N95-16780

FREQUENCY AGILE LASER EYE PROTECTION: TECHNOLOGIES vs PERFORMANCE. $\frac{\mathrm{J}}{189} \frac{\mathrm{~B}}{74}$ Sheehy*. Naval Air Development Center, Warminster, PA 18974.

INTRODUCTION. With the introduction of military laser systems fixed wavelength laser eye protection became a high priority for both the aviator and soldier. Initially the number of wavelength one might encounter were few and the optical density required to protect the human eye was low. As technology progressed the number of potential wavelengths and the power output of the various laser systems increased to the point were it is extremely difficult to provide protection against all possible wavelengths while ensuring adequate visual performance. With the advent of frequency agile lasers the approaches used in the past are no longer appropriate and new, dynamic forms of laser eye protection are required. Presently all the services are developing various forms of potential agile eye protection. In general, in order for the protection to be effective it must: 1) respond throughout the visible spectrum (400 to 700 nm , outside of the visible can be blocked with fixed filters), 2) activate at $.5 \mathrm{uJ} /$ square centimeter, 3) respond in less than a nanosecond ($10 E-9 \mathrm{sec}$), 4) relax after cessation of radiation, and ideally 5) become opaque at only the incident wavelength. Presently there are no perfect solutions, however, there are a number of viable non linear candidate materials such as liquid crystals, carbon suspensions, organometallics, thermally induced shifts in refractive index, and sacrificial films under investigation. The advantages, limitations, and the manner in which these technologies must be quantified will be discussed.

N95-16778

-632-
 //0363

ARTIFICIAL GRAVITY: HOW MUCH,HOW OFTEN, HOW LONG? R.Burton* and J. Vernikos*, Armstrong Laboratory, Brooks Air Force Base, TX 78235 and NASA-Ames Research Center, Moffett Field, CA 94035.

The argument is not overwhelming for the need to provide a continuous 1G environment using tethers or other means of spinning a spacecraft in order to maintain crew health in planetary exploration Even on earth, we spend a maximum of $16-\mathrm{hrs}$ in 1 Gz (upright). Sporadic evidence over the years has suggested that somewhere between $30-\mathrm{min}$ and 4 -hrs of 1 Gz may suffice to prevent the deconditioning effects of bedrest (orthostatic intolerance and the rise in calcium excretion). However, it is not known what the minimum requirements are, whether they vary for different physiological systems and whether passive Gz or the enhancement of the effects of activity conducted in an increased G field are more effective. It is similarly not known what the optimal duration and frequency of the \mathbf{G} stimulus is, and how time of day might alter its effectiveness. Since acceleration level and duration appear to be physiologically interactive, it seems feasible to hypothesize that periodic acceleration exposures to greater than $1 G z$ levels provided by some on-board centrifuge, would suffice and should be explored

110364

THE EFFECT OF INTERMITTENT STANDING OR WALKING DURING HEAD DOWN TILT BEDREST ON PEAK O_{2} CONSUMPTION. A. C. Ertl. A. S. Dearborn. \& J. Vernikos*. Life Sciences Division, NASA/Ames Research Center, Moffett Field, CA 94035.

INTRODUCTION. The cardiovascular aspect of bedrest deconditioning is manifest by decreases in peak O_{2} uptake ($\mathrm{VO}_{2 p e a k}$) during maximal exercise. The effect of intermittent standing $\left(+G_{z}\right)$ or walking $\left(+G_{z} W\right)$ during 4 days of -6° head down tilt bedrest (HDT) on VO_{2} peak was evaluated. METHODS. Five protocols were performed by eight male subjects; control (C) consisting of complete bedrest, and 15min periods to total 2 or 4 hours daily of standing ($+G_{z} 2$ and $+G_{z} 4$, respectively) or walking at $3.0 \mathrm{MPH}\left(+G_{z} W 2\right.$ and $+G_{z} W 4$, respectively). Subjects performed VO 2 peak tests prior to and on the final day of HDT. VO2peak was determined using open circuit indirect calorimetry during supine leg cycling ergometry. After a 5 -min warmup, three 2 -min incremental loads of 33 W previously determined to elicit VO2peak were given and the subject cycled to volitional fatigue. RESULTS. The C protocol $\mathrm{VO}_{2 \text { peak }}$ decreased by $16 \%(2.71 \pm 0.16$ to $2.27 \pm 0.14 \mathrm{~L} / \mathrm{min})$. VO2peak decreased by 12% in $+\mathrm{G}_{\mathrm{z}} 2(2.65 \pm 0.14$ to $2.33 \pm 0.11 \mathrm{~L} / \mathrm{min})$ and 11% in $+\mathrm{G}_{\mathrm{z}} 4$ (2.72 ± 0.15 to $2.43 \pm 0.14 \mathrm{~L} / \mathrm{min}$). With $+\mathrm{G}_{\mathrm{z}} \mathrm{W} 2, \mathrm{VO}_{2 p e a k}$ decreased by 9% $(2.71 \pm 0.17$ to $2.46 \pm 0.14 \mathrm{~L} / \mathrm{min})$ and with $+\mathrm{G}_{\mathrm{Z}} \mathrm{W} 4, V \mathrm{O}_{2}$ peak decreased by 10% (2.71 ± 0.14 to $2.43 \pm 0.14 \mathrm{~L} / \mathrm{min}$). VO2peak in all protocols decreased with HDT ($\mathrm{P}<0.05$). The decrease in C VO $2 p e a k$ was significantly greater ($\mathrm{P}<0.05$) than the decreases in either $+\mathrm{G}_{z}$ or $+\mathrm{G}_{z} W$ protocols. CONCLUSION. The deconditioning that occurs after only 4 days of HDT was demonstrated by decreases in VO2peak. Intermittent $+\mathrm{G}_{z}$ or $+\mathrm{G}_{z} W$ attenuated, but did not prevent, the decrease in VO2peak with HDT.

