
NASA Technical Memorandum 104594, Vol. 4

MODIS Technical Report Series

Volume 4, MODIS Data Access
User's Guide - Scan Cube Format

Virginia L. Kalb

Goddard Space Flight Center

Greenbelt, Maryland

Thomas E. Goff

Research and Data Systems Corporation

Greenbelt, Maryland

National Aeronautics and
Space Administration

Scientific and Technical
Information Program

1994

https://ntrs.nasa.gov/search.jsp?R=19950010172 2020-06-16T08:49:55+00:00Z

This publication is available from the NASA Center for AeroSpace Information,

800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934, (301) 621-0390.

Table of Contents

INTRODUCTION

BACKGROUND

IDENTIFICATION

SCOPE

PURPOSE AND OBJECTIVES

DOCUMENTATION CONVENTIONS

TOOLKIT USAGE

QUICK EXAMPLE

TECHNICAL POINTS

FUNCTIONAL OVERVIEW

PSEUDO CODE EXAMPLE

FUNCTION CALL SEQUENCE

ADVANCED EXAMPLE

FUNCTION REFERENCES

LIBRARY ACCESS AND INSTALLATION

APPENDICES

Appendix A - MODIS Spatial Domain Descriptions

The MODIS Scan Cube Spatial Domain

The MODIS Rectilinear Domain

The MODIS Mapped Domain

Appendix B - Data Product header include file description

Appendix C - The DataDescriptors.h Library Include File Description

Appendix D - Data Product Header example

Appendix E - MODIS Dataset Internal Format

DATASET contents example

Appendix F - Library Dataset Interactions

GLOSSARY

REFERENCES

1

1

2

3

3

5

6

7

8

11

11

12

14

17

30

31

31

31

33

33

35

37

39

45

48

50

52

58

List of Figures

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1

2

3

4

5

6

7

8

9

10

11

12

Simple Algorithm Example

Simple Algorithm make File

Detector Numbering

Pseudo Code for a Minimum Algorithm

Multiple Scan Cube Processing Illustration

Two Dimensional Access Example

MODIS Level-1 Simplified Scan Cube

Overall Dataset Contents

Memory Allocation for Variable Coincident Spatial Sizes

Dataset Contents Example

Data Flow Illustration

Algorithm Dataset Interactions

7

8

10

11

14

16

31

45

46

48

5O

51

List of Tables

Table 1

Table 2

Table 3

Table 4

Documentation Conventions

List of Files

MODIS Level-lB Data Product Scan Cube Sizes

Header Parameter Names

5

30

32

47

/v

INTRODUCTION

The library functions described in this document allow read and write access to the Earth Observing System

(EOS) Moderate Resolution Spectroradiometer (MODIS) derived data products. They also provide access

to remotely sensed data from other scanning instruments, both heritage and new instruments, that have

been transformed into the MODIS scan cube format. These functions have been designed to allow all users

to have easy access to all information components contained in MODIS formatted datasets. They also

provide a flexible and simple method for writing MODIS formatted datasets.

The MODIS scanning technique is unique when compared with other instruments, due to its large off nadir

viewing angle coupled with the simultaneous capture of multiple lines. Nevertheless, MODIS instrument

data will be available as both raw detector counts and at-satellite radiances in the instrument viewing

geometry. This includes all aberrations inherent in the MODIS scanning technique. Previous instruments

with similar types of instrument viewing distortions have been resampled before general consumption and

subsequent ingestion by science algorithms. However, highest algorithmic accuracy for science data

products is maintained by using this unresampled MODIS data.

The high MODIS data volume (approaching a half terabyte per day) has been a driving factor in the library

design. To avoid recopying data for user access, all I/O is performed through dynamic "C" pointer

manipulation. The user has easy access to any instrument band or data product parameter in a dataset

through the "C" data structure syntax. This technique is also used for creating output data products.

BACKGROUND

MODIS instrument data is used by a wide array of scientists to derive information about the Earth. In

general, scientists ingest MODIS data along with ancillary data to produce MODIS Data Products. These

products are then used as part of the knowledge base of information to determine long term changes in the

Earth biosphere, which is then used to make policy decisions at all governmental levels. MODIS algorithms

are executed in, and the resulting data products are archived by, the production EOS core system (ECS)

distributed information system (EOSDIS) which also archives the resulting data products.

Data derived from the MODIS instrument can be divided into three types, corresponding to three spatial

domains: the scan cube domain, an orbital rectilinear domain, and a geographically based mapped domain.

The scan cube domain consists of all Data Products that are produced at MODIS instrument pixel IFOVs,

or spatial aggregations thereof. (See Figure7 in Appendix A for a visualization of the MODIS scan cube.)

These products are the MODIS Level-1A raw counts, MODIS Level-1A Geolocation Data Product,

MODIS Level-1B at-satellite radiances, and Level-2 products that are produced in the true MODIS scan

geometry. The rectilinear domain consists of MODIS scan cube data that has been resampled into a

coordinate system on EOS across track and along track axes. The mapped domain encompasses all data

products that have been gridded, binned, or otherwise aggregated onto a map projection or other Earth

geoid based coordinate system such as the MODIS Level-3 data products.

Algorithm developers must consider the spatial domain in which the algorithm will operate. Algorithms that

do not incorporate a spatial component will operate in the scan cube domain. Algorithms that incorporate

spatial components or will use MISR Level -lb2 or similar data for Level-2 scan cube processing should

consider processing in the rectilinear or mapped domains. Algorithms that depend on more accurate band

to band registration or uniform ground field of views should also consider the rectilinear and/or mapped

domains. Algorithms that depend on in situ, external ancillary inputs, other satellite or instrument data

sources, or require fixed ground areas will require interactions with data in the mapped domain. Algorithm

developers must be cognizant of the MODIS "bow tie" overlap effect in the scan cube domain. See the

various MODIS publications listed in the reference section of this document for "bow tie" effect

descriptions. In all cases, the user needs to consider the possibility of modifying the algorithm to use the

"earlier" domains when possible. Transforming data products directly from the scan cube domain to the

mapped domain, without going through an intermediate rectilinear resampling, is highly recommended.

This will minimize data resampling, cross product data dependencies, _d computer based processing

power. It should be noted that the historical Landsat TM data and the EOS MISR data are resampled from

the instrument geometry to scenes or orbital axes before any science algorithms are applied.

More complete descriptions of the MODIS spatial domains are given in Appendix A to this document.

Considerations for each domain, and transformations among domains are given in the "MODIS Processing

Spatial Domains" paper (see Reference section).

IDENTIFICATION

This document is the first in a series of User's Guides describing the library and utility functions that the

SDST will be generating. This edition of the MODIS SDST Library USER'S GUIDE applies to the

September 1994 delivery of the MODIS scan cube I/O access routines, version 1.0, library source code. It

includes descriptions of all the pieces necessary to use the library, including sample data product header

include files for AVHRR. Additional data product header include files for actual MODIS products and

other data source header include files will be available via electronic means and are not a part of this edition

of the guide.

Several small test datasets derived from AVHRR are included in the distribution and used for illustration

purposes in this document. More complete datasets are available from the MODIS SDST or can be created

using information in the appendices to this document.

This document is written and maintained by members of the MODIS Science Data and Support Team

under the auspices of NASA Goddard Space Flight Center, code 920.2, in Greenbelt, MD.

SCOPE

This guide contains information applicable to both the use and maintenance of the library functions. It is

directed toward four classes of users: normal MODIS algorithm creators and data users, sophisticated

creators of spatially derived algorithms, those who will provide additional instrument datasets (other than

MODIS), and those who will alter existing or add new data product header include files. This document

does not describe the internal workings of the library source code, but provides descriptions of the methods

utilized by the library to access the datasets to aid users in understanding the library's capabilities.

This edition of the MODIS SDST Library User's Guide describes the initial "C" language version of the

SDST Library input and output (I/O) functions. These were created for the purpose of reading and writing

currently available data formatted as MODIS data products. A future release of this document will include

similar FORTRAN functions written in either FORTRAN77 or FORTRAN90. The current suite of

functions at this release is limited to the MODIS Level-1A, Level-1B, and Level-2 Data Products. These

are the data products that are a part of the scan cube domain. It does not cover access to Level-3 or

Level-4 data products which are in the mapped domain.

Use of this library relies heavily on the user's understanding of how to use each "C" data structure as

defined uniquely for each format Data Product. These are defined in data product header include files

which are unique to each formal Data Product. These header include f'des, available to all users of this

library, will be under SDST configuration management and distribution. They will be published and

announced via Email to all MODIS algorithm developers. This will help to insure the synchronization of

data product definitions among the MODIS Team Member responsible for the formal Data Product, the

Science Product Support Office (SPSO) database entries, the data product header include files associated

with this library, and all users of the data products.

The MODIS SDST proposes to write these data product header include files for algorithm developers in

conjunction with the SPSO and MODIS Team Members or their programming representatives. Although

the access to MODIS data is easily understood, the programming techniques utilized in the header include

files are necessarily complex to accomplish the encapsulation of the data products. Documentation of these

techniques is given for completeness but is not mandatory reading for library use.

PURPOSE AND OBJECTIVES

This library has been designed to allow read and write access to data from a suite of scanning type

instruments whose data have been transformed into a MODIS viewing geometry and written in a MODIS

scan cube data structure. This allows a common library to be used for algorithm development. Simulated

and/or test data sets will be used for algorithm development and production environment testing before

actual MODIS data are available. The currently available datasets emphasize AVHRR data, with TM data

forthcoming, but are expected to be expanded to other instruments such as MSS, CZCS, MAS, or other

data sources on a user requested basis. The internal format for the dataset contents and a simple example

are given in Appendix E to this document.

TheMODIS scancubeconceptcontainsdatavaluesin athreedimensionalraggedarrayformatwherethe
arraydimensionscorrespondto theacrosstrackdirection,thealongtrackdimension,andthenumberof
bands.Theraggedarrayterminologyappliesto adatastructurein whichthesizesof eachcomponentof
thearrayarenotconstant.Forexample,atwo dimensionalragged array data structure containing the
words of a sentence would use the number of words in the sentence as one dimension and the variable

number of characters per word in the other dimension. In the MODIS case, the number of bands is

constant, but the number of lines per scan cube in the along track dimension is a function of the band

number, and the number of pixels across track varies across scan cubes.

The three dimensional scan cube array can be collapsed into a two dimensional data array consisting of

across track pixels and bands by setting the along track dimension to one (1). This allows single line

scanning instruments to be accommodated by the MODIS scan cube data structure. The number of

elements in each dimension are included in the library structures and are explicitly available (no function

call required) to the user. This allows the use of these library functions for uses beyond the scope of the

MODIS effort.

The library implementation, which incorporates a "data product header include file" technique, allows user

written algorithms to determine the sizes of all data array elements as a function of the instrument data

source. This allows a single algorithm process (program) to be easily written in a manner such that any

instrument source can be ingested. Information such as the number of bands, band central wavelengths,

band widths, number of pixels, etc. can be made available from each data product header include file.

Multiple data product header include files can be used within a single program, thereby allowing

simultaneous access to other data products. An example of this facility comes from AVHRR in which the

data has a different number of across track pixels and bands from MODIS, and from TM in which a

different instrument IFOV for each band is employed. AVHRR data are currently made available to

algorithm developers in raw instrument counts, the original NOAA albedo / brightness temperature data

values, and also convened to radiance energy values. Actual MODIS data will be available only in radiance

energy values. Utilizing the library header include files, which contain data type and structure specifications

for each of the available input and output data source, allows the data types to be known to an application

program without performing data type conversion within the library. Additional data types can be

accommodated with a custom header file describing the new data source. The library does not need to be

recompiled to add new data sources.

The function calling sequences and parameters are expected to remain constant even though the underlying

implementation may change. This ensures a stable interface for algorithm developers.

The remainder of this document addresses the I/O routines and illustrates, by example, how to access the

data in the MODIS scan cube. Each section of this library contains functions that allow a science algorithm

to input and output MODIS data products, or other instrument data masquerading as MODIS scan cubes.

Library functions that transform or resample data products from MODIS scan cubes to other forms have

yet to be defined, and are not a part of this library effort.

4

DOCUMENTATION CONVENTIONS

The conventions used in this document are described as follows:

Table 1. Conventions Used

Times Roman font

Courier font

Arial

carots (< and >)

double quotes (")

Leading Caps

UNIX meta-characters

Normal text and narrative comments added to source listings.

Program source code source listings copied from the library distribution and

pseudo code examples

Program output as if received at a terminal

Enclose generic items to be replaced by specific user supplied names or

descriptions. This convention is also used in UNIX source listings to specify

the default location for operating system library include files.

Enclose a character string set that is to be considered as a unit.

Are used to designate a formal noun, as in a reference to a formal registered

(with the SPSO) Data Product.

A method of designating occurrences of characters using the UNIX

conventions for metacharacters, specifically the * character to represent one
or more occurrences of a character.

