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Abstract

The Spacecraft Control and Operations System

II (SCOSII) is the new generation of Mission Con-

trol System (MCS) to be used at ESOC. The system

is generic because it offers a collection of standard

functions configured through a database upon

which a dedicated MCS is established for a given
mission.

An integral component of SCOSII is the support

of a dedicated Operations Language (OL). The

spacecraft operation engineers edit - test - validate

and install OL scripts as part of the configuration of

the system with e.g. expressions for computing

derived parameters and procedures for performing

flight operations, all without involvement of soft-

ware support engineers.

A layered approach has been adopted for the

implementation centred around the explicit repre-
sentation of a data model. The data model is object-

oriented defining the structure of the objects in

terms of attributes (data) and services (functions)

which can be accessed by the OL.

SCOSII supports the creation of a mission

model. System elements as e.g. a gyro are explicit,
as are the attributes which describe them and the

services they provide. The data model driven

approach makes it possible to take immediate

advantage of this higher-level of abstraction, with-

out requiring expansion of the language.

This article describes the background and con-

text leading to the OL, concepts, language facili-

ties, implementation, status and conclusions found
so far.

Introduction

The need for the SCOSII OL has matured

through the long experiences ESOC have had

with the use of configurable generic MCS's. As

any other previous ESOC MCS, SCOSII will

be configured through databases containing the

mission specific knowledge.

This knowledge will not only need to be

efficiently defined, but also validated and then

maintained, due to the pre-launch test results

and/or the frequent changes which do occur

during the lifecycle of a mission.

The SCOSII OL concept is designed to aug-

ment the traditional ways an operation engi-

neer specifies mission specific configuration

data to cover as well knowledge which is algo-

rithmic or procedural in nature. Thus it is

essential to support the operations engineer in:

• specifying and maintaining the mission

knowledge in a natural, concise and

intelligible manner - without requiring a

detailed software understanding or sup-

port of software engineers;

• defining the mission knowledge in con-

text-specific dedicated environments,

whereby both the HCI and the allocated

constructs are specifically designed for

each particular information type;

• validating the specified knowledge by

means of 'on-line' checks and testing

capabilities.
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Background and Context

For any mission has been the demand to

derive information from the format which is

provided through the spacecraft telemetry

parameters. The most frequently used deriva-

tion is that of applying a (linear) calibration to

convert raw values into engineering units. The

calibration is defined by providing value pairs

as part of the database configuration.

Although calibrations satisfy a large per-

centage of the derivation needs, they do not

provide a sufficient mechanism as there is as

well a need to compute derived values by com-

bining other values using an algorithmic trans-
formation.

In the Multi-Spacecraft Support System

(MSSS) these algorithms were specified on

paper by an operations engineer and subse-

quently coded by a software engineer. In

SCOSI the operations engineer writes the algo-

rithm directly in FORTRAN expanded with a

few syntactical constructs to e.g. reference a

previous value of a parameter. In both cases the

resulting FORTRAN code is compiled and

linked with the operational control system soft-

ware. An error in the algorithm will not be

detected before a run-time crash occurs. The

turnaround time for changes has from an oper-

ational perspective a significant and unwanted

delay. Neither systems support version and

configuration control functions.

The Spacecraft Performance and Evaluation

System (SPES) offers a significant improve-

ment as it allows the users through a dedicated

language to define expressions, compute aver-

ages, etc. SPES is however limited to work in

an off-line context on historical values and has

no integration with the control system as such.

The possible largest driver for the require-

ments is the wish to formalise and incorporate

executable operation procedures written in the

OL within SCOSII. Whereas algorithms for

derived values do not necessary have to be

explicit in the run-time context, procedures do

have to: one property of a procedure is its inter-

active nature involving a close dialogue with a

human operator through a procedure execution

display.

Within ESA, check-out systems have for

some time provided capabilities of defining test

procedures through special languages; the most

significant ones being ETOL (ESA Test Opera-

tions Language), ref. [10], and ELISA

(Extended Language for Instrument and Space-

craft AIV), ref. [9]. These check-out languages

focus on regression testing capabilities.

