4.1 Surfaces

4.1.1 0 - Surface Sub-Extract Tris

4.1.2 1 - Surface Sub-Extract Quads

4.1.3 2 - Surface Sub-Extract XYZ

4.1.4 3 - Surface Sub-Extract Mesh

4.1.5 4- Surface Sub-Extract Outline

4.1.6 5 - Surface Sub-Extract Scalar

4.1.7 6 - Surface Sub-Extract Vector

4.1.8 7- Surface Sub-Extract Thresh61d

4.1.9 8 - Surface Sub-Extract 2D Mapping

4.1.10 9 - Surface Sub-Extract Transformed 2D Mapping

4.1.11

4.1.12

4.1.13

4.2

10 - Surface Sub-Extract Tri normals

11 - Surface Sub-Extract Quad normals

10" - Surface Sub-Extract Planar clipping

StreamLines

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

0 - StreamLine Sub-Extract Cell

1 - StreamLine Sub-Extract Time

2 - StreamLine Sub-Extract XYZ

3 - StreamLine Sub-Extract Div

4 - StreamLine Sub-Extract Angle

5 - StreamLine Sub-Extract Scalar

I0

i0

I0

11

11

II

II

12

12

12

12

13

13

13

14

15

15

15

15

15

16

16

4.2.7 6 - StreamLine Sub-Extract Vector 16

4.2.8 7 - StreamLine Sub-Extract Threshold 16

4.3 Particles 17

4.3.1 0 - Particle Sub-Extract Number 17

4.3.2 1 - Particle Sub-Extract Time 17

4.3.3 2 - Particle Sub-Extract XYZ 17

4.3.4 3 - Particle Sub-Extract Div 17

4.3.5 5 - Particle Sub-Extract Scalar 18

4.3.6 6 - Particle Sub-Extract Vector 18

4.3.7 7 - Particle Sub-Extract Threshold 18

4.4 Vector Clouds 19

4.4.1 2 - VC Sub-Extract XYZ 19

4.4.2 5 - VC Sub-Extract Scalar 19

4.4.3 6 - VC Sub-Extract Vector 19

5 Server Supplied Routines and Calls

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

20

pVEvents 20

pV_Cursor 21

pV_GetPointer 21

pV_GetState 22

pV_SetState 29

pVSafe 35

pV_Register 35

pVSetExtract 38

pV_GetExtract 39

pV_GetSub 42

pVDraw3D 43

pV_Object3D 44

pVDraw2D 45

pV_Object2D 46

pVProbe 47

4

5.16pV_Line 47

5.17pVInit 48

6 Client Side Programming 49

6.1 The Use of Pointers in FORTRAN for the Clients 49

6.2 MALLOCPV 49

6.3 FREEPV 49

6.4 Client Structures 50

6.4.1 Node based 50

6.4.2 Cell based 50

6.4.3 Domain Surfaces 51

6.4.4 Domain Surface Edges 52

6.4.5 Connectivity 52

6.5 pV_GetStruc 54

6.6 pVExtract 56

6.7 pV_SendXi 56

6.8 pV_SendXr 57

A Plotting Masks 58

A.1 Cut Surfaces 58

A.2 StreamLines 58

A.3 Particles 59

A.4 Vector Clouds 59

1 Introduction

The control of the pV3 visualization session is driven by the user. Much time and effort

were placed in making that interaction real-time. But there are many instances when you

may want the control of what is rendered on the screen to be specified by a program.

Examples of this are demonstrations, visual results from expert-systems, macros and etc.

In that the pV3 server is an X windows application, control is driven by X events.

Figure 1 shows the server's normal processing loop. In general, all X events are extracted

from the X event queue and the internal pV3 state information is adjusted appropriately.

When all events are exhausted, any changes to state that require getting data from the

application cause the server to request various extracts from the clients. After this infor-

mation collection phase is done, the windows that require updating are redrawn during

the rendering phase. Then the event queue is checked for more user interaction, and this

continues for the life of the pV3 server.

f
Event Handling

Information Collection Phase

l
Data Rendering

Figure 1: The pV3 Server's Internal Loop

Also, to simplify the data handling, pV_ only exposed it's internal data to the program-

mer when it required data on the client side. The data generated to produce cut surfaces,

streamlines and other objects was hidden. This document describes how the advanced pVS

programmer can access this extract information on the server side.

6

2 pV3 Server Event Handling

One of the goals of allowing programming control in pV3 is to maintain the current action

as the default. Also this must allow the programmer to either modify the effects of an event

or completely take over.

Before attempting to program pV3 at this level it is important to understand the server's

program structure. This includes the internals of the event handling phase.

The details of the pV3 server event handling phase can be seen in Figure 2. First, an

X event is pulled of the X event queue. The event is described by a window ID - IWIN

(the window in which the event occurred), the type of event (e.g., KeyPress, ButtonPress,

and etc.), the location in the window of the event, and finally any state data (e.g., which

button or key was pressed). There is a special window ID flag of -1 which indicates that

the event queue was empty.

IWIN = -1 IWIN = 0

l
Get Event

call pVEvents

Event Processing

Figure 2:pV3 Server's Event Handling

Next a programmer-supplied routine pVEvents is called with the event data.

pVEvents has the option of passing the event on (doing nothing), performing some action

based on the event, changing the event (by modifying the arguments) or having the event

ignored (by setting IWIN, the window ID, to 0). The other routines described in this

document may be called within pVEvents to inquire and set many of the pV3 internal

state variables.

On the basisof the valueof IWIN, as returned by pVEvents; the event processing

section ofpV3 is called when IWIN > 0, the event is ignored ifpVEvents sets IWIN = O,

or this phase is terminated with IWIN = - 1. When changing the action of the pV8 server

it is important to remember that nothing will be updated in the windows until pVEvents

returns with IWIN = -1. Also, if pVEvents was called with IWIN : -1 and an

event is constructed and passed through to the event processing section, pVEvents will be

re-entered (possibly with IWIN # -1), before the screen gets updated.

Examples of prevents, that perform various functions, are contained within the dis-

tribution.

NOTE:

The pV3 server is distributed in two forms. First, as a complete application. This is what

would be executed if no server modifications are desired. Second, it is distributed in library

and object module format. This is required if a different release of PVM was used to build

the server than what is currently used at your site. This allows the re-building of the server

without supplying the source. Because the pV3 server is already distributed in a library

form, all that is required to modify the server (as described in this manual), is to make the

server including the compiled routines that you supply.

3 The Use of Pointers in the pV3 server using FORTRAN

Some of the data that gets returned from pV_GetPolnter, pV_-_etSub and pV_GetExtract

is in the form of pointers to blocks of memory. The pointers can be treated as INTEGER*4

variables. Traditionally, this information cannot be used by the FORTRAN programmer.

But, a mechanism exists on all major workstation's FORTRAN (including SGI) to allow the

pointer to be passed to a SUBROUTINE or FUNCTION and then have the memory treated

as a normally declared vector or array. This is done by the VAX extension '%val(pointer)'

used in the CALL or function invocation. When the pointer is passed to the sub-program

by 'value', it is equivalent to passing a variable by 'reference' (the FORTRAN method).

That is, in both cases, the address of the memory of interest is placed on the stack!

Using this mechanism (or the POINTER statement), sophisticated pV3 server enhance-

ments may be performed using FORTRAN. To complete this picture, the following routines

can be used to allocate and free memory blocks.

3.1 MALLOC

PTR -- MALLOC(NBYTES)

This function is equivalent to the C routine 'malloc'. It allocates a block of memory and

returns the pointer to the block.

NBYTES:i: I

PTR:o: I

The number of bytes to allocate.

The address of the block (0 is an error indicator).

3.2 FREE

FREE(PTR)

This function is equivalent to the C routine 'free'. It deallocates a block of memory. NOTE:

0nly free up blocks of memory that YOU allocate!

PTR:i: I The address of the block.

4 Server Side Extracts

The following section describes the internal data stored in the pV3 server. This is the

data used to produce the graphics objects that get rendered to make the scene. Each

tool generates a different type of eztract from the 3D data in the client. The data gets

transmitted to the server and is stored for as long as it is needed. Each eztract consists of

a number of sub-eztract types, and there is a complete collection of sub-eztracts for each

client. Note: each clients data is stored separately.

4.1 Surfaces

This data is generated by the pV3 scalar tools (planar cuts, programmed cut surfaces,

iso-surfaces and domain surfaces). This data is exposed so that new 'probes' may be easily

generated. The size of many of these arrays (and therefore the pointers) will change during

the execution of pV3, so when using this data, get the current pointers before accessing

the memory.

