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Summary

The potential capabilities and limitations of sin-

gle ball lenses for coupling laser diode radiation to

single-mode optical fibers have been analyzed; pa-
rameters important to optical fiber communications

were specifically considered. These parameters in-

cluded coupling efficiency, effective numerical aper-

tures, lens radius, lens refractive index, wavelength,

magnification in imaging the laser diode on the fiber,
and defocus to counterbalance spherical aberration of

the lens. Limiting numerical apertures in object and
image space were determined under the constraint

that the lens perform to the Rayleigh criterion of

0.25-wavelength units (Strehl ratio = 0.80) with de-

focus compensation to balance spherical aberration
of the lens. The spherical aberration-defocus balance

to provide an optical path difference of 0.25 wave-

length units was shown to define a constant coupling
efficiency (i.e., 0.56). The relative numerical aper-

ture capabilities of the ball lens were determined for

a set of wavelengths and associated fiber-core diame-

ters of particular interest for single-mode optical fiber

communication. The results support continuing ef-

forts in the optical fiber communications industry to
improve coupling links within such systems with em-

phasis on manufacturing simplicity, system packag-
ing flexibility, relaxation of assembly alignment toler-

ances, cost reduction of optoelectronic components,

and long term reliability and stability.

Introduction

There are continuing efforts to improve coupling
links in optical fiber communication systems. These

improvements address a variety of needs: manufac-

turing simplicity, system packaging flexibility to per-
mit a single lens arrangement to accommodate a va-

riety of applications, cost reduction of optical and

optoelectronic components, relaxation of assembly

alignment tolerances, efficient radiant power coupling

to the fiber, long term component reliability, and long

term stability under a variety of environmental con-

ditions (refs. 1-4). Various coupling arrangements

have been studied and applied, especially arrange-
ments coupling laser diode (LD) power to a single-

mode fiber (SMF) (refs. 4-12). Lenses generally com-

pensate for the different numerical apertures (NA's)
of the laser and the fiber and otherwise provide cou-

pling compatibility between the laser and the fiber

mode fields. Optimum coupling occurs when LD and

SMF spot sizes are matched.

Ball lenses are one of the physically simplest

and most economical micro-optic elements to fabri-

cate and mount. These lenses, in both single and
multielement assemblies, have been the subject of

various investigations of methods to perform cou-

pling tasks economically, efficiently, compactly, and

without alignment complexity (refs. 4 and 12-21).
These investigations have shown several potential

origins of coupling inefficiency. In nearly all cases,

the coupling inefficiency is dominated by the spher-

ical aberration (SA) of the lens collecting the diver-
gent LD radiation; reduction of the lens aberration is

the primary concern in developing efficient coupling
(ref. 15). Reduced coupling inefficiency is achieved

with lenses of small radius (R) and high refractive

index (n), because the losses due to SA decrease with

decreasing R or focal length (proportional to R) and

increasing n. The SA increases as larger NA's are

used. Therefore, moderate coupling efficiency can be

maintained with small diameter and/or high-n lenses
to accommodate larger NA's associated with diver-

gent LD source outputs. In addition, defocus can

partially compensate for SA (refs. 5 and 22-24).

The study presented herein provides supplemen-

tary analyses relevant to LD to optical fiber coupling
by a single ball lens, with a moderate constant cou-

pling efficiency of 0.56 and an appropriate accounting

for defocus to balance SA (fig. 1). These analyses
clarify relationships among several variables perti-

nent to general and laboratory applications for opti-

cal fiber communications. These variables are R, NA

in the object and image spaces, magnification (2tl) of

the LD onto the fiber, wavelength (_), n, and the LD
distance (Do) and the fiber distance (Di) measured

from the lens principal plane. While existing litera-

ture presents a variety of relationships and data, spe-
cific quantitative assessments of NA limits in terms of

these variables and any particular coupling efficiency

apparently have not been explicitly presented previ-

ously. In the literature, there often is ambiguity re-

garding the focal determination (z misalignment) in
calculations and measurements of coupling efficiency.

The analyses presented herein consider only the case

of single ball lens coupling to the fiber, which rep-

resents one commercially available standard pigtail

configuration.

Ball lens

Laser Optical fiber
diode

Figure 1. Laser diode to fiber coupling configuration.