PERIODIC UPRIGHT POSTURE NEGATES THE SUPPRESSION OF
NEUROENDOCRINE RESPONSE TO HEAD DOWN BEDREST. C.E. Wade*, J Vernikos ${ }^{\star}$ J. Evans, and D. O'Hara. Life Science Division, NASA/Ames Research Center, Moffett Field, CA 94035

INTRODUCTION. Head down bedrest (HDT) decreases plasma neurohormone levels, attaining a nadir within four hours. The present study evaluates the effect of periodic standing or exercise $\left(+\mathrm{G}_{z}\right)$ on this acute suppression of plasma neurohormones. MEIHODS. Nine male subjects (mean \pm SE age 37 ± 2 yr; height $182 \pm 2 \mathrm{~cm}$; weight $83 \pm 3 \mathrm{~kg}$) were admitted to the Human Research Facility on three occasions separated by one month. Subjects were assigned to head down tilt (-6°) or 15-minutes of standing or moderate exercise at the end of each hour. Initially, during an ambulatory period, subjects were placed in a supine position for $45-\mathrm{min}$ and a control blood sample obtained. The next day following 4-hours of HDT with or without standing or exercise a blood sample was taken $45-\mathrm{min}(33 / 4$ hours into HDT) after the preceding stand or exercise. Blood was withdrawn and all plasma samples frozen for determination of neurohormone levels within the same assay. Plasma aldosterone, plasma renin activity (PRA), vasopressin (AVP), and cortisol levels were measured by radioimmunoassay. Norepinephrine (NE) and epinephrine (E) levels were measured by electrochemical detection following HPLC. Values were compared by ANOVA, $P<0.05$. BESULTS. Control levels following $45-\mathrm{min}$ supine were not different between treatments. HDT suppressed plasma aldosterone (13.9 ± 3.7 to 6.6 ± 0.7 $\mathrm{ng} / \mathrm{dl}$) and NE levels (299 ± 35 to $217 \pm 23 \mathrm{pg} / \mathrm{ml})$. Plasma vasopressin (1.1 ± 0.2 to $1.1 \pm 0.2 \mathrm{pg} / \mathrm{ml})$, cortisol (11.1 ± 1.4 to $9.3 \pm 0.7 \mu \mathrm{~g} / \mathrm{dl}), \mathrm{E}(69 \pm 15$ to $65 \pm 21 \mathrm{pg} / \mathrm{ml})$, and PRA (0.64 ± 0.13 to $0.58 \pm 0.17 \mathrm{ngAl} / \mathrm{m} / \mathrm{hr}$) were not significantly altered. Standing or exercise negated the decrease in aldosterone and NE levels due to HDT
CONCLUSIONS. Periodic upright posture ($+\mathrm{G}_{2}$) with or without exercise for $15-\mathrm{min}$ out of each hour negates the acute suppression of aldosterone and NE associated with HDT.

THE EFFICACY OF PERIODIC +1 Gz EXPOSURE IN THE PREVENTION OF BEDREST INDUCED ORTHOSTATIC INTOLERANCE D.A. Ludwig, J. Vernikos ${ }^{*}$, M.R. Duvoisin \& J.L. Stinn. Dept. of Math, Univ. of NC, Greensboro, NC 27412, Life Science Division, NASA-Ames Research Center, Moffett Field, CA 94035 and Biomedical Operations and Research Office, NASA-KSC, Kennedy Space Center, FL 32899.

INTRODUCTION. What is the most efficient dosage of periodic exposure to +1 Gz during microgravity to maintain a functional upright posture after returning to a $+1 G z$ environment? The answer has implications for the type of countermeasures astronauts will be required to perform during long term space flight. METHODS. Nine males were subjected to four different +1 Gz exposure protocols plus a control protocol ("OGZ") during four days of continuous bedrest. The four +1 Gz exposures consisted of periodic standing or walking each for a total period of two or four hours. Each subject was returned for bedrest on five different occasions over a period of approximately one year to obtain data on each of the nine subjects across all four +1Gz treatments and the control. A 30 min tilt test was used to measure orthostatic response during pre and post bedrest. RESULTS. In terms of survival rate (percent of subjects who did not faint after 30 sec of tilt), 4 hours of intermittent standing was the only protocol that maintained a rate comparable to pre bedrest levels (87.5\%). Although the other three +1Gz protocols performed better than the " 0 Gz " control (22.2%), only the four hour standing returned post bedrest survival rates to pre bedrest levels. CONCLUSIONS. The results will need to be evaluated with regards to a variety of other physiological systems which are known to decondition during mierngravity

-636-

THE VALUE OF THE 4-DAY HEADDOWN BEDREST MODEL FOR SCREENING COUNTERMEASURES. J. Vernikos*, L. Keil, A. C. Ertl, C, E. Wade*, J. E. Greenleaf*, D. O'Hara and D. Ludwig*. NASA/Ames Research Center, Moffett Field, CA 94035 and University of North Carolina at Greensboro, Greensboro, NC 27403.

In order to evaluate the benefits of periodic exposure to the +Gz vector as a countermeasure to the physiological responses to -6° head-down bedrest (HDT), we considered a two-tiered approach: (a) to use 4 -days HDT as a quick and inexpensive means of screening countermeasures, (b) to use a 60 day HDT to validate the most promising candidates. The approach and results of a 4-day study are described here. Methods: Nine males were admitted to our Human Research Facility for one ambulatory Mehods: Nine males were admitted to our Human Research Facility for one ambulatory control day followed by 4-days HDT and were released on the next day after compl
a peak oxygen consumption test (VO2peak). A battery of tests was selected and standardized to evaluate the known early effects of HDT on plasma volume, early bone markers, orthostatic tolerance, physical performance, and fluid and electrolytes and their hormone regulation. Fluid, sodium (Na) and potassium (K) intake and output in the urine were monitored throughout. Plasma volume was determined with a modified Evans Blue method and orthostatic tolerance with a 60° head-up tilt test for 30 minutes-both of which were determined on the ambulatory control day and on day 4 of HDT. Immediately after completion of the tilt test, subjects were returned to the -6° position until the next morning when a VO2peak (horizontal bicycle ergometer) was done. This was compared to a similar control test determined on 2 separate occasions betore subject admission. Besults: Four hours after going HDT produced significant decreases ($p<0.05$) in the circulating concentration of fluid and electrolyte regulating hormones. Plasma volume, orthostatic tolerance and VO2peak changed significantly after 4-days HDT. There was also the expected natriuresis on day 1 of HDT but no significant diuresis. The consistency of the pre-bedrest VO_{2} peak tilt tests and plasma volumes was remarkable. conclusions: The 4-day HDT model seems highly promising for screening a variety of countermeasures alone and in combination before validating their benetits in extended bedrest or flight experiments.

ABSTRACT AUTHORS

(with abstract numbers)

Ackles KN--522,523,524,525
Adams G--28
Agnew J--608,612
Albery WB--581
Albuquerque e Sousa J--3
Aldman M-210
Alem NM--44,215
Alfrey C--200
Alihanka J--133
Alkov RA--244
Allmers $\mathrm{H}-75$
Allnutt RA--242
Alston N-107
Altekruse EB--500
Amoroso P--167
An RQ--192
Andersen HT-152,177
Ando H-171
Antuñano MJ--85,557
Aratow M--29
Arduino G-96
Arnaud CD--163
Asukata I--170,171
Bacon D-164
Bailes JE--137
Bain B-211
Bainwohl S--523
Baker S--58
Baker SP--213,245
Balkin T--167
Ballard RE--29
Banks RD-142
Banta GR--68,69
Barber JA--240
Bare WW--553
Barratt M--35
Barratt MR-592,593
Bassett BE--155
Bauer DH-5
Baylor KA--11,104,584
Beaird J--64
Beck BG-13
Beck JS--521
Bednenko VS--165
Bennett BL--68
Berezhnov ES--162
Bergau L--250
Bernard TE--70
Berti R-160,198
Besch EL--79,80
Betancourt R-186
Billica RD--589,591,592,594, 595
Biselli R-169
Bishop P--64
Bisson RU--154,549
Blanco Rojo F--161
Blank W--228
Blatt SP--128
Blomberg RD--512
Blomqvist CG--572
Blower DJ-- 176
Blystone RA--221
Boismier T--39,40
Bomar JB--26
Bonetti D--47