Extract

2

4

5

7

Type

Planar Cut

Geometric Cut

Domain Surface

Iso-Surface

Valid Sub-Extracts

01234567910*

01234567891011

01234567891011

012345671011

4.1.1 0- Surface Sub-Extract Tris

The following data defines the disjoint triangle space. Where the number of triangles in the

structure is KTRI.

TRIS: I(4,KTRI) disjoint triangle definitions.

TRIS(1,n) = first node index for the triangle.

TRIS(2,n) = second node index for the triangle.

TRIS(3,n) = third node index for the triangle.

TRIS(4,n) = the parent 30 cell number (in the client).

10

4.1.2 1 - Surface Sub-Extract Quads

The following data defines the disjoint quadrilateral space. Where the number of quadri-

laterals in the structure is KQUAD.

QUADS: I(5,KQUAD) disjoint quadrilateral definitions.

QUADS(1,n) = first node index for the quadrilateral.

QUADS(2,n)

QUADS(3,n)

QUADS(4,n)

QUADS(5,n)

= second node index for the quadrilateral.

= third node index for the quadrilateral.

= fourth node index for the quadrilateral.

= the parent 3D cell number (in the client).

4.1.3 2 - Surface Sub-Extract XYZ

The following data defines the 3D coordinates for the nodes (and therefore also the number

of nodes) that support the surface. The number of nodes in the structure is KXYZ.

XYZ: R(3,KXYZ) (x, y, z)-coordinates for the nodes.

4.1.4 3 - Surface Sub-Extract Mesh

The following data defines the disjoint lines that make-up the intersection of the cell edges

and the cutting surface. The number of line segments in the structure is KFACE.

FACE: I(2,KFACE) disjoint line definitions.

FACE(1,n) = first node index for the line.

FACE(2_n) = second node index for the line.

4.1.5 4 - Surface Sub-Extract Outline

The following data defines the disjoint lines that make-up the outline of the surface. The

number of line segments in the structure is KEDGE.

EDGE: I(3,KEDGE) disjoint line definitions.

EDGE(1,n) = first node index for the line.

EDGE(2,n) = second node index for the line.

EDGE(3,n) = the parent surface face number (in the

client).

11

4.1.6 5 - Surface Sub-Extract Scalar

The following data defines the current scalar for the nodes (and therefore also the number

of nodes) that support the surface. The number of nodes in the structure is KS and is the

same as KXYZ.

S: R(KS) scalar functional values for the nodes.

4.1.7 6 - Surface Sub-Extract Vector

The following data defines the current vector for the nodes (and therefore also the number

of nodes) that support the surface. The number of nodes in the structure is KV and is the

same as KXYZ.

V: R(3,KV) vector values (Vx, Vy, Vz) for the nodes.

4.1.8 7- Surface Sub-Extract Threshold

The following data defines the current threshold values for the nodes that support the

surface. The number of nodes in the structure is KT and is the same as KXYZ.

T: R(KT) threshold functional values for the nodes.

4.1.9 8 - Surface Sub-Extract 2D Mapping

The following data defines the 2D mapping for the nodes that support the surface.

number of nodes in the structure is KXY and is the same as KXYZ.

XY: R(2,KXY) raw (x', y')-coordinates as specified by the client.

Notes:

(1) The 2D mapping for planar cuts is implicit and not required from the client.

(2) There is no 2D mapping for iso-surfaces.

The

12

4.1.10 9 - Surface Sub-Extract Transformed 2D Mapping

The following data defines the 2D mapping used to draw the surface into the 2D window,

where the viewed range is between -1.0 and 1.0 in both x _ and y_. This is a simple

transformation of XY. The number of nodes in the structure is KXYP and is the same as

KXYZ.

XYP: R(2,KXYP) transformed (x', y')-coordinates.

Notes:

(1) This data is generated at the server and not transfered from the clients.

(2) If KYXP is zero, the transformation has not yet been computed.

(3) There is no 2D mapping for iso-surfaces.

4.1.11 10 - Surface Sub-Extract Tri normals

The following data defines the normals used (for each disjoint triangle). This data is used

in the lighting model for drawing the surface in the 3D window. The number of normals in

the structure is KTRIN and is the same as KTRI.

TRIN: R(3,KTRIN) (z, y, z)-normals for the triangle.

Notes:

(1) This data is generated at the server and not transfered from the clients.

(2) If KTRIN is zero, the normals have not yet been computed.

(3) The normals for planar cuts are implicit and the same for all triangles and therefore

this sub-extract is not used (but the index is reused for clipping).

4.1.12 11 - Surface Sub-Extract Quad normals

The following data defines the normals used for each disjoint quadrilateral. This data is used

in the lighting model for drawing the surface in the 3D window. The number of normals in

the structure is KQUADN and is the same as KQUAD.

QUADN: R(3,KQUADN) (x, y, z)-normals for the quadrilateral.

Notes:

(1) This data is generated at the server and not transfered from the clients.

(2) If KQUADN is zero, the normals have not yet been computed.

(3) The normals for planar cuts are implicit and the same for all quadrilaterals and therefore

this sub-extract is not used.

13

4.1.13 10" - Surface Sub-Extract Planar clipping

The following data defines the clipping index used for each nod,'. The number of entries in

the structure is KCLIP and is the same as KXYZ.

CLIP: I(KCLIP) 0 - not clipped, otherwise the following are additive:

1 - transformed x' less than -1.0

2 - transformed z_ greater than 1.0

4 - transformed y' less than -1.0

8 - transformed y' greater than 1.0

Notes:

(1) This data is generated at the server and not transfered from the clients.

(2) If KCLIP is zero, the clipping index has not yet been computed.

(3) This sub-extract index is only used for planar cuts so that there is no conflict with

triangle normals.

14

4.2 StreamLines

This data is generated by the pV3 clients during the integration of instantaneous stream-

lines. The size of many of these arrays (and therefore the pointers) will change during the

execution of pY3, so when using this data, get the current pointers before accessing the

memory. Unlike all other Extracts, the number of sub-extracts is not a function of the

number of clients but of the maximum allotted streamline segments (that is greater than

the number of clients). This allows a streamline to reenter a client more than once.

4.2.1 0 - StreamLine Sub-Extract Cell

The following data contains the 3D cell number for the position of the point for this segment

(used for the point probe). The number of entries in the structure is KCELL and is the

same as KXYZ.

CELL: I(KCELL) the parent 3D cell number (in the client).

4.2.2 1 - StreamLine Sub-Extract Time

The following data defines the integration pseudo-time for the point (used for streamline

animation). Where the number of elements in the structure is KTIME and is the same as

KXYZ.

TIME: R(KTIME) integration time (from the seed position).

4.2.3 2 - StreamLine Sub-Extract XYZ

The following data defines the 3D coordinates for the points that support this poly-line

segment. The number of nodes in the structure is KXYZ.

XYZ: R(3,KXYZ) (z, y, z)-coordinates for the points.

4.2.4 3- StreamLine Sub-Extract Div

The following data defines the cross-flow divergence felt by each point during the integration.

Where the number of elements in the structure is KDIV and this is the same as KXYZ.

DIV: R(KDIV) used for streamtube rendering, where the size of the tube

is based on a starting size mutiplied by e to this power.

15

4.2.5 4- StreamLine Sub-Extract Angle

The following data contains the curl for each point, calculated during the integration, in

this segment of the streamline Where the number of entries in the structure is KANG and

this is the same value as KXYZ.

ANG: R(KANG) angle of the twist for ribbons in degrees.

4.2.6 5 - StreamLine Sub-Extract Scalar

The following data defines the current scalar for the points that support the line in this

segment. The number of points in the structure is KS and this is the same as KXYZ.

S: R(KS) scalar functional values for the points.

4.2.7 6 - StreamLine Sub-Extract Vector

The following data defines the current vector for the points that make up this segment of

the streamline. The number of elements in the structure is KV and this is the same as

KXYZ.

V: R(3,KV) vector values (Vz, Vy, Vz) for the points.

4.2.8 7 - StreamLine Sub-Extract Threshold

The following data defines the current threshold values for the points that support the

poly-line. The number of entries in the structure is KT and is the same as KXYZ.

T: R(KT) threshold functional values for the points.

16

4.3 Particles

This data is updated by the pV3 clients during the bubble integration at each time-step.

The size of many of these arrays (and therefore the pointers) will change during the execution

of pV3, so when using this data, get the current pointers before accessing the memory.