Symbols and Abbreviations

Di

Do

FWHM

GRIN

LD

M

NA

n

OPD

PSF

R

SA

SMF

fiber distance measured from lens

principal plane

LD distance measured from lens

principal plane

full width at half maximum

gradient index

laser diode

magnification

numerical aperture

refractive index

optical path difference

point spread function

ball lens radius

spherical aberration

single-mode fiber

wavelength

Background and Overview

For a lens with only SA, each level of SA has

a unique focal shift that maximizes the coupling ef-
ficiency when the receiving fiber is placed at some

new position (defocused) relative to the paraxial im-

age surface (ref. 5). Coupling efficiencies are pre-
sented as functions of wave-front defocus aberration

with wave-front SA ranging from 0 to 0.7 wavelength

units (ref. 5). Maximum coupling efficiency occurs
for values of defocus aberration about equal to the
SA. References 23 and 24 show that SA = 1A when

balanced by an equal amount of defocus aberration

produces only peak optical path difference (OPD)
of 0.25_ in the pupil, which is the minimum amount

tolerated within the Rayleigh criterion (Strehl

ratio -- 0.80) when only SA is present.

In the study presented herein, in which only SA

applies (fig. 1), the results of reference 5 have been
extrapolated by calculation for the case of SA -- 1A

and 1A of defocus to determine the coupling efficiency
corresponding to OPD -- 0.25A. The application of

equation (23) on page 2681 of reference 5 to this case

gives a coupling loss of -2.5 dB (a coupling efficiency

of 0.56). (See table 1.) Therefore, satisfaction

of the Rayleigh criterion actually provides only a

moderately high coupling efficiency. The calculations
are somewhat tedious, because the coupling efficiency

is expressed in terms of a Laplace transform that in

turn is a function of a complementary error function

with a complex argument; therefore, only the result

is given.

The same analysis for a Strehl ratio = 0.90 led

to an optical coupling efficiency of 0.65. The rela-

tionship between coupling efficiency and Strehl ratio
> 0.90 is summarized in table 1. These data were

generated from correlating the graphical data in fig-

ure 11 in reference 5 and figure 2 in reference 25.

The results show that to achieve a coupling efficiency

above 0.75 requires a balanced SA small enough to

yield a Strehl ratio > 0.95 (i.e., a balanced SA _ 0.4A

or smaller and an OPD _ 0.1A or less). These re-
sults seem to be restricted only to a simple opti-

cal fiber coupling configuration, such as the one in

the study presented herein, in which only SA and/or

misalignments contribute to coupling losses (ref. 5).

Table 1. Estimated Relationship Between Coupling
Efficiency and Strehl Ratio

Coupling

efficiency

0.56

.65

.69

.73

.77

.82

.88

1.00

Strehl

ratio

0.80

.90

.92

.95

.97
.98

.99

1.00

Balanced SA,

wavelength
units a

1.0

.7

.6
.5

.4

.3

.2

0

OPD,

wavelength
units

0.25

.18

.15

.13

.10

.08

.05

0

aEqual to defocus wave-front aberration.

The results reported in references 11 and 26 ad-

dress specifically the correction of asymmetric (non-

circular or elliptic) and astigmatic outputs from LD
and the reduction of beam divergence. In addi-

tion, many studies have accompanied gradient index

(GRIN) lens technology developments (ref. 12) and

applications to optical coupling. Molded aspheric

lenses (ref. 26) incorporate the inherent advantages of
aspheric over spherical surfaces in collimation, focus-

ing, and coupling of LD beams. These advantages,

which provide increased availability of LD's with im-

proved output beams, emphasize the importance of
more completely quantifying the limitations and the

capabilities of the single ball lens for coupling such

sources to single-mode fibers. Only by such quantifi-

cation will it be possible to compare the performance

of the ball lens with other more complex systems and

to further clarify its potential suitability for specific
simple and inexpensive applications.



The ray-traceprogramappliedin the studyre-
portedhereinsupportsanalysisof uniform-amplitude

wave fronts, whereas a LD source is more accurately

described by a Gaussian-amplitude wave-front dis-
tribution. Differences between and similarities in

the behavior of uniform-amplitude and Gaussian-

amplitude beams have been discussed at length with

laser applications in mind (refs. 27-35). The ratio
of the spot sizes at any two conjugate planes in an

optical system is equivalent to the geometric M be-

tween the two conjugate planes (ref. 31). For a given

small amount of SA, the Strehl ratio for a pupil with
Gaussian-amplitude beam distribution is somewhat

higher than that for a uniformly illuminated pupil.

