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1 Introduction

The aim of ATOS is to allow data to be shared

by multiple knowledge based and traditional
applications.

At ESOC several studies have applied knowl-

edge based techniques to specific areas of mis-
sion operations, producing a number of
independent prototype KBSs. The studies
showed that a great deal of common informa-
tion was used in many of the applications.
However, the various prototypes used different
KBS tools and knowledge representations
which meant they could not be easily inte-
grated. The initial objective of ATOS is to find
a solution to this integration problem without
imposing a knowledge representation on all
applications.

Section 2 examines the problem domain of
ATOS. Section 3 outlines the ATOS architec-

ture and section 4 discusses a prototype of the
architecture and of applications which use it.

2 SMOS Integration Problem

A Spacecraft Mission Operations System

(SMOS) comprises the set of facilities needed

to carry out all the mission operations. Mission

operations can be split into four areas:

• Mission Preparation. The tasks for the

preparation and configuration of the
Mission Control System (MCS) prior to
the start of the mission, as well as the

maintenance and updating of the basic
reference mission knowledge of the MCS,
during the mission.

• Mission Planning. The planning and
scheduling of mission operations
activities.

• Mission Operations. All tasks involved in

control monitoring, and reporting of the
mission.

• Training / retraining of operations staff.

In general, independently developed software,

possibly running on different platforms will
support each of these areas. The areas, how-

ever, are far from independent: mission prepa-
ration produces the database for operations,
mission planning produces the plan of opera-
tions to be executed by mission operations and
the progress of mission operations conditions
the plan. Furthermore, applications use com-
plex data and may use knowledge based tech-
niques.

There are a number of considerations with

such systems:

• Because such systems are large and
difficult to implement, re-use of many
applications is necessary to avoid loss of
investment.

• The required capabilities change during
the system's working life, for example, for
new missions, as users' needs change, or
when new technology (platforms,
networks...) is introduced.
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The various applications making up the
whole system are frequently inflexible,
with rigid and restricted interfaces. For
example, replanning in the event of
failures can be cumbersome because of

the interface between the control and

planning systems.

The applications also make use of
knowledge about the spacecraft, the
ground systems and the operational
procedures. Parts of this knowledge are
held centrally, but a significant amount is
held locally by the applications, each of
which may use its own representations
and conventions. This leads to potential
duplication and inconsistency of
knowledge and related problems in system
maintenance.

These problems demand solutions: budget
restrictions no longer allow the luxury of reim-
plementing large parts of systems for new mis-
sions.

2.1 Solution: The ATOS Approach

A combination of the folloWing two
approaches helps to address the problems out-
lined above:

• Implementation of generic applications
from which specialisations may be built.

• Use of principles of federation to integrate
heterogeneous applications into a single

system.

2.1.1 Generic Systems

Individual parts of a mission operations system
can take the approach of developing generic
applications which can be specialised for par-
ticular missions. The new generation of ESA
Spacecraft Control Operations System (SCOS-
II) [6] is a good example of this. In SCOS-II,
the basic functions of spacecraft control and
monitoring are implemented as an object-ori-
ented class library, from which mission sys-

tems can be built. Specialisations to mission
needs can be provided using "Implementation
by Difference" [3].

2.1.2 Federation

Development from generic components is fine,
but a problem is usually approached from sev-

era1 user perspectives resulting in several spe-
cialist applications. To integrate these we need

a generic communication mechanism for soft-
ware components, analogous to what the SCSI
protocol does for hardware components.

ATOS is a federation-enabling technology.

Each application (of a federated MCS) has
only to provide an interface to the ATOS infra-
structure to allow it to use data (and have its
data used) by other applications. In effect this
extends the object-oriented philosophy to the
application level by providing a consistent
interface to a set of applications which a devel-
oper may use without knowing implementa-
tion details of the individual applications.