4.3.1 0 - Particle Sub-Extract Number

The following data contains the unique particle number for each bubble in that client. The

number of entries in the structure is KNUM and this is the same as KXYZ.

NUM: I(KNUM) the global particle number.

4.3.2 1 - Particle Sub-Extract Time

The following data defines the start time for each bubble. The number of elements in the

structure is KTIME and this number is the same as KXYZ.

TIME: R(KTIME) bubble simulation time when the particle was seeded.

4.3.3 2 - Particle Sub-Extract XYZ

The following data defines the current 3D coordinates for the particles.

nodes in the structure is KXYZ.

XYZ: R(3,KXYZ) (z, y, z)-coordinates for the bubbles.

The number of

4.3.4 3 - Particle Sub-Extract Div

The following data defines the cross-flow divergence currently felt by each bubble. Where

the number of elements in the structure is KDIV and this is the same as KXYZ.

DIV: R(KDIV) optionally used for bubble rendering, where the size of the

particle is based on a starting size mutiplied by e to this

power.

17

4.3.5 5 - Particle Sub-Extract Scalar

The following data defines the current scalar for the particles in this client. The number of

points in the structure is KS and this is the same as KXYZ.

S: R(KS) scalar functional values for the bubbles.

4.3.6 6 - Particle Sub-Extract Vector

The following data defines the current vector for the particles. The number of elements in

the structure is KV and this number is the same as KXYZ.

V: R(3,KV) vector values (Vx, Vy, Vz) for the bubbles.

4.3.7 7 - Particle Sub-Extract Threshold

The following data defines the current threshold values for the particles. The number of

entries in the structure is KT and is the same as KXYZ (the number of bubbles).

T: R(KT) threshold functional values for the bubbles.

18

4.4

4.4.1

Vector Clouds

2 - VC Sub-Extract XYZ

The following data defines the coordinates for the 3D nodes that satisfy the threshold limits

within each client. The number of nodes in the structure is KXYZ.

XYZ: R(3,KXYZ) (z, y, z)-coordinates for the vector cloud.

4.4.2 5 - VC Sub-Extract Scalar

The following data defines the current scalar for the vector cloud The number of points in

the structure is KS and this number is the same as KXYZ.

S: R(KS) scalar functional values for the 3D nodes.

4.4.3 6 - VC Sub-Extract Vector

The following data defines the current vector for each node in the client that satisfies the

threshold limits. The number of elements in the structure is KV and this number is the

same as KXYZ.

V: R(3,KV) vector values (Vx, Vy, Vz) for the vector cloud.

19

5 Server Supplied Routines and Calls

Consistant with the pV3 naming convension, the routines that are part of pV3 server are

prefixed with 'pV_', those that are supplied by the programmer start with 'pV'.

5.1 pVEvents

PVEVENTS (IWIN,TYPE,XE,YE,STATE)

This subroutine is called by the pV3 server immediately after an X event has been pulled

of the queue. This routine may perform certain functions based on the event, change the

event status, have the server ignore the event or just do nothing.

IWlN:i/o: I

TYPE:i/o: I

The X window ID of the event or:

IWIN:-I No more events to process, therefore pass the

control of the server to the data collection phase

IWIN:0 Output only. Ignore this event and pull the

next one off the queue

The event type. The event types that pV3 windows can

generate are:

TYPE:2 KeyPress

TYPE:3 KeyRelease

TYPE:4 ButtonPress

TYPE: 5 ButtonRelease

TYPE:12 Expose

TYPE--14 NoExpose

TYPE:33 X ClientEvent

XE:i/o: I

YE:i/o: I

STATE:i/o: I

The X pixel location in the window of the event (0 is the

left)

The Y pixel location in the window of the event (0 is the

top of the window)

The event state. For Key events, the state is the X KeySym

number (usually the ASCII code except for the special

keys). For mouse button events, the state is the button

number.

2O

5.2 pV_Cursor

PV_CUR.SOR(FLAG)

This subroutine can be used by certain progralnlner-supplied routines when the programmer

wants to add a function which needs user input from the text window.

FLAG:i: L FLAG=.TRUE. Move cursor to text window

FLAG=.FALSE. Move cursor back to previous window

5.3 pV_GetPointer

PV_GETPOINTER(OPT,PTR)

Returns the internal pV3 server structure. This routine can be called from any progralnlner-

supplied code.

OPT:i: I

PTR:o: I

Option set to specify what data to get.

Integer (in FORTRAN) used as a pointer to the structure.

• OPT = 0 - X Event Structure:

PTR : *XEvent - Useful for building another Graphical User Interface (GUI) on

the pV3 server. Allows passing the event information to tool-kits such as Motif.

This need only be called once. The same structure is used for all pV3 event

handling.

• OPT = 1 - X window structure for the 1D Window

PTR = *Window - for 1D Window

• OPT = 2 - X window structure for the 2D Window

• OPT = 3 - X window structure for the 3D Window

• OPT = 4 - X window structure for the Dails Window

• OPT = 5 - X window structure for the Key Window

• OPT = 6 - X window structure for the Text Window

• OPT = 7 - X window structure for the Comparison Window (0 means the window is

not open)

• OPT = 8 - X window structure for the Root Window

21

5.4 pV_GetState

PV_GETSTATE(O PT,IVEC,RVEC,STRING)

Returns the internal pV3 state. This pV3 server routine can be called from any programmer-

supplied code linked with the server.

OPT:i: I

IVEC:i/o: I()

RVEC:o: R()

STRING:o: C

Option set to specify what data to get

Integer data returned based on OPT (length also deter-

mined by OPT). Some OPTs control actions on input.

Real data returned based on OPT (length also determined

by OPT)

Character data returned based on OPT

OPT = -3

IVEC(1)

IVEC(z)

IVEC(3)

IVEC(4)

OPT = -2

IVEC(1)

IVEC(z)

RVEC(1)

- Get client data:

= Client index - input (1 to total number of clients)

= PVM tld - the PVM task id of the client index

: IOPT - unsteady option for the client index

= Number of clients - the total number of clients

- Get unsteady info:

: IOPT - maximum for all clients

: Pause State - 0 not paused, 1 paused

: Time - simulation time currently displayed

OPT = -1 - Get special key bindings. IVEC is filled with 32 integers that axe the

X KeySyms for the non-ASCII keys used by pV3. A file 'KeyBoard' contains the

default pV3 server KeySyms and the associated labels. These values may be modified

and used by the server if the environment variable 'Visual_.KB' is set to point to the

file containing the new bindings.

• OPT = 0 - Get Rev number:

IVEC(1) ----pV3 flag always-1

RVEC(1) -- Revision Number

OPT = 1 - Get the current transformation matrix for the 3D view. 12 words of RVEC

axe used.

22

• OPT = 2 - Get the current planar cut coordinates. 9 words of RVEC are used for 3

of the 4 corners of the cut plane in 3 space.

• OPT = 3 - Get the current scalar tool status.

IVEC(1) : Current Tool :

0 - No tool

2 - Planar cut

3 - Planar cut positioning on

4 - Programmed cut

5 - Mapped surface

6 - Mapped surface with surface functions

7 - Iso-surface

RVEC(1) = Current ZPRIME - for 2, 4 and 7 above

RVEC(2) -- XPC - for 4, 5 and 6

RVEC(3) ---- YPC - for 4, 5 and 6

RVEC(4) = HALFW - for 4, 5 and 6

RVEC(5) -- 2D Rotation Angle in degrees - for 4, 5 and 6

* OPT = 4 - Lighting and Mirroring state:

IVEC(1) = Mirror status :

0 - No Mirroring

1 - Mirror about X = 0.0

2 - Mirror about Y = 0.0

3 - Mirror about Z = 0.0

IVEC(2) = Number of Lights maximum is 8

RVEC(1-3) = Ambient light color (r,g,b) - values between 0.0 and 1.0

• OPT = 5 - Scalar state:

IVEC(1) = Binding index

RVEC(1) = Minimum for display - fmin shown in the key window

RVEC(2) = Maximum for display - fmax shown in the key window

STRING = Scalar title - maximum of 32 characters used.

23

• OPT = 6 - Vectorstate:

IVEC(1) = Binding index

RVEC(1) = Vector scale - the scale factor for tufts and arrows

STRING = Vector title - maximum of 32 characters used.

* OPT = 7- Threshold state:

IVEC(1) = Binding index - negative value indicates the appropriate scalar index

IVEC(2) = Vector Cloud status - 0 = off, 1 = on

IVEC(3) = Dynamic Threshold status - 0 = off, I = on

RVEC(1) = Minimum for display - train shown in the key window

RVEC(2) = Maximum for display - tmax shown in the key window

STRING -- Threshold title - maximum of 32 characters used.