That is, for a given Strehl ratio, a Gaussian pupil

can tolerate slightly more SA than a uniform pupil

(refs. 33 and 35). It appears that the results re-

ported herein of calculations of optimized NA for

a slightly aberrated uniform beam (OPD -- 0.25A)
may be only slightly conservative relative to results

for similar moderately aberrated Gaussian beam if
the beam is accommodated within the calculated NA

without significant truncation.

Analytical Methods and Approach

The imaging system of the study presented herein

consists of the coupling of radiation from a LD source

(object) to a SMF by a single ball lens (fig. 1). As

mentioned earlier, this configuration is one commer-
cial standard pigtail arrangement with the ball lens.

The magnified diameter of the LD output beam gen-

erated at the fiber entrance aperture constitutes the

image. The lens is treated as a three-surface con-

struction with two real spherical surfaces of equal

curvature but opposite sign and an artificial limiting

aperture coincident with the principal (diametrical)
plane.

This optical layout is consistent with that of other

ball lens analyses in references 13-15, 20, and 21.

The optical coupling efficiencies of these lens analyses

are calculated by integrating the overlapping LD and

SMF fields in the principal plane of the lens. Such

an aperture stop would not physically exist in an
application because the effective NA of the system

would be determined by the NA limitation of the
optical fibers.

All the data were generated with the Kidger Op-

tics Ltd. MacSIGMA optical design and analysis pro-

gram through the ray-tracing and diffraction-analysis

modules. The program requires specification of an
aperture-stop surface that is consistent with the role

of pupils in optical systems analyses. For the con-

figuration in figure 1, with essentially a point-source

object, no aberrations other than spherical exist in
the results obtained with MacSIGMA. The LD is as-

sumed to be nonastigmatic, which is consistent with

the more general application of index-guided LD's.

The primary emphasis of the study presented

herein was to define limiting NA's for a range of lens

R, A, and M applicable to optical communications re-

quirements (fig. 1). The limiting NA determinations

were defined to satisfy the Rayleigh criterion of 0.25A
relative to the pupil OPD with defocus enhancement.

These NA's also correspond to a 0.56 coupling effi-

ciency, which was determined on the basis of only SA

loss, as noted earlier.

For SMF applications, table 2 presents a guideline

for matching A and fiber-core diameter (ref. 36).
Representative SMF's, as shown in table 2, have core

diameters between 4.5 and 11 #m, depending on the

wavelength of application. Single-mode operation

depends conjunctively on the A, the core diameter,

and the n difference (step index profile) between the

core and the cladding. To provide mode matching
between the LD and the fiber, the M required for

the optical system with a typical LD source that has

a beam waist of 1 #m or a diameter of 2 #m is a

number that is equal to one-half of the magnitude of

the fiber core diameter (refs. 13, 20, and 21). For

some n profiles and typical operating A, the fiber

mode field diameter may be slightly larger than the

core diameter (ref. 37).

Table 2. Wavelength and Diameter for Optical
Fiber Communications

[From ref. 36]

Fiber core

A, #m diameter, pm

0.85 5-10

1.30 9 10

1.55 4.5-11

The limiting NA's reported herein were deter-

mined from the finite (real) ray trace and are the

sines of the marginal (limiting) ray angles in the ob-
ject and the image spaces. The apertures were deter-

mined for optimized defocus conditions. The fiber is
positioned toward the lens and away from paraxial fo-

cus to counterbalance SA and permit performance of

the lens that is consistent with the Rayleigh criterion.

For each calculation, optimized NA (object and

image) and defocus were determined iteratively, with

the maximum NA chosen that allowed the Rayleigh
criterion to be marginally satisfied. That is, the

3
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(d) Three dimensional plot of optical path difference.

Figure 2. Plots of typical optical path difference across lens

exit pupil.

OPD is not allowed to exceed 0.25A anywhere across
the pupil. A balance between the defocus aberra-

tion and the SA is achieved by choosing the exit

pupil OPD (wave-front aberration) to be zero at the

edges (periphery) of the pupil; it is zero at the cen-

ter by definition of the reference wave-front position

(fig. 2). Spherical wave-front aberration varies with
the fourth power of the pupil R, while defocus ex-

pressed as a wave-front aberration varies with the

second power of the pupil R. Therefore, a balance at
the edges of the pupil can be achieved when the peak

SA and the peak defocus OPD are opposite in sign.

