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Summary of Progress

In this report, we will focus on the results included in the Ph.D. dissertation of Dr. Diane

G. Mills. Dr. Mills completed her dissertation and received her Ph.D. degree in August 1994.

A copy of the dissertation is included as Appendix A to this report. Two journal papers have

been submitted based on Dr. Mills' research [1,2]. In addition, three conference presentations

have resulted from this work [3-5]. The following paragraphs contain a brief summary of this

research.

The purpose of unequal error protection (UEP) is to provide a higher degreee of error

protection for the more important bits, without incurring the associated increase in complex-

ity/cost/bandwidth that would occur if the protection were increased for the entire information

stream. For example, UEP coding can be used to transmit images over noisy channels where

different parts of an image require different levels of error protection. A potential application

is the transmission of images over NASA's deep space network. The goal of this research was

to investigate the unequal error protection capabilities of convolutionaI codes and to extend

the results to trellis codes.

First, the effective free distance vector, d, was defined as an alternative to the freedistance

as a primary performance parameter for UEP convolutional encoders. For a given (n, k, m)

convolutional encoder the effective free distance vector is defined as the k-dimensional vector

d = (do, dl,"', dk-1), where dj, the jth effective free distance, is the lowest Hamming weight

among all code sequences that are generated by input sequences with at least one "1" in the

jth position. It is evident that the free distance of the code is the minimum of the effective free

distances. Although the free distance for a code is unique to the code and independent of the

encoder realization, the effective free distance vector is dependent on the encoder realization.

A modified transfer function, which provides a method to calculate d, was developed. The

modified transfer function incorporates a new branch labeling method which may be used to

calculate the effective free distance vector when used in conjunction with standard algorithms

that were originally developed to calculate the free distance of a code.

Several upper bounds on the effective free distance vector were derived. The bounds may

be used to identify encoder configurations that have good potential for unequal error protec-

tion. Then computer searches for good unequal error protection encoders were conducted.

A primary goal of the searches was to find encoders with at least one effective free distance

greater than the free distance of the optimal code of the same rate and memory order. A

decrease in free distance was acceptable. A number of binary convolutional encoders meet-

ing this goal were found. Bit error rate (BER) performance for the encoders was simulated,

and this confirmed the effective free distance as a measure of unequal error protection. At the

same time, the BER plots indicated that the number of code sequences with Hamming weights

equal to the individual effective free distance is also an important measure of performance.

Next, trellis coded modulation (TCM) systems with unequal error protection were inves-

tigated. It was determined that providing unequal error protection with TCM coding is more

difficult due to the limitations of the signal constellations. A limited number of trellis codes
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were found, however, that provide a measure of unequal error protection.

this subject is in progress.

Further work on
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THE UNEQUAL ERROR PROTECTION CAPABILITIES

OF CONVOLUTIONAL AND TRELLIS CODES

Abstract

by

Diane Grieselhuber Mills

The research discussed in this dissertation studies the unequal error protection

capabilities of convolutional and trellis codes. In certain environments, a discrepancy

in the amount of error protection placed on different information bits is desirable.

Examples of environments which have data of varying importance are a number of

speech coding algorithms, packet switched networks, multi-user systems, embedded

coding systems, and high definition television. Encoders which provide more than

one level of error protection to information bits are called unequal error protection

(UEP) codes.

In this work, the effective free distance vector, d, is defined as an alternative to the

free distance as a primary performance parameter for UEP convolutional and trellis

encoders. For a given (n, k), convolutional encoder, G, the effective free distance

vector is defined as the k-dimensional vector d = (do, dl,'", dk-1), where dj, the jth

effective free distance, is the lowest Hamming weight among all code sequences that

are generated by input sequences with at least one "1 " in the jth position. It is shown

that, although the free distance for a code is unique to the code and independent of

the encoder realization, the effective distance vector is dependent on the encoder

realization.

A modified transfer function, which provides a method to calculate d, is presented.

The modified transfer function developes a new branch labelling method that allows

w
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standard algorithms that were originally developed to calculate the free distance

of a code to calculate the effective distance vector.

Several upper bounds on d are derived and compared . The results of searches for

good unequal error protection codes are presented. A primary goal of the searches

was to find encoders with at least one effective distance greater than the free distance

of the optimal code of the same rate and memory order. Bit error rate (BER) plots for

the enocders are presented, confirming the effective distance as a measure of unequal

error protection. At the same time, the BER plots show that the number of code

sequences with Hamming weights equal to the individual effective distance is more

important than expected.