• OPT = 8 - User response status:

IVEC(1) = First mouse button action - 0 = no button press

IVEC(2) = X pixel location for action

IVEC(3) -- Y pixel location for action

IVEC(4) = Second mouse button action

IVEC(5) = X pixel location for action

IVEC(6) = Y plxel location for action

STRING = Text answer

The data in IVEC is valid for those operations that require snapping a line/circle or

a 'rubber-band' box.

• OPT = 9 - Light Status:

IVEC(1) = Light number - input (1 to the number of lights)

RVEC(1-3) = Light color (r,g,b) - values between 0.0 and 1.0

RVEC(4-6) = Light normal

24

• OPT = II

• OPT = 10 - Current domain/static surface state:

IVEC(1) ----Surface index

IVEC(2) -- Current drawing state - see the Appendix

IVEC(3) : Surface type :

i - Domain surface

2 - Planar cut

RVEC isfilledwith the 9 words (forthe corners) at the time of the cut. This

islike OPT = 2.

4 - Programmer-defined cut

RVEC(1) contains the ZPrime value.

7 - Iso-surface

RVEC(1) contains the iso-surface value.

IVEC(4) ---- Maximum number of surfaces

STRING -- Surface title - maximum of 20 characters used.

- Current streamline state:

IVEC(1) -- Current streamline group number - 0 no streamlines active

IVEC(2) ---- Current drawing state - See Appendix

IVEC(3) -- Stream group number

IVEC(4) ---- Maximum number of streamline groups

IVEC(5) _ Global Surface number - 0 indicates a volume streamline

RVEC(1) -- Ribbon rotation in degrees

STRING ---- Streamline title - maximum of 20 characters used.

• OPT = 12 - NOT Used

25

OPT -- 13 - Current probe state:

IVEC(1) -" 1D plot type :

0 - no plot

1 - StreamLine Probe

2 - Strip Chart

3 - Line Probe

4 - Edge Plot

5 - Surface Layer Scan

6 - Programmer-defined probe

IVEC(2) ---- Point Probe status - 0 (off) or 1 (on)

IVEC(3) ---- Reference llne status - 0 (off) or 1 (on)

RVEC(1) -- X Minimum for plot

RVEC(2) -- X Maximum for plot

RVEC(3) -- Y Minimum for plot

RVEC(4) -- Y Maximum for plot

OPT = 14 - Global drawing state:

IVEC(1) ---- Edge Outline status - 0 (off), 1 (on- default), 2 (no internal bound-

ary edges)

RVEC(1) -" Object Radius - The radius of the sphere that encloses the object(s).

RVEC(2) -- Line Adjustment - The amount that lines are displaced (towards the

viewer) so that the surfaces do not obscure them.

RVEC(3) -- Screen Z Cllp value - data added to screen Z to move object(s) into

the front or back clipping plane.

• OPT = 15 - Dynamic surface state:

IVEC(1) -- Current drawing state - see the Appendix

IVEC(2) ---- Number of tufts - the number of tufts on a side

RVEC(1) -- Vector scale - the scale factor for tufts and arrows

RVEC(2) -- Vector scale for surface functions - the scale factor used with tufts

and arrows for special surface functions

26

• OPT = 16 - StreamLine/Bubble drawing state:

IVEC(1) : StreamLine representation (when seeded):

0 - StreamLine

1 - Ribbon

2 - StreamTube

3 - Tubes with twist

IVEC(2) = Bubble rendering :

0 - off

1 - Rendered in foreground color

2 - Rendered using scalar color

3 - Rendered with surface function (for Surface particles only)

IVEC(3) = Current Surface/Volume setting :

0 - Volume Scalar/Volume Vector

1 - Surface Scalar/Volume Vector

2 - Volume Scalar/Surface Vector

3 - Surface Scalar/Surface Vector

• OPT = 17 - Key and Colormap state:

IVEC(1) = Key status :

0 - Scalar

1 - Special Surface Scalar

2 - Time

IVEC(2) = Number of entries in colormap

IVEC(3) = Number of entries in background colormap - between 1 and 4

• OPT = 18 - Get colormap entry in current Key colormap:

IVEC(1) = index - set on input:

-2 - Foreground: used for outlines and pseudo-cursors, usually white

-1 - Midground: used for 1D cursor and solid surfaces, usually grey

0 - Background: used for Dial and 1D window background, usually black

1-on - Colormap/background colormap entry. The background colormap indices

follow the colormap entries.

RVEC(I-3) = The color (r,g,b) - values between 0.0 and 1.0

27

• OPT = 19 - Contouring state:

IVEC(1) -- Dynamic contour status - 0 = off, 1 = on

IVEC(2) -- Number of contour levels

28

5.5 pV_SetState

pV_SETSTATE(OPT,IVEC,RVEC,STRING)

Setsthe internalpV3 serverstate.This routinecan only be calledfrom pVEvents.

OPT:i: I

IVEC:i: I()

RVEC:i: R()

STRING:i: C

Option set to specify what internal state data to change

Integer data set based on OPT (length also determined by

OPT)

Real data set based on OPT (length also determined by

OPT)

Character data set based on OPT

OPT = -1 - Force a 3D and 2D window update. This tells pV3 to do a complete

redraw including the static objects.

OPT = 0 - NOT Used

OPT = 1 - Set the current transformation matrix for the 3D view. 12 words of RVEC

are used.

OPT = 2 - Set the current planar cut coordinates. 9 words of RVEC are used for 3

of the 4 corners of the cut plane in 3 space.

OPT = 3 - Set the current scalar tool values:

RVEC(1) -- ZPRIME

RVEC(2) -- XPC

RVEC(3) -- YPC

RVEC(4) = HALFW

RVEC(5) -- 2D Rotation Angle in degrees

NOTE:

If you don't wish to change all of the above call pV_GetState(3,IVEC,RVEC,STRING)

first!

29

• OPT = 4 - Set Lighting and Mirroring state:

IVEC(1) = Mirror status :

0 - No Mirroring

1 - Mirror about X -- 0.0

2 - Mirror about Y = 0.0

3 - Mirror about Z -- 0.0

IVEC(2) -- Number of Lights maximum is 8

RVEC(1-3) -- Ambient light color (r,g,b) - values between 0.0 and 1.0

• OPT = 5 - Scalar state:

IVEC(1) -- Binding index - allows the changing of the current scalar function

RVEC(1) -- Minimum for display - fmin shown in the key window

RVEC(2) -- Maximum for display - fmax shown in the key window

STRING -- Scalar title - maximum of 32 characters used (blank string indicates

no change)

• OPT = 6 - Vector state:

IVEC(1) -- Binding index allows the setting of the current vector field

RVEC(1) : Vector scale - the scale factor for tufts and arrows

STRING : Vector title - maximum of 32 characters used (blank string indicates

no change)

• OPT = 7 - Threshold state:

IVEC(1) -- Binding index - negative value indicates the appropriate scalar index

IVEC(2) -- Vector Cloud status - 0 = off, 1 = on

IVEC(3) -- Dynamic Threshold status - 0 = off, 1 = on

RVEC(1) = Minimum for display - tmin shown in the key window

RVEC(2) = Maximum for display - tmax shown in the key window

STRING = Threshold title - maximum of 32 characters used (blank string indi-

cates no change). You cannot change the title of a scalar threshold with this

function.

3O

• OPT = 8

IVEC(1)

IVEC(2)

IVEC(3)

IVEC(4)

IVEC(5)

IVEC(6)

- Enter user response:

-- First mouse button action - 0 = no button press

-- X pixel location for action

-- Y pixel location for action

-- Second mouse button action

-- X pixel location for action

---- Y pixel location for action

STRING -- Text answer

The data in IVEC is required for those operations that snap a line/circle or a 'rubber-

band' box.

• OPT = 9 - Set Lights:

IVEC(1) = Light number- 1 to the number of lights

RVEC(1-3) = Light color (r,g,b) - values between 0.0 and 1.0

RVEC(4-6) -- Light normal

• OPT = 10 - Domain/static surface state:

IVEC(1) -- Surface index (-) value indicates that the numbered surface should be

deleted without effecting what is the current sm'face

IVEC(2) ---- Current drawing state - value < 0 doesn't change the state. See the

Appendix.

STRING ---- Surface title - maximum of 20 characters used (blank string indicates

no change). Only for Domain surfaces.