These optimized defocus conditions equivalently

satisfy a Strehl ratio = 0.80, which represents a rec-

4

ognized standard of near-diffraction-limited perfor-

mance for an imaging system. (See refs. 22 and 38.)

For small aberrations, the Strehl ratio has a maxi-
mum value when the aberration variance has a mini-

mum value. The best image plane corresponds to the

minimum variance value, which is a balance between

the peak defocus and the peak SA's that occur at the

edges of the pupil (ref. 23).

In the iterative specification and calculation pro-

cess, an arbitrary small tolerance about Strehl

ratio = 0.80 was permitted. The final Strehl ratio

values were within the range of 0.796 to 0.809. The

numerical apertures referred to throughout the re-

mainder of the paper are the optimized (maximum)
values, which with proper defocus values, satisfy a

Strehl ratio = 0.80. The primary interest is in enlarg-

ing the object space NA to accommodate divergent

LD radiation. The detailed presentation of image

space NA data is secondary to detailed presentation
of the object space NA data. For very small fiber di-

ameters (magnifications), the NA definition in terms

of fiber acceptance angle, or marginal ray angle, may
have limited meaning (ref. 39). That is, the geo-

metrical optics treatment is not totally adequate to

describe the modal, or wave, character of the light

propagation and its Gaussian profile. Although man-

ufacturers do not normally specify NA for SMF, opti-
cal fiber communications literature cites values from

less than 0.1 to about 0.3 (refs. 36 and 40). All values

of image space NA generated in the study presented
herein show a general consistency with this range of

values. Therefore, both the image space and the ob-

ject space NA values reported herein are applicable
to SMF optical communication tasks. The excep-

tion of a few values of image space NA > 0.3 will be
discussed in the section entitled "Variable Refractive

Index."

In the iterative process, for specific A, R, n,
and M specified for the paraxial focus, a best guess

image space NA was entered in the MacSIGMA pro-

gram (a NA specification is required to set up the cor-

rect aperture in image space when generating rays)
and the Strehl ratio was computed for conditions of

balanced SA and defocus aberration. The program

then provided the corresponding object space NA. In
all cases presented herein, the dimension of the LD

beam diameter (object size) was specified as 2 #m;

however, smaller or larger object sizes that are still
small relative to the lens scale can be chosen. Lens

diameters ranged from 0.075 to 3.0 mm, which cor-

responds to some values for commercially available

products. The values of M at the paraxial image

surface were also iterated for target values of true

transverse M at the actual image surface (defocus



position).The true M is the ratio of the chief ray

height at the image to the chief ray height at the

object, or equivalently, the ratio of the actual image
distance to the actual object distance. Both the im-

age distance and the object distance are measured
from the lens principal plane.

The exit pupil was sampled by a grid that pro-

vided 16 rays across the diameter of the pupil to ob-

tain the wave-front aberration over the pupil. The

point spread function (PSF) was then computed by

fast Fourier transform techniques for the ball lens

exit pupil and the corresponding perfect pupil; from
these results, the Strehl ratio was derived. Experi-

mentation with a sampling grid of doubled density

did not produce significantly different results.

For the study described herein, it seems impor-

tant to recognize the limitations of the geometri-

cal analysis tools that have been used. The field of

lens design and optical systems analysis, which uses
such computer programs as MacSIGMA, is based

on geometrical ray tracing with limited diffraction-

analysis features (refs. 41-43). Examination of
Fresnel numbers for the focused beams in the study

presented herein indicates that the ray-tracing tech-

niques should be adequate, but if smaller ball lenses
were to be evaluated, the diffraction-analysis lim-

itations of the program should be more carefully
examined.

Results and Discussion

Optimized NA data for three A's for a constant
lens n = 1.76 as a function of M with R as a param-

eter is shown in figures 3(a) and (b), 4(a) and (b),

and 5(a) and (b). These data cover three ranges of
M; each range is appropriate for the corresponding

fiber-core diameters and A for a typical LD source

with waist size (radius) of 1 #m, or a diameter of

2 #m. These ranges of M provide LD images to
match fiber-core diameters of 5 to 10, 9 to 10, and 4.5

to 11 #m for the respective A values of 0.85, 1.30,

and 1.55 #m, which are relevant to optical fiber com-

munications applications (table 1). The n = 1.76 at

these A's represents several materials, including sap-

phire and related glasses for laser applications. A
more detailed discussion of the results appears in the
section entitled "Constant Refractive Index."