Two ESOC studies have demonstrated the

feasibility of executable procedures within

control systems, namely the Expert Operator's

Associate (EOA) study, ref. [12], and the Mete-

osat WorkStation (MWS) study, ref. [13] - the

latter now being used operationally. Both

projects focused on the internal representation

of procedures and the interactive nature of their

execution with close coupling to the human

spacecraft operator.

The User Terminal Study at ESTEC, ref.

[8], has shown the advantages of an object-ori-

ented language in combination with a mission

model. The User Language Study at ESOC,

ref. [7], was initiated with the purpose of pro-

viding inputs to the SCOSII OL and has proven

a number of concepts; in particular the advan-

tages of a layered implementation centred

around the explicit representation of a data

model. Both studies focused on the configura-

bility aspects of the system and associated lan-

guage capabilities.

From a technological view the existence of

powerful UNIX utilities such as lex and yacc,

the ideas behind database languages as SQL,

advances in workstation performance, and the

maturity of object-oriented concepts have fur-

ther made it possible to implement the OL.

SCOSII, ref. [1][2][3][4][5][6][14], is the

new generation of generic control systems to
be taken into use at ESOC; the first client mis-

sions being Huygens (97), Artemis (97) and
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Envisat (98). SCOSII is a distributed control

system running on powerful UNIX worksta-

tions connected through a local area network.

SCOSII has been engineered for high perform-

ance throughput; in particular to optimise the

parallel access to real-time and historical data.

Further emphasis is put on the configurability

of the system to incorporate a mission model,

hereby offering a higher level of abstraction

than that traditionally provided by telemetry

parameters and telecommands. A new Human-

Computer Interaction (HCI) concept has been

adopted based on closer data integration and

referential capabilities.

Concepts

SCOSII is a generic system which is config-

ured by adding missing specific knowledge,

which may be categorised into:

• declarative knowledge, e.g. calibration

curves, parameter structures, etc.; speci-

fied through dedicated form based HCIs;

• expressive knowledge, e.g. derived

parameters, command validation condi-

tions, etc.; specified through the OL;

• procedural knowledge, e.g. operation

procedures, report procedures, etc.; spec-

ified through the OL;

• special knowledge, i.e. non-generic mis-

sion information typically requiring a

software expansion to SCOSII.

It is difficult to define the borderline of

when to use declarative or expressive knowl-

edge, i.e. when to use the OL. The definition of

specific items within the database have typi-

cally both a declarative and an expressive part.

The identifier, description, etc. of a Parameter

is defined by declarative knowledge, whereas

its validity criteria is defined by expressive

knowledge. Due to this 'mixture' of declarative

and expressive knowledge inherent to most

database parts, the way the user interacts with

the system needs to reflect this fact. Neither a

pure (traditional) forms interface nor a pure OL

definition environment would suffice, both

need to be accessible in a homogeneous man-
ner from within the same HCI.

An operations language needs to interact

with the control system to be able to access

data held by the control system which is of

operational importance to get e.g. the validity

status of a telemetry parameter; request serv-

ices to e.g. send a telecommand; and change

data to e.g. store the results on an evaluation of

a derived parameter.

S !!i!ilt

HCI
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Figure-1 Layered Model

A layered approach has been adopted for

the SCOSII OL as shown in Figure-1. The

three layers are:

• Interaction layer, i.e. the user interface of

the system which may interact with the

physical layer directly or with the logical

layer;

• Logical layer, centred around the OL

containing the data entities which are

manipulated via constructs in the lan-

guage;

• Physical layer, providing the generic

services of the control system.

The access from the logical to the physical

layer is dictated by an explicit data model. The

data model is object-oriented as it represents

physical layer objects with attributes and serv-
ices accessible to the OL.
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It supportsthe explicit representationof
inheritance,aggregationand associationrela-
tions.This enablestheOL to facilitatenaviga-
tion through related objects, e.g. from a
commandto theparameterusedwithin its post-
executionverificationchecks.