• OPT = 11 - Streamline state:

IVEC(1) -- Streamline group index (-) value indicates that the numbered stream-

line group should be deleted without effecting what is the current streamline

index

IVEC(2) -- Current drawing state - value < 0 doesn't change the state. See the

Appendix.

RVEC(1) -- Ribbon rotation in degrees

• OPT = 12 - NOT used

31

• OPT = 13 - Set probe state:

IVEC(1) -- 1D plot type :

0 - turn off plot

6 - start Programmer-defined probe

Note: use the proper 'events' for initiating the other probes.

• OPT = 14 - Set global drawing state:

IVEC(1) -- Edge Outline - 0 (off), 1 (on), 2 (no internal boundary edges)

RVEC(1) --- Object Radius - The radius of the sphere that encloses the object(s).

RVEC(2) -- Line Adjustment - The amount that lines are displaced (towards the

viewer) so that the surfaces do not obscure them.

RVEC(3) --- Screen Z Cllp value - data added to screen Z to move object(s) into

the front or back clipping plane.

• OPT = 15 - Set dynamic surface state:

IVEC(1) -- Current drawing state - see the Appendix

IVEC(2) --- Number of tufts - the number of tufts on a side

RVEC(1) -- Vector scale - the scale factor for tufts and arrows

RVEC(2) -- Vector scale for surface functions - the scale factor used with tufts

and arrows for special surface functions

32

• OPT = 16- SetStreamLine/Bubbledrawingstate:

IVEC(1) -- StreamLine seed representation :

0 - StreamLine

1 - Ribbon

2 - StreamTube

3 - Tubes with twist

IVEC(2) -- Bubble rendering :

0 - off

1 - Rendered in foreground color

2 - Rendered using scalar color

3 - Rendered with surface function (for Surface particles only)

IVEC(3) : Current Surface/Volume setting :

0 - Volume Scalar/Volume Vector

1 - Surface Scalar/Volume Vector

2 - Volume Scalar/Surface Vector

3 - Surface Scalar/Surface Vector

• OPT = 17 - Set Key and Colormap state:

IVEC(1) -- Key status :

0 - Scalar

1 - Special Surface Scalar - if any Surface Scalars

2 - Time

IVEC(2) -- Number of entries in eolormap

IVEC(3) : Number of entries in background eolormap - between 1 and 4

This forces a Key Window redraw. When changing the colors, first set the Key state

(Scalar, Surface Scalar or Time) if not already correct, then set the new colormap

entries (calls with OPT = 18) and finally (again) make this call.

33

• OPT = 18- Setcolormapentry in currentKey colormap:

IVEC(1) = index :

-2 - Foreground: used for outlines and pseudo-cursors - Key independent

-1 - Midground: used for 1D cursor and solid surfaces - Key independent

0 - Background: used for Dial and 1D window background - Key independent

1-on - Colormap/background colormap entry. The background colormap indices

follow the colormap entries.

RVEC(1-3) : The color (r,g,b) - values between 0.0 and 1.0

• OPT = 19 - Set Contouring state:

IVEC(1) -- Dynamic contour status - 0 = off, 1 = on

IVEC(2) : Number of contour levels - must be greater than 1

34

5.6 pVSafe

PVSAFE()

This programmer-suppliedroutineiscalledwhen the graphicsthreadofthe serverisstalled.

This isthetime where callscan be made thatrequireneitherthreadtobe active.The buffers

have not been swapped, so that queriesofextractswilllook at the laststate.

No Arguments

5.7 pV_Register

PV_REGISTER(INDEX,NAME,SUBTYPE,SUBSIZE,SUBOPT,SUBLOC,

ROUTINE,EXNUM)

Registers a programmer-defined extract with the pV3 server. This routine should only be

called when the threads are sync'ed, therefore the only valid place to execute this routine

is within pVSafe.

INDEX:i: I

NAME:o: C'20

SUBTYPE:i: I(12)

SUBSIZE:i: I(12)

SUBOPT:i: I(12)

SUBLOC:i: I(12)

The extract index. This number must be greater that 100

and defines an extract.

Extract name.

The subextract types. Each extract is composed of up to

12 subextracts for each client. This vector defines whether

the subextract is an integer (0) or a real (1).

The subextract size per length. For example, if the subex-

tract is for the 3D coordinates (X,Y,Z) that support the

extract, the size would be 3.

The level of unsteadyness that requires the data at every

time-step. Valid entries are 0 to 2. The following table

specifies what action is taken with an existing subextract:

Client's OPT - >

SUBOPT = 0

SUBOPT = 1

SUBOPT = 2

0 1 2

leave refill refill

leave leave refill

leave leave leave

refill

refill

refill

The subextract's locality. If this subextract comes from

the clients then the value is -1. If this subextract is local

to the server and it's length is set by another subextract,

then SUBLOC must contain the index (0 biased) to that

extract. SUBOPTs for local subextracts must match that

of the keyed subextract.

35

ROUTINE:i

EXNUM:o: I

Thisis theprogrammer-suppliedroutinethat will becalled
to renderthe dataassociatedwith this extract.

FORTRANprogrammersmustdeclarethesubroutine'EX-

TERNAL' in the callingmodule.

This isa statusreturn. If thevalueiszeroor greater,that
indicatessuccess.Thevalueis thenumberusedfor multi-

pleallocationsof extractswith the sameINDEX (that use
the samerenderingroutine). If the numberis negativeit
is an indicationof an error:

-1 - Invalid INDEX number

-2 - Invalid SUBTYPEin oneof theentries

-3 - Invalid SUBSIZEin oneof theentries

-4 - Invalid SUBOPTin oneof theentries

-5 - Invalid SUBLOCin oneof the entries

-6 - SUBTYPEmismatchfor subsequentcallsusing
INDEX

-7- SUBSIZEmismatchfor subsequentcallsusing
INDEX

-8 - SUBOPTmismatchfor subsequentcallsusing
INDEX

-9 - SUBLOCmismatchfor subsequentcallsusing
INDEX

-10- ROUTINE mismatchfor subsequentcallsusing
INDEX

-11- Allocationerror

-12- Routinenot calledfrom pVSafe

-13- SUBOPTsmismatchfor localsubextract

36

ROUTINE must have the form:

ROUTINE(ISTAT,EXNUM,PLOTMASK,TID,CNT

L EN 0,S U B 0, LEN11 ,SUB 11)

The programmer-supplied render routine for a registered extract. This routine is called for

each active pV3 client. And, this routine will be called during the 3 stages of the 3D win-

dow's rendering. The drawing should be done by calls to pV_Object3D. See pVDraw3D.

ISTAT:i: I

EXNUM:i: I

PLOTMASK:i: I

TID:i: I

CNT:i: I

LENn:i/o: I

SUBn:i/o

Rendering stage:

0 - rendering for static object(s)

1 - rendering for dynamic object(s)

2 - rendering for translucent object(s)

The extract number.

The value that describes the drawing state of the extract.

PVM tid for this set of subextracts.

The client count (always starts at zero}.

The length of the subextracts. If the value is zero for a

non-local extract than there is no data for this subextract.

If the value is zero for a local subextract (and the keyed

length is non-zero) then this routine can fill the subextract

and set the length to the size of the keyed subextract. If

the value is -1 for a local subextract, then there was some

problem in allocation. Do NOT fill the subextract in this

case!

The subextracts. The size and type are determined by the

call to register the extract.

37

5.8 pVSetExtract

PVSETEXTRACT(INDEX,EXNUM,PLOTMASK,REQMASK,IVAL,RVEC)

This routine gets called for each registered extract. The programmer must supply data

associated with the status for the next set of requests from the clients.

INDEX:i: I

EXNUM:i: I

PLOTMASK:o: I

REQMASK:o: I

IVAL:o: I

RVEC:o: R(9)

The extract index. This number must be greater that 100

and defines an extract.

The extract number associated with INDEX.

Programmer defined integer that specifies the plot attributes

for the extract. This is passed to the render routine.

The request mask. Each bit specifies which subextracts

are required to statisfy the plotting attributes. For exam-

ple, 5 requests subextract 0 and subextract 2. If the most-

significant bit is set all subextracts are requested, even if

based on SUBOPT, the data exists (i.e. some state has

changed).

An integer sent to the clients associated with this extract.

A real vector of data sent to the clients with the request

for this extract.

38

5.9 pV_GetExtract

PV-GETEXTRACT(EX,TYPE,NUM,IVEC,RVEC,NAME,NEXTEX)

Returns the internal pV3 extract structure info. This routine can be called from any server

programmer-supplied code. The extracts form a linked list. This routine allows the scanning

of all active extracts by continually calling the routine until the desired extract is found.