TOOLKIT USAGE

Four methods for illustrating the use of the library functions, and a section with technical information, are

included in this section. The _ _ presents an actual small algorithm with three parameters. The

source code is included in the library distribution and can be quickly cloned to generate simple algorithms

which can be expanded with time. This is the easiest method for getting started with the library function

calls. The Functional _ section goes into the philosophical aspects in the design and use of the I/O

library. It includes descriptions of the functions and describes the sequence and coupling among the

functions. The Advanced _ section presents a sample algorithm that exercises the library's

capabilities for handling multiple scan cubes at a time with the use of moving windows. This allows two
dimensional access across the boundaries of these scan cubes. This example illustrates the library's use with

algorithms which need to know the relative locations of neighboring pixels for spatial operations. The final

Function Reference section lists the functions in alphabetical order by function entry point names and

included the details about each function call, such as error returns and ANSI function prototype definitions.

The included Technical Points section presents a list of assumptions and notes concerning the use of these

I/O library functions.

6

QUICK EXAMPLE

To illustrate the simplicity of library usage, a fully functional actual code example with make file is included

in this section. It reads MODIS Level- 1B radiances (actually AVHRR in MODIS form) and calculates a

simple vegetation index (VI) with an average thermal temperature and a quality assurance (QA) value as

additional parameters. Only those lines of source code directly applicable to a potential science algorithm

are commented.

#include <stdio.h>

#include <string.h>

#include "AVHRR.h"

#include "VI.h"

#include "MOD_IO_prototypes.h"

<- define AVH data in MODIS format

<- define pseudo VI output data product

main()

{

AVHRRscancube ibuf;

VIscancube obuf;

short fdin, fdout,ierr,k;

float pixChl, pixCh2, pixCh4,

long bufid;

long npixels, nx, ny, x, y;

<- declare an input data structure

<- declare an output data structure

pixCh5;

fdin=MOD_IO_openMasterInputDataset("AVHRR_Orbit543.Llb.MODISlike",
&AVHRRheader);

fdout = MOD_IO_openOutputDataset("viOutputfile", &VIheader);

while ((bufid = MOD_IO readSwath(fdin, &ibuf)) > 0) { <- inputthedam

ierr = MOD IO allocateOutputBuffer(fdout, &obuf); <- ob_/nanou_utbuffer

npixels = ibuf.b[0].nPixels;

for (k:0; k<npixels; k++) {

pixChl = ibuf.b[0] .data[k] ;

pixCh2 = ibuf.b[l] .data[k] ;

pixCh4 : ibuf.b[3] .data[k] ;

pixCh5 : ibuf.b[4] .data[k] ;

obuf.vegIndex.data[k] = (pixCh2

obuf.viQuality.data[k] = 0;

<- how many pixels to process

(Note that we know apriori that each band of AVHRR

has the same resolution, hence the same number of pixels.)

<- get value for band 1

<- band2,etc from a band within the

<- input data buffer .bl] containing

<- a data array .data[]

- pixChl)/ (pixCh2 + pixChl);<-calculatetheVI

if (obuf. vegIndex, data [k] < i. 0)obuf. viQuality, data [k] = -i. 0; <-demm_ne QA

if (obuf.vegIndex.data[k] > i. 0)obuf.viQuality.data[k] = +i. 0;

obuf.avgTemp.data [k] = (pixCh4 + pixCh5) /2. 0; <- fmd_eaveragetempemmm

}

ierr = MOD_IO_writeSwath (fdout) ; <- writetheou_utbuffer

}
MOD IO closeDatasets ();

Figure 1. Simple algorithm example.

7

The threeVI parameters (vegIndex, viQuality, and avgTemp) are treatedas subelemen_ of a

complex data structure. Each element of this structure corresponds to one instance of a complex data

product value. Use of the "C" data structure concept instead of separate arrays guarantees the

synchronization of the various science parameters.

The above example can be compiled with the MODIS I/O Utility Library via the following UNIX make f'tle

listed in Figure 2. This is a minimalist make file and does not include directory details and environmental

variables. See the make fdes, README file and INSTALL file in the library distribution for details. (Note

that the "-Aa" option flag is the ANSI switch on HP and SGI, not Sun compilers.)

VI : vi. o MOD_IO_lib. o

cc -Aa -o VI vi. o MOD_IO_lib. o

vi.o: vi.c MOD IO lib.h AVHRR.h VI.h DataDescriptor.h

cc -Aa -c vi.c MOD IO lib.h DataDescriptor.h AVHRR.h VI.h

MOD_IO_lib.o: MOD_IO_lib.c MOD_IO_lib.h DataDescriptor.h

cc -Aa -c MOD_IO_lib.c

Figure 2. Simple example make file.

The simplicity of this source code is made possible by the predef'med data product header include file. The

header file for the example VI data product that defined the output data product and the parameters of this

output data product is included in the library distribution. The explanation of the contents of this header

include file is the subject of a Appendix D to this document.

TECHNICAL POINTS

This initial release includes "C" bindings only. Bindings for FORTRAN functions can not be

implemented due to the lack of data structures in FORTRAN77. Bindings for FORTRAN90, however,

are possible. Algorithms that are written in FORTRAN77 (with POSIX and ECS approved extensions)

will require the writing of "wrapper" functions that extract MODIS data for each band or parameter

individually and supply this data to a calling FORTRAN function. The SDST is considering adding this

capability and needs user input to generate a requirement.

• Each band or parameter in a scan cube in the data set can be accessed as either a linear array (vector) or

a two dimensional array (matrix). This is the user's choice when writing the algorithm. Scan cube sizes

can vary from one scan cube to the next. The bands or parameters can have different array sizes that are

integer multiples of each other to accommodate multiple data resolutions.

8

• Outputdataproductscancubesarecoupledto amasterinputscancube.Thisallows the MODIS scan

cube Geolocation Data Product to be applied to an output product, by reference. That is: a new

geolocation data product does not need to be created for each output product, the input geolocation

applies to the output product as well. This coupling is maintained in all subsequent generations of
MODIS Data Products.

Additional input data in the scan cube or rectilinear domain can be accessed as ancillary inputs by this

same set of library calls. No additional functions are needed, but care must be exercised in the scan cube

domain to maintain spatial registration. The onus is on the user, not this utility library, to insure proper

usage of ancillary data.

• All accesses to MODIS data are assumed to be sequential. Scan cube data can not be accessed in a

random manner with these library calls.

• Error returns are returned to the user as function returns. Negative numbers are an error, zero or

optional positive numbers indicate a non error condition. Negative error returns from -1 to -99 are non

fatal (soft) errors such as encountering an end of file (EOF) condition. Error returns from -100 to -???

indicate a fatal (hard) error such as a memory overflow or illegal dataset. This utility library will endeavor

use the generic PGS error determination routines in a future release, after they are more fully understood

by the developers of this library. NOTE that this current library release (1.0) produces error messages to

stderr and terminates if a fatal error occurs. This is a temporary safety mechanism for algorithm

development and will not be allowed in the PGS environment. Error return values and messages are

documented in the Alphabetized Function Reference section of this user's guide.

• All functions use ANSI prototyping beginning with the 1.0 release. These prototypes are available in a

"C" header include file, "MOD_IO_prototypes.h", included with the library distribution.

A set of headers will be publicly available that define the Data Product data structures, file set

descriptions, constant variables (typedefs), etc. Any header include files for formal Data Product

structures generated by algorithm developers are required to be given back to the SDST Utility Library

configured management access point for availability to all library users. A example generic header is

described and included in Appendix B to this document.

• All function calls dynamically allocate space within the library and set pointers to that data space in the

user's data structure. This frees the science algorithm developer (the user of the library) from concerns

about memory allocation details and data array boundary overruns (memory leaks), provided the header

structures are used. Most importantly, it allows variable length scan cube records for both the science

and calibration portions of each MODIS scan. This ability applies to both the scan cube and rectilinear
domains.

• The scan cubes are assumed to be sequential in time. That is: no global descriptor such as a scan cube

counter or equivalent time based discriminator is implemented, but will be required to identify scan cubes

in the production environment. Opening more than one input dataset, (granule or orbit), is allowed.

Additional datasets that do not match the global dataset descriptor or master scan cube ID will product a

non fatal error in future releases. The user, not the library, is then responsible for mapping or "stitching"

techniques to insure geographical registration.

9

More thanonescancubecanbeaccessed(sequentially)for eachopeneddataset.Thelimit to thenumber
of inputdatasetsconcurrentlyopenis three(3),with useraccessto five (5) scancubesperdataset.This
accesscanbe"roundrobin'ed"within thefive (5)at atimelimit. Three(3)outputdatasetscanalsobe
generatedconcurrently.Theselimits areparameterizedin thelibrary internalheaderfile andcouldbe
easilychangedby recompilingthelibrarywith differentvalues.Notethatlargernumberswill increasethe
libraryinternaltablesizes.

Usersinterestedin theMODIScalibrationandcorrelationwith documentationsuppliedby SantaBarbara
ResearchCenter(SBRC, theMODIS instrumentbuilder)will needtheinformationin thisparagraph.
Sciencealgorithmdevelopersshouldnotneedthis informationbut it is includedherefor reference
purposes.Externaldocumentationwith thedetectornumberingschemeusedby SBRCwill requirethat
theuserof MODIS Level-1AandLevel-1Bdataknow aboutthe"flipping" of thisdetectornumbering
with respectto thescancubelinenumberingsequence.SeeFigure3.TheUtility Libraryusesa"line
within scancube"numberingschemethatincreasesin thealongtrackdirection.This is oppositeto the
SBRCdetectornumberingscheme.This line numberingschemeis usedin theMODISLevel-1A,
Level-1B,andLevel-2DataProducts.

J_
o

t-
O

l
detector 10

swath

detector 1

scan cube

l-

across track

SBRC Detectors

Figure 3.

dl<

m
=canUne0

swath

=man line9

scan cube

m

across track
SDST Scan Lines

Detector numbering.

w
m
._c
E
o

• The input and output MODIS data calls can be intermixed within the same program, but must be kept in
the order illustrated in the included source code and pseudo code examples. This sequencing facilitates

synchronization of the Geolocation Data Product with all output Data Products.

• The library is designed to enforce function call ordering and will generate error conditions otherwise.

• Fully commented sample programs that include the incorporation of heritage and/or dummy algorithms

are available in the library distribution or from members of the SDST algorithm transfer team (ATI')

directly. Additional help, information, and sample code is available from ATT members.

10

FUNCTIONAL OVERVIEW

This utility library can be used in a simple manner in which a MODIS Data Product is generated from only

the MODIS Radiance input values, or a more complicated manner in which concurrent use of multiple scan

cubes and more than one input source are used to generate a MODIS Data Product. The example pseudo

code, listed in Figure 4, introduces the simple techniques for accessing MODIS data. A discussion of more

complex capabilities of this library is contained is a later section of this user's guide.

PSEUDO CODE EXAMPLE

The following pseudo code example contains an ordered list of the basic function calls required to develop

an algorithm. This sequence of calls performs the following functions. The MODIS scan cube domain input

Data Products are obtained with a sequence of input library calls, allocation of output scan cubes are

obtained via a library call, the algorithm results are placed into the new scan cubes, and Data Products are

transferred to the f'de system with output library calls. The library is initialized with data set "file open"

calls, scan cubes are staged with a "read cube" call, individual MODIS bands or other data product

parameters are made available to the user within a "C" data structure, output scan cubes are allocated,

output data product parameters are calculated, the scan cube of data product is placed into the output file,

and finally the data sets are closed with a "file close" call. Multiple bands or parameters are accessible by

accessing elements of each input data structure, and multiple sequential scan cubes are obtained with

multiple "read cube" calls into separate input data address areas. Pseudo code with the library function

names for a minimum algorithm is shown in Figure 4.

filein = MOD_IO_openMasterInputDataset(inputFileName,

InDataDescriptorAddr)

fileout = MOD_IO_openOutputDataset (outputFileName,

OutDataDescript orAddr)

for every scan cube:

MOD_IO_readSwath (filein, InBufferAddr)

MOD IO_allocateOutputBuffer(fileout, OutBufferAddr)

npixels = InBufferAddr.bandl.nPixels - 1

conloute the parameters for this algorithm, for k=0 to npixels

OutBuffer.paraml.data[k] = a function of(

InBuffer.bandl.data[k], etc.)

MOD_IO_writeSwath(fileout)

end of for every scan cube

MOD IO closeDatasets ()

Figure 4. Pseudo code with the library function names for a minimum algorithm.

Note the use of the "C" data structure OutBuffer. paraml, data [k] in which each derived value of

an output Data Product is placed into an output buffer ' OutBuf fer', in a specified parameter

' pararal ', in a linear array ' data [] '. The size of the array ' data [] ', and the corresponding range

of the index ' k', are dynamically altered by the value of ' npixels ' for each read of a scan cube. This is

necessary to prevent the placing of values outside the memory bounds of the output data product.

11

L

FUNCTION CALL SEQUENCE

The library functions must be invoked in the proper order as illustrated in Figure 4 - Pseudo Code example

(previous section). The functions performed by the individual function calls, and their coupling with other

functions, are given in the following paragraphs.