Borowsky MS-244
Boss NM--86
Brickley L--82
Brinker JR-131,243
Broach D-102
Broadwell DK--514
Brook EA--544
Brown CL--26
Bruckart JE--2
Buchanan P--28
Buckey JC--572
Buhrman JR-45,46
Buick F--206,211
Buono MJ--69
Burke TJ--623,625
Burns JW--26,208
Burton RR-209,632
Butler I-164
Cai CG-222
Caldwell JA-150
Caldwell JL--151
Cammarota JP--89,90,121
Campbell MR-594
Camps Palacios A-108
Canaveris G--196
Canfield DV--60
Cann CE--163
Cao S-Y--141
Carmo G-3
Carter DJ--150
Cartledge RM-629
Cashion LJ--521
Castelo Branco NAA--3
Cavanagh PR-30
Chan J--526
Charles JB-20,232
Chaturvedi AK--223
Chelen WE--41,234
Chelette TL--585
Chen YQ--1
Cheung BSK--37
Chittum CB--31
Cho KW--143
Christensen CC--152
Cianci P--580
Cintrón NM--201
Clark JB--599
Clarke D--576
Clere JM-207
Coblentz A--512
Coffey DJ--239
Cohen MM--12,534
Collins WE--55
Convertino VA-21,67
Corker K--536
Cornell FM--113
Cornum RLS--115,628
Cornwall MW--88
Crenshaw A-29
Cresci N--96
Cristofanelli L-193
Crowley J--167
Crowley JS--623
D'Amelio R-169
Dahlbäck G--210
Davis BL--30

Dawson AG--218
De Angelis C--160,169,198
Dearborn AS--633
Degani A--538
DeJohn CA--73
Della Rocco PS-101,501
Demitry PF--548
DeRoshia C-12
Desmond JL--208
DeWeese R--212
Dieterich HA-119
Dinis da Gama A-3
DiRaimo DA-65
Dismukes RK--534
DiZio P--600,601
Do S- 10
Doarn CR-590
Dodd RS--214
Doerr DF--67
Doi M--17
Dolgin DL-174
Donohue-Perry MM--33
Doweck I--14,247,248
Dowell GL--131,243
Drehner DM-128,172
Driscoll T--200
Dudley G-28
Dunlap WP--105
Duvoisin MR-635
Dwyer GB--94
Eastman D--523
Eckberg DL--573
Eddy D--74
Edwards HF-168
Egorov AD-162
Eichstadt FT--591
El Ghorab N-149
Elcombe D--518
Elrifai AM--137
Endecott BR-223
England HM Jr--224,225
Enomoto K-148
Enzenauer RW--113
Ercoline WR--581,596
Ertl AC-633,636
Esken RL--48,585
Evans GH--24
Evans J-634
Evans JM-145
Fanton JW--208,606,608,609, 610,611
Farhi LE--571
Farrace S--169, 198
Farrow S--40,249
Fassbender C--529
Faulk DM--528
Feldtman RW-130
Fennell RG--157
Filiaci F--198
Fitzpatrick DT--34,540,541
Foley MF--85
Ford R-134
Forster EM-120,121,122
Forsyth RD--27
Fortney S--200,204
Fotedar L-164

Fouillot JP--512
Fowler B--106
Foyle DC--537
Frank PW--159
Fraser WD--522,523,524,525
Frazier JW--81
Freeman M--526
French J--74,111
Fritsch JM--573
Fujii M--231
Fujita Y--170,171
Gaffney FA--572
Gagliano DA-625,626
Galindo S Jr--237
Gallaher PD--509
Gander PH--508
Gao JP--93
Garber MA-221
Garcia SK-239
Garrison RT--246
Garza J--239
Gee T--523
Geil DH--554
Gelman A-136
Getchell LH--94
Gibson TM--545
Gilbert JH--7
Gillingham KK-123,181,561, 583,586
Giovanetti PM-182,620
Girten B--146,203
Glandfield MD--552
Glass SC--94
Glazer I--505
Glifort KF--622
Goeters KM-529
Gonzalez A--78
Gonzalez RR-65
Good E--10
Goodman LS--522,523,524,525, 526
Gordon CR-14,247,248
Gordon SR-187,188
Gotshall RW-144,202
Gowdy RV--212
Graeber RC--507
Grande KJ--145
Gray G-142
Gray GW-158,181
Green J--181
Greenleaf JE-636
Grigoriev AI--15,162,165
Grissett JD--598
Guedry FE Jr--11,104,584, 597,598
Gulino AM--158
Gunzenhauser JD--626
Guo HZ-141, 192
Guo JJ--191
Guo SS--192
Guo Y--98
Guy HJB-574
Hagan RD--68
Haley JL Jr--44
Hall J--111
Halloran BP--163

Halpern MS-196
Hamilton RW--575
Hammond ME-163
Han JS-180,188
Hangartner TN-18,19
Harding RM--569
Hargens AR--29
Harm D--233
Harmon MH-122
Harms-Ringdahl K-210
Hart SD-70
Hartley JJ--27
Hather B-28
Hayward B-107
He DY--222
Heaney JH--69
Helmreich RL--531
Herz R-203
Hettinger LJ--33
Himonas IT-194
Hirayanagi K-17
Hodder G-40
Hokari M-170,171,179
Holland AW--166,528,531,533
Holland DA-59,547
Holloway HC-566
Honda Y-147
Hordinsky JR--60,178
Horrigan D-66
Hudson DE-510
Hunter RP--201
Hurst MD--69
Igarashi M-17
Ikawa S--147
Isaacs J--229
Ito $\mathbf{H}-139$
Ito M-17
Ivan D-629
Iwanyk E--167
Izzo S--96
Jacobs I-211
Jaweed M-10,164,231
Jessup JM--134
Ji GY-191
Jing B-S-141
Jochem WJ--135
Johansson SA--210
Johns JP--607
Johnson GP--618
Johnson L--229
Johnson WW--537
Johnston SL-591,594
Johnston SL III--77
Jones DR-156,504
Jones SA--23,233
Kabrisky M-234
Kadrmas W-197
Kahan N-29
Kaiser MK--537
Kaji M-170,171
Kakimoto Y--97
Kaleps I-43
Kamimori G-167
Kaminsky LA--94
Kanas N--36
Kaneko S--16
Karemaker JM--607
Kaschak T-249
Kawaragi T--97
Kay G--178