The optimized NA dependence on lens n (n >

1.76), with _, M, and R as parameters, is shown
in figures 6(a), (b), and (c) and 7(a), (b), and (c).

Boundary values of NA were established correspond-

ing to the shortest (0.85 #m) and longest (1.55 #m)

values of )_, to the highest (5.5) and lowest (2.25)
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(a) Object space.

<
Z

.25

.2O

.15

.10

.O5

D i R

,-, 0.083M + 0.080 0.075

o 0.167M+0.164 0.15
o 0.339M + 0.333 0.30
A 0.681M+0.680 0.60
• 1.717M + 1.697 1.50

¢ 3.448M + 3.415 3.0

I I I I I
2 3 4 5 6

M

(b) Image space.

Figure 3. Dependence of NA on ball lens M of laser diode

with defoeus to balance SA and provide 0.25,_-OPD wave

front. Coupling efficiency = 0.56; A = 0.85 #m: n = 1.76.

values of M, to the smallest (0.075 mm) and largest

(3.0 mm) lens R, and to values of n ranging from 1.76
to 3.50, which was the maximum n applicable with-

out truncation of the lens sphere. The image space

NA and defocus were iterated as necessary to satisfy
a Strehl ratio -- 0.80.
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Figure 4. Dependence of NA on ball lens M of laser diode

with defocus to balance SA and provide 0.25A-OPD wave

front. Coupling efficiency = 0.56; _ = 1.3 #m; n = 1.76.

Figure 5. Dependezace of NA on ball lens M of laser diode

with defocus to balance SA and provide 0.25)_-OPD wave

front. Coupling efficiency = 0.56; ,k = 1.55 #m; n = 1.76.
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Constant Refractive Index

Figure 3(a) presents the object space (LD) op-

timized NA as a function of M for )_ = 0.85 #m
and n -- 1.76 with the lens R as a parameter. As

expected, the highest values of NA are for the small-

est lens and the smallest values correspond with the
largest lens. Intermediate values of NA are found for

intermediate lens R. This pattern is consistent over

the range of M. The M is true transverse M at the

defocus image plane. The NA for a given lens radius

has a nonlinear positive dependence on M.

Within the bounds of the variables and divergence

characteristics of LD's, and with coupling efficiency
fixed at 0.56 and n fixed at 1.76, these data make
it possible to assess the capabilities and limitations

of ball lenses for LD to single-mode coupling in a
variety of optical fiber communications and other

applications. The divergence angle of the LD is
typically defined as the full width at half maximum

(FWHM) of the far-field beam irradiance, when the
angle is referenced to the center of the beam at its

waist. Therefore, the NA equivalent could be defined

as the sine of one-haif of that angle. Alternatively,

the divergence angle may refer to the 1/e or the
1/e 2 irradiance point. Some judgment is needed in
defining the NA equivalent of the laser beam.

For purposes of discussing suggested use of the
data reported herein, it will be assumed that it is

desirable to couple a LD beam of known divergence

(spot size) and )_ to a fiber with compatible core di-
ameter. The ball lens capabilities can be evaluated as

a function of lens R and required M. For example,
in figure 3(a), an optimum choice of lens for a LD

with divergence angle corresponding to a NA _ 0.4
and A = 0.85/_m coupled to a fiber at M _> 3 would

be limited to one of R _< 0.075 mm. As shown in fig-

ure 3(b), which presents the counterpart image space
NA data, the NA of the coupling beam at the fiber

would be about 0.16 or less, depending on the M.

Since the LD divergence angle and the spot size are

coupled, the data should be interpreted accordingly.
That is, the data can be applied to LD's with waist

sizes somewhat smaller or larger than 1 /_m, or to

fiber mode field diameters somewhat larger than the

fiber-core diameters. From MacSIGMA, it was de-

termined that the same optimized NA results are ob-

tained when the object size is varied from 1 to 3 #m.
These results were expected since the source size is

still very small relative to the lens parameters. As

part of the data generation, a broadened range of
M's was covered, relative to the ranges corresponding
strictly to the fiber-core diameters listed in table 2.