The 'filein - MOD IO_openMasterInputDataset(inputFileName,

InDataDescriptorAddr) ' functionreturnsa unique identifier('filein')toa datasetcontaining

the MODIS Level-1A, MODIS Level-1B, MODIS Geolocation, or other MODIS Level-2 input Data

Products. It requires the user to specify a character array 'inputF£ 1 eName' containing the fully qualified

name of the MODIS or "MODIS like" input data files. The library checks the input dataset for a predefined

dataset type specifier e.g. "MODIS L1B". The user supplied parameter 'InDataDescriptorAddr' is

the address of an instance of a data structure defined in the unique product header include file for this input

product. The formal name of this data structure is given in that header include f'fle. The header include file

also contains a character array with a dataset contents specifier e.g., "AVHRR_albedo_and radiances".

These characters are used as a sanity check with the dataset embedded header information to make sure the

user knows the source and type of data expected. For example, an AVHRR dataset can be used as input to

an algorithm for development purposes, but the user must know apriori (and specified in the AVHRR.h

include file) which AVHRR bands to use in the algorithm. These bands will have different central wave

numbers and band widths for other instrument data sources such as MAS or MSS. Additional information,

unique to each dataset, is available to the library through the dataset contents. The header include files

contain the generic dataset parameters and the specific formatting information for that dataset.

The' fileout - MOD_IO_openOutl)utDataset(ol_utputFileName,

OutDataDescriptorAddr) ' funcfon returnsa unique identifier('fileout ')toa datasetcreated

by the library to contain the user derived output Data Product. It requires the user to specify a character

array 'outputFi 1 eName' containing the fully qualified name of the MODIS or "MODIS like" output

data file. The library places the predefined dataset type specifier CMODIS") into the output data product

volume header. The user supplied parameter 'OutDataDescriptorAddr' is the address of a data

structure defined in the unique product header include file for this output product. The library also places a

character array with a dataset contents specifier e.g. "AVHRR_derived_Locust__probability" into the output

file volume header. This is obtained from the data product formal "<product.h>" file. Geolocation that has

been tagged to the Master input scan cubes also applies to the output data product. The master input scan

cube dataset must be open before this cal can be made.

The 'err - MOD_IO_readSwath(filein, InBufferAddr) ' functionreadsa scan cube's

worth of data from the dataset specified by ' fiIein' into the library space, not the user space. The

address of the user data structure parameter ' InBuf ferAddr ' is passed to the library function. The

library passes pointers to the science data to the user through the user's data structure ' InBu f f er'. In

addition, the library places the number of Earth viewing along track elements, the number of across track

elements per line, and the number of total spatial elements (across track times along track) into this user

supplied pointer to the scan cube data structure. For the real MODIS instrument, the nominal number of

across track spatial elements is 1354 with a fixed 10 detectors along track, thereby creating 13540 spatial

elements. MODIS bands 1 through 7 will have larger numbers for these values. (Note that spatial elements

are not the same as IFOVs for MODIS bands 1 through 7). For the AVHRR MODIS "look alike", these

12

returned numbers are 2048 pixels across, 10 detectors down, and 20480 total elements. Caution: this

returned value can be different for each MODIS scan cube because the number of pixels across a MODIS

scan is ground commandable. This can also vary across instrument data sources. The library handles data

sources with a different number of pixels in each of the two dimensions, and a different number of pixels

per band (or parameter), and can handle these within the same algorithm program.

Each input Data Product is represented as a data structure to the user. Pointers are used within the data

structure to allow access to each individual parameter. This technique allows the library to allocate memory

space dynamically when the size of the scan cube changes. This is performed without user intervention. It

also involves no memory transfers and is thus very efficient. The user has access to all the information and

data sizes required to use the input data via a set of predefined (in the data product header include file) data

structure elements. This is explained in the header f'de descriptions in a following section and also illustrated

in examples included in the appendix to this document. IMPORTANT: Users who plan to use a scan cube

call for spatial processing need to be knowledgeable of the detector numbering, band to / from detector

translations, band registration over variable spatial IFOVs, and pixel line numbering schemes.

ff the input file is a MODIS Level- 1A dataset, additional information as defined in the MODIS Level- 1A

Data Product header include file is available. This allows access to the onboard calibration data. Details on

how to access these components is contained in the Level- 1A Data Product header include file and is not

included here.

The 'err = MOD IO_allocateOutputBuffer(fileout, OutBufferAddr) ' function

creates space in the library allocated memory area for an output scan cube that corresponds to the currently

specified "Master scan cube". This synchronizes the output Data Product with the Master input data

Product, thereby allowing the appropriate geolocation dataset to apply to this output Data Product. The

output Fde is designated by the user supplied ' f 5.1 eout' indicator. All information that the algorithm

requires (across and along sizes, number of pixels, etc.) is now available as structure elements in the formal

output Data Product data structure pointed to by the user supplied address ' OutBuf ferAddr' These

sizes must be used in the algorithm code to prevent 'stepping over' or overwriting the neighboring data

elements. Extreme cases will produce a memory protection fault. The function prints an error message if

something goes wrong.

The ' MOD_IO_writeSwath (fileout;) ' function writes the user generated data from the library

memory space onto the disk. The user parameter ' f i 1 eout ' indicates to the library which output dataset

is to be written. An error code is returned if unsuccessful.

The 'MOD_I0_closeDatasets () ' call,the 'MOD_IO_closeInputDataset (filein) '

call, and the ' MOD_IO_closeOutPutDataset (fileout) ' call deallocate the library memory

space for either the specified input file, output file, or all dataset files. It also appends a trailer record to an

output dataset to indicate a logical end of file (EOF).

13

ADVANCED EXAMPLE

This section illustrates the use of the library for spatial processing by allowing more than one scan cube to

be in memory at a time and utilizes the two dimensional access to the scan cube data. This code example

performs a moving window spatial average over a 3 by 3 pixel area across scan cube boundaries. This
requires the use of two input scan cube buffers for each output buffer. Figure 5 illustrates the spatial

relationship for the indices in the code example. The X in the figure corresponds to the placement of the

calculated average in the output data product.

T
|

g

j-direction

Ior the next to lastcolumn, J

!

RADIUS. in the j - dlrecUon= 2

ibuf[bsav]

IIII

ibuf[bufindex]

for _ last column, /
RADIUS. in lhej - direction = 1 L

2

Figure 5. Multiple scan cube processing illustration.

The key to obtaining the data within the scan cube is the use of "C" data structures with dynamic pointers.

The example code in this section is graphically illustrated in Figure 5. The data structure contents, including

the pointers, is reinifialized on each invocation of a MOD_IO_readSwath or

MOD_IO_al locateOutputBuf fer function. The data structure is declared by the user, but its

address is passed to the library so that the library can manage dynamic memory allocation and fill the data

structure. The user gains access to the data indirectly through the pointer mechanism. Note that while the
data product header include f'de provides both one dimensional and two dimensional access to the same

scan cube data, a single algorithm can not access the same data utilizing both techniques at the same time.

#include <stdio. h>

#include <string. h>

#include "AVHRR. h" <- theMODIS headerincludefiles

#include "MOD_IO_orototypes.h"

#define RADIUS 3

#define Min(x,y) (x < y ? x : y)

main()

(

AVHRR2Dscancube ibuf[2];

AVHRR2Dscancube obuf;

short fdin, fdout, ierr,

<-

bandindex;

declare 2 input buffers of type AVHRR2Dscancube

and one output buffer of the same type

Figure 6. Two dimensional access example.

14

long bufid[2];

short bufindex, bsav,

long noutput, nj, ni;

float output;

j, i, kj, ki, radiusi, radiusj;

fdin=MOD_IO_openMasterInputDataset("scancubes.small", &AVHRRheader);

fdout = MOD_IO_openOutputDataset("avgOutputfile", &AVHRRheader);

if((bufid[0] = MOD_IO_readSwath(fdin, &ibuf[0])) < 0) exit(-l);

bsav=0;

bufindex=l;

while((bufid[bufindex] = MOD IO readSwath(fdin, &ibuf[bufindex])) > 0) {

^^--Thiswhileloop_executedun_ereadSwathfuncfionm_catesnomomdamamavailab_.

fprintf(stderr,"main: read id = %d\n", bufid[bufindex]);

ierr = MOD_IO_allocateOutputBuffer(fdout, &obuf); <- requ_tanou_utbufferfrom

_e_bmry.

for(bandindex=0; bandindex<AVHRRheader.nbands; bandindex++) {

nj = ibuf[bufindex].b[bandindex].nAlongScan;<- _enurnberofelemen_in

ni = ibuf[bufindex].b[bandindex].nAlongTrack;<- eachdJrecfion.

radiusi = RADIUS; <- howf_intheid_ecfion _avemge.

for (j=0; j<nj; j++) (

/* Adjust the radius for rightmost columns, where a
smaller window is needed. */

radiusj = Min(RADIUS, nj-j); <- howf_inthejdhecfion_avemge.

for (i=0; i<ni-2; i++) {

output = 0; noutput = 0;

for (kj=0; kj<radiusj; kj++) {

for (ki=0; ki<radiusi; ki++) {

output += ibuf[bsav].b[bandindex].data->xy[j+kj][i+ki];

noutput++;

}) ^^ sum up the pkel v_u_ in a 3 x 3 p_el area. The dam structure used hem addres_s each

p_el by _l_ting the buffer _v] from an array of input buffe_ _ulTomv], indexed

by the band number _andindex], further indexed m the science dam .dam w_ch poinu

to the two dime_ion_army _presenmfion xy[] [], _ing normally computed army

indices j+kj and i+_.
obuf. b [bandindex]. data->xy [j] [i] = (output/noutput+. 5) ;

) ^^ the ou_ut product _ contained wi_ a single buffer obuf, _ing the same dam structure technique

• e input buffer.
/* Next to last line in the current scancube: need the

top line from the next scancube: */

output = 0; noutput = 0;

for (kj=0;

output +=

output +=

output +=

]

kj<radiusj; kj++) (

ibuf [bsav] .b [bandindex] .data->xy [j+kj][ni-2]; noutput++;

ibuf [bsav] .b [bandindex] .data->xy [j+kj][ni- 1]; noutput++;

ibuf [bufindex] .b [bandindex] .data->xy [j+kj] [0]; noutput++;

^ ^ NOTE: the ibuf indices bsav and bufmdex indicate that different scan cubes

are accessed here.

Figure 6. Two dimensional access example (continued).

15

obuf. b [bandindex]. data->xy [j] [ni-2] = (output/noutput+. 5) ;

/* Last line in the current scancube: need the top 2

lines from the next scancube: */

output = 0; noutput = 0;

for (kj=0; kj<radiusj; kj++) (

output += ibuf [bsav] .b[bandindex] .data->xy[j+kj] [ni-l] ; noutput++;

output += ibuf[bufindex] .b[bandindex] .data->xy[j+kj] [0]; noutput++;

output += ibuf [bufindex] .b [bandindex] .data->xy [j+kj] [i] ; noutput++;

) "^ one scan cube from bsav and two scan cubes from bufindex.

obuf.b [bandindex]. data->xy [j] [ni-l] = (output/noutput+. 5) ; <- .5isused m

round to integer numbers properly.

)
bsav = bufindex;

bufindex ^= I; /* we are using only 2 scan cubes so

used to toggle the index */

ierr = MOD_IO_writeSwath (fdout);

}

MDD IO closeDatasets () ;

an exclusive or is

Figure 6. Two dimensional access example (continued).

The above example does not include the use of more than one ancillary input MODIS data product, or

auxiliary data from non MODIS sources. Ancillary data, obtained from other data sources, can be accessed

via these library calls and included in the algorithm code after conversion to MODIS scan cube format.

Auxiliary data is obtained via function calls that am not a part of this library and can be in any data format.

The algorithm writer must insure that these extra data sources am used appropriately by checking

geolocation information, spatial sizes, units, and etc. associated with these ancillary data. This information
is made available to the user via the dataset header contents and accessed via the data structure pointer

mechanism. MODIS output data products am kept in synchronization with the Master input data product

by this library. The auxiliary data function calls can provide correct data by examining the input parameters

that specify the area and units requested by the calling program.

16

FUNCTION REFERENCES

This section contains the alphabetical ordering of the function calls documented in this User's Guide. It is

meant to be a quick reference to the individual function calls. Details of the ANSI prototyping

specifications are included.

All error messages produced by the library functions are documented here. As a debugging aid, almost all

errors are produced as a result of the one of the following conditions:

1 - Improper sequencing of function calls.

2 - Incompatible input data file and data product header include file (e.g., user included "AVHRR.h" but

is trying to read a TM dataset).

3 - Bad data include f'de; perhaps an existing <product>.h file was cloned and improperly altered for a

new data product.

Errors encountered by the current implementation of these functions will cause an immediate abort (with an

error message to the UNIX stderr). This behavior will be altered in a future release to use the ECS error

trapping and reporting functions as required in a production environment. The error messages documented

here will also be passed to the MODIS log on the MODIS team leader's computer facility (TLCF). The

source code contains debug statements that can be 'turned on' at compile time for additional information.

These messages are not documented in this User's Guide.