Kear KT--138
Keil L--636
Kelly A-36
Kemper GB--153
Kennedy RS--23,105,233
Keum R-61
Kikuchi R-173
Kindwall EP--559
Kizakevich PN-135
Knapp CF-145
Knecht RJ--84
Knowles JR-118
Knox FS III-45,46,187,188
Knox G-229
Kobayashi H-139
Koenig SC--611
Kohl RL--41,234
Kohn GM-157
Kojima T--16
Kortschot HW--251
Kossovsky N--136
Kramer CA--51
Kramptiz C--54
Krock LP--24,88
Krutz RW-209,568
Kumar KV--7
Kume M-530
Kuperman G-32
Kwak IH--61
Lackner JR-42,600,601
Lacy J--204
LaFon ED- 155
LaKier P-619
Laliberté M-F--104
Lamb MW--245
Landgraf H-199,250
Lane LD--572
Langewouters G--119
Laszlo C-1
Latham RD-606,607,608,609, 610,611,612
Lattimore MR--115,602,628
Lawson BD--42
Leavitt ML-137
LeBlanc A-164
Lee YH-61
Lehr A-K-119
Leimann-Patt HO-108
Leipner H--119
Leonard RB--516
Levine B-56
Levine BD--572
Levy RA- 540,543
Li FZ-140
Li G--38,213,587
Li GX--98
Li Q--98
Li W--81
Li Y- 98
Li Z-190
Lian L-152,177
Lilienthal MG--23
Lindeis AE--106
Linder J--210
Lindner P-119
Lindqvist A-133
Lloyd C--593
Lloyd CW--589,590
Lockette W--39,40,58,249
Lohn K-18, 19

Looper L--166
Lotz WG--66,132
Low RB--241
Lowry LD--38
Ludwig DA-21,635,636
Lund DJ-625
Lyne JE--184
Ma L--93
MacKenzie S--39,58
Macnab A-1
Mader MJ--50
Maeda E-179
Maggio FJ - 181
Maloan J--206
Mandler E--250
Mann PJ--54
Manning CA-175
Manzey D-532
Marcondes-North R-166
Markovits AS--114,183
Maroon JC--137
Marsh R--528
Martin EJ--585
Martin TE--126
Maru R-148
Maruyama S--97,220
Marx RE-578
Masdrakis GV--194
Mason KT--613,616
Masuda I-170
Mateczun A-149
Matricardi PM-160,198
Matsumoto D-163
Matthews RJ- 627
Maxwell DW--226
Mayanagi Y--205
Mayo MW--629
McCardie AH-226,227
McCarthy GW-550
McCartney ML--135
McCloskey K--48
McDevitt D-195
McEntire BJ--44,216
McFadden T-531
McGowan D-181
McGrath BJ--11,104,584,597
McKee NH-27
McKenzie I--123
McKinnon BJ--502
McLean GA--31,103,224,225
McMillin WL--175
McNish TM--546
Melamed $\mathbf{Y}-14,247,248$
Melchior F--207
Meng XH--98
Merola AJ--146
Mers A-249
Mertens HW--99,100,101
Meyer L-66
Milburn NJ--99,100,101
Miles P--39,58
Mittelman MH-116,117
Miyamoto A-16,17,148,205
Mizumoto C--139
Mohler SR-18,19,503,565
Molina EA--230
Molstad SM--11
Money KE--37
Monson CB--81
Morgan TR--26

Mosely E--232
Moser K-56
Moss PM--95
Mosticoni R--96
Mulcare J--8
Mulvagh S--204
Munson RA-127,129,197
Murphy CD-145
Naftzger L--94
Nagaoka S-16
Nagasawa Y--97
Nakagawara VB--63
Nakamura A-97,124,139,220
Nakayama J-16
Nakazato T--17
Narayana P-164
Neblett N-89,90
Neisler HM--132,149
Neri DF--71,72,73,131,243
Neslein IL-152
Nesthus TE--79,80
Neville K-74
Nichiporak IA--15
Nicholson AN--195
Nickle JC--615
Nicogossian AE-13
Nishi S--97
Nisini R-160,198
Noffal GJ--69
Noguchi Y-179
Nunneley SA--567
O'Connell SR--183 $^{\prime}$
O'Hara D--634,636
Obergefell LA-43
Ohkoshi $\mathbf{H}-171$
Ohno M--179
Okada N--530
Okamoto T-179
Okuaki Y--171
Olenick L--111
Olsen RG-562
Olson RM-6
Olszowka AJ--571
Onus H--587
Oosterveld WJ--251
Orasanu JM--535
Orzech MA-85
Osada H--220
Ossard G--207
Owe JO--152
Owens RW--606,608,609,610, 612
Pakull B--178
Park BO--143
Park JK-143
Park YM-143
Parmet AJ--617
Pasquale A--629
Patwardhan AR--145
Pearson N--167
Pellizzari ED--135
Pendergast DR--571
Peng FM--93
Pepper LJ--564
Pèrez Sastre JM--161
Perry C--45,46
Peterson RD-629
Petit C--580
Petrelli G--160,198
Philbeck TE Jr--84

Phillips RW--570
Picano JJ--168
Pience PF--49
Pilmanis AA--5,6,9,153,154, 155,221,558
Pimental NA-69
Pinter R-204
Plaga JA-47,187,188
Plyley MJ--27
Pongratz H-119,228
Porcu S-235
Powell MR-7
Powers WE--18,19
Prater K-203
Preston FS--552
Previc FH--586
Prior ARJ--92,119,189
Prisk GK-574
Przybylski J--196
Putcha L-201
Rasmussen PG--109
Ray MA--520
Ray P--64
Raymer JH-135
Reed H-67
Reid ME-180,188
Repperger DW--77
Reschke M-584
Revzin AM--109
Reynolds JC--630
Rhodes W--27
Richardson LA-127,129
Riegler JT--33
Ries JE--597
Rios F--78
Ripley EP- 5
Robert RD--52
Rogers S--234
Rokitka MA--571
Rolnick A--247
Roncin A--207
Rose D-M-228
Rose RM--531
Rosekind MR--508
Rothfuss SI--555
Rowe-Hallbert A-74
Rugotzke GG--105
Rupert AH-11,104,582,584, 597,599
Rush WL-128
Saiki H-147
Sakai K--179
Sakai T-170,171
Sakuramoto Y-179
Salisbury DA--242,613,614
Samel A-75
Sanchez S--163
Sanders DC--223
Santee WR--65
Santy PA--166,527,528,531
Sasaki M-170,171
Sawin CF--209
Saxton JL--132
Schamaun O-152
Schiewe A-532
Schiflett SG-74,560
Schmidt DJ--110
Schneider V--164
Schoenberg LW--149
Schroeder DJ--102,501