The data model serves as a 'contract'
betweenthelogical andphysicallayers,it can
notbechangedthroughtheOL itself.Thisdoes
not imply thatthedatamodel is static, changes

are just controlled through a mechanism within

the physical layer. Any change to the data

model is propagated to the logical layer.

The physical layer within SCOSII is itself

based on an object-oriented implementation,

i.e. the differences in representation between

the logical and physical layers are less than
would otherwise have been the case. The direct

implication of this is that the logical layer is

'slim': it mainly serves to present physical

layer objects to the operations engineer while

hiding implementation details and offering pro-

tection against illegal access. The intelligent

behaviour always rests within objects of the

physical layer, i.e. if the physical layer does not

support a certain function it will neither be
available within the OL.

SCOSII supports the representation of a

mission model, allowing to organise the mis-

sion knowledge according to a structural repre-

sentation of system elements, e.g. a gyro or a

heater. The OL can access these higher level

objects in the same way as any other object

within the physical layer, i.e. it does not require

a language expansion to take advantage of
these.

It is transparent to the OL whether it

accesses static (database configuration data,

e.g. parameter characteristics) or dynamic

(processing data, e.g. latest parameter value)

data. Although the OL does offer facilities to

explicitly request historical data; the concept

of time is nominally managed through the

application using the OL. A parameter display

may be put into retrieval mode, the validity of

each parameter is calculated on the basis of

current values of any contributing parameters.

It is further transparent to the OL that

SCOSII is a distributed system. All aspects

dealing with data distribution and synchronisa-

tion are handled fully by the physical layer.

The OL is an interpreted language. The rea-

sons for this choice have mainly been that at

least operation procedures are interactive of

nature involving communication with a human

operator for which an interpretation was

believed most adequate.

All OL definitions form part of the database

configuration of a SCOSII system. They are

therefore underlying strict version and configu-
ration control.

Language Facilities

The OL is a strongly typed language, which

enables the detection of a range of errors at

preparation time during database configuration

rather than causing an error at execution time.

The data model forms part of the type system

within the OL; accessing the physical layer

objects in a wrong way will be detected prior to
its execution.

The executable unit within the OL environ-

ment is an OL Script. A script may be as simple

as a single boolean expression or as complex as

the full directives of a large flight operations

procedure. A script is composed of two parts: a

declaration part (local variables and function

definitions) and an executable part (statement

list).

The access to the physical layer objects is

governed through the explicit existence of an

object-oriented data model. Figure-2 illustrates

a segment of a script to calculate the value of

the derived Parameter P117. If the status of the

limit of Parameter Pl12 is above limits, then

the engineering Value of Pl17 is set to the

upper limit definition of Pl12; otherwise it is

set to be the engineering Value of P112.
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if (Pll2.1imit == ABOVE_LIMITS) then

PII7 := Pll2.1imit.upper;

else

Pl17 := Pl12;

endif;
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Figure-3 shows the data model correspond-

ing to this example. A Parameter is character-

ised by its name, description, limit, raw and

engineering Values. Each Class may have a

default attribute (marked with a '*'): for the

Parameter the default is its engineering Value.
A Parameter offers a service delta which

allows to access historical samples. A Value is

characterised by its value (default) and validity.

A Limit is characterised by its status (default),

lower and upper limit definitions. Notice that

due to the concept of default attributes, the

expression 'P112' evaluates as

'P 112.eng.value'.

Parameter
name L,.,,

description 7

delta(samp e)l

eng

parameter

limit

Figure-3 Logical Layer Data Model

Figure-4 shows the representation of a

Heater system element within the logical layer.

A Heater is characterised by its switch-status

(on-off) and power-status (on-off) attributes,
and offered service to switch it either on or off.

The OL can operate on heaters in the same

manner as on parameters shown earlier.

Heater

switch-status
_ower-status

switch(state)

• . °

if .... ) then

heaterl3.switch(ON)

endif;

Figure-4 System Element Logical Layer
Data Model and OL Example

The OL is, besides from its integration with

the data model, a straight-forward imperative

language. Table-1 provides an overview of the

major language constructs.