17

MOD_IO_allocateOutputB uffer

SYNOPSIS:

DESCRIPTION:

err = short MOD_IO_allocateOutputBuffer(short <output file designator>,

void * <returned buffer address>)

This function requests that the library obtain memory for an output data buffer from

the operating system. The space required is known from the internal data structure

associated with the user supplied <output file designator> and the master scan cube.

INPUTS:

OUTPUTS:

short <output file designator> : The output f'de designator returned by the

<MOD_IO_openOutputDataset function.

void * <returned buffer address> : The address of the user declared instance of the

scan cube data structure, into which the library places the updated pointers to the new
data.

RETURN: err : The return status value;

0 if all went well; error message and program termination if not.

EXAMPLE: #include "MOD_IO_prototypes.h"

#include "AVHRR.h"

AVHRRscancube outputBuffer;

COMMENTS:

fileout = MOD_IO_openOutputDataset(...

if(MOD IO allocateOutputBuffer(fileout, &outputBuffer) != 0)

printf("allocate error: %dha", err);

When an output buffer is allocated by the library, it inherits the scan cube number of

frames from the corresponding "Master Input Scan Cube".

ERROR

MESSAGES:
"No output stream to write to!"

"allocateOutputBuffer: Invalid output stream id"

"Sorry, output buffer for id = <number> has not been flushed can't recover"

"Sorry, cannot match next output id with master input buffers"

"Output id =<id number>, input list = <available buffer ids>" "can't recover"

"Sorry,unable to allocate output buffer for band <number>""can't recover"

18

MOD_IO_closeDatasets

SYNOPSIS: err = short MOD_IO_closeDatasets(void)

DESCRIPTION: This function closes all currently open files.

INPUTS: (n/a)

OUTPUTS: (n/a)

RETURN: err : The return status value is 0 if successful; error messages otherwise.

EXAMPLE: #include "MOD IO prototypes.h"

#include "AVHRR.h"

if(MOD_IO_closeDatasets 0 != 0) printf("Not being able to close files is bad

news\n");

COMMENTS: This function just calls the MOD_IQcloselnputDataset and

MOD IO closeOutputDataset functions. See those descriptions for details.

ERROR

MESSAGES:

See MOD_IO_closeInputDataset and MOD_IO_closeOutputDataset function calls.

19

MOD_IO_closeInputDataset

SYNOPSIS: err = short MOD_IO_closelnputDataset(short <inputFileld>)

DESCRIPTION: This function closes the user specified input dataset file and deallocates (frees) all

memory (malloc'ed) associated with the f'de designator <inputFileld>.

INPUTS: short <inputFileld> • The file designator provided to the user by the

MOD_IO_openlnputDataset function.

OUTPUTS: (n/a)

RETURN:

EXAMPLE:

err : The return status value; 0 for normal operation.

#include "MOD_IO_prototypes.h"

#include "AVHRR.h"

s::
COMMENTS:

ERROR

MESSAGES:

fileln = MOD_IO_openMasterinputDataset(...

if(MOD IO_closelnputDataset (f'deln) != 0) printf("Not being able to close files is
bad newskn");

"closelnputDataset: Invalid input stream id"

Z

20

MOD_IO_closeOutputDataset

SYNOPSIS: err = short MOD IO closeOutputDataset(short <outputFileId>)

DESCRIPTION: This function writes the trailer record to the output dataset f'de and deallocates (frees)

all memory (malloc'ed) associated with the file designator <outputFileld>.

INPUTS: short <outputFileld> : The file designator provided to the user by the

MOD_IO_openOutputDataset function.

OUTPUTS: (n/a)

RETURN: err" The return status value; 0 for normal operation.

EXAMPLE: #include "MOD_IO_prototypes.h"

#include "AVHRR.h"

fileOut = MOD_IO_openOutputDataset(...

if(MOD_IQcloseOutputDataset (fileOut) != 0) printf("Not being able to close
f'des is bad news_n");

COMMENTS:

ERROR

MESSAGES:
"closeOutputDataset: Invalid output stream id"
"can't write EOF"

21

MOD_IO_openInputDataset

SYNOPSIS: infd = short MOD_IOopenlnputDataset(char * <FileName>,

DataDescriptor * <datasetType>)

DESCRIPTION: This function opens a dataset in read only mode. The file name is supplied by the user

in the character string <FileName>. The dataset header is read from the disk file and

compared with the contents of the data descriptor passed to this routine,

INPUTS: char * <FileName> : The user specified fully qualified input dataset file name.

DataDescriptor * <datasetType> : The address of the formal name of the data

descriptor as defined in the associated data product header include file.

OUTPUTS: (n/a)

RETURN: infd : The positive data control block (dcb) number that the library uses in subsequent

functions to designate which input stream is being accessed.

EXAMPLE: #include "MOD_IO_prototypes.h"

#include "AVHRR.h"

#define FILENAME "/user/data/modis/Level. 1B/mydata.test.data.sim"

inputFileDcb = MOD_IO_openlnputDataset(FILENAME, &AVHRRheader);

COMMENTS: The formal name "AVHRRheader" must exist in the data product header include file

"AVHRR.h". This applies to all data product header include files. The user must not

alter the returned value: "inputFileDcb" in the above example. An error condition will

be reported if a master input dataset is not already open. The variable "infd" can be an

array element, e.g., "infd[2]".

(Error messages on next page)

22

ERROR
MESSAGES:

"Sorry,youmustspecifyamasterscancubefile first"
"Sorry,youhavealreadyusedupall inputDCBs;max= <number>.... can'trecover"
"Sorry,unableto openinputfile <f'flename>" "can'trecover"
"Can'treadscancubevolumeheader"
"Sorry,wronginstrument!"
"Sorry,wrongdomain!"
"Sorry,wrongdatatype!"
"Sorry,noVersion=<number>!"
"compiledversion:<number>,datasetversion<number>" "Incompatibilitybetween

library versionanddataset"
"Sorry,nonbands=<number>!"
"compiled# bands!=actualdatastreamheader# bands"
"Sorry,nonlines=<number>!"
"compiled# lines [=actualdatastreamheader# lines"

23

MOD_IO_openMasterInputDataset

SYNOPSIS: infd = short MOD_IO_openMasterlnputDataset(char * <FileName>, DataDescriptor

• <datasetType>)

DESCRIPTION: This function opens a master dataset in read only mode. The file name is supplied by
the user in the character string <FileName>. The dataset header is read from the disk

file and compared with the contents of the data descriptor passed to this routine.

INPUTS: char * <FileName> • The user specified fully qualified input dataset t'de name.

DataDescriptor * <datasetType> • The address of the formal name of the data

descriptor as defined in the associated data product header include file.

OUTPUTS: (n/a)

RETURN: infd • The positive dcb number that the library uses in subsequent functions to

designate which input stream is being used.

EXAMPLE: #include "MOD_IO_prototypes.h"

#include "AVHRR.h"

inputF'tleDcb = MOD_IO__openMasterlnputDataset(FILENAME, &AVHRRte.a_r);

COMMENTS: This routine calls MOD_IO_openlnputDataset internally to do most of the work.

ERROR

MESSAGES:

See MOD_IO_openlnputDataset reference section, plus:

"Sorry, you cannot open more than one Master input file" "ndcb_in = <number>"
"Can't recover"

24

MOD_IO_openOutputDataset

SYNOPSIS: outfd = short MOD_IO_openOutputDataset(char * <character string>,

DataDescriptor * <datasetType>)

DESCRIPTION: This function opens a dataset in write mode. The file name is supplied by the user in

the character string <FileName>. The type of the data product is specified by the user

as a pointer to the data descriptor "<datasetType>"

INPUTS: char * <FileName> : The user specified fully qualified output dataset file name.

DataDescriptor * <datasetType> : The address of the formal name of the data

descriptor as defined in the associated data product header include file.

OUTPUTS: (n/a)

RETURN: outfd : The positive dcb number that the library uses in subsequent functions to

designate which output dataset is being used; -1 for no more library internal dcbs

available.

EXAMPLE: #include "MOD IO_prototypes.h"

#include "AVHRR.h"

outputFileDcb = MOD_IO_openOutputDataset(FILENAME, &AVHRRheader);

COMMENTS: The formal name "AVHRRheader" must exist in the data product header include file

"AVHRR.h". This applies to all data product header include files. The user must not

alter the returned value: "outputFileDcb" in the above example. The variable "outfd"

can be an array element e.g., "outfd[1]".

ERROR

MESSAGES
"Sorry, you have already used up all DCBs; max = <number>"

"Sorry, you must specify a master scancube file fast"

"Unable to open output f'de <f'de name>" "can't recover"

"can't support writing multiple scancube types within a scancube now!"

"Can't write output header"

25

MOD_IO_printDataDescriptor

SYNOPSIS: void MOD_IO_printDataDescriptor(DataDescriptor * <datasetType>)

DESCRIPTION: The function prints the contents of the user specified data descriptor "<datasetType>"

to stderr. It is useful for informational purposes when debugging user written

algorithms and data product header include f'des.

INPUTS:

OUTPUTS:

DataDescriptor * <datasetType> : The address of the formal name of the data

descriptor as defined in the associated data product header include file.

(n/a)

RETURN: (n/a)

EXAMPLE: #include "MOD IO_prototypes.h"

#include "AVHRR.h"

fdin = MOD_IO_openMasterlnputDataset("myfile", &AVHRRheader);

MOD IO printDataDescriptor(&AVHRRheader);

COMMENTS: The data descriptor contents are printed to stderr in labeled and tabulated form.

INFORMATION

MESSAGES:
"Read Data Descriptor:"

name = <descriptor name>"

data types/scancube = <number>"

bands = <number>'* (bands are equivalent to parameters)
lines = <number>"

" resolution for band <number> = <nuber>" (multiple occurances)

" size of band <number> = <number> bytes" (multiple occurances)

ERROR

MESSAGES:
(none)

26

MOD_IO_readSwath

SYNOPSIS: index = long MOD_IO_readSwath(short <inputDcb>, void * <inputBuffer>)

DESCRIPTION: This function reads a scan cube from the user specified input dataset.

INPUTS: short <inputDcb>: The input file designator returned by the

MOD_IO_openMasterlnputDataset or MOD_IO_openlnputDataset routines.

OUTPUTS: void * <inputBuffer>: The address of the user defined scan cube data structure, into

which the library places the updated pointers to the new data.

RETURN: index->if positive: a sequential index number of the scan cube that has just been read,

starting from one (1).

index->if negative: an error return status value: - 1 for an end of file (EOF)

EXAMPLE: #include "MOD IO .prototypes.h"

#include "AVHRR.h"

AVHRRscancube ibuf;

inputDcb = MOD_IO_openMasterlnput(...

index = MOD_IO_readSwath(inputDcb, &ibuf);

COMMENTS: This call brings in the next scan cube from the specified dataset contained on disk into

library managed and allocated memory. Pointers to the scan cube elements are set in

the user's data structure to point to the data in the library data area. The user may

access any band (or parameter) and pixel through the scan cube data structure

definitions. The data structure also provides access to the spatial sizes of all bands (or

parameters). See code examples elsewhere in this document.

(Error messages on next page)

27

ERROR
MESSAGES:

"No input streamto read!"

"readSwath: Invalid input stream id"

"Can't read scancube header" ::

"Sorry, cannot overwrite scancube with index=<number>"

"Warning: scancube header doesn't have an id"

"scancube header doesn't have # frames"

"Bad science data read; can't recover"

"Bad SD cal data read; can't recover"

'!Warning: scancube header doesn't have SD mode"

"SD present, but incompatible .h file"

"Bad SRCA cal data read; can't recover"

"Warning: scancube header doesn't have SRCA mode"

"SRCA present, but incompatible .h file"

"Bad BB cal data read; can't recover"

"BB present, but incompatible .h file"

"Bad SV cal data read; can't recover"

"SV present, but incompatible .h file"

"Bad EM cal data read; can't recover"

"EM present, but incompatible .h file"

"Sorry, can't allocate space for bufindex <number>, band <number>"

"Sorry, incomplete read; wanted <number of bytes>, got <number of bytes>"

"Sorry, can't allocate space bytes data, bufindex <number>"

28

MOD_IO_writeSwath

SYNOPSIS: err = short MOD IO writeSwath(short <outputFileld>)

DESCRIPTION: This function writes the contents of the current output buffer to the dataset specified

by the user supplied outputFileld, where outputFileld was obtained from the

MOD__IO_openOutputDataset call.

INPUTS: short <outputFileld>: The value returned by the MOD_IO_openOutputDataset call.

OUTPUTS: (n/a)

RETURN: err" The return status value: 0 if every thing is OK, -1 if there is no output file to write

tO.

EXAMPLE: #include "MOD_IO_prototypes.h"

#include "AVHRR.h"

OutputFileld = MOD_IO_openOutputDataset(.....

err = MOD_.IO_allocateOutputBuffer(....