Schulte-Huermann D-199,250
Scoggins TE--5,6
Sekiguchi C--17,148,205,530
Self BP-43
Self DA--606,608,609,610,612
Seul-143
Seylaz J--207
Shahed AR-79,80,236,237,238, 240
Shanahan DF--215,216,217
Shappell SA-71,72,73
Sheehy JB-631
Shen ZJ--192
Shender BS--76
Shepard N-39,40
Sherman WM-146
Shibata Y--179
Shih SR-137
Shimazu H-139
Shimizu K-139
Shupak A-14,247,248
Shykoff BE-571
Siconolfi SF--138
Siegborn J--4
Simanonok J--8
Simanonok KE--20,232
Simini G-- 193
Simmons SC--595
Simons M--219
Siniff D-66
Slopis J--164
Smith G--64
Smith J--264
Smith M--56,593
Snyder QC--62
Sobel A--32
Specker LJ--47,187,188
Speyer JJ--512
Spittle EK--43
Spitzer O-14,247,248
Sponsler E-136
Srinivasan RS--20
Stathogiannis EC--194
Stegall CJ--53
Stegmann BJ-153,209,221,557
Steinmann L--200
Stephens RL-150
Still DL--116,117
Stinn JL--635
Stocker U-159
Stoklosa JH--506
Stone LW--150
Stott JRR--550
Street DR-174
Stuck BE--625,626
Styf J--29
Sudoh M-147
Sun W--192
Suzuki K-16
Tachibana S-124
Tajima F--97
Tajima N-170,179
Takahashi T-171
Takasaki N--170
Takeda N--179
Tallarovic J--47
Tamura T-170
Tarui H--97
Taylor MJ--137
Teas DC--583

Teeple E-137
Temme LA--116,117
Tesch P--28
Theisen K--119
Thomas FO--556
Thomas GB--226,227
Thompson LJ-218
Thornton J-605
Thornton R--151
Thornton WP--621
Tietze KJ--201
Tozer AE--92,189
Tran CC--606,608,609,610,612
Tranchida P-58
Travis TW--25
Tredici TJ-118
Trimble N-19
Tripp LD Jr--77,125,588
Tucker GR--575
Tucker S-113
Tupper C--83
Turlington JT--130
Tuttle R-146
Uchino K-170,171
Uematsu M-171
Ueno T--205
Ullich B--1 19
Ungs TJ--57
Urbani L-160,169,198
Usui S-16
Valk PJL--219
Vanderbeek RD-181
Vanselow B--250
Varner DC--586
Vejvoda M-75
Velardi E--193,235
Vernalis MN--607
Vernikos J--21,632,633,634, 635,636
Veronneau SJH--563
Voge VM-513,517
Vogen G--234
von Mülmann M--250
Wade CE--634,636
Wagner GN--519
Waki H--147
Waligora JM--7
Walker ML--203
Wang SW--93
Wang X--93
Wang Y-40
Ward DF--202
Watanabe F-171
Watanabe S--16
Watenpaugh DE--29,572
Waters TW--84
Webb JT--9
Wegmann HM-75,511
Weinstein LF--596
Welch R--12
Welsch H-228
Werchan PM--79,80,236,237, 238,239,240
Wesensten N --167
West JB--574
Whaley MH--94
Wheeler D-515
Whinnery JE--76,89,90,120,

$$
121,122,181
$$

White CD--606,608,609,610,

611,612

White DD-144
Whitestone JJ--603
Whitley PE-91
Whitman J--197
Whitmore J--111
Whittenberger S--203
Whitton RC-127
Wiegman JF--79,80
Wiener EL-538,539
Wilcox BC Jr--224,225
Wilkes RL--105
Williams CE--226
Williams CS-- 185
Williams FW-68
Williams HL--103
Williamson DW--244
Wilmore KM--69
Wilpizeski CR--38,587
Wilson GF--112
Wimer G--146
Winkler ER-604
Wirjosemito SA--579
Wolbarsht ML-624
Wolter A-113
Wood KJ--63
Woodard D--229
Woodrow A-8
Workman WT--577
Wright NA-195
Wright SA-87
Xing HX-191
Yacavone DW-244,542
Yagura S-124,139,220
Yajima K-17,148,205
Yamada C-179
Yamaguchi N --148
Yamamoto H--170
Yamamoto K-170,171
Yanagisawa T--170
Yang L-526
Yao ZH--93
Yates AD Jr--551
Yazawa M-179
Yokoyama J--179
Yoshimoto S--205
Young W-102
Yu L-22
Yumikura S-17,148,205,530
Zarinczuk J--70
Zentner AB--107
Zhang HC--93
Zhang S-X-141
Zhang Y--191
Zheng YX-190
Zhou JJ--98
Zollner S-119
Zwick H--625

ADVANCE REGISTRATION FORM 63rd Annual Scientific Meeting

FONTAINEBLEAU HILTON HOTEL
MIAMI BEACH, FLORIDA
¿EMEMBER:
-Advance registration closes April 17, no refunds will be made for cancellations received after May 1.
-Spouses who have registered with the Wing and wish to obtain CE credits may do so by registering at the AsMA member fee of $\$ 160.00$
-The reception (black tie optional) prior to the Honors Night Banquet is open to all registrants on Thursday, May 14.
-The Advance Registration Desk, for fast and easy pickup of badges, tickets, and meeting materials, will open at 1 p.m.,
Sunday, May 10 . Sunday, May 10.
-Mail this form with your check to: Aerospace Medical Association
320 S. Henry Street
Alexandria, VA 22314-3579

Information for our records:
Information for your badge:

(name)

(degree)

(street address)

(city, state, zip code)

(country)
(telephone number)
There are only 18 spaces available per line--
Line 1-name and one degree
Line 2--military rank, affiliation or organization
Line 3 --city and state or country
rea of Specialty (Please check only one for Association records)

\square Aerospace Human Factors	5. \square ENT	9. \square Nursing	13. \square Other (specify)
\square Aerospace Medicine	6. \square Family Practice	10. \square Ophthalmology	
\square Aerospace Physiology	7. \square Internal Medicine	11. \square Research	
\square Biomedical Engineering	8. \square Military Command	12. \square Surgery	