Although ATOS has been motivated by the
needs of mission operations, the concepts (and
possibly even the emerging tools) are not
restricted to that discipline. The approach
could be used in any area in which heteroge-
neous applications, possibly originally
designed to be "stand alone" (i.e. without
regard to eventual integration) must be made
to work together.

3 The ATOS Architecture

This section describes the architecture which

realises the approach to integration outlined
above. Section 4 describes prototypes of this
architecture and of applications which use it,
and illustrates how the architecture works in

practice.

3.1 The Mission Information Base

Each application in the ATOS environment is
called an ATOS Application Module (AAM).
AAMs communicate with each other via the
ATOS infrastructure.

As shown in figure 1, each AAM has its own
knowledge base. The Mission Information
Base (MIB) is defined to be the union of the

knowledge bases of all the individual AAMs.

The scope of the MIB is thus very broad and
encompasses:

• Flight Operation Plans (FOP), including
timelines (a scheme of mission operations
activities for a particular mission phase or
scenario) and Flight Control Procedures.

• Documents, including text and graphics,
for example the spacecraft users manual.
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• Design information, including the
behaviour of components of the
spacecraft.

• Traditional spacecraft databases, for
example parameter characteristics and
telecommand characteristics.

• Rules and operational constraints of the
mission; for example, if the spacecraft is

in eclipse then the payload is on standby.

I Control
[ Data

AT?? In

... other AAMs

:iii
ii:

Figure 1 AAMs and the ATOS Infrastructure

The AAMs which manage components of the

MIB may be physically distributed, may use
different approaches to structuring knowledge
(relational, object-oriented, rule based) and

may use different tools for storing knowledge.
The MIB is thus a federated database of

loosely coupled, heterogeneous components.

3.2 The Functions of the Infrastructure

The ATOS infrastructure is the glue which
integrates AAMs. The infrastructure "facili-
tates" (in the sense discussed in [1]) the inte-
gration of AAMs by:

• Routing a message to an AAM which
provides the information or service

required by the message.

• Maintaining links between information
items in different components of the MIB.

• Detecting significant changes in the state

of the MIB and informing AAMs
accordingly.

• Controlling access to the information and
services provided by AAMs.

• Maintaining a timetable that describes
which AAMs can use which services of
other AAMs and when. This timetable is

updated by a mission planning AAM.

• Logging messages, as requested.

• Buffering messages before they are read.

Clearly some of these services are more inno-
vative and interesting than others. Later sec-
tions of this paper concentrate on message
routing, link management and detection of
change in the MIB.

3.3 The Ontology of Shared Knowledge

AAMs must be able to share knowledge. For
example, the results of mission planning are
inputs to mission execution; details of a

detected anomaly are the basis of fault diagno-
sis. [3] includes a detailed discussion of the

importance of knowledge sharing in spacecraft
operations.

To share knowledge AAMs must have a com-
mon understanding of concepts and terms
which is provided by the ontology.

In ALTOS, the ontology is written in a declara-

five, formally defined language called Ontolin-
gua [2] which is:

• Expressive, so that rules and behavioural
knowledge can be shared between AAMs.

• Independent of any particular approach to
structuring knowledge.

Note that although Ontolingua allows terms
and concepts to be defined using rules, the
ATOS infrastructure does not infer knowledge
from these rules - that is the responsibility of
the AAMs which use the concepts.

The most basic use of the ontology is as a

paper standard to which AAMs comply. Thus
if there is a standard definition of the terms

"resource", "schedule" and "activity" then
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AAMs which comply with the standard are
guaranteed to use these terms in the same way.

which only knows about objects in its own
component of the MIB.

A second use of the ontology is to derive an
AAM's knowledge structures. The ontology is
written in a formal language (rather than, for
example, English); it can therefore be trans-

lated into the tool-specific knowledge struc-
tures used by an AAM. This approach gives
greater assurance that the AAM complies with
the ontology and it can also reduce the effort of
developing the AAM.