(place values in the output buffer)

err = MOD_IO_writeSwath(OutputFileld)

COMMENTS:

ERROR

MESSAGES:

"writeSwath: Invalid output stream id"

"Sorry, no output buffer has been allocated for product #<number> (nothing to

write!) can't recover"

"Sorry, unable to write <number> bytes; only wrote <number> bytes for output data
stream #<number>" "can't recover"

"ERROR: cannot match next output id with master input buffers"

"Output id =<number>, input list = <several numbers>" "can't recover"

"arglist write too long" (internal error)

"Can't write output scancube header"

29

LIBRARY ACCESS AND INSTALLATION

The library source code, make f'des, and test programs are contained a UNIX tar fide. This may be obtained

from the/pub directory on modis-xl.gsfc.nasa.gov via anonymous ftp and contains a README file with

the latest details and dataset contents descriptions. It also contains an INSTALL file with full installation

instructions. The following list shows a sample of the tides contained in the tar distribution:

Table 2. List of Files

README

INSTALL

MOD_IO_lib.c

MOD_IO_prototypes.h

MOD_IO_lib.h

MOD_IO_headerDefs.h

DataDescriptor.h

AVHRR.h

(additional files)

a file containing the latest information with a description of all the other
files in the distribution

installation instructions for adding this library to your suite of computer
based tools

the MODIS SDST utility library (all library functions)

ANSI function prototypes for library functions

data structures for scan cube buffer descriptions and DCBs; NOT explicitly

needed by application programs

defines for constants in the library specific to the dataset headers (also

used by non MODIS scan cube generators)

data structure definition for formal Data Products

a sample AVHRR data product header file

sample algorithms and test cases (see the README file for details)

30

APPENDICES

Appendix A - MODIS Spatial Domain Descriptions

The MODIS Scan Cube Spatial Domain

The MODIS instrument generates raw (digital counts) data for each detector within the instrument. This

set of detectors scans across (perpendicular to) the satellite orbit ground track to produce an amount of

data designated as a scan cube (see Figure 7). Multiple scan cubes are collected together to form a data

granule. Multiple granules are collected into an orbit. The sizes of this basic scan cube are summarized

below. Scan cube details are found in the MODIS Data Structure, Rates, and Volumes document as

referenced in the Bibliography.

Trailer record
veflaUeler_

Engr/MemDump _/

2 equivalent frames I" /

OBC Frames _" / I

4 sots of 15 to 50 frames I
1

Science Frames

commendable, 1354 ourmn_

/

Header record-----_

variable length

500m bands

250m bands

<
10 to 40 scan lines

Figure 7. MODIS Level-1 simplified scan cube.

31

The MODIS instrument has the capability of setting the across track size of the scan cube by ground

command. The current information indicates that this is not expected to be varied often, but plans are being

considered to lower the data transmission rate possibly by varying the across track size as a function of

latitude. In any case, the algorithm developer should be aware that the number of across track pixels is not

a constant. For the scan cube domain, the algorithm developer deals with a single band of MODIS data

coveting an entire scan cube swath. The sizes given are in pixels, not kilometers. The pixel ground

coverage sizes vary with the scan angle from nadir. The collection of detector values from all the bands that

cover a single nominal (at nadir) one (1) kilometer area are called a spatial element. All bands of data are

specified to be co-registered within 20 percent of the spatial element IFOV and are expected to be

co-registered within 10 percent of the IFOV. Note that this specification applied to the registration

knowledge. A table of band to band offsets will be published by the MODIS SDST and may be included as

part of the MODIS geolocation.

Table 3. MODIS Level-lB Data Product Scan Cube Sizes

ITEM HOW MANY FIXED OR VARIABLE

number of bands 36 fixed

across track pixels; bands 1 and 2 5,416 variable

across track pixels; bands 3 to 7 2,708 variable

across track pixels; bands 8 to 36 1,354 variable

along track pixels; bands 1 and 2 40 fixed

along track pixels; bands 3 to 7 20 fixed

along track pixels; bands 8 to 36 10 fixed

geolocation data 8 fixed

The MODIS Level-1A Data Product consists of the raw counts with a separate Geolocation Data Product

associated with each individual spatial element. The raw counts are available for the Earth view as well as

the various onboard calibrator (OBC) views. This raw data product is expected to be of use only to the

Level- IB calibration process. (The OBC access functions are described in an appendix.) The science

algorithms are expected to use the at-satellite radiances contained within the MODIS Level-lB Data

Product. This data product contains the radiance energy generated by viewing the Earth and measured at

each detector within the MODIS scanning swath. These values are spatially coincident with the raw counts

and have not been spatially resampled. The geolocation information associated with the MODIS Level-1A

product therefore applies to, and will be associated with the Level-lB Data Product. The Level-1A dataset

components will be synchronized with the Level-1A Metadata and the associated scan cube domain

Geolocation Data Product. The Level-1B dataset components will similarly be transparently aligned with

the Level-1B Metadata and this same scan cube domain Geolocation Data Product. All of the data sets are

accessible from the identical library calls, via separate data structures.

32

TheMODISLevel-1ADataProductalsocontainsinformationderivedfrom theonboardcalibrators
(OBCs)in two forms.Thefirst dataform isalsoin thebasicstructureof ascancube,but is measuredby
imagingtheOBCradiancesourcesin placeof theEarthbasedradiances.Therewill alsobeoccasional
Moon viewingdatain eitherorbothof theEarthviewsandOBC spaceviews.Thesecondform of OBC
datais derivedfrom theengineeringparametermeasurementsthataremultiplexedwithin thepacketdata.
Theseareseparatedinto aseparatecalibrationdataproductfor useby theLevel-1Bprocess.Thelibrary
callsto accesstheseportionsof theMODISdataarenot includedin thisdocument.

TheMODIS Level-2DataProductdatasetscanalsobeaccessedandgeneratedwith library callsincluded
in thisSDSTutility library.ThisallowspreviouslygeneratedMODISLevel-2productsto beusedasinputs
for thecreationof otherLevel-2DataProducts.

DataProductsin thisscancubedomainwill notbetemporallyor spatiallycoincidentwith anyotherscan
cubesor domainsandmustberesampledor otherwiseaggregatedintoarectifiedor mappeddomainfor
truespatialregistration.All truespatialoperationsin thescancubedomainareleft to theuser.

The MODIS Rectilinear Domain

Algorithms that operate on a single spatial pixel area at a time, and do not depend on the exact direction

and distance to adjacent spatial pixels, can generate science values in the scan cube geometry domain.

These values can then be mapped directly from the scan cube domain onto a Level-3 map projection or

similar geobased database. However, algorithms that depend on spatial directions and distances can easily

use either a rectilinear MODIS data domain or a mapped data domain as input when deriving science Data
Products.

The rectilinear domain is defined to be a coordinate system that uses the spacecraft ground track as one

axis, the scan perpendicular to the ground track as the second axis, and radiance data values resampled to a

uniform distance along each of these axes..

Only the MODIS Level-1B radiance values and MODIS Level-2 Data Products are appropriate for the

rectilinear domain. The MODIS Level-lA data is best represented in the scan cube domain and is not

appropriate to the rectilinear domain. Note that MODIS data that uses or passes through a rectilinear

domain will be resampled twice: once from scan cube to rectilinear, and again going from rectilinear to

mapped. For this reason, it is best to keep algorithms in the scan cube or mapped domain.

The MODIS Mapped Domain

This designation is used for all Data Products that have been transformed, via a map projection, onto a fiat

surface such as a piece of paper or display pixel indices (the electronic equivalent). A map projection can be

defined as the orderly transfer of Earth surface positions to corresponding points on a fiat surface. This

definition can be further generalized into a three dimensional hierarchical data structure such as a quad tree,

where each area on the flat surface is successively divided into smaller areas. Since the surface of a sphere

33

cannotbe forceddirectlyontoa fiat plane without simplifying approximations, several types of maps are

expected to be used to represent either the entire Earth global data sets or sections of the globe such as
continents.

Mapped domain library calls will be def'med in a separate document on MODIS Level-3 toolkit functions.

34

Appendix B - Data Product header include file description

A series of data product header include f'des that describe the data structures for: the input and output

formal Data Products, static arrays of characters describing the dataset contents, ANSI function

prototypes, and global variables are included as part of the library distribution. These are for use with "C"

programs only. FORTRAN equivalents are not available at the present time. Note that FORTRAN90 will

enable the use of these types of headers while ANSI FORTRAN77 will not. Each formal Data Product has

an accompanying header file that contains the product specific information which contains dynamic

variables and is accessible to the science algorithm developers. The set of all of these Data Product header

files will be created in cooperation with the algorithm writers, maintained by the MODIS SDST A'I'T

members, and made available for use by all algorithm developers. These headers will be coordinated with

the science data product office (SDPO) definitions for the formal Data Products and parameters and placed

under configuration management by the SDST.

Each Data Product header include file contains the data structure definitions for each of the parameters that

are a part of every formal Data Product. Data product parameters are the components of each formal Data

Product such as the data product itself, values for the precision of the data product, all quality assurance

(QA) parameters, and intermediate informal data products associated with the formal Data Product. The

data types (short, long, float, etc.) for each parameter are defined here along with the sizes, resolutions, and

dimensions of the spatial extent of each parameter. Two "C" code modules are also included; one to

initialize the data structure (similar to a constructor in C++) and one to set the pointers appropriately for

user access. These are "hidden" in this file so that the user need only alter the algorithm source code to

include the appropriate file without the concern of linking separate code modules. There could be situations

where it is desirable to put these code modules into a separate file. If so, these situations can be easily dealt
with on an individual basis.

Note that the individual bands of MODIS instrument data in the Level-1A and Level-1B Data Products are

equivalent (for library access) to data product parameters and are accessed by the user via the same library
call mechanism.

The include files required for algorithm development are: "MOD_rO__Drototypes. h",

"<rnput: Product. h> ", and "<Out:put Procluct:. h>". ANSI prototypes for all library calls are

included in the "MOD tO prototypes, h" file. The Data Product detailed descriptions are included in

a header file that is unique to each instance of a Data Product, either input or output

(" <-rnpul: Product. h>" and/or "<Output: Product. h>"). A fully commented sample data

product header file for AVHRR data in a MODIS scan cube format is included in Appendix D. The

"DataDescrS.ptor. h" include file, referenced by the <*. h> files, defines a flexible data format which

is then used by the product specific < *. h> files to further describe each particular formal Data Product.

Each product specific header file also includes two code modules which are invoked by the library. The first

module, an initialization section, is called when each input dataset is first opened. This module customizes

the DataDescriptor data structure, which is then compared by the library with information in the actual

dataset volume header. The second module is called each time a scan cube is read into memory, or an

output scan cube is allocated. This code defines and passes the correct data pointers to the user's program

for accessing the input or output scan cubes that are actually in the library memory space.

35

FORTRAN(FTN77)accessiblefunctioncallsmaybewrittenata laterdateif thereis auserdemandfor
FTN77library functions.If written, theseareexpectedto be"wrappers"to the"C" functioncalls thatallow
FTN77accessto datastructurecontents.Theywill allow algorithmswrittenaccordingto F"rN77standards
to haveaccessto theMODIS data,butnotefficiently.Exceptionsto theFTN77ANSI standard(suchas
includefiles)will haveto be takento accomplishthis task.Notethatalgorithmswritten in FORTRAN90
will allowdirectaccessto datastructuresviapointermechanismsthataresimilar to the"C" language.This
is theSDSTrecommendedapproachafterapprovalfor algorithmdevelopmentin FORTRAN.

36

Appendix C - The DataDescriptors.h Library Include File Description

This is the include file used by the library and referenced in the formal Data Product header include files. It

declares the data structure for the data description area which contains pointers to data product unique
substrucure definitions.

/* */

/* MODIS scancube i/o library */

/* SDST */

/* Virginia Kalb, NASA/GSFC 920.2 */

/* Thomas Goff, RDC */

/* */

/* RCS keywords: *I

/* SHeader: DataDescriptor.h,v 2.1 94/08/16 09:57:49 gk Exp $ */

/* SDate: 94/08/05 09:57:49 $ */

/* $Source: /disk5/modis/sim/MOD_IO/RCS/DataDescriptor.h,v $ */

/* */
/* */
#ifndef DATADESCRIPTOR

#define DATADESCRIPTOR

struct FPTR {

void (*fptr)();

This declares a function pointer data type to facilitate the subsequent declaration of an array of function

pointers needed for the Level-1B data. The MODIS Level-1B subcubes contain the Earth (science) view

and the four sets of OBC data (SD, SRCA, BB, Space view).

);

typedef struct FPTR FPTR;

struct DataDescriptor

void (*init)();

short nptrs;

FPTR *set;

char *name;

long nbands;

long nlines;

(

<- Entry point to the initialization routine.

<- How many pointers to subcubes are required.

<- Pointer to the array ofsubcubes.

<- The dataset formal name, contained within the dataset.

<- The number of parameters (bands) in this formal Data Product.

The number of lines (detectors) in the along track direction for the finest spatial resolution for this formal

Data Product. For example, this corresponds to the number of along track detectors for MODIS bands 1
and 2 which is 40.

long *nres;

For each parameter (band), this is the resolution divisor to obtain the actual number of along track

detectors for that parameter (band). For example, MODIS bands 3 to 7 have an nres equal to 2 (20

detectors in the along track direction), and bands 8 to 36 have an nres value of 4 (10 detectors in the along

track direction).

37

long *nsize;

The size in bytes of each parameter value. For example, MODIS band 1 has 2 bytes per readout, 40

detectors along track, and 4 times the nominal 1354 samples along scan for a final value of 433280 bytes.