	REGISTRATION FEES (DUES NOT INCLUDED)			
	MEMBER and AMA Cat I CME Credits		(1) \$160.00	\$
	MEMBER and No Credits		(1) \$110.00	\$
	NON-MEMBER and AMA Cat I CME Credits		(a) \$245.00	\$
	NON-MEMBER and No Credits		(1) \$195.00	\$
	STUDENTS (with valid ID Card)		No Charge	
	(Non-Members are welcome at meal functions)			
Sun.,	May 10 AsMA Welcome (cash bar)			No charg
Mon.,	May 11 Civil Aviation Medical Association Luncheon	No.	@ \$ 20.00	\$
Mon.,	May 11 Society of U.S. Air Force Flight Surgeons Luncheon	No.	© \$ 20.00	\$
Mon.,	May 11 U.S. Navy Luncheon		© \$ 20.00	\$
Mon.,	May 11 U.S. Army Aviation Medical Association Luncheon	No.	© \$ 20.00	
Mon.,	May 11 Aerospace Human Factors Association Luncheon	No.	© \$ 20.00	\$
Mon.,	May 11 Flight Nurse Reception		© \$ 10.00	
Mon.,	May 11 Associate Fellows Reception		@ \$ 10.00	\$
Tues.,	May 12 Associate Fellows Breakfast	No.	© \$ 12.00	
Tues.,	May 12 Association Annual Business Meeting and Buffet Lunch		© \$ 15.00	\$
Tues.,	May 12 Dinner and Shows at the Seaquarium		© \$ 38.00	\$
Wed.,	May 13 Aerospace Physiology Society Luncheon		(1) \$20.00	\$
Wed.,	May 13 Society of NASA Flight Surgeons Luncheon		(1) \$ 20.00	
Wed.,	May 13 Flight Nurse Section Luncheon		© \$ 20.00	\$
Wed.,	May 13 Ibero-American Association Luncheon		© \$ 20.00	\$
Thurs.,	May 14 Space Medicine Branch Luncheon		(a) \$20.00	\$
Thurs.,	May 14 Canadian Society of Aerospace Medicine Luncheon		(1) \$ 20.00	
Thurs.,	May 14 Honors Night Banquet		© \$ 40.00	
	Bank charges for checks drawn on non-U.S. banks		© \$ 20.00	\$
		TOT	SED	\$

METHOD OF PAYMENT: Check \qquad Credit Card \qquad
(Make checks payable to the Aerospace Medical Association)

AEROSPACE MEDICAL ASSOCIATION 63RD ANNUAL SCIENTIFIC MEETING

1. Complete all information requested and mail form to AsMA Housing Bureau in Miami (see below) by April $17,1992$. NO PHONE RESERVATIONS WILL BE ACCEPTED.
2. An acknowledgment of your reservation assignment will be sent by the Housing Bureau within a 2-week period. Check the acknowledgment immediately to be sure all information is correct. The acknowledgment will be followed by the actual confirmation from the hotel.
3. Reservations must be guaranteed by supplying major credit card information on this form or by sending a one night's deposit directly to the hotel after confirmation is received from the hotel.
4. All changes and cancellations should be made directly with the Housing Bureau in writing or by FAX (see below). After the cut-off date, last minute changes and cancellations must be made directly with your designated hotel no later than 72 hours prior to arrival for refund.
5. Number all hotels in numerical order of preference. Room assignments are made on a first-come, first-serve basis.
6. In the event your hotel of choice is sold out, the Housing Bureau will secure hotel rooms at the next available hotel.

HOTELS \& RATES Number all hotels in order of preference.

	Single	Double	Triple	Quad	Suite
FONTAINEBLEAU HILTON (Headquarters)	\$95.00	\$110.00	\$125.00	\$140.00	\$380.00-\$670.00
	\$105.00	\$120.00	\$135.00	\$150.00	--
	\$120.00	\$135.00	\$150.00	\$155.00	--
Oceanfront Terrace	\$135.00	\$150.00	\$165.00	\$180.00	--
EDEN ROCK	\$80.00	\$80.00	\$90.00	--	\$100.00 (Jr. Suite)
COLONY SHAWNEE	\$65.00	\$65.00	\$85.00	\$105.00	--

Indicate type of room requested:
Single \qquad Double \qquad Triple \qquad Quad \qquad Suite \qquad
ARRIVAL DATE \qquad TIME \qquad DEPARTURE DATE \qquad
Guarantee to:

> Type of major credit card

Credit card number
Expiration date
NAME OF OCCUPANTS (Bracket names sharing room)
\qquad
\qquad
Person to whom confirmation should be mailed:

Name \qquad
Company
Address \qquad

City \qquad State \qquad Zip \qquad
\qquad)

COMPLETE \& MAIL FORM TO:

AsMA HOUSING BUREAU
701 Brickell Avenue-Suite 2700
Miami, FL 33131
FAX NO: (305)539-3113

63rd Meeting of the Aerospace Medical Association ADVANCE REGISTRATION FORM
 FOR SPOUSES OF AsMA MEMBERS

Please read the entire form (both sides) before filling out.
Advance Registration closes April 1 -- No refunds after April 10.
Fill out a separate registration form for each person.
Enter the number of tickets desired in the box in front of the activity.
Enter the total AMOUNT of ticket(s) on the line after each activity.
Send your Advance Registration directly to the WING. DO NOT include your registration with your spouse's.
Everyone, including International Members, must send check or money order, payable in U.S. dollars with their Advance Registration to guarantee a place on the tours.
International Members may direct transfer of funds to the Riggs Bank, Washington, D.C., account number 07-08041026.
Wing Dues (for calendar year 1992 billed September 1991) \$20.00 \$
New Member 92 \qquad New Member '92

Renewal
Dues Paid '92
Compulsory Registration Fee
$\$ 25.00$
$\$ \quad \$ 25.00$
MONDAY, MAY 11
\square The WING Welcoming Reception for REGISTRANTS ONLY
Starlight Terrace Room, Doral Hotel
$\$ \quad$ FREE

TOTAL \$
$\$$
$\$$
$\$$
\qquad
$\$$
\qquad
\qquad
FREE

Make check payable to the Wing of AsMA
Please type or print clearly:
Name
Last Name
First Name
Spouse's Name

Mail this form and your check to:

PAULA LANDRY 8128 Langbrook Road Springfield, VA 22152

THE WING OF AsMA - ANNUAL MEETING INFORMATION

WELCOMING RECEPTION. Meet and make friends at the WING reception to be held in the beautiful Starlight Terrace Room in the Doral Hotel, a short walk north of the Fontainebleau Hilton. Reception begins at 3 p.m. Free to all REGISTRANTS.

TOUR \#1: MIAMI GUIDED Half Day Tour: Tuesday, May 12, 9:30 a.m.-1:00 p.m. $\$ 17.00$ Miami is a magical city! Join a step-on guide who will highlight the great homes of the rich and famous. Sites on this tour include Miami's Central Business District, the Art Deco District, Coconut Grove, Little Havana, and Coral Gables.

TOUR \#2: FLAMINGO GARDENS Half Day Tour: Tuesday, May 12, 1:00 p.m.-5:00 p.m. $\$ 21.00$ Visit 60 acres of LUSH botanical gardens, exotic native plants, citrus groves, arboretums, 19 champion trees, and 200 year old oak trees. A half-mile tram-tour meanders through a natural habitat of flamingos, wading birds, alligators, and crocodiles.

TOUR \#3: JOHN PENNEKEMP Full Day Tour. Tuesday, May 12, 9:30 a.m.-4:30 p.m.
$\$ 42.00$
After a brief stop at Cauley Square, an historical railroad village and present-day collection of assorted shops, it's south to Key Largo for a day of fun and adventure in the sun.