In figure 3(b), for a given lens R, the image space

NA decreases nonlinearly with increasing M. For

each size lens, a linear expression for image distance

as a function of M is presented in figures 3(b),
4(b), and 5(b) for the three A. Then, the associated

object distance from the lens center Do is determined

by dividing the image distance by the M.

The data of figures 4 and 5 will be discussed only

briefly, since there is an exact parallel with the data

in figure 3. The object space NA for the A = 1.3 #m

are presented in figure 4(a), emphasizing the range
of M from 4.5 to 5.0. The behavior of NA with M

is similar to that for the shorter A, but NA for the

longer A are larger for corresponding ranges of M.

The image space NA data corresponding to the data

in figure 4(a) are shown in figure 4(b).

For A -- 1.55 pm, the object space NA data are
presented in figure 5(a). The pattern of NA behavior
with M is similar to that observed in the middle

data. Data for image space NA corresponding with

data in figure 5(a) are given in figure 5(b).

The pattern of object space NA behavior as a
function of lens R for a given _ is expected because

the potential coupling efficiency increases with de-

creasing lens R (reduced SA). For a given lens size

and given M, both the object and image NA increase

with increasing A. This increase is expected because

the wave-front aberration across the lens pupil be-
comes smaller in A units as the _ increases. For a

given lens size and a given A, the object space NA

consistently increases with M, while the image space
NA decreases with M.

Variable Refractive Index

Figures 6(a), (b), and (c) display the results of

studies in which the optimized object space NA was
evaluated as a function of n with the smallest and

largest lens R, the shortest and longest A, and the

smallest and largest M as parameters. Figures 7(a),
(b), and (c) show the image space counterparts of the

data in figure 6. Part (a) of figures 6 and 7 present

data for lens R = 0.075 mm (higher NA), part (b) of

figures 6 and 7 present data for R = 3.0 mm (lower
NA), and part (c) of figures 6 and 7 present composite

data of the total NA and n space determined by
the boundary R, A, and M. The lowest n value

of 1.76 is the same throughout figures 6 and 7. The

upper index value, however, varies among the data
sets and reaches a cutoff value for each data set that
is associated with the lens source when it is located

a very small distance (less than or equal to about

1 percent of the lens diameter) from the first lens

surface. That is, for n > 2.0, the lens paraxial focal
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point lies inside the lens, and the object distance

from the front lens surface ultimately reduces to zero

with increasing values of n and M. To obtain usable

larger NA would require truncating the ball lens on

the object side, thus making it a piano-convex lens.

As anticipated, the highest values of NA (object and

image space) are associated with the smallest lens

and longest A. However, because of the interactive

inputs of M, n, and lens R on optimized NA, the

highest NA does not correspond with the highest n.

As seen in figure 6(b), the lower boundary of object

space NA values corresponds with the largest lens R,

a small M value, and the shortest A. It is observed

from examining all the data at _ = 0.85 and 1.55 #m

in conjunction with the data in figures 4(a) and (b)

for A -= 1.3 #m that the numerical apertures at

= 1.3 #m for all the lens radii as a function of

n should be bounded by the object space data in

figures 6(a) and (b) and by the image space data

in figures 7(a) and (b). (See figs. 6(c) and 7(c).)

However, the high-n sides of the boundary polygons

in figures 6(c) and 7(c) are only drawn approximately,

since NA and n data were not actually generated for

the intermediate lens radii.

The behavior of the image space NA shown in fig-

ures 7(a), (b), and (c) as a function of n is similar to

that for object space. The upper boundary of values

of image space NA corresponds with the smallest lens

R, the longest _, and the smallest M (fig. 7(a)). The

lower boundary of image space NA values (fig. 7(b))

corresponds with the largest lens R, but with a com-

bination of A and M. The image distance from lens

center to defocus plane is not simply expressible as a

function of n. Therefore, the values have been pro-

vided in table 3. As before, the LD distance is given

by Do = Di/M.

A nominal practical upper value of NA for SMF

has been reported as 0.3 (ref. 36). It can be seen

from figure 7(b) and figure 7(c) that for A ---- 1.55/zm,

R = 0.075 ram, and M = 2.25, the image space NA

somewhat exceeds 0.3 for the applicable larger values

of n. Therefore, these data and the corresponding

object space data in this relatively small parameter

space may not be of practical use.