);
typedef struct DataDescriptor DataDescriptor;

#endif

38

Appendix D - Data Product Header example

This section contains an example of a generic Data Product header file with embedded comments. A

machine readable copy of this file is available as part of the library distribution. The source code is in the

Courier typeface and comments following each section of code are in the normal Times Roman typeface.

The formal Data Product header include f'de contents are divided into five (5) main sections. The first

section defines header includes and internal definitions. The next two sections set up the data structures for

each element of a parameter within a data product, and the order of the parameters within a scan cube. The

remaining two sections are functions that populate (provide instance specific contents for) the dataset

valuables and each scan cube variable respectively.

/* ./

/* MODIS scancube i/o library */

/* SDST ./

/* Virginia Kalb, NASA/GSFC 920.2 */

/* Thomas Goff, RDC */

/* ./
/* RCS keywords: ./

/* $Header: PRODUCT.h,v 2.0 94/08/05 17:01:26 gk Exp $ */

/* $Date: 94/08/05 17:01:26 $./

/* $Source: /disk5/modis/sim/MOD_IO/RCS/PRODUCT.h,v $./

/* ./

The RCS revision cont_lsystem is usedinternallyforconfigumtion managementduring thecode
developmentstage.

#ifndef PRODUCT

#define PRODUCT

The abovecpp preprocessordi_ctivespreventduplica_ compiling ofthis module from occurring.

#include <stdio.h>

#include <stdlib.h>

These are the standard UNIX header includes from the standard operating system location for system

include files. They are used for both ANSI prototyping and function macros.

#include "DataDescriptor. h"

This header file contains the MODIS library internal structure that holds values that are fixed for a given

product. It contains the data structure specifications for the PRODUCTheader.<components> data
structure.

#define PRODUCT HEADER_STRING "Product-specific identifer"

This define statement declares the formal name of each user's Data Product. No spaces are allowed. This

character string will contain something like: "Level-1B_radiances" for the MODIS Level-1B Data

Product. The spatial domain designation is contained within the datasets. This allows differing spatial

domains containing the same data types to be used interchangeably by the library and hence the user.

39

#define DUMMY 1

This is a dummy number (could be any number actually) used to satisfy the compiler when declaring the

variable dimension component in a multi-dimensional array. The data structures that allow for single or two

dimensional access to the data are illustrated later in this listing.

typedef double PRODUCTparml;

typedef long PRODUCTparm2;

typedef unsigned char PRODUCTparm3;

These type definitions specify the data type of the formal Data Product parameters. In this case, the Data

Product has three Parameters (these are bands for Level-lA and Level-lB). The first parameter is of type

double (64-bit floating point / real), the second is of type long (32-bit integer), and the last parameter is of

type single byte (8-bit). The data type is user-driven.

/* Structure for individual bands/parameters: */

struct PRODUCTPARMI {

PRODUC_oarml *data;

long nAlongTrack;

long nAlongScan;

long nPixels;

};

typedef struct PRODUCTPARMI PRODUCTPARMI;

This data structure declaration defines the first product parameter (the data part of which has been

specified above) to be a data structure containing a pointer to the spatial data array for this parameter, an

along track and across track dimension, and a total number of pixels. Note that the data dimensions are

adjusted by the library to reflect the resolution of each individual parameter.

struct PRODUCTPARM2 (

PRODUCqloarm2 *data;

long nAlongTrack;

long nAlongScan;

long nPixels;

};

typedef struct PRODUCTPARM2

(Same as the above description.)

struct PRODUCTPARM3 (

PRODUCTparm3 *data;

long nAlongTrack;

long nAlongScan;

long nPixels;

);

typedef struct PRODUCTPARM3

(Same as the above description.)

/* Structure for scancube output:

struct PRODUCTscancube {

PRODUCTPARMI pl;

PRODUCTPARM2 p2 ;

PRODUCTPARM3 p3 ;

PRODUCTPARM2;

PRODUCTPARM3;

*/

4O

};

typedef struct PRODUCTscancube PRODUCTscancube;

/* User should declare an output structure like

/* PRODUCTscancube obuf; */

this: */

This statement declares the data structure type for user access as a single linear an-ay. The examples given

in the main section of this document in the scan cube domain functions - introduction section, illustrate its

usefrom auser'sperspective.

/* Structure for 2d scancube output: */

/* CAREFUL! The rightmost array dimension MUST MATCH THE */

/* ACqUAL # OF SPATIAL ELEMENTS for that band! */

/* */

struct PRODUCT2Dparml {

PRODUCTparml xy[DUMMY][10];

);

typedef struct PRODUCT2Dparml PRODUCT2Dparml;

More type definitions: in this case to Blow two dimensionl access to the spati_ data. The array name xy is

used as a pointer to this two dimensional array. Note Mat the requirement Mat the varying dimension,

co_esponding to the MODIS variable number of frames across scan cubes, _ in the fist set of bmcke_ N

with any number (DUMMY) used as a place holder. The number m Me second bracke_ N must coITespond

to the actual along track (across scan) size for each parame_r. The order of Me indices in "C" is reversed

_om those in FORTRAN.

struct PRODUCT2Dparm2 {

PRODUCTparm2 xy[DUMMY][10];

};

typedef struct PRODUCT2Dpaz]n2 PRODUCT2Dparm2;

(Same asthe otherparameters)

struct PRODUCT2Dparm3 {

PRODUCTparm3 xy[DUMMY][10];

);

typedef struct PRODUCT2Dparm3 PRODUCT2Dparm3;

(Same asthe otherparame_rs)

/* Structure for individual bands/parameters (2D): */

struct PRODUCTPARMI_2D {

PRODUCT2Dparml *data;

long nAlongTrack;

long nAlongScan;

long nPixels;

);

typedef struct PRODUCTPARMI_2D PRODUCTPARMI_2D;

These two dimensional access methods are effectively the same as the previous typedef's for

PRODUCTPARM 1: *data is a pointer to the actual scan cube binary data.

struct PRODUCTPARM2_2D {

41

PRODUCT2Dparm2 *data;

long nAlongTrack;

long nAlongScan;

long nPixels;

);

typedef struct PRODUCTPARM2_2D

(Same as PRODUCTPARM I_2D)

struct PRODUCTPARM3_2D {

PRODUCT2Dparm3 *data;

long nAlongTrack;

long nAlongScan;

long nPixels;

);

typedef struct PRODUCTPARM3_2D

(Same as PRODUCTPARM I_2D)

struct PRODUCT2Dscancube (

PRODUCTPARMI_2D pl;

PRODUCTPARM2_2D p2 ;

PRODUCTPARM3_2D p3 ;

);

PRODUCTPARM2_2D;

PRODUCTPARM3_2D;

typedef struct PRODUCT2Dscancube PRODUCT2Dscancube;

/* User should declare an output structure like this: */

/* PRODUCT2Dscancube obuf; */

This statement declares the data structure type for user access as a two dimensional array. The examples

given in the main section of this document in the scan cube domains functions - detailed section, illustrate

its use from a user's perspective. Note that ideally, one scan cube definition would be given in each header

file. Both the one and two dimensional definitions are given in this "PRODUCT.h" sample header file for

illustration purposes. Other definitions could be made at the user's request, but care must be exercised to

propagate any changes to the intrinsic function code and other modules within the header file.

Now thatthe datastmctu_sand declarationsa_ over with, we canpopula_ instancesofthesecomplex

variables with the valuesappropfiate to this _rmal Data Productbyinvoking actualexecu_blecode.

void PRODUCTinit();

void PRODUCTsetptrs(void **, PRODUCTscancube *, long);

Static DataDescriptor PRODUCTheader =

{PRODUCTinit,PRODUCTsetptrs,NULL, 0,0,NULL,NULL);

42

Le_ start with the ANSIpromtypesfor the functions that follow, and mitialize(declam space for) the dam

descfiptorstmctu_.Thisisexecu_d _reach datasetopen.

void PRODUCTinit()

{

static short executed = 0;

if(executed > 0) return; /* don't want or need to execute this more than

once!*/

executed = i;

The variableexecutedisusedtoinsum _atthis _ncfionisexecumd only once.

PRODUCTheader.name = PRODUCT_HEADER_STRING;

PRODUCTheader.nbands = 3;

PRODUCTheader.nlines = 40;

PRODUCTheader.nres = (long *)malloc(PRODUCTheader.nbands*sizeof(long));

PRODUCTheader.nres[0] = 4;

PRODUCTheader.nres[l] = 4;

PRODUCTheader.nres[2] = 4;

PRODUCTheader.nsize = (long *)malloc(PRODUCTheader.nbands*sizeof(long));

PRODUCTheader.nsize[0] = sizeof(PRODUCTparml);

PRODUCTheader.nsize[l] = sizeof(PRODUCTparm2);

PRODUCTheader.nsize[2] = sizeof(PRODUCTparm3);

}

This function populates the PRODUCTheader.<components> structure with the values appropriate to this

formal Data Product. These values apply to the entire dataset. String sizes are determined at compile time,

and nres and nsize arrays are allocated at run time. See the "DataDescriptors.h" section in the appendix to

this document for the structure declaration which def'mes the data types for each structure element name.

void PRODUCTsetptrs(void **obuf, PRODUCTscancube *odata, long nframes)

This function is entered on each allocation of a scan cube. It users the library supplied pointer odat a, and

library supplied pointer *obuf to the user declared buffer obuf, along with the library supplied

nframes to calculate the values of the scan cube dimensions nAlongTrack and nAlongScan and the

scan cube size nPixels. The value of nframes is extracted by the library from each scan cube header.

These values, along with the starting addresses (pointers) of the data array, are then placed into the user's

instance of the formal Data Product data structure. This is repeated for each parameter separately, thereby

allowing the spatial dimensions to vary across bands (parameters).

{
long across, down;

odata->pl.data = obuf[0];

down = PRODUCTheader.nlines/PRODUCTheader.nres[0];

odata->pl.nAlongTrack = down;

across = nframes/PRODUCTheader.nres[0];

odata->pl.nAlongScan = across;

odata->pl.nPixels = down*across;

odata->p2.data = obuf[l];

down = PRODUCTheader.nlines/PRODUCTheader.nres[l];

43

odata->p2.nAlongTrack = down;

across = nframes/PRODUCTheader.nres[l];

odata->p2.nAlongScan = across;

odata->p2.nPixels = down*across;

odata->p3.data = obuf[2];

down = PRODUCTheader.nlines/PRODUCTheader.nres[2];

odata->p3.nAlongTrack = down;

across = nframes/PRODUCTheader.nres[2];

odata->p3.nAlongScan = across;

odata->p3.nPixels = down*across;

return;

}

#endi f

End of this data product header include file.

44

Appendix E - MODIS Dataset Internal Format

This section details the contents of the dataset that are ingested and created by the SDST utility library. The

dataset contents implement a free field technique to determine the sizes and location within the Dataset for

the various components of the Dataset. This allows data from multiple instrument sources and multiple

input and output Data Products to be handled by the library in a manner that is transparent to the user.

VOLUME
HEADER

SCANC_E
HEADER

SCAN CUBE
CONTENTS

SCAN CUBE
HEADER

SCAN CUBE
CONTENTS

SCAN CUBE
HEADER

SCAN CUBE
CONTENTS

(etc.)

TRAILER

Figure 8. Overall dataset contents.

Each Dataset is composed of three main sections: a Dataset volume header, multiple instances of the scan

cube header and data, and a trailer as shown in Figure 8. All headers sections and the trailer section contain

information in ASCII form that can be read (carefully) with any file browser or editor. Recommended file

browsers are the UNIX od command, the gnu less program, and the SDST written fd program. These

programs can examine mixed ASCII and binary files while not creating problems with communications

protocols. The od and fd programs can handle byte offsets for binary data that is not aligned on word

boundaries. The UNIX head, tail, and more programs will cause problems with terminal based

communications when examining binary data.

The Dataset is organized as a self describing data structure. Information is contained in each section that

informs the library of the sizes of the following sections. This technique allows a byte stream oriented

operating system (i.e. UNIX) to define variable length and mixed type (ASCII / text and binary) records.

Data is organized in this byte stream by placing the along track pixels in adjacent words of memory to form

a vector, vectors are then sequenced across track to form a band or parameter spatial area, then multiple

areas are sequenced to form the entire scan cube. This ordering in memory allows the across track

45

dimensionto varyamongscan cubes without prohibiting two dimensional access by "C" and FORTRAN

compilers. The illustration in Figure 9 assumes a data product composed of three parameters, each of type

byte (unsigned character or Integer*l) with nominal spatial resolutions of 250 meters, 500 meters, and 1.5

kilometer. This is a fictitious instrument for illustration purposes only. The reader is encouraged to examine

the small datasets included in the library distribution for actual parameter values and compare these with

the sizes in the diagram and described in this text.

1
1 71_/

4
5
6

289292 295

290293296

291 294

369

299

3OO 306

37O 371

Across Track

1111
III!
IIII

III
..... 1 I

I I

11
11
II
1
I
I

r--

==-

375 376

nres= l
288

elements

nres=2
72

elements

nres=6
8

elements

(numbers in the boxes are the array elements in a byte stream)

Figure 9. Memory allocation for variable coincident spatial sizes.