EX:i/o: I

TYPE:o: I

NUM:o: I

IVEC:o: I(10)

RVEC:o: R(12)

NAME:o: C'20

NEXTEX:o: I

Extract pointer (integer in FORTRAN). On input, this is

the desired extract. The special case of the first extract is

indicated by a 0 or NULL and is updated with the actual

extract pointer.

The extract type or index.

The extract number. This is a unique number for the type.

Integer data set based on TYPE (length also determined

by TYPE)

Real data set based on TYPE (length also determined by

TYPE)

Extract name.

Extract pointer (integer in FORTRAN) to the next ex-

tract. 0 or NULL indicates that this is the last extract.

This can be used in the next call to pY_GetExtract (ar-

gument EX) to continue scanning the list.

• Planar Cut - TYPE = 2

IVEC(1) -- Plot Mask

IVEC(2) _- Scalar field index

IVEC(3) ---- Vector field index

IVEC(4) -- Threshold index

RVEC(1-9) -- Cut corners - Three of the 4 corners that denote the plane

RVEC(10-12) ---- Plane normal

• Geometric Cut - TYPE = 4

IVEC(1) -- Plot Mask

IVEC(2) -- Scalar field index

IVEC(3) ---- Vector field index

39

IVEC(4) = Threshold index

IVEC(5) ---- Cut index

RVEC(1) -- Z prime

• Domain Surface - TYPE = 5

IVEC(1) = Plot Mask

IVEC(2) -- Scalar field index

IVEC(3) -- Vector field index

IVEC(4) -- Threshold index

IVEC(5) : Mapping flag

IVEC(e) = Special surface scalar index

IVEC(7) -- Special surface vector index

• Iso-Surface- TYPE = 7

IVEC(1) -- Plot Mask

IVEC(2) -- Scalar field index

IVEC(3) -- Vector field index

IVEC(4) -- Threshold index

RVEC(1) -- Z prime

• StreamLine- TYPE = 18

IVEC(1) = Plot Mask

-- Scalar field index

= Vector field index

-- Threshold index

-- StreamLine Group number

IVEC(2)

IVZC(3)

IVEC(4)

IVEC(5)

IVEC(e)

IVEC(r)

IVEC(8)

= PVM tid for client with seed location

= Cell index in client to start StreamLine

: Minimum StreamLine number for group

IVEC(9) -- Maximum StreamLine number for group

IVEC(10) = Number of StreamLine segments

RVEC(1-3) : Seed location (XYZ)

4O

• Particles- TYPE = 19

IVEC(1) = Plot Mask

IVEC(2) ,--- Scalar field index

IVEC(3) = Vector field index

IVEC(4) -- Threshold index

• Vector Cloud- TYPE = 20

IVEC(1) = Plot Mask

IVEC(2) ---- Scalar field index

IVEC(3) -- Vector field index

IVEC(4) -- Threshold index

RVEC(1) -- Threshold minimum

RVEC(2) -- Threshold maximum

• Programmer-defined- TYPE > 100

IVEC(1) -- Plot Mask

IVEC(2) _-- Scalar field index

IVEC(3) -- Vector field index

IVEC(4) -- Threshold index

IVEC(5) -- IVAL

RVEC(1-9) - Real values assoctated with the extract

41

5.10 pV_GetSub

PV_GETSUB(EX,SUBEX,NUMCS,PTR, LEN_TID)
Returns the internal pV3 sub-extracts. This routine can be caUed from any server programmer-

supplied code.

EX:i: I

SUBEX:i: I

NUMCS:i: I

PTR:o: I

LEN:o: I

TID:o: I

Extract pointer (integer in FORTRAN) as returned by

pV_GetExtraet.

Sub-extract number (0-11 based on TYPE).

Client index or StreamLine segment number (0 biased).

Integer (in FORTRAN) used as a pointer to the structure.

In C this returns the pointer to the block of memory. A 0

(zero) indicates that the memory block is not allocated.

Length of structure. A 0 (zero) indicates that the struc-

ture is not currently filled.

PVM tid for the client that produced the segment (Stream-

Lines Only).

42

The following routines are used for drawing programmer defined objects in

the 3D window:

5.11 pVDraw3D

PVDRAW3D(ISTAT)

This programmer supplied subroutine is called by the pV$ server at different times during

the rendering phase. It is the responsibility of this routine to specify the object(s) to be

plotted based on the rendering status. The object(s) are defined by calls to pV_Object3D.

Calls to pV_GetState, pV_GetExtract, pV_GetSub and pV_GetPointer are valid but

invocations of pV_SetState should be avoided.

ISTAT:i: I Rendering stage:

0 - rendering for static object(s)

1 - rendering for dynamic object(s)

2 - rendering for translucent object(s)

The options listed above reflect the manner that the server draws the 3D scene. If the

case is steady-state (or unsteady and pause is in effect) and the viewing transformation

matrix is NOT changing, static objects only get rendered once (until the transformation

matrix is changed again). Snap-Shot Rendering is used to improve drawing performance so

the result of the rendering of the static objects is saved in a secondary pizmap and ZBuffer.

These items are used to start the scene generation for subsequent animation frames.

Dynamic objects are those that will change or move from frame to frame even if the

underlying (static) object(s) are not moving. An example of this is any dynamic surface

(cut plane or iso-surface) or StreamLine animation using 'blobs' to display the integration

pseudo-time.

Translucent objects, even if static, must be rendered last in order to get the scene to

look correct. The ZBuffer must be updated with the translucent surfaces last.

If the application is unsteady (and not paused), the static objects as well as the dynamic

and translucent objects are rendered each time step.

43

5.12 pV_Object3D

PV-OBJECT3D(ITYPE,ICOLOR,XYZP, RADII,COL,NP)

This routine must only be used from within pVDraw3D or the registered routine for pro-

gra_er defined extracts, pV_Object3D defines additional plotting for the 3D window.

Multiple objects may be drawn by multiple calls to this routine from within pVDraw3D

or the extract rendering routine.

ITYPE:i: I

ICOLOR:i: I

XYZP:i: R(3,NP)

RADII:i: R(NP)

COL:i: R(NP)

NP:i: I

Type of plotting primitive:

0 - disjoint quadrilaterals - NP must be 4 times the num-

ber of quads

1 - disjoint triangles - NP must be 3 times the number of

tris

2 - polytriangle strip - NP must be the length of the strip

3 - disjoint line segments - NP must be 2 times the number

of segments

4 - polyline - NP must be the length of the line

5 - spheroids - NP must be the number of shpere-like ob-

jects to plot

The method used for coloring the object:

-1 - draw the object white

0 - draw the object in grey

1 - color the object from the data in COL

The (_, y, z)-coordinates of the points that support the

primitive.

The spheroid radius (in user coordinates). For ITYPE

= 5 only. Points are plotted (and are MUCH faster) if

RADII(l) is 0.0

Color scaling for the data points (used only for ICOLOR

= 1). The values must be in the range 0.0 to 1.0 and the

scalar field color map is applied to that range to compute

the color for the point.

Object length (the number of points)

44

The following routines are used for drawing programmer defined objects in

the 2D window:

5.13 pVDraw2D

PVDRAW2D(ISTAT)

This programmer supplied subroutine is called by the server at different times during the 2D

window rendering phase. It is the responsibility of this routine to specify the object(s) to be

plotted based on the rendering status. The object(s) are defined by calls to pV_Object2D.

Calls to pV_GetState, pV_GetExtraet, pV_GetSub and pV_GetPointer are valid but

invocations of pV_SetState should be avoided.

ISTAT:i: I Rendering stage:

0 - rendering for static object(s)

1 - rendering for dynamic object(s)

Like rendering for the 3D window, the 2D window scene generation has multiple' phases.

Because translucency is not supported (nor does it make much sense) in the 2D window

and there is no ZBuffer, the translucent phase is not implemented.

The only 2D dynamic object that pV3 currently uses is the mapped cross-hair cursor.

For a program controlled 2D window, the programmer must perform a forced update

(pV_SetState OPT = -1) for a static draw or should render everything during the dynamic

phase.

45

5.14 pV_Object2D

PV_OBJECT2D(ITYPE,ICOLOR,XYW,COL,NP)

This routine must only be used from within pVDraw2D. It defines additional plotting

for the 2D window. Multiple objects may be drawn by multiple calls to this routine from

within pVDraw2D.