Concluding Remarks

Studies reported herein better define the poten-

tials and limitations of single ball lenses for coupling

laser diode radiation to single-mode fibers, particu-

larly for optical communications applications. The

lens was required to transmit a wave front that

met the Rayleigh criterion of 0.25 wavelength optical

path difference (Strehl ratio -- 0.80) near-diffraction-

limited standard for magnifications at wavelengths

Table 3. Defocused Image Distance From Lens

Principal Plane

A = 0.85 A = 0.85,
n M = 2.5 M = 5.0

Image distance, mm, at--

)_ = 1.55,

M = 2.25

0.287

.279

.261

.248

.238

.224

.211

.201

.193

.189

R = 0.075

0.492

.482

.450

.429

.412

.396

.384

zlm

R = 3.0 mm

0.261

.255

.240

.227

.219

.204

.193

.185

.179

.174

0.527

.514

.463

.425

12.095

11.687

10.973

10.383

9.953

9.215

8.708

8.312

7.953

7.691

7.475

20.717

20.014

18.788

17.802

17.002

16.338

15.789

15.312

15.097

11.132

10.830

9.608

8.818

8.243

7.829

7.504

7.246

7.030

6.852

6.773

22.441

21.645

19.345

17.832

16.594

practicable to single-mode fiber coupling in optical

communication and for a typical laser diode source

with a waist size of 1 #m. The corresponding the-

oretical coupling efficiency was shown to be 0.56.

The numerical aperture of the lens was optimized
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by balancing the inherent lens spherical aberration

against defocus aberration and by positioning the
fiber image plane closer to the lens than the paraxial

image surface. For lens refractive index of 1.76, the

study presented herein provided optimized numeri-

cal aperture as a function of magnification at wave-
lengths of 0.85, 1.3, and 1.55 #m, with lens radii of

0.075, 0.15, 0.30, 0.60, 1.50, and 3.0 mm as parame-
ters. For each set of values of lens radius and wave-

length, a linear expression was presented for the de-

focused image (fiber) distance from the lens in terms
of magnification. It was found that for a fixed cou-

pling efficiency, available numerical apertures for cou-
pling increase with decreasing lens radius and with

increasing refractive index. The object space numer-

ical aperture for a given lens radius increases with in-

creasing magnification, while the image space numer-

ical aperture decreases with increasing magnification.

In another part of the study, similar numerical
aperture calculations were made with refractive in-

dex varying upward from the value of 1.76. This part

was directed primarily at finding the numerical aper-
ture as a function of refractive index, with the small-

est and largest lens radii, the shortest and longest

wavelengths, and the smallest and largest magnifi-

cations as parameters. As a result, the upper and

lower boundaries of the object and image space nu-

merical aperture were delineated for the given pa-
rameters. The numerical aperture was a nonlinear

function of index of refraction for any given set of
the parameters. For each set of values of lens ra-

dius, wavelength, and magnification, the image dis-
tances were tabulated and the object distances are

obtained from the relationship between object dis-

tance, image distance, and magnification. From ex-

trapolating and correlating the results of other stud-

ies, it was shown that very high coupling efficiencies

(for any simple-lens on-axis coupling configuration)
require very high Strehl ratios. That is, a Strehl ra-

tio _, 0.97 is required to give a coupling efficiency of
about 0.77. These numbers are ideal ones. It should

be recognized that there may be reducing factors in

a real system such as Fresnel reflection, asymmetry

in the laser diode radiation, fiber-lens misalignments,
roughness and shape of the lens surface, and in some

laser diodes, astigmatism losses. However, means are
available to minimize losses due to such factors.

From the results of the study reported herein,

one can readily assess the potentials, or limitations,
of ball lenses for laser diode to single-mode optical
fiber coupling in a variety of optical communications

applications when the laser diode beam divergence
is known. With acceptable fiber defocus to counter-

balance spherical aberration of the lens, assessments

10

can be made as functions of the lens radius, the

lens refractive index, the wavelength, magnification
of the laser diode onto the fiber, laser diode distance
from the lens, and fiber distance from the lens. The

results of this study support continuing efforts in

the optical fiber communications industry to improve

coupling links within such systems with emphasis

on manufacturing simplicity, relaxation of assembly

alignment tolerances, system packaging flexibility,
cost reduction of optoelectronic components, and

long term reliability and stability.

NASA Langley Research Center
Hampton, VA 23681-0001
August 8, 1994
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