The numbers in this diagram represent the linear addresses of the byte stream. The three spatial areas with

resolutions of 1, 2, and 6 can be spatially registered on the ground, but are sequential in computer memory.

The illustration given here does not represent any of the current datasets and is used for illustration

purposes only.

The Dataset volume header contains information that is required by the library to recognize and interpret

the contents of the Dataset. This includes the source of the data (must be "MODIS"), the type of data

(unique to each formal Data Product), and the version of the Dataset contents. This Dataset version must

agree with, or otherwise be compatible with, the library. It is the library's responsibility to verify this. Other

items in this header are compared with the DataDescriptors in the library as a sanity check to ensure that

the library and user code are using the same data formats and types. The remainder of the volume header

contains additional items unique to each Data Product and any comment fields included by the Dataset

generator.

The scan cube section contains a scan cube header and data in a binary form. The scan cube header is also

in the same free field format as the volume header. Dataset parameter values are reset as each scan cube is

accessed. This allows the handling of binary data that can change with each scan cube.

46

Thebinarysectioncontainstheactualdatavaluesin the data type defined within each Data Product

"<product. h>" include file. The data is treated by the library as a byte stream whose size is the across

track size times the along track times the number of bytes in the data product, where the number of bytes in

the data product is the sum of the number of bytes for each parameter.

The trailer contains the key character string "EOF" to designate a logical end of f.de. All other tokens in the

trailer are ignored in this release, but may contain metadata information in the future.

All of the headers contain ASCII data in a free field format. Each field, called a token, consists of all the

characters that are delimited by 'white space', where white space is defined to be blank (space) characters,

tab characters, or commas. The fast three tokens are recognized by the library as character strings that are

compared with information in the "<product. h>" headers associated with each format Data Product.

All tokens that contain an equal (=) sign are recognized as "C" type variables and values. These variable

names are formal names used by the library to determine the sizes of Data Product parameters, spatial

resolutions of the pixel elements, and the resulting sizes of the binary data that follow. All other tokens in

the header are ignored by the library and can contain any user defined comments. Details are given in the

following table.

Table 4. Header Parameter Names

FORMAL NAME DESCRIPTION UNIQUE TO:

Version The version number of the library that can access this Dataset dataset

headerLines The number of lines contained in this header section (terminated dataset

by \n)

Number of bands or parameters in the data structure

Number of along track lines of data within each scan cube at
resolution 1

Multiple of the smallest instrument IFOV

(for MODIS this is 250 meters * nres)

Number of bytes per data element

number of elements across track at resolution 1 for the Earth

view

unique ID within this data set for each

number of elements for the Solar Diffuser view

current SD mode: "DCrestore I Solar I Screen"

number of elements for the SpectroRadimetric Control Assembly

"radiometric I spectral I spatialAlongScan I spatialCrossScan"

number of black body viewing frames

the BB temperature (an array in the future)

nbands dataset

nlines dataset

nres dataset

nsize dataset

nframes scan cube

scancubeld scan cube

nSDframes scan cube

SDmode scan cube

nSRCAframes scan cube

SRCAmode scan cube

nBBframes scan cube

BBtemp asynchronous

47

nSVframes numberof spaceview elements scancube

DATASET contents example

Here is an abbreviated example output from the UNIX less program of a test scan cube dataset. Line

numbers have been added. Excess binary data has been deleted for illustration purposes and the dataset

contents are incomplete. The reader is encouraged to look into the contents of the datasets provided in the

distribution for real life examples.

contents dzscription

1 - MODIS Scancubes AVHRR_albedo Version=l.0 headerLines=3

2 - nbands=5, nlines=40, nres=4 nsize=2

3 - This is a comment line

4- nframes=64 scancubeld=l

5 - ^@ANA@AOA@AOA@AOA@ASA@^T^@^V^@^V

6 -^AATAA^TAA^TAAATAA^TAA^UAA^T^AAT

7 - nframes=64 scancubeld=2

8- AA[m#[5mAA[m#[5mAA[m&[5mAA[m&[5mAA[m%[5mAm^A[m&[5mAA[m%[5mAA[m%[5mAA[m

9 - ^A^UAAAT^A^T^AATAA^TAAAUAAAUAAAUAAAUAAAUUAAAUAAAUAAAU^A^UAAAU[m

10 - nframes=64 scancubeld=3

11 - A@ATA@AW^@^WA@AW^@^V^@^UA@^UA@^U^@ @^W^@^UA@^UA@^UA@^UA@AT[m

12 - ^A^SAAAUAAAT^A^T^AASAAASAA^SAA^SAA^SAANW^A^T^A^T^A^SAAt_F_A^SAAAS[m

13 - nframes=64 scancubeld=4

14 - ^@^T^@^R^@ARA@^SA@^U^@^V^@^V^@^V^UA@^V^@^V^@^V^@AV^@AW^@^W[m

15 - ^A^SAA^SAAASAA^SAA^SAA^SAA^SAA^T^A^T^AASAA^SAA^SAA^SAA^T^A^T^A^T[m

16 - nframes=64 scancubeld=5

17 - ^@AUA@^UA@ATA@ATA@AT^@AUA@AUA@^TA@^TA@ATA@^UA@^UA@AV^@AV[m

18 -^AASAA^SAAASAA^TAAATAAATAAASAAATAAATAA^TAAAT^AASAAASAAASAA^SAAAT[m

19 - EOF

Figure 10. Dataset contents example.

48

Thevolumeheaderconsistsof thefirst threelines.Thekey token"MODIS" is requiredto authenticate the

dataset as a MODIS format dataset. The token "Scancubes" indicates the spatial domain of the dataset

which the library uses to determine which of the "<parameter>=<value>" tokens are required. The

next token "AVHRR_albedo" indicates the formal Data Product name and must agree with the

corresponding string in the "<product. h>" file for this Data Product. The "Vers ion= 1.0" token

validates the library version with the dataset version. The "headerLines=3" token informs the library

that three text lines, terminated by a new line character, define the volume header.

The fourth line contains the two required tokens for a scan cube domain dataset. The total number of pixels

for a resolution 1 spatial area for the highest resolution parameter, is given in "n f tame s = 6 4". This is

divided by the number of lines per scan cube "nl ines=4 0" at each spatial resolution to give the number

of across track elements (frames in the MODIS literature). The "s c ancube I d= 1" tells the library the

unique scan cube identifier. This number is written by the library into the corresponding output data

product scan cube.

Lines 5 and 6 in the above example are the ASCII equivalents, in printable form, of each byte of binary

data. This has been shortened for illustration purposes. Multiple scan cubes are shown in lines 7 - 9, 10-12,

13-15, and 16-18. The binary data is not terminated by a new line as shown. The next scan cube header

begins directly after the binary data and can be anywhere on a displayed line. It is shown left justified for

illustration purposes.

The final line, 19 in this minimal example, contains the token "EOF". This token is optional but does

indicate that the dataset has been terminated gracefully and not truncated abnormally.

Each header section can optionally contain the token "headerLines =<n>". If it is not present, a value

of one (1) is assumed. If, however, this token is missing and there is more than one header line in the

dataset, then the data stream will be hopelessly out of sync since the ASCII data will be interpreted as part

of the binary science data. The library will eventually catch this mistake in a subsequent header read and

return an error code to the user, but not at the expected processing step.

49

Appendix F - Library Dataset Interactions

This appendix presents an overall view of the internal workings of the library. It is not a full library

documentation, but is meant to provide a feel for what is happening behind the scenes. The figures in this

appendix help the reader understand the relationship between the formal Data Product header include files

and the library's use of information in both the data product header include files and the dataset contents.

The diagrams in Figure 1! and Figure 12 illustrate the relationship between the input and output data sets,

the utility library, and the user code. Data can be transferred, under user control, by the library from the

input scan cubes to the output scan cubes without passing through the memory space of the user code. The
first figure also illustrates the use of multiple input and output scan cubes within the library space and

managed by the library internal DCB structures that incorporate dynamic memory allocation and release.

Input Dataset

volume header .._

scan cube header"

_.

scan cube data_

n times

trailer

Output Dataset

volume header

scan cube header _

scancube data j¢

n limes

trailer

Source_Header.h

Library Code

right instrument?
right version of software?/
right data source?

4_

.J

right number of bands? _
right number of lines? '=
right data resolution? _
number of frames & ID

input data _tructure
P

i

Input data structure
!

I

,.

outputdata structure

output data structure

/ source name

.-_ number of bands

.-_...f number of lines
I../ spatNI resolution

Product_Header.h

/ product name

/ / number of parameters

.// _ _Puati_le;"c_l Inute_n

LX _nte_X,User Code

pointe% adjustedbyre_iution_-_
factor for each parameter _j

,XX{ pointerto data V3/

Figure 11. Data flow illustration.

50

The second figure illustrates dataset access by surrounding the user's code with the library functions.

Dataset contents are accessed via the data structures defined in the data product header include files. Note

that non-MODIS data is accessed via include files or other data structures that are not defined by this

library.

(probagate
sizes)

_ (check _._ __ \ /

(check pro.du,cth.eader\, productheader / "
• key include file _ include file _ (check

key
words)_f _ _ _ words)

MODIS dataproduct header
include file

OU_Ou

Science Algorithm

\
file \

Auxiliary Data

reformattin

resampling

Auxiliary Dataset

Figure 12. Algorithm dataset interactions.

51

(Thispage intentionally left blank)

52

GLOSSARY

This section includes the definitions of selected key words used in this document.

aggregated

algorithm

ancillary

ANSI

A'IT

auxiliary

AVHRR

band

Black Body

BB View

C

CZCS

DAAC

Any of several methods for deriving a data value as a function of two or more input

values. This is used in the context of determining which value to place in a gridded bin in a

map projection. For example the result could be an average, maximum, minimum, or the

result of a weighting function.

A step-by-step problem solving procedure, especially an established, recursive

computational procedure for solving a problem in a finite number of steps. Used in this

document to represent a section of computer source code that performs this step.

Used in this document to mean data that has been transformed into the MODIS scan cube

data format.

American National Standards Institute. The governing body for published standards, one

of which is used to standardize programming language source code and specifications.

Algorithm Transfer Team. A group within the MODIS SDST that is chartered with

helping algorithm programmers with porting source code to the PGS environment.

Used in this document to mean external data that is not in the MODIS scan cube data

format.

Advanced Very High Resolution Radiometer. An instrument on a series of NOAA

satellites. See the "NOAA Polar Orbiter Data" by K. Kidwell, available from NOAA for
details.

A number used to represent a range of energy wavelengths from which a single detector

measures a radiance energy. This is the same as a data channel for AVHRR and several

other instruments but is not the same as a data channel for the MODIS instrument or other

instruments with variable spatial IFOV coverages.

A constant temperature emissive source within the MODIS instrument used to calibrate
the thermal bands.

The detector energy measurements when viewing the MODIS Black Body.

A computer programming language, successor to the A and B languages, the name of

which is consistent with the UNIX minimalist user command interface.

Coastal Zone Color Scanner. An ocean discipline satellite remote sensing instrument.

Distributed Active Archiving Center. The EOS component for formal Data Product

storage, production, and access.

53
PAG_ _ NOT I_IUAED

Data Product

detector

DCB

Earth View

ECS

EOS

Frames

(MODIS

instrumen0

FTN or

FORTRAN

geolocafion

global

header (2 defs)

heritage

hierarchical

IFOV

IMS

A formal name of a science (or instrument) value that is registered with the SPSO

database.

A piece of hardware in the MODIS instrument that measures radiant energy at one IFOV.

Data Control Block: a table that is used to maintain information about a dataset. This may

contain file names, sizes, pointers, links to associated datasets, and dataset descriptors.

MODIS instrument detector readouts during the portion of the scan in which the Earth is
in view.

EOS Core System. The ground processing and archiving, computer based segment of the
EOS

Earth Observing System. A suite of remote sensing satellites. A component of MTPE.

All the MODIS instrument data corresponding to a nominal 1 kilometer section of an

across track scan. (830 data channels)

Short for Formula Translator. A computer programming language.

The act of determining the location, on the Earth geoid, of MODIS instrument IFOVs.

This is performed for each spatial element (1 kilometer nominal footprin0.

Of, relating to, or involving the entire earth; worldwide.

A section of the dataset containing information about the dataset (applied to both the

dataset volume and each scan cube). Also, a section of source code that specifies data

structures and descriptors that are common to more than one module. This library uses

library include t'des, operating system include files, generic data structure include files, and

Data Product specific header include files.

Something that is passed down from preceding generations; a tradition. In the MODIS

case, techniques and algorithms that were used in the past, before MODIS was invented.

Of or relating to a hierarchy, a series in which each element is graded or ranked. In

computer terms, elements of the hierarchy are wholly contained in (a subset of) higher

elements.

Instantaneous Field Of View. Used informally to mean the instrument field of view. This is

the spatial area over which energy is measured by each instrument detector.

Information Management System. A component of the ECS that performs data product

selection based on metadata values.