ITYPE:i: I

ICOLOR:i: I

XYW:i: R(2,NP)

COL:i: R(NP)

NP:i: I

Type of plotting primitive:

0 - disjoint quadrilaterals - NP must be 4 times the num-

ber of quads

1 - disjoint triangles - NP must be 3 times the number of

tris

2 - polytriangle strip - NP must be the length of the strip

3 - disjoint line segments- NP must be 2 times the number

of segments

4 - polyllne - NP must be the length of the line

5 - points - NP must be the number of dots

The method used for coloring the object:

-1 - draw the object white

0 - draw the object in grey

1 - color the object from the data in COL

X and Y window values for the points that make up the

drawing primitive. The plotting in the 2D window for X

ranges from -1.0 (left side) to 1.0 (the right side of the

window). The Y range is from -1.0 (bottom) to 1.0 (the

top of the window).

Color scaling for the data points. Used only for ICOLOR

= 1. The values must be in the range 0.0 to 1.0 and the

scalar field color map is applied to that range to compute

the color for the point.

Object length in points

46

The following routines are used for Programmer-defined probes:

5.15 pVProbe

PVPROBE(FLAG,XAXIS,YAXIS)

This programmer supplied subroutine is called by the server at the end of the rendering

phase ifthe programmer-defined probe isactivated. It isthe responsibilityof this routine

to specify the line(s)to be plotted and return the axis annotation. The line or lines are

defined by callsto pV_LIine. Calls to pV_GetState, pV_GetExtract, pV_GetSub and

pV_GetPointer are valid but invocations of pV_SetState should be avoided.

FLAG:i: L

XAXIS:o: C'32

YAXIS:o: C'32

logical flag

.TRUE. first call after probe has been activated

.FALSE. subsequent calls

X-Axis label for the plot

Y-Axis label for the plot

Note: Currently the only way to initiate the programmer-defined probe is by a call to

pV_SetState with OPT = 13 from pVEvents.

5.16 pV_Line

PVLINE(X,Y,NP)

This routine must only be used from within pVProbe. It defines a line" to be plotted in

the 1D window. Multiple lines may be drawn by multiple calls to this routine from within

pVProbe. Auto-scaling is performed on the first line for the first call to pVProbe after

the probe has been started. Afterwards user or programmed events can control the scaling.

X:i: R(NP)

Y:i: R(NP)

NP:i: I

X values for the line

Y values for the line

Line length

47

5.17 pVInit

PVINIT(NPIX1,NSX 1,NSY1,NPIX2,NSX2,NSY2,NPIX3,NSX3,NSY3)

This routine is called at server initialization before the windows are open. It allows the

customized selection of window sizes and placement as well as allowing arty advanced pro-

gramming that should only be performed at initialization (such as memory allocation).

NPIXl:i/o: I

NSXl:i/o: I

NSYl:i/o: I

NPIX2:i/o: I

NSX2:i/o: I

NSY2:i/o: I

NPIX3:i/o: I

NSX3:i/o: I

NSY3:i/o: I

The size of the 1D window. Enters with pV3s default

size.

The suggested X pixel location (in the root window) for

the start position of the 1D window. Enters with pV3s

default location.

The suggested Y pixel location (in the root window) for

the start position of the 1D window. Enters with pV3s

default location.

The size of the 2D window. Enters with pV3s default

size.

The suggested X pixel location (in the root window) for

the start position of the 2D window. Enters with pV3s

default location.

The suggested Y pixel location (in the root window) for

the start position of the 2D window. Enters with pV3s

default location.

The size of the 3D window.

size.

Enters with pV3s default

The suggested X pixel location (in the root window) for

the start position of the 3D window. Enters with pV3s

default location.

The suggested Y pixel location (in the root window) for

the start position of the 3D window. Enters with pV3s

default location.

48

6 Client Side Programming

6.1 The Use of Pointers in FORTRAN for the Clients

Some of the data that gets returned from pV_GetStruc is in the form of pointers to blocks

of memory. The pointers are treated as INTEGER*4 variables on all machines except DEC

ALPHAs and KSRs where they are INTEGER*8. Traditionally, this in.formation cannot be

used by the FORTRAN programmer. But, a mechanism exists on all major FORTRANs

(SGI, DEC, IBM, HP and SUN) to allow the pointer to be passed to a SUBROUTINE

or FUNCTION and then have the memory treated as a normally declared vector or array.

This is done by the VAX extension '%val(pointer)' used in the CALL or function invokation.

When the pointer is passed to the sub-program by 'value', it is equivalent to passing a

variable by 'reference' (the FORTRAN method). That is, in both cases, the address of the

memory of interest is placed in the stack!

Using this mechanism (or the POINTER statement supported by some f77s), sophis-

ticated pV3 client enhancements may be performed using FORTRAN. To complete this

picture, two additional entries to the pV3 client library have been added to allow the

FORTRAN programmer to allocate and free up blocks of memory.

6.2 MALLOCPV

PTR -- MALLOCPV(NBYTES)

This function is equivalent'to the C routine 'malloc'. It allocates a block of memory and

returns the pointer to the block.

NBYTES:i: I

PTR:o: I

The number of bytes to allocate.

The address of the block (0 is an error indicator).

6.3 FREEPV

FREEPV(PTR)

This function is equivalent to the C routine 'free'. It deaUocates a block of mem0ry. NOTE:

Only free up blocks of memory that YOU allocate!

PTR:i: I The address of the block.

49

6.4 Client Structures

In general, this data is the information returned from the programmer-supplied routines,

though the connectivity tables are internally generated (with the proper IOPT). The struc-

tures are exposed so that multiple copies of the data need not be kept.

6.4.1 Node based

The following data is based on the 3D node space:

XYZ: R(3,NNODE)

S: R(NNODE)

T: R(NNODE)

V: R(3,NNODE)

Z: R(NNODE)

IBLANK: I(*)

TBCON: I(*)

(z, y, z)-coordinates of grid nodes.

Scalar function values.

Threshold function values.

Vector function values (Vx, Vy, Vz).

Current z _ values for planar or programmed cuts.

IBLANK values for structured blocks. The length is the

number of nodes in the structured blocks. For a case that

is only structured blocks the length is NNODE. If the

pointer to this array is 0, then no IBLANKing is active.

PVM tid number for block connectivity outside current

domain.

6.4.2 Cell based

The following data is based on the 3D cell space:

CELl: I(4,KCEL1)

CEL2: I(5,KCEL2)

CEL3: I(6,KCEL3)

CEL4: I(8,KCEL4)

NPTET: I(8,KNPTET)

Node pointers for tetrahedral cells.

Node pointers for pyramid cells.

Node pointers for prism cells.

Node pointers for hexahedral cells.

Poly-Tetrahedra strip header:

NPTET(1,n) = the pointer to the end of the strip n,

i.e. it points to the last entry in PTET for the poly-

tetrahedral strip

NPTET(2,n) = the first node in the poly-tetrahedra

NPTET(3_n) = the second node in the poly-tetrahedra

5O

PTET: I(KPTET)

BLOCKS: I(6,KNBLCK)

NPTET(4,n)

NPTET(5,n)

NPTET(6,n)

NPTET(7,n)

NPTET(8,n)

= the third node in the poly-tetrahedra

= the fourth node in the poly-tetrahedra

= the last node in the poly-tetrahedra

= first connection (face 1 of the first teta)

= last connection (face 2 of the last tetra)

The rest of each poly-tetrahedra, 1 node per cell. The first

and last node numbers in PTET are replaced by a flag to

indicate the start and end of the strip. The flag is the

negative of the strip number so that if you are in a strip,

you can find which strip it is.

Structured block definitions:

BLOCKS(1,m)

BLOCKS(2,m)

BLOCKS(3,m)

BLOCKS(4,m)

BLOCKS(5,m)

BLOCKS(6,m)

connectivity

= NI

= NJ

= NK

= cell number that terminates the block

= node number that terminates the block

= index into CBLOCK that starts the

table for the block.

6.4.3 Domain Surfaces

The following data is based on the surface space:

NSURF: I(3,KNSURF)

SCON: I(KSURF)

SCEL: I(4,KSURF)

TSURF: C*20(KNSURF)

NSURF(1,n) is the pointer to the end of domain surface

group n, i.e. it points to the last entry in both SCON and

SCEL for that group.

NSURF(2,n) is the startup drawing state.

NSURF(3,n) is the global surface number.

connecting cell number for internal boundaries.

node numbers for surface faces. For quadrilateral faces

SCEL must be ordered clockwise or counter-clockwise; for

triangular faces, SCEL(4,n) must be set to zero.

titles for domain surfaces.