The next section discusses further uses of the

ontology, including that of routing a message
on the basis of its content.

3.4 The Metabase

As discussed in section 1.2, the MIB is distrib-

uted among AAMs, it is not held by the ATOS
infrastructure. The infrastructure does, how-
ever, record the types of information in the
MIB (as defined by the ontology) as well as
information about selected objects in the MIB.
The infrastructure does not actually store these
objects but records their existence, some of
their attributes and links between them. This
view of the MIB is called the metabase.

Figure 2 depicts three example AAMs which

each manage part of an MIB. One AAM uses a
relational database, one uses a hierarchical
database and one stores documents. The exist-

ence of certain MIB objects is recorded in the
metabase; this is shown in the figure by a
dashed line from the MIB object to its meta-
base image. The figure also shows links in the
metabase between objects which are managed
by different AAMs. For example, a tuple in the
relational database might be described by a
document to which it is linked.

The three major roles of the metabase in sup-
porting knowledge sharing are outlined in the
following three subsections. Each of these
roles is based upon the global view of the MIB

which the metabase provides.

3.4.1 Links between MIB components

The above discussion of touched on the first
of these roles: the metabase stores links

between objects in different components of the
MIB which allow AAMs to navigate the MIB.
Such links cannot be stored by any one AAM

Link types are defined in the ontology and
have different properties. For example, a link
type might be defined to be many-to-one, or to
be acyclic.
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Figure 2 The Infrastructure Metabase

3.4.2 Detecting change

The second role of the metabase is in detecting
significant changes in the state of the MIB.
One AAM can request a second AAM to per-
form a specified action when a specified con-
dition is triggered.

For example, an AAM may ask to be informed
when the voltage of a battery falls below a cer-
tain level. A condition is expressed in terms of
the state of the MIB; more precisely, a condi-
tion is a query over the MIB which evaluates
to true or false; the condition is triggered when
the value of the query changes from false to
true.
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Unfortunately, this approach to detecting
change has two limitations. The first is that not
all AAMs will be sophisticated enough to
detect changes expressed as arbitrary condi-
tions. The second is that an AAM can only
monitor its own component of the MIB for
change; no single AAM can effectively moni-
tor a condition which involves two or more

components of the MIB.

The two limitations are addressed by the infra-
structure and its metabase: the infrastructure is

able to detect changes to the state of the meta-
base and, because the metabase is a global
view of the MIB, the scope of the condition is
not limited to one component of the MIB.

This role of the metabase allows dependencies
between components of the MIB to be man-
aged. Imagine, for example, two AAMs one of
which plans a mission and the other of which
maintains information describing the design of

the spacecraft. The metabase holds an abstrac-
tion of the plan and the spacecraft design, as
well as links corresponding to dependencies of
the plan upon the design. The planning AAM
instructs the infrastructure to inform it when

there is a change or correction to the design
which requires the mission to be replanned.
The planning AAM then obtains details of the
change by querying the design AAM directly.

3.4.3 Content-based routing

When an AAM sends a message, it normally
specifies explicitly the AAM which is to
receive the message. Sometimes, however, an
AAM does not know to which AAM to send

the messagel In this case the AAM instructs
the infrastructure to send the message to the
AAM which can best provide the required ser-
vice or information. This is called content-

based routing: AAMs first advertise their abili-
ties to process messages, then the infrastruc-
ture routes messages on the basis of these
advertisements.

As a simple example of content-based routing,
an AAM might advertise its ability to provide
the voltage all batteries. The infrastructure can
then route a message which asks the voltage of
a specified battery to this AAM.

The infrastructure can perform more sophisti-
cated content based routing. Suppose, for

example, an AAM advertises its ability to pro-
vide information about the power supply sub-
system. The infrastructure can then route to
this AAM a message which queries the current
from the solar array if it knows from its meta-

base that the solar array is part of the power
supply.