Table-1 Operations Language Constructs

Statements Expressions Functions

assignment

wait

function invocation

goto-tabel

if-then-else

select-case

while-do

repeat-until

for-in-list -do

for-to-step-next

value

reference

function invocation

boolean expression

numeric expression

string expression

time expression

list expression

set expression

matrix expression

vector expression

map expression

mathematical

statistical

bit manipulation

time

object creation

object copy

The generalised approach of interfacing

physical layer objects governed by the data

model is not in all cases adequate. A trade-off

has to be made whether to provide a more tar-

geted syntax for particular kinds of knowledge.

It is expected that specialised 'mini languages'

extending the OL syntax will evolve - typically

also offering dedicated HCI support. However,

the baseline is that these shall be mapped onto

the kernel OL at the syntactical level, i.e. in

terms of macro expansion. This ensures that

the intelligent behaviour stays within the phys-

ical layer of the MCS.

Implementation

The OL facility is implemented as any other

SCOSII software: it is specified and designed

using an object-oriented method (OMT, ref.

[11]), and programmed in C++. The UNIX util-

ities lex (scanner generator) and yacc (parser

generator) are used to construct the parse tree.
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Dueto thefact thattheOL scriptsform part
of the databaseconfigurationand henceare
definedin thepreparationphase,theparsetree
is built alreadyat this stageto improvetheper-
formancein the executionphase.The parse
treestructureis useddirectly by theinterpreter.

'_---_ root

_J Parse Node]

[eeves'_ 'd I

S
/

F-

I Global Context

I
Global Name Table

lookup

( lrr

PL ObJec__.__t I
service mapping

t type

Figure-5 Physical Layer Interface Class Dia-
gram

The physical layer interface is illustrated in

Figure-5. A Parse Node is a component of the

parse tree and is characterised by an identifier.
It references its root Parse Node and all of its

sub Parse Nodes. A Parse Node is evaluated

within a particular Context. A Context maps

identifiers onto Values and offers a lookup

service. The Global Context is a special kind of
Context which interfaces a Global Name Table

provided by the Physical Layer (PL). The Glo-

bal Name Table offers a lookup service taking

as input a character string (e.g. "Pl12") and

returning a reference to the corresponding PL

Object.

A Value is characterised by its value and

validity status, which is used to propagate the

effects of non-valid values throughout the eval-

uation of expressions: if a Value is computed
on behalf of non-valid Values, it is itself to be

considered non-valid.

A typical example of a non-valid Value is

the state of a switched-off (or redundant) unit

which still is being sampled and echoed

through telemetry.

ALL Object is a special kind of Value. It is

structured as a record, containang a Value for
each of its attributes.

Any object within the PL which needs

access from the LL inherits the properties of

the PL Object, hereby ensuring the proper

interface to the LL. A PL Object is character-

ised by its type and contains a service mapping

relating requests from the LL onto C++ func-

tions of the PL. All LL Objects are attached to

one PL Object. At run-time only the PL

Objects actually used are related to LL Objects.

An initiative is currently being undertaken

to further generalise the physical layer inter-

face by adopting the Model-View-Controller

(MVC) architecture, ref. [15], with the purpose

of using identical interfaces from both the

interaction and the logical layers to the physi-

cal layer, see Figure-1. The first prototypes

with this architecture have demonstrated prom-

ising results.

dule ]
lex ,utei

Script User

execute

Figure-6 Script Class Model

The Handler, illustrated in Figure-6, con-

trols the execution of any Script. It offers two

services: schedule, which determines the order

in which scripts are executed, and execute,

which invokes the script execution.
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A Script is characterised by its definition,

i.e. a textual representation of the script, and its

status - e.g. whether it has been parsed. It

offers two services: parse, which builds the

parse tree of the script, and execute, which

requests the execution of the script. Any appli-

cation using scripts have to inherit from the

Script User class, which provides the mecha-
nism to interface the OL environment and

request the execution of scripts.

The initiative to execute scripts nominally

comes from an application using the OL. The

Handler has to deal with the incoming execu-

tion requests. Currently a very simple schedul-

ing mechanism is implemented; it is foreseen

to expand this into a finer-grained mechanism

taking aspects, like priorities and pre-emptive

scheduling, into account.