Option A: Luncheon Buffet and Glass Bottom Boat Trip: Enjoy a delicious lunch at the Cascades Restaurant, Holiday Inn Key Largo and then board the 70 ft ., air-conditioned glass-bottom MV Key Largo Princess to explore Florida's coral reefs.
Option B: Sundiver Snorkeling Trip: The more adventurous can try snorkeling off the Sundiver for $21 / 2$ hours of breath-taking marine sights! Equipment and instruction included in package. Lunch not included.

ANNUAL WING MEETING AND LUNCHEON: Wednesday, May 13, 11:30 a.m.-2 p.m $\$ 24.00$
Club Atlantic Room, Fontainebleau Hilton Resort and Spa.
TOUR \#4: VILLA VIZCAYA Half Day Tour. Wednesday, May 13, 2:30 p.m.-5:00 p.m. $\$ 17.00$ Visit this great Italian Renaissance mansion and step back in time. Built in 1914 by John Deering as a winter retreat, this historic site is a must.

TOUR \#5: EVERGLADES Half Day Tour. Thursday, May 14, 9:30 a.m.-1:00 p.m $\$ 26.00$
Board an airboat at Everglades Holiday Park, and tour through natural vegetation and wildife to the Native Indian Village. An Indian guide will update us on the history of the Miccosukee and Seminole culture, including an alligator show.

TOUR \#6: PALM BEACH Full Day Tour. Thursday, May 14, 9:30 a.m.-5:00 p.m \$32.00 $V i s i t$ the official playground of society's rich and famous, the arena for scandal and controversy. Sights include the Kennedy mansion and Trump's famous Largo Mar. Following lunch at the picturesque Grand Colony Hotel, we will tour Florida's Worth Avenue for shopping.
*All tours depart from Collins Avenue entrance.
WING HOSPITALITY ROOM is located in IMPERIAL I Room of the Fontainebleau Hilton Hotel. Hours: Sunday 1-5 p.m., Monday 10:30 a.m.-1:30 p.m., Tuesday 8-9:30 a.m., Wednesday 8-9:30 a.m.

AEROBICS classes will be taught by Lt. Col. Lynn Francis in the Club Atlantic Room, Fontainebleau Hilton, Monday through Thursday, 6:30-7:30 a.m. Col. Francis is a certified aerobics instructor and has kindly volunteered her services to the WING. FREE

ADVANCE REGISTRATION-Individual packets, provided for those who pre-register, will contain schedules, reception invitation, official badge, and purchased tickets. Hours: Sunday 1-5 p.m., Monday 10:30 a.m. $-1: 30$ p.m., Tuesday 8-9:30 a.m., Wednesday 8-9:30 a.m. Carefully fill out the advance registration form, write your check, and mail them to:

PAULA LANDRY 8128 Langbrook Road Springfield, VA 22152

Aerospace Medical Association Associate Fellow Application and Biographical Update Form

(Check item that applies) This is an application for Associate Fellow status \qquad A biographical update \qquad

Guidelines for Applicants and Associate Fellows updating biographical information

1. To apply for Associate Fellowship, fill in and return this form to Association Headquarters by August 1 each year.
2. To update biographical information, submit this form to Associate Fellows' Group by September 1 each year, indicating new information or publications with asterisks (*). Include a new bibliography if new publications are to be considered.
3. Curricula vitae are not acceptable in place of the information requested on this form. The only permissible enclosures are a bibliography and one continuation sheet if there is insufficient space in any of the 11 subject areas of this form.
4. To be sure you get full credit for your qualifications and achievements, all requested information should be as complete and detailed as possible. Redundant and immaterial information (e.g., attendance at a 2 -day meeting, listing in "Who's Who", etc.) should not be included. Please print or type the following information:
5. Name: Last \qquad First \& Initial Title/mil. rank:
Current address: Telephone:
Date \& place of birth: Citizen of:
. Years in Aerospace Medicine or related field: Full-time \qquad years; Part-time \qquad years.
6. AsMA Member since___ (years) \qquad If Associate Fellow: Year selected \qquad (years) \qquad
7. EDUCATION \& TRAINING:
Highest Degree______ Institution

Add'l Degree: ___ Year Awarded_______ Institution
Post-Graduate Training: Residency (Specialty?), other training; Institution, Tng. time for each:

Courses in Aerospace Medicine or related field (eg, Aerospace Physiology) of more than 3 wks duration: Course Title

Institution, Year
Duration
5. CERTIFICATION by Specialty Board or other National Examining Agency:

Specialty
Board/Agency
Year certified
6. CURRENT POSITION \& EMPLOYER

Since
Previous three most significant positions, with dates:

7. PROFESSIONAL PRODUCTIVITY

Number of published papers in aerospace medicine \qquad in other fields (attach bibliography) No. of presentations at national scientific meetings \qquad (Do not duplicate publications and presentations) FAA AME seminars: No. attended \qquad Year (s) No. taught \qquad Year(s)
8. ACTIVITY IN AsMA and Constituent Organizations

AsMA Annual Meetings: No. attended Dates

Scientific papers presented_ Panel presentations \qquad Poster presentations

AsMA \qquad Committee Member: Years \qquad
\qquad
\qquad
AsMA \qquad Committee Chairperson: Years

AsMA Executive Council Member or Officer: \qquad Years
AsMA Honor Award(s) (Name of Award, Year Received)

Constituent Organizations:
Organization
Date Joined
Officer (Years)

Constituent Organization Honor Award(s) (Name, Year):
Associate Fellows: Officer (dates)
Award (date)
9. OTHER: Pilot (ratings) \qquad Flight Surgeon

AME or equivalent \qquad Member of International Academy \qquad
Member of or Consultant to National Government body in Aerospace Medicine (specify) :

Member or Officer in other Aerospace Societies (List) \qquad

Honors, Awards, Distinctions, Achievements (List)
\qquad

Significant Operational or Clinical Contributions; patents held, etc. \qquad
\qquad
\qquad
10. COMMENTS, ADDITIONAL DATA including membership and activities in Affiliate onganizations:
\qquad
\qquad
\qquad
11. REFERENCES (Applicants only):

Print the names of two AsMA members, including one Fellow, who are acquainted with your professional activities
Date of submission:
Signed:
Revised 3/15/91

1993 ABSTRACT SUBMISSION FORM Deadline: OCTOBER 23, 1992

Topic No. (see reverse side): 1st \qquad 2nd \qquad Mode Preference (check one): Slide \qquad Poster \qquad Either \qquad Coordinated Panel \qquad Panel Title:
Name and address for correspondence:

Work phone number:

1. For Slide and Poster presentations, follow carefully all rules including format instructions (See reverse side, Call for Papers).
2. For Panels, an overview abstract by the pancl chair, accompanied in the same package by the abstracts of each presentation in the panel is required.
3. Submissions not meeting requirements will be rejected.
4. Prepare abstract with care. Do not erase; use correction fluid when needed.
5. Use an electric typewriter and type only within the non-repro blue box on this original pagc.
6. Use only Elite type or larger and a clear black ribbon.