3.4.4 Managing the metabase

The metabase records the existence of some of

the objects in the MIB and contains some of

their attributes. Except for links, the metabase
is a partial copy of the MIB. Objects, attributes
and links should only be in the metabase if
they are required for one of the roles of the
metabase described above. The metabase is not

expected to be large. For example, an AAM
which manages documents might record in the
metabase the existence of each document and

the date of its most recent issue, but it would
not hold the text of the document.

The accuracy of the metabase is, of course, the

responsibility of the AAMs. For example, if
the metabase records the voltage of a battery
then the AAM which manages the correspond-
ing part of the MIB must update the metabase
when the voltage of the battery changes.

Which parts of the MIB should an AAM copy
to the metabase? The simple answer is that this
is a question for the designers of the system
who decide how to integrate the AAMs. A
more sophisticated and dynamic approach is
that the AAM is sent a message which speci-
fies the knowledge which it must copy to the
metabase.

3.5 Messages and their Structure

In a spacecraft control system, AAMs and the
infrastructure share knowledge by sending

each other messages. The meaning of these
messages is defined at three levels:

• As discussed in section 3.3, the ontology
is a dictionary of the terms and concepts
of spacecraft operations and is expressed
in Ontolingua.

• A language called Knowledge Interchange
Format (KIF) is used to express
knowledge using the terms and concepts
of the ontology.
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A protocol called Knowledge Query
Manipulation Language (KQML) which
AAMs use to communicate at run time.

This approach to knowledge sharing is based
upon the work of the DARPA Knowledge
Sharing Effort [5].

KIF expresses first order predicate calculus in
a LISP-like syntax. It is not expected that
AAMs use KIF internally; indeed, it is impor-
tant that AAMs are not constrained to use a
particular representation format. AAMs must

therefore translate shared knowledge to and
from KIF.

KQML provides performatives, i.e. message
types, which define the intent of a message.
Consider, for example, the following simple
KIF sentence:

(position sample lower-most)

This sentence could be the content of any of
the following three KQML performatives:

• ask, a query "Is the sample in its lower-
most position?" with answer yes or no.

• reply, an answer to a question such as
"What is the position of the sample?"

• assert, informing the receiving AAM
that the sample is in its lower-most
position.

The KQML performatives used by ATOS are
adapted from those described in the draft

KQML standard and include performatives in
the following areas:

• Asking and replying to a question.
Multiple answers to a question can be sent
as one long reply or as a stream of replies
each containing one answer.

• Asserting a fact to be added to the

receiver's knowledge base.

• Advertising the sender's capability to
perform a service.

• Instructing the infrastructure to route a
message to the AAM best able to process
it.

• Instructing the receiver to perform an
action when a condition arises.

Possible arguments of a message include:

• Content. This is the body of the message,
for example the actual query of an ask
message.

• Language. The language of the content.
Normally this is K]F but AAMs can

communicate using other languages such
as SQL and SGML. ff they do so the
content is not understood by the ATOS
infrastructure.

• Receiver. The AAM to which the

infrastructure should send the message.

• Reply-with. Whether the sender of the

message expects a reply, and if so a tag for
the reply.

• Receipt. Whether the sender requires a

return receipt when the message is read.

• Log. Whether the message should be
logged by the infrastructure.

Most messages are from one AAM to another
(via the infrastructure, of course). Some mes-
sages are intended for the infrastructure alone;
for example, messages which advertise an
AAM's ability to perform a service, and mes-
sages which query or update the metabase.

All knowledge held by the infrastructure can
be queried using KIF and KQML. There are

two distinct parts of this knowledge:

• The metabase, the structure of which is

defined by the ontology of spacecraft
operations, as discussed in section 3.4.

• The infrastructure database, which

contains the housekeeping data held by
the ATOS infrastructure. For example,
AAMs and their capabilities, message
logs... The structure of this database is

defined by the infrastructure ontology.