Trellis coded modulation (TCM) systems with unequal error protection are inves-

tigated. It is determined that providing unequal error protection with TCM coding

is difficult due to the limitations of the signal constellations. Topics for future inves-

tigation are identified.
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CHAPTER 1 l

INTRODUCTION

1.1 Introduction

I

m

g

The purpose of a communication system is to transmit information or data from

one point to another. Using the sampling theorem, analog data may be digitized

without loss of quality or information, allowing the use of digital communication

systems. Digital communications systems typically perform better than analog com-

munication system, for a number of reasons. For instance, digital processing reduces

signal degradation, allows source coding to remove redundancies, thereby decreasing

the transmission rate, and allows channel coding to decrease the error rate. Digital

systems are generally more reliable and easier to maintain than analog systems. In

addition, because digital systems rely more on software than hardware, it is often

relatively easy to upgrade a digital system.

As the volume of transmissions increases, bandwidth and energy-limited channels,

introduce more errors. Transmission errors degrade the performance by reducing

throughput, storage capacity, or reliability. Error control can be viewed two ways:

for the same power and cost, the error rate may be decreased, or the error rate may

be maintained, at a reduction in power and hardware costs. Channel coding, an error

control technique, improves the reliability of digital data links and storage media.
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- 2

Examples of systems in which coding is appropriate include computer storage sys-

tems, communication networks, deep-space transmission systems, telephone channels,

satellite channels, and optical storage system [32].

This chapter reviews basic communications concepts. Section 2 briefly describes

a genera/ digital communications system and discusses the issues that are usually

important. Section 3 outlines the dissertation.

1.2 Digital Communications Systems

w
A model of a typical digital communication system is shown in Figure 1.1.

Encoder Encoder Modulator --

w

Channel

W I Destination •..o,o...oou, JDecoder Decoder Demodulator

Figure 1.1: General communications system

=

w

w

The information source produces digital information: which is to be transmitted to

the destination. Using the information from the source, the source encoder generates

a binary k-bit message ut, at each time instant t. It is not necessary that the the

source encoder produces a binary output, but the assumption simplifies the discussion.

Examples of sources include: a voice, a measuring instrument, and a computer. The

information sequence, u, is a semi-infinite binary sequence. The channel encoder

converts the information sequence into the code sequence, v, following some channel



w

coding rules. The goal of the channel encoder is to add enough redundancy so that

the information may be reliably transmitted over the channel. The codewords are

passed to the modulator, which generates continuous channel wave forms, s(t), called

channel signals. The channel signals are then transmitted over the channel to the

receiver. The channel is any type of transmission medium, which may be, for example,

a telephone line, satellite link, optical link, or magnetic storage media. Included in

the channel model is a noise source, which is dependent on both the type of channel,

and the specific channel used. The noise corrupts the original signal so that the

continuous waveform at the output of the channel is r(t). The demodulator produces

the received sequence, r. It is assumed that an optimum demodulator, such as a

matched filter or correlation detector followed by a sampling switch and quantizer,

is used. The channel decoder applies a decoding rule to the binary sequence r and

produces an estimate, ¢', of the transmitted code sequence v, and, consequently, an

estimate, fi, of the message u.

An optimum decoding rule must minimize the probability of a decoding error,

P(E). The conditional probability of decoding error, given that r is received is defined

as P(£[r) = P(÷ # v). It is easily seen that P(E) = _,rP(E]r)P(r). Since P(r)

is independent of the decoding rule, the decoder will to minimize the probability of

error by minimizing P(E [r) for all r, or equivalently, maximizing P(÷ = v[r) for all

r. Therefore, an optimum decoder must, for a given received sequence r, decide which

is the most likely code sequence, v. That is, the decoder must choose the codeword

estimate ¢r as the codeword v which maximizes

P(v I r) = P(r Iv)P(v)
P(r) (1.1)

If all codewords are equally likely, then maximizing P(v ] r) is equivalent to maximiz-
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w

ing P(r[ v). Furthermore, if the channel is a discrete memoryless channel (DMC),

P(r ] v) = l'I_ P(ri[ v_), where v = (... vi-1 v, v_+l ...) and r = (... r_-i ri ri+l ...).

Therefore, minimizing the probability of decoding error is equivalent to maximizing

log _ P(r_] v_). A decoder which maximizes P(r] v) is called a maximum likelihood

decoder.

The source decoder then uses fi to generate an estimate of the original source

information. This dissertation focuses on the channel coding operation, and the

modulation operation. For that reason, the source coding/decoding is ignored. The

primary design criterion considered in this dissertation is error probability. Other

factors with affect the cost and performance of the overall communication system

include throughput and implementation complexity.

There are three common types of error probabilities used to measure the perfor-

mance of a channel coding system. The bit error probability, Pb(_.), is the expected

number of information bit decoding error per decoding information bit. The symbol

error probability, P,(,_), is the probability that a channel signal or symbol is decoded

incorrectly, and the first event error probability, PI(_'), is the probability that a chan-

nel signal or symbol is decodes incorrectly for the first time after a specific signaling

interval. The bit error probability is the best measure of the probability that the

information transmitted is properly received, but symbol error probability or the first

error event probability are often easier to calculate for specific systems. Primarily,

bit error probabilities are examined in this work.

1.3 Outline of Dissertation

In certain environments, a discrepancy in the amount of error protection praced

on different information bits is desirable. For example, the sign bit and high order bits



i

of pulse coded modulation (PCM) data are more critical to system performance than

the lower order bits [57]. In packet switched networks, the header information requires

more error protection than the data;, and in multi-user environments, different users

may require more error protection than others. In Adaptive Predictive Coding and

Code-book Excited Linear Prediction, the filter coefficients and the codebook choice

axe more important than the residual information. Systems in which some information

is non-essential enhancement information, e.g. embedded coding schemes and high

definition television, are also potential application environments i6] [68]. Encoders

which provide more than one level of error protection to information information

bits are called linear unequal error protection (LUEP) codes. It is also possible to

provide unequal error protection the channel bits, but that is not discussed in this

work. The purpose of unequal error protection is to provide a higher degree of error

protection for the more important bits, without increasing the associated increase in

complexity/cost/bandwidth that would occur if the protection were increased for the

entire information stream. The research discussed in this work studies the unequal

error protection capabilities of convolutional codes.

The dissertation is organized as follows. Chapter 2 discusses error control coding,

particularly block codes and convolutional codes. In addition to gefieral convolutional

codes, two specific types of convolutional codes, unit memor3r codes and double mem-

ory codes are presented. Some basic concepts that are used later in the dissertation

are introduced. Chapter 3 discusses previous work on unequal error protection codes.

Unequal error protection block codes and multi-levelcodes are briefly reviewed._ Next,

new work on the unequal error protection capabilities of convolutional codes is pre-

sented in Chapter 4. The effective free distance vector is defines as a performance

parameter. A modified transfer function which allows analysis of unequal error pro-
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tection convolutional codes is presented. Upper bounds on the effective free distances

are derived. Also, results of code searches are presented and bit error rate simulations

for specific encoders are discussed. Chapter 5 presents extensions of the results in

Chapter 4 to trellis coded modulation. Chapter 6 contains conclusions and sugges-

tions for further research.
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CHAPTER 2 B

Error Control Coding

2.1 Introduction

The purpose of an error control code is to increase the probability that a message

will be reliably transmitted over a noisy channel. This chapter begins by reviewing

two common classes of error control codes: block codes and convolutional codes. Both

types operate on bit streams emitted from information sources. It is assumed that

the information stream is binary, i.e. consists only of O's and l's, but results may be

generalized to an arbitrary alphabet. Block codes are discussed in Section 2.2. The

distinction between a code and an encoder is made, and the minimum distance of a

code is discussed. Section 2.3 describes convolutional codes. The section includes a

general description of convolutional codes, as well as several examples. In addition,

the minimum free distance of a convolutional code is defines. Section 2.4 describes

Unit Memory Codes, a special class of convolutional codes. Another special class of

convolutional codes, Double Memory Codes, are discussed in Section 2.5.
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2.2 Blo ck Codes

A block encoder divides the message sequence into message blocks of k-bits, u,

and transmits associated codewords, v, of length n. Figure 2.1 shows a general block

codes. There is a one-to-one correspondence between each possible message block

and its associated codeword. Because each message block consists of k bits, there

ar_ 2 k codewords. The (n, k) binary block code is the set of 2 k n-dimensional binary

codewords. Each codeword depends only on the current input, so the system is

memoryless. The rate of the code is defined as R = k/n. For block codes, the rate

is generally expressed as a proper fraction. That is, a code with k = 2 and n = 4 is

called a rate 1/2 code.

w

F

o

k-1

.0

n-1

w

w

w

Figure 2.1: General Block Code Encoder

A distinction between a code and an encoder is made. An encoder is the rule

that maps each possible k-bit input to a specific n-bit codeword. That is, an encoder

divides an information sequence into blocks of length k, between each k-bit message

block and n-bit codeword. An encoder realization of a specific code is not necessarily,

and in fact is not normally, unique. For instance, consider the rate 1/2 code, "C =

(0000, 1010, 0101, 1111}. The code is the set of four codewords listed. One possible



encoderrealization of the code makes the following associations between the input

messages and the codewords.

g

g

U _ V

O0 0000

01 0101

10 1010

11 fill

(2.1)

Another possible encoder makes the following different associations between the input

messages and the codewords.

U -----+ V

O0 0000

01 I010

I0 IIII

11 0101

(2.2)

Although the encoders generate the same code, or set of n-tuples, the associations

between input and outputs differ.

An encoder can be represented by a generator matrix G, which spans the space

of the codewords and shows the relationships between the message words and the

codewords with the equation

v=u.G (2.3)

The first encoder example, given in (2.1) has the generator matrix

[ 0 01G= 0101 '

while the encoder in ( 2.2 ) has the generator matrix

G= 1010 "

(2.4)

(2.5)

W

M

D

g

m

m
m

I

I

w

mm
g

W

w

w

J

J



- 10

w
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w

w

w

w
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w

The two encoders, and their corresponding generator matrices, are different realiza-

tions of the same code. To rephrase, a code is the set of n-dimensional vectors, while

an encoder can be thought of as a set of ordered pairs of k-bit information blocks and

n-bit codewords.

A useful performance parameter of a linear binary block code is the minimum

distance, d,,,i,_, between any two codewords. The Hamming distance between two

codewords v and v', dH(v, v I) is the number of corresponding bits of v and v ! that

are different. The minimum distance of a code C is then defined as the minimum

Hamming distance between any two codewords, i.e.

dmi, = min[dn(v, v'): v, v' • C]. (2.6)
V_V t

For linearblock codes, an equivalent definitionof dmi. is the minimum Hamming

weight of any codewor_l, where the Hamming weight of a codeword v is the total

number of l's in v, and is denoted by wn(v).

Maximum likelihood decoding of binary block codes chooses the codeword that

differs in the fewest number of bit positions from the received n-tuple, r. That is, a

maximum likelihood decoder chooses the codeword that is "closest" to the received

n-tuple. When maximum likelihood decoding is used, a code with minimum distance

d,,i_ is guaranteed to detect (d,_in - 1) bit errors introdu_:ed by the transmission

channel. The error detection capability stems from the fact that corruption of (d,,,i,, -

1) or fewer bits of the transmitted codeword will results in an n-tuple that does not

belong to the set of codewords. In that case, it is apparent to the receiver that the

received n-tuple is corrupted. However, if d,,,i,, or more bits are changed, it is possible

that the received n-tuple is itself a codeword, but not the codewbrd that was sent.

The decoder has no way to tell that this is the case. Similarly, a code with minimum
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distanced,_,, is guaranteed to correct L(d,_ - 1)/2J transmission errors, because an

error pattern of (d_i,_ - 1) or fewer errors will not move the received n-tuple to a

point closer to a codeword different from the transmitted codeword.

2.3 Convolutional Codes

Elias [12] proposed convolutional codes as an alternative to block codes. Like block

codes, convolutional codes separate the information sequence into k-bit message

blocks and n-bit codewords. However, with convolutional codes, encoder output

depends on both the current and previous message blocks. The k-bit message blocks

can be viewed in (at least) two ways: a sequence of k consecutive bits that originated

as a sequence from one information source, or one bit from each of k information

sources. Either model is appropriate, although one or the other is sometimes more

conducive to better understanding for specific applications. The distinction between

code and encoder that was made in Section 2.2 is applicable to convolutional codes.

A general convolutional encoder is shown in Figure 2.2. The k-bit block entering

the encoder at time t is ut, and the n-bit codeword leaving a convolutional encoder at

time t is vt. Let u_0,tl be the entire message sequence entering the encoder from times

to to tl, i.e. ut0,t_ = (UtoUt0+l,... utl). Similarly, v_0,__ = (V_oVt0+1... v_,) denotes the

entire code sequence leaving the encoder during times to to tl.._n (n, k, m) binary

convolutional code can be represented by the encoding equation

m

g

I

I

l
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g

D

g

g

m

I

g

v_ = utGo + ut-lG1 + ... + u__,_G,_, (2.7)

where the encoding matrices, Gi, i = 0, 1, ...,m, are (k x n) binary matrices. The

memory distribution vector M = (m0, m2,...,mk-1) indicates the size of the shift

register on each input line. For example, the first input line has mo memory units.
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k-1

2

n-1

Figure 2.2: A General Convolutional Encoder
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The maximum number of memory units on any one line is m. The state complexity, or

memory order, of a convolutional code is defined to be the number of state variables,

K = Emi.

An alternative equation description of a convolutional encoder is

v = .. G, (2.s)

I

I

M

M

where u = (uoul...) is the semi-infinite sequence of message blocks, v = (vovl...) is

the semi-infinite sequence of codewords, and G is the semi-infinite generator matrix

formed from the encoder matrices

Go G1 "-- G= 0 0 .-.

G= 0 Go G1 .-. G,_ 0 ..- (2.9)

Figure 2.3 shows a (3,2,2) convolutional encoder with M = (1, 2), K = 3, and

encoding matrices

J

g

m

J

g

oo__[010]111o1__[001]011°2_[000]110 (2.10)

The free distance, dlr** , of a convolutional code, C, is the minimum Hamming

distance between all pairs of code sequences. Formally,

w

I I"

dsr,, = min [du(vo,t, vo,t) : andvo,t, vo,t E el. (2.11)
v0.,#%.,

Due to the linearity of binary convolutional codes, the free distance is also the mini-

mum Hamming weight of any non-zero code sequence,

df,.,, = min[wH(vO,t # 0 : Vo,t e C)]. (2.12)

It is assumed that the first non-zero input to the encoder arrives at time 0. The

free distance can be difficult to determine because code sequences may be of infinite

I

I

_=
W
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m

m

w

L

w

Figure 2.3: A Specific (3, 2, 2) Convolutional encoder

length. Often, bounds are calculated for the maximum achievable free distance (upper

bounds) [9, 30, 19, 17] so that the performance of a particular code can be compared

to the best theoretical performance.

Convolutional encoders are occasionally described by a transfer function. The

concept of the transfer function of a convolutional encoder is used later in the dis-

sertation, and is reviewed here. It is assumed that the reader is familiar with the

method of determining a transfer function from an augmented state diagram using

Mason's gain formula [32], or some other algorithm [66], [54], and [8].

The two-variable transfer function has the form

O0 O0

T(X, Y) = __, _ Ab,,_.X_.Y b, (2.13)
d=dlr,_,s b=l

where Ab,_ is the number of code sequences with Hamming weight d that have cor-

responding (input) message blocks with Hamming weight b. The average bit error

w
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probability for a specific transfer function is bounded by

1

Pb(E) < -_. __, Bd.Pd, (2.14)
d

where B4 = Eb b.Ab,d is the total number of non-zero information bits associated with

all codewords of weight d, and Pd (_/4p(1 d= -p)) . For the sake of simplicity, we

have assumed a binary symmetric channel with crossover probability, p.

Examining the above equation, it is seen that the dominating term in the upper

bound on the bit error probability is the term with the lowest value of d, which

happens to be the free distance. This explains the use of the free distance as a

performance measure for convolutional codes.

Typically, the Viterbi algorithm [32], [67], [38], [14], [15] is used to decode convo-

lutional codes with relatively small memory orders. Viterbi decoding is a maximum

likelihood decoding algorithm, i.e. it selects the code word that minimized the prob-

ability of decoding error, assuming all codewords are equally likely. The complexity

of the Viterbi algorithm increases dramatically as the number of states in the trellis

increase. For that reason, sequential decoding, [69] [13] [73] [22], is generally used for

encoders with K > 10.
m

2.4 Unit Memory Codes

An interesting class of binary convolutional codes are unit memory codes [31] [29]

[25]. A unit memory code (UMC) is a binary convolutional code w{th memory m. = 1

and multiple input lines, i.e. k > 1. Therefore, the encoding equation of a UMC

is vt = utGo + ut-lG1. An (no, ko,m) convolutional code with (ko x no) encoding

matrices go, gl, "", g,,, is equivalent to the (n = mno, k = mko, 1) UMC which has

the two (mko x mno) binary encoding matrices
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w

w

w

Go --

go g, "'" g_-I

0 go g,,,-2

: ".. :

0 .-. go

G1 -

g,,, 0 ... 0

gin-1 grs 0

: ".. :

gl "'" g-,

(2.15)

The two encoders are equivalent in the sense that they generate identical outputs

when operating on identical input sequences. This is easily verified by comparing

the semi-infinite generator matrices of the two encoders. For the basic encoder_ the

semi-infinite generator matrix is

Gbasic =

go gl ...... g=-, 0 ......

0 go gl ...... gin-1 0 "-.

0 0 "'. "'.

where each entry is a (ko x no) sub-matrix.

generator matrix for the unit memory code is

with (mko x mno) sub-matrices.

2.15,

(2.16)

On the other hand, the semi-infinite

GUMC =

Go G1 0 -..

0 Go G1 0

0 0 "'. "'.

, (2.17)

Replacing Go and G1 with the expressions from

go gl "" g,,,-1 g,_ 0 ..- 0

0 go g_-2 g,,,-1 g,, 0
., .

: ',. : : ".. :

0 -.. go gl "'" g,,,

go g, "'" g-_-I g,_ 0 "." 0

0 go g,_,-2 g,_-I g,,, 0
0 0

: ".. : : ".. :

0 "'" go gl "'" gm

0 0 "'. "'.

(2.18)

Comparing Equations (2.16) and (2.18) confirms Equation (2.15.

As an example, consider the (2,1,3) basic convolutional encoder with encoder

matrices go = [1 1],g, = [1 1],g2 = [0 1],andg3 = [1 1]. When the input to

the encoder is the message sequence (1 0 1 1 1 0 0 1 0 ...), the code sequence is
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(ii ii i0 11 01 01 10 O0 11...).

encoding matrices

G 0 _-_

The associated (6,3,1) unit memory encoder has

11 11 01 ] [ 11 00 00
00 11 I1 and GI= 01 11 00

00 00 11 11 01 11
(2.19)

When the input to the unit memory encoder is the message sequence (101 110 010 ...),

the code sequence is (111110 110101 100011...).

Let no and ko be relatively prime. The class of (no, ko, m) convolutional codes

will hereafter be called basic convolutional codes. The encoding matrices of a UMC

that has been converted from a basic code must adhere to the form in Equation 2.15.

However, the encoder matrices for a general UMC are not under the same restric-

tion. That is, general UMC matrices are not block triangular matrices with constant

diagonals. It follows that UMCs are a larger class of codes than basic convolutional

codes. In addition, since every basic convolutional code can be converted to a UMC

of the same rate and state complexity, the optimal UMC has a free distance at least

as large as the free distance of the optimal basic code.

Lee developed an upper bound on the free distance of a (n, k, 1) UMC, which

is now presented. As previously stated, the free distance, dl,._ , of a convolutional

code is the minimum Hamming distance between all pairs of code sequences that are

associated with input sequences that differ in at least one message block. It can be

assumed without loss of generality that one of the code sequences in the comparison

is always the all-zero sequence, and that the first non-zero portion of the other code

sequence in the comparison occurs at time 0. So, the free distance is the minimum

Hamming weight among all code sequences generated by input sequences that are

non-zero in the message block at time 0, i.e.

dl_ = min [wH(vo,t) for all t]. (2.20)
Uo#O
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When the only non-zero portion of the information sequence is uo, then the only non-

zero output is occurs at times 0 and 1, and is v0a = uo[GoG1]. The set of all such uo's

and voa's forms a (2n, k) block code. Therefore, at least one code sequence belonging

to the UMC has a Hamming weight less than or equal to the minimum distance of the

optimal (2n, k) block code. The minimum distance of the optimal (2n, k) block code

will be denoted dovt(2n, k). It follows that the optimal free distance of the (n,.k, 1)

UMC is upperbounded by dopt(2n, k). The optimal block code minimum distances are

tabulated in [18, 65]. In several cases, the UMC upper bound is larger than the free

distance attained by the optimal basic codes of the same rate and state complexity.

Lee conducted an exhaustive search for the optimal UMCs and found several UMCs

with a larger free distance than the optimal basic codes of the same rate and state

complexity. Lee's results are shown in Table 2.4.

(n, k)

(4,2)

(6,3)

(8,4)

(10,5)
(12,6)
(6,2)

(9,3)

(12,4)

(15,5)

UMC

upper optimal optimal
bound UMC basic

5 5 5

6 6 6

8 8 .... 7

9 9 8

10 10 10
8 8 8

(16,4)

10

12

15

10

12

16

10

12

13

(18,6) 16 15

(8,2) 10 10 10

(12,3) 13 13 13
16 16

2O 20

2424

(20,5)
(24,6)

18

20

Table 2.1: Optimal Unit Memory Codes

A drawback associated with UMCs is a possible increase in Viterbi decoding com-
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plexitywhen compared to the complexity of basic convolutional codes. The increase

in complexity is a