THIS ORIGINAL
BLUE-BOX PAGE AND
5 PHOTOCOPIES OF
THIS PAGE MUST BE
RECETVED BY OCT. 23, 1992

DO NOT FOLD!!!!!!
MAIL FLAT!!!!!!

Send to:
COL David J. Wehrly, MC, USA
Program Chairman
Aerospace Medical Association
320 S. Henry St.
Alexandria, VA 22314-3524
ATN: Abstracts
\qquad
7. Use the following format:
a) Title in CAPITAL LETTERS using significant, descriptive words.
b) Authors (initials then last name), all underlined. Identify AsMA member-authors with an asterisk (*).
c) Institution where work was done.
d) Indent first line of text 3 spaces. Rest of text is a single paragraph, single spaced, with no photos, and no type smaller than Elite. (Printing is reduced to 60% of original size.)
8. THIS ORIGINAL BLUE-BOX FORM MUST BE USED.

Aerospace Medical Association 1993 ANNUAL SCIENTIFIC MEETING

The 1993 Annual Scientific Meeting of the Aerospace Medical Association will be held May 23-27 at the Sheraton Centre Hotel, Toronto, Ont., Canada. The scientific sessions will emphasize new findings in aviation, space, and environmental medicine. All interested persons are invited to submit abstracts of studies which they wish to present as slide talks or poster presentations. Abstracts which meet format requirements will be reviewed by three or more members of the Scientific Program Committee and will be judged on originality, relevance, and scientific quality. Accepted abstracts will be published in the Association's journal, Aviation, Space, and Environmental Medicine.

PLEASE NOTE: Since publication will be by photo:offset, tiue special abstract submission form (overleaf) with the non-repro blue box MUST be submitted. FAXes are not acceptable. DO NOT draw around the box so that it will reproduce in a copying machine. Neatness and accuracy of the original are of paramount importance. Sharp, black, elite-size (10 pt) type or larger is required. Do not erase--use correction fluid if necessary. Extra copies are available from the Aerospace Medical Association, 320 S. Henry St., Alexandria, VA 22314; phone (703) 739-2240.

RULES FOR SUBMISSION OF ABSTRACTS:
 \section*{A. Slide and Poster Presentations:}

1. Only original material which has not been published or presented at other major meetings is acceptable. The first author is required to sign a statement which affirms that. Be sure that the necessary clearance has been obtained before submitting an abstract.
2. An individual may present only one paper and must appear as first author on the abstract (1st author = presenter.)
3. One author must be a member of AsMA (identificd by ${ }^{*}$ in the abstract). If none of the authors is a member of the Acrospace Medical Association, the abstract must be accompanied by a note of introduction for the first author signed by an AsMA member.
4. Slide sessions allow 10 min of verbal presentation followed by 5 min for questions. Poster sessions are assigned display space for 3 hours with the author cxpected to be present for at least 1.5 hours. The Program Chair retains final authority to sclect the presentation mode.
5. Abstracts MUST be submitted on this form (with BLUE BOX) along with five photocopics. FAXes are not acceptable. DEADLINE: Oct. 23, 1991. Submissions which are not receivcd at AsMA headquarters on time or which do not conform to the rules given here and on the reverse side will be rejected.
6. Each abstract must show the title, author, and institution where the work was performed. The text must include an introduction (rationale), methods, results, and conclusions: it is not adequate to state "results will be discussed." The format is shown in the example on this page, and further details appear on the Abstract Submission Form (see reverse side). An abstract will be rejected if it does not clearly demonstrate new data of significant interest.
7. For case histories, clinical papers, CME topics, and panels, the text may deviate from the prescribed format.
B. PANELS:

Overview-type abstracts will be required of panel moderators. Individual panel members must also submit abstracts and their submissions must conform to the same deadline and the same rules as all other abstracts. The overview abstract with the abstracts of each presentation must be submitted together in one package. The panel will not be considered for presentation unless all abstracts have been submitted for review.

Regarding publication: Those panel abstracts by individuals--if submitted on time and if approved by the Scientific Program Committee--will be published along with other scientific abstracts in both the program and in the May issue of the journal. Overview abstracts and certain non-substantive panel abstracts will be printed only in the program, but will not be reprinted in the May issue of the journal.

TOPICS:

[^0]HELICOPTER IN-FLIGHT HEAT STRAIN AND EFFECT OF PASSIVE MICROCLIMATE COOLING. G. R. Banta. Naval Health Research Center, San Diego, CA 92138-9174.
INTRODUCTION. High heat loads due to engine exhaust intake and high ambient temperatures within a helicopter fuselage during flight, specifically hover, have resulted in reported episodes of symptomatic heat strain among aircrew. An in-flight study was conducted to assess: a) in-fuselage ambient temperature during Navy $H-3$ helicopter at-sea operations in a high heat environment (Persian Gulf); b) presence or absence of any cardiac strain or excessive physiological heat load; and c) effectiveness of reducing these responses by wearing a protective cooling (ice) vest (IV). METHODS. Fifteen helfcopter aircrew were monitored [heart rate (IIR), skin (SK)/rectal (RT) temperatures] in both IV and non-IV conditions during flight while wearing standard filght (FC) avent. RESULTS. Across all flights and flight conditions (FC), average ambient temperatures were $38^{\circ} \mathrm{C}$ dry bulb [range $33^{\circ} \mathrm{C}$ (in-flight) to $43^{\circ} \mathrm{C}$ (hover)]. HR was greatest during hover and on-deck, range $89.9-143.0 \mathrm{bpm}$ for rest and workload. Corresponding HR with IV, range $79.9-85.9 \mathrm{bpm}$ were significantiy reduced ($\mathrm{P}(0.05$). RT was not found to be different during IV/nonIV or FC, however, ANOVA demonstrated interaction of individual skin sites and mean weighted skin temperature with IV/non-IV and FC ($P<0.05$). CONCLUSION. Aircrew performing at-sea in-flight helicopter operations in an area of high amblent heat are subject to heat loads that may produce marked cardiac strain and potential heat stress conditions. Wearing of a protective cooling vest appears to reduce this threat.

[^0]: 1. Aviation Medicine
 2. Space Medicine
 3. Environmental Medicine
 4. Acrospace Physiology
 5. Exercise Physiology
 6. Neurophysiology/Vision
 7. Acceleration, Escape, and Impact
 8. Human Factors and Man-Machinc Intcractions
 9. Flight Safety and Accident Investigation
 10. Pcrformance/Psychology/Psychophysiology
 11. Nursing
 12. Mcdical Standards and Health Maintenance of Aircrew
 13. Health Promotion and Wellness Programs
 14. Aerospace Occupational Health
 15. Other Related Topics