51

6.4.4 Domain Surface Edges

The following data is 'based on the surface edge space:

NSED: I(2,KNSED)

SED: I(*)

NSED(1,n) is the pointer to the end of the surface edge n,

i.e. it points to the last entry in SED for that group.

NSED(2,n) is the surface group number associated with

this edge. NOTE: a domain surface may have as few a

zero edges (the surface closes totally upon itself) and can

have more than one edge!

pointers to nodes that make the surface edge. Each node

connects to the last (except for the first entry) in a polyline

structure.

6.4.5 Connectivity

The connectivity tables are used by the particle path algorithms and other tools that require

neighborhood data. Any connection (cell number) that is negative indicates that there is no

neighboring cell and the value is the index into SURF, SCON and SCEL for the surface face.

If the pointers to all of these structures are 0, then this information has been deallocated.

CCELI: I(4,KCEL1)

CCEL2: I(5,KCEL2)

CCEL3: I(5,KCEL3)

CCEL4: I(6,KCEL4)

CPTET: I(2,KPTET)

CBLOCK: I(*)

cell indices for the neighbors touching each of the four

faces of the tetrahedron.

cell indices for the neighbors touching each of the five faces

of the pyramid.

cell indices for the neighbors touching each of the five faces

of the prism.

cell indices for the neighbors touching each of the six faces

of the hexahedon.

The neighbor for face 3 and face 4 for each tetrahedra in

the strip. Face 1 and face 2 are implicit (the last and next

cells) except for the beginning and end of the strip where

the connectivity can be found in the header NPTET.

A vector that contains the connectivity data (the cell in-

dex) for the husk of the block. The start index for a par-

ticular block is in BLOCKS(6,m).

52

SURF: I(KSURF)

CCEL: I(4,KSURF)

face 3- j = N J

next (N I -

set of loops

face 4 - i -- 1

face 1 - k = 1

first (NI - 1) * (NJ - 1) entries indexed m a nested

set of loops with j as the outer and i as the inner.

faee 2- i=NI-1

next (NJ - 1) * (NK - 1) entries indexed ,n a nested

set of loops with k as the outer and j as the inner.

-1

1) * (NK - 1) entries indexed in a nested

with k as the outer and i as the inner.

next (N,I - 1) • (NK - 1) entries indexed m a nested

set of loops with k as the outer and j as the inner.

face 5 - k = NK - 1

next (NI - 1) * (N.I - 1) entries indexed m a nested

set of loops with j as the outer and i as the inner.

face 6 - j = 1

next (gI - 1) * (NK - 1) entries indexed m a nested

set of loops with k as the outer and i as the inner.

cell number that contains the face. Zero indicates a face

without a cell.

surface indices for the neighbors touching each of the three

or four faces of a surface face.

53

6.5 pV_GetStruc

PV_GETSTRUC(OPT,PTR,LEN)

Returns the internalpV3 clientsidestructure.This pV3 routinecan be calledfrom any

programmer-supplied code.

OPT:i: I

PTR:o: I

LEN:o: I

Option set to specify what data to get.

Integer (in FORTRAN) used as a pointer to the structure.

In C this returns the pointer to the block of memory. A 0

(zero) indicates that the memory block is not allocated.

FORTRAN NOTE: this is an INTEGER*8 value on ma-

chines with 64 bit pointers such as DEC ALPHAs.

Length of structure.

• Node Structures:

OPT

301

302

303

304

305

306

307

PTR -Pointerto

XYZ

S

T

V

Z

IBLANK

TBCON

• CellStructures:

length of structure

NNODE

NNODE

NNODE

NNODE

NNODE

numberofnodesinblocks

numberofnodesinblocks

OPT

311

312

313

314

315

316

317

PTR -Pointerto

CELl

CEL2

CEL3

CEL4

NPTET

PTET

BLOCKS

length of structure

KCEL1

KCEL2

KCEL3

KCEL4

KNPTET

KPTET

KNBLCK

54

Domain

OPT

321

322

323

324

327

• Domain

OPT

Surface Structures:

PTR - Pointer to

325

326

• Connectivity Structures:

OPT

length of structure

NSURF KNSURF

TSURF KNSURF

SURF KSURF

SCEL KSURF

SCON KSURF

Surface Edge Structures:

PTR - Pointer to length of structure

NSED KNSED

SED Number of ployline edge points - NSED(1,KNSED)

PTR - Pointer to

CCEL1

CCEL2

CCEL3

CCEL4

CPTET

CBLOCKS

CCEL

331

332

333

334

336

337

338

length of structure

KCEL1

KCEL2

KCEL3

KCEL4

KPTET

len of husks

KSURF

55

6.6 pVExtract

PVEXTRACT(INDEX,EXNUM,REQMASK,IVAL,RVEC)

It is the responsibility of this routine to calculate and send back to the server any re-

quested subextracts. The sending of messages to the server must be done by calls to either

pV_SendXi or pV_SendXr based on the type of the data (specified during server regis-

tration- SUBTYPE).

INDEX:i: I

EXNUM:i: I

REQMASK:i: I

IVAL:i: I

RVEC:i: R(9)

The extract index. Always greater than 100.

The extract number associated with INDEX.

The request mask. Each bit specifies which subextracts

are required to statisfy the plotting attributes. For exam-

ple, 5 requests subextract 0 and subextract 2.

An integer associated with this extract.

A real vector of data associated with this extract request.

6.7 pV_SendXi

PV-SENDXI(INDEX,EXNUM,SUBINDEX,SUBSIZE,LEN,IVEC)

Sends an integer subextract back to the server.

INDEX:i: I

EXNUM:i: I

SUBINDEX:i: I

SUBSIZE:i: I

LEN:i: I

IVEC:i

The extract index. Always greater than 100.

The extract number associated with INDEX.

The subextract index ((}-11).

The subextract size per length. For example, if the subex-

tract is to define a set of disjoint tris that support the

extract, the size would be 3. This must match the size

specified in the server code during registration.

Length of structure.

The array of data to be passed to the server. The actual

number of integers transferred is LEN * SUBSIZE.

56

6.8 pV_SendXr

PV_SENDXR(INDEX,EXNUM,SUBINDEX,SUBSIZE,LEN,RVEC)

Sends a real subextract back to the server.

INDEX:i: I

EXNUM:i: I

SUBINDEX:i: I

SUBSIZE:i: I

LEN:i: I

RVEC:i

The extract index. Always greater than 100.

The extract number associated with INDEX.

The sub extract index (0-11).

The subextract size per length. For example, if the subex-

tract is for the 3D coordinates (X,Y,Z) that support the

extract, the size would be 3. This must match the size

specified in the server code during registration.

Length of structure.

The array of data to be passed to the server. The ac-

tual number of floating point values transferred is LEN *

SUBSIZE.

57

A Plotting Masks

The following are additive (or-able) so that the proper attibutes can be specified.

A.1 Cut Surfaces

This mask controls the pVa scalar tools (planar cuts, programmed cut surfaces, iso-surfaces

and domain surfaces) attributes.

1 - Render - Surface rendering on

2 - Grid - Mesh display on

4 - Grey - Surface colored with grey

8 - Threshold - Surface is thresholded according to the threshold function and limits

16 - Contour - Contour lines are plotted on the surface

32 - Translucent - Plot surface using the translucent attribute

64 - Arrows - Arrow drawing on

128 - Tufts - Grid of tufts on (dynamic only)

256 - Mapping - A 2D mapping exists for this surface (domain only)

512 - Probing - 2D probing is active

1024 - Outline - Outline drawing is requested (with the mask equal to only this flag)

A.2 StreamLines

This mask controls the pV3 streamline plotting attributes and therefore the requested

sub-extracts.

I - Render - StreamLine rendering on

2 - Tube - Tube rendering on

4 - Grey - StreamLine drawn with default color

8 - Threshold - StreamLine is thresholded according to the threshold function and limits

(not currently implemented)

16 - Back - StreamLine is backward going (can not be active with 32)

58

32 - Fore - StreamLine goes down stream (can not be active with 16)

64 - Ribbon - Ribbon rendering on (with 2 makes tubes with twist)

2048 - Probing - StreamLine probe currently active for this StreamLine

A.3 Particles

This mask controls the pV3 bubble rendering attributes and therefore the requested sub-

extracts.

1 - Render - Bubble rendering on

2 - Size - Bubble size based on divergence like tubes - currently not used

4 - Grey - Bubble colored with default color

16 - Time - Bubbles are colored with the time of spawning

32 - Material Lines - Plot lines between particles in the same group

A.4 Vector Clouds

1 - Render - Vector cloud rendering on

4 - Grey - Vector cloud colored with default color

59