54

Latitude

Level-O

Level-1A

Level-lB

Level-2

Level-3

Limb

Longitude

mapped

MAS

MCST

Metadata

MISR

MODIS

MTPE

The angulardistancenorthorsouthof theearth'sequator,measuredin degreesalonga
meridian,asonamaporglobe.Theoriginis attheEquator,increasingto 90degreesat
theNorth pole.

A formalDataProductdefinedto betheMODIS instrumentoriginaldatain packetform
with CCSDS(ConsultativeCommitteeonSpaceDataSystems)headersprepended.

A formalDataProductdefinedto betheMODIS instrumentdetectorvaluesasraw
counts.This includestheEarthView, SolarDiffuser, SRCA,BlackBody,Spaceview,and
engineering/ memory dump data. Level-1A is fully reversible to the Level-0 Data Product.

A formal Data Product defined to be the MODIS instrument at-satellite detector values as

radiance energy values received at the satellite in the instrument spatial geometry. This is

not the at ground radiances and therefore has no atmospheric correction applied.

Formal science Data Products in the instrument spatial geometry.

Formal science Data Products in a globally mapped representation, corresponding to

geographic shapes and dimensions.

The circumferential edge of the apparent disk of a celestial body. Used in MODIS

terminology as the outermost detector measurements at the edges of the scan (maximum

scan angles).

Angular distance on the earth's surface, measured in degrees east or west from the prime

meridian at Greenwich, England, to the meridian passing through a position. Positive to

the East, negative to the West and less than 180 degrees in magnitude.

A representation, usually on a plane surface, of a region of the earth or heavens. The ECS

will be using many types of maps produced via several gridding, binning, and aggregating

schemes.

MODIS Airborne Simulator. A 50 channel aircraft instrument with MODIS like bands.

MODIS Characterization Support Team. The MODIS entity responsible for the calibration
and characterization of the MODIS instrument.

Data about other data. E.g., a synopsis of a Data Product used for selection criteria.

An instrument on EOS with forward and backward looking scans used for stereo and

bi-directional reflectance Data Products.

Moderate Resolution Imaging Spectroradiometer.

Mission To Planet Earth. NASA's project that focuses attention of the Earth as opposed to

space or other planets.

55

multiplexed

nadir

nbands

nBBframes

nEMbytes

nframes

nlines

npixels

nl'es

nSDframes

nsize

nSRCAframes

Relating to, having, or consisting of multiple elements or parts. Relating to or being a

system of simultaneous communication of two or more messages on the same wire or

radio channel. A system in which data values are combined together, asynchronously.

A point on the celestial sphere directly below the observer, diametrically opposite the

zenith. The pierce point on the Earth of the MODIS instrument to center of Earth vector.

The integer number of distinct wavelength bands for Level- 1A and Level- 1B products.

Also used as the number of parameters in a Data Product.

The number of instrument frames that contain detector views of the black body

The number of equivalent instrument frames that contain memory dumps from the

instrument and formatter onboard computer memories. All engineering data, intemal

tables, and op codes are contained in these data dumps.

The integer number of sampled MODIS instrument detector elements in the across track

(along scan) direction for the finest resolution bands or parameter. This is unique to each

Data Product, but would correspond to the number of pixels for the 250 meter bands for
the MODIS Level- 1A and Level-lB Data Products and would have a nominal value of

5416.

The integer number of lines of sampled MODIS instrument detector values in the along

track (across scan) direction for the finest resolution bands or parameter. This is unique to

each Data Product, but would correspond to the 40 pixels for the 250 meter bands for the

MODIS Level- 1A and Level- 1B Data Products.

The integer total number of sampled MODIS instrument detector values in both the along

track (across scan) direction and the across track (along scan) direction for the finest

resolution bands or parameter. This is unique to each Data Product, but would correspond

to the 40 pixels times nframes for the 250 meter bands for the MODIS Level-lA and

Level- 1B Data Products.

The integer divisor applied to the nfames and nlines values for each band or parameter of

the formal Data Product. This can be considered as an array of dimension [nbands]. For

MODIS, this number = 1 for bands 1 and 2, - 2 for bands 3 to 7, and = 4 for the

remaining bands.

The number of instrument frames that contain detector views of the solar diffuser.

The number of bytes that a data element consumes. This is the total for all components of

the data element. For example, a Data Product consisting of a double, a long, and a byte

value would consume 13 bytes per pixel.

The number of instrument frames that contain detector views of the Spectral Radiometric

Calibrator Assembly.

56

nSVframes

OBC

parameter

PGS

pixel

prototype
(ANSI)

QA

quantization

radiance

raw counts

rectified

rectilinear

resampling

scan

SDPO

SDST

The number of instrument frames that contain detector views of deep space.

OnBoard Calibrators. The set on four calibration sources contained within the MODIS

instrument. See Solar Diffuser, SRCA, Black Body, and Space View.

Used in the MODIS context to define a component of a Data Product. Several parameters

constitute a formal Data Product. QA is included as a parameter to a Data Product.

Product Generation System. A component of the ECS that produces Data Products.

picture element. The smallest granule of a picture that can be represented by a unique

numerical value, usually on a video display.

A skeleton function call definition containing all the type declarations of its arguments, but

without the actual variable names.

Quality Assurance. The methods applied to MODIS Data Products for, and the resulting

indicators of determining the quality and validity of the Data Product.

To limit the possible values of [a magnitude or quantity] to a discrete set of values by

quantum mechanical rules. The process in which a continuous physical value is divided

into discrete values, thereby limiting the precision of the measurement.

The radiant energy emitted per unit time in a specified direction by a unit area of an

emitting surface.

An integer number representing the amount of energy measured at a detector. This is

sometimes called a digital number (DN) in other documentation.

To set right; correct. To correct by calculation or adjustment. Used in the MODIS sense

to mean a straightening of the scan geometry to orthogonal axes and uniform spatial

sampling.

Moving in, consisting of, bounded by, or characterized by a straight line or lines. The

effort of resampling pixels in the MODIS instrument geometry with the 'bow tie' effect into

a linearized and parallelized orbital coordinate system.

A process in which a value at a prespecified location (spatial or temporal) is derived from

the values of its surrounding values.

The data acquired during one half of the scan mirror rotation, consisting of multiple

instruments Frames, and assembled into a data structure called a scan cube. See the

MODIS Data Structure, Volumes, and Rates document for details.

Science Data Products Office.

MODIS Science Data Support Team. The GSFC based group responsible for the

production component of the MODIS ground processing system.

57

SolarDiffuser

SpaceView

spatial

Spatial
Element

SRCA

swath

TBD

temporal

TM

TM

token

typedef (C)

UNIX

An onboard calibration white target, illuminated by the Sun. The MODIS detectors view

this target during a portion of the mirror scan rotation.

MODIS instrument detector readouts during the portion of the scan in which the deep

space is in view.

Of, relating to, involving, or having the nature of space, reladng to geometry as opposed

to time (temporal).

The nominal (at nadir) 1 kilometer area covered by an ideal MODIS IFOV. Each element

contains all bands of data, irrespective of spatial resolution, that occur at each 1 kilometer

footprint. See the MODIS SRR, PDR, and CDR documents for exacting details.

Spectral Radiometric Calibrator Assembly.

The contiguous area viewed by a MODIS instrument scan segment. For example, the
portion of the MODIS mirror scan that views the Earth.

To Be Determined

Of, relating to, or limited by time: a temporal dimension; temporal and spatial boundaries.

Thematic Mapper. A satellite remote sensing instrument.

Team Members. Members of the MODIS Science Team.

A string of characters separated by a delimiter, usually a blank character (or whitespace in

UNIX terms).

A "C" language facility that allows the programmer to define a new, possibly compound

data type. Examples of predefined data types are int, long, short, float, and double.

The computer operating system selected by EOS as the standard platform.

58

REFERENCES

Unless otherwise noted, these documents are available from the MODARCH data archiving facility, code

920, Goddard Space Flight Center, Greenbelt, Maryland. This facility is available via the Intemet.

1 - "MODIS Level 1A Software Baseline Requirements", SDST, Sept. 1, 1993, NASA TM 104594,
Vol 1.

2 - "MODIS Data Rates, Volumes, & Processing Performance w/Data Structures", Thomas Goff,

May 13, 1994.

3 - "MODIS Processing Spatial Domains", Virginia Kalb and Thomas Goff.

4 - "MODIS PGS Data Processing Operations Concepts,", SDST, Sept. 13, 1993.

5 - "Science Computing Facilities Plan", Edward Masuoka, Sept. 7, 1993.

6 - "Level 1A System Requirements Review (SRR)", SDST, May 11, 1993.

7 - "PGS Toolkit Users Guide for the ECS Project", EOSDIS Core System Project, Feb. 4, 1994.

8 - "MODIS Software Development Standards and Guidelines", SDST, May 3, 1994 (draft).

9 - "Geometric Correction of MODIS Data", Virginia Kalb and Thomas Goff, Sept. 23, 1993.

10 - "MODIS Level 1A Earth Location ATBD", Robert Wolfe, July 25, 1994.

11 - "MODIS Sensor Patterns and Multiresolution Pixel Registration", A1 Fleig, luly 27, 1994.

12 - "EOS Reference Handbook", Earth Science Support Office, Document Resource Facility, 300 D

Street NW, Suite 860, Washington D.C. 20024.

13 - "The Moderate Resolution Imaging Spectrometer-Nadir (MODIS-N) Facility Instrument", Advances

in Space Research vol 11(3), 231-236, 1991, V.V. Salomonson and D.L.ToI1.

59

(Thispageintentionallyleft blank)

60

INDEX

A

ancillary data, 1

ANSI, 6
All', 10

AVHRR, 2

B

bow tie, 2

C

C7__S, 3

D

data product header include file, 4

F

FORTRAN, 8

G

Geolocation, 1

L

Landsat, 2

Level-lA, 10

Level-lB, 7

Level-2, 10

M

make f'de, 8

mapped domain, 1, 2
MAS, 3

MISR, 2

MOD_IO_allocateOutputB uffer, 13
MOD_IO_ closeDatasets, 13

MOD_IO_closelnputDataset, 13

MOD_IO_closeOu tputDataset, 13

MOD_IO openMasterlnpu tDataset, 12

MOD_IO_openOutputDataset, 12

MOD IO...printDataDescriptor, 26
MOD_IO_prototypes.h, 9

MOD IO readSwath, 12
MOD_IO_writeSwath, 13

MSS, 3

61
PiaWall_m4 P4_d_ _ PlOT

_, _-G-+ +; i " ' ' "

FIL.M -EJ_

N

nadir, 32
NOAA, 4

p i

PGS, 9
POSIX, 8

pseudo code, 11

R

ragged array, 4
rectilinear domain, 1

resampling, 2

S

SBRC, 10

scan cube domain, 2

SDST, 8

spatial registration, 9

T

TLCF, 17

TM, 3

typeaef, 9
7

U

UNIX, 17
i

V

vegetation index, 7
VI, 7

62

Form Approved

REPORT DOCUMENTATION PAGE OMBNo.0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorafe for Information Opera(ions and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave b/ank) I 2. REPORT DATE 3. REPORTTYPE AND DATES COVERED

I November 1994 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

MODIS Technical Report Series
Volume 4, MODIS Data Access User's Guide - Scan Cube Format

6. AUTHOR(S)

Virginia L. Kalb and Thomas E. Goff

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)

Goddard Space Flight Center

Greenbelt, Maryland 20771

9. SPONSORING ! MONITORING ADGENCY NAME(S) AND ADDRESS (ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

Code 920

C-NAS5-31331

8. PEFORMING ORGANIZATION
REPORT NUMBER

95B00013

10. SPONSORING / MONITORING
ADGENCY REPORT NUMBER

NASA TM-104594, Vol. 4

11. SUPPLEMENTARY NOTES

Kalb: Goddard Space Flight Center, Greenbelt, Maryland;
Goff: Research and Data Systems Corporation, Greenbelt, Maryland

12a. DISTRIBUTION /AVAILABILITY STATMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 61
This publication is available from theNASA Center for AeroSpace
Information, 800 Elkridge Landing Road, Linthicum Heights, MD

21090-2934, (301) 621-0_90.
13. ABSTRACT (Maximum 200 words)

The software described in this document provides I/O functions to be used with Moderate Resolution

Spectroradiometer (MODIS) level 1 and 2 data, and could be easily extended to other data sources. This

data is in a scan cube data format: a 3-dimensional ragged array containing multiple bands which have

resolutions ranging from 250 to 1000 meters. The complexity of the data structure is handled internally

by the library. The I/O calls allow the user to access any pixel in any band through "C" structure syntax.

The high MODIS data volume (approaching halfa terabyte per day) has been a driving factor in the library

design. To avoid recopying data for user access, all I/O is performed through dynamic "C" pointer

manipulation. This manual contains background material on MODIS, several coding examples of library

usage, in-depth discussions of each function, reference "man" type pages, and several appendices with

details of the include files used to customize a user's data product for use with the library.

14. SUBJECTTERMS

MODIS; Scan Tube

17. SECURITY CLASSIRCATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIRCATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIRCATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

72

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)