Nominally a script will be version control-

led as part of its using entity: e.g. the validity

criteria of a parameter specified as an OL

boolean expression is seen as part of the corre-

sponding parameter version. If the validity cri-

teria is changed, then a new version is

associated with the whole of the parameter it

belongs to. The granularity in terms of at which

level of detail to manage versions is decided on

a mission specific basis.

No language constructs to deal with paral-

lelism or script execution synchronisation are

provided. It is believed that such aspects are

better managed by the physical layer. Within

the OL conditions can be defined as e.g. an

interlock (execute upon successful verification)

between two operation procedure execution

requests. The physical layer knows about the

conditions and observes these while servicing

the related execution requests.

At this stage only basic OL editors and exe-

cution displays are provided. It is expected to

expand the tools with a debugger and test tool,

enabling the operations engineer to test and

validate Scripts locally on a workstation.
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Status

scosII is under development. A Basic Sys-

tem has recently been delivered comprising

functions equivalent to those offered in the

existing generic MCS's used at ESOC. A

reduced OL facility covers only expressive

knowledge and simple tools. Further evolution-

ary releases are planned:

• release I (1Q95), adds e.g. mission mod-

elling capabilities and executable opera-

tion procedures. The OL facility covers

procedural knowledge and simple tools.

• release 2 (1Q96), adds e.g. advanced

mission modelling and semi-automatic

operation procedure execution. The OL

facility is complete with tools.

• release 3 (1Q97), adds e.g. integration

with knowledge based applications for

automatic operation procedures execu-
tion.

FOPGEN, a WYSIWYG tool to support

editing, display and printout of operational

documentation, will be fully integrated with

SCOSII. It provides advanced editing features
and read/write access to the SCOSII mission

database. FOPGEN will generate operation

procedures in the SCOSII OL.

In parallel with the SCOSII development,

two major studies have been initiated: ATOS-4

exploits the use of knowledge based technol-

ogy in e.g. the context of procedure execution

based on SCOSII and the OL; Productline for

Compact Ground Facilities investigates the

integration of check-out and operation control

systems, with particular emphasis on the lan-

guage aspects.

The Committee for Operations and EGSE

Standardisation (COES) is currently active to

standardise the ground segment infrastructure

systems within ESA. A particular subject cov-

ers the standardisation of the human-computer

interaction of which a dedicated language is

seen as an integral part.



The SCOSII OL will be a significant con-

tributor to this standardisation work; the OL

itself will be made compliant to the forthcom-

ing standard.

Conclusions

The SCOSII OL provides support to the

operations engineer for the configuration of a

MCS with mission specific data to include

expressive and procedural knowledge, hereby

clarifying the borderline between the mission

specific and generic elements of a MCS. The

turn-around time for a change is drastically

reduced as it does not involve any software
modifications.

It does not cover the declarative knowledge

for which the existing forms based HCI have

proven to be efficient. A mixed approach has

hence been adopted where only a subset of the

configuration data is specified through the OL.

The existence of an explicit object-oriented
data model ensures a clear framework for the

interface to the physical layer of SCOSII.

The language is on purpose 'kept simple

and stupid', expecting the intelligent behaviour

to be provided by the physical layer objects.

This facilitates improved performance within
the OL environment.

The language is bound to SCOSII. As there

is no intelligent behaviour within the logical

layer, it depends upon the level of services

offered by the physical layer. The direct impli-

cation of this is that although the architecture

concepts could be adopted, it makes little sense

to port the language environment to a different

platform than SCOSII.

The data model approach, although flexible,

has the possible disadvantage that porting OL

scripts between missions can be difficult as

each mission could have their own different

data model. This is however a property of any

generic system, not just the SCOSII OL envi-

ronment.

With the planned expansions of SCOSII to

cover extensive mission modelling capabilities,

the added level of abstraction within the physi-

cal layer will allow the OL to take immediate

advantages of this due to the generalised data

model approach, without requiring syntactic

nor semantic changes to the language. It is

expected that the full advantages of the SCOSII

OL will be demonstrated at that stage.
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