4 Prototypes and Example AAMs

4.1 The Infrastructure Prototype

The ATOS infrastructure has been imple-
mented as a prototype which runs on Unix
workstations.

AAMs normally run on different workstations
which communicate with the infrastructure

using TCP/IP. At the time of writing AAMs
must also run on Unix workstations, however,

it would be straightforward to port to other
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platforms the software which must be linked
into the client AAMs.

Two interesting aspects of the prototype are:

• Storing persistent data. The metabase and
the infrastructure database are stored

using a relational database. This requires
that the ontology is translated to SQL data
definition language and that KIF queries
and assertions are translated to SQL data

manipulation language.

Translations must also be performed by
AAMs which do not use KIF internally.

An important difference is that each AAM
has its own specific knowledge structures;
it does not need to translate arbiWary KIF

queries unrelated to these structures.

o Content-based routing. Advertised

capabilities, and messages to be routed on
the basis of their content, are both

expressed in KIF. Matching a message
with a capability involves conversion of
the two KIF expressions to a normal form
and then unifying them using the
knowledge in the metabase.

with telemetry from the spacecraft. If a signifi-
cant discrepancy 'is detected the Diagnostic
AAM performs a rule-based diagnosis of the
fault and then corrects the model.

The three AAMs use different approaches to
structuring knowledge (C++, CLOS and
Kappa) and interact with each other via the
ATOS infrastructure. The ontology defines the
structure of the AMF.

The following is a fragment of the AMF ontol-
ogy which specifies a subclass of devices
called Spindles and specifies that each spin-
dle has a height. The fragment also identifies
the instances of the class of spindles in the
AMF: SampleConvSpindle (the sample con-

veyance spindle)and LampDiskSpindle (the

lamp disk spindle).

(define-class Spindles (?x)

:def (devices ?x))

(define-relation Height (?x ?y)

:axiom-def (and(single-valued Height)

(range Height number)

(domain Height Spindles)))

4.2 AAM Prototypes

[7] describes a prototype tool called AMFE-
SYS which maintains a model of a payload: a
microprocessor controlled remotely program-
mable Automatic Mirror Furnace (AMF) for

growing crystals in zero gravity.

Telemetry

(define-instance

SampleConvSpindle (Spindles))

(define-instance

LampDiskSpindle (Spindles))

With this ontology, the AAMs can converse
about the height of spindles. For example, the
Diagnostic AAM might send the following
message to the Modeling AAM:

Figure 3 AA_Ms derived from AMFESYS

The AMFESYS tool has been decomposed

into three AAMs as shown in Figure 3. The
Modeling AAM maintains a model of the
AMF which the Monitoring AAM compares

(ask-one :receiver MODEL

:content (Height LampDiskSpindle ?h)

:reply-with rid)

which might then reply

(reply :receiver DIAGNOSTIC

:content (Height LampDiskSpindle 70)

:in-reply-to rid)

In _ese messages ask-one and reply are two

KQML performatives;:receiver, :content,
:reply-with and :in-reply-to label the

message arguments. The language of the con-
tent of each messageis KIF (the default lan-
guage of all messages). The meaning of the
terms in the content of each message is defined

by the ontology.
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Following the approachdiscussedin section [4]
3.3, theAMF ontology has been automatically
translated into the data structures used by the
Diagnostic AAM. This AAM is written in

[5]
CLOS, so the translation is from Ontolingua to
CLOS.

5 Conclusion

The paper has discussed the problems of
implementing complex mission operations
systems and has described a two-fold approach
to their solution: build generic applications and
adopt a standard integration framework.

We have not mentioned here the possible over-
lap of with other integration technologies such

as CORBA [4]. They could provide a basis for
the more advanced ATOS features.

Much has been achieved since the initiation of

the ATOS programme in 1992. We also believe
that the approach we have adopted may be
effective not only for the space industry but for
any industry which needs to integrate applica-
tions to build complex systems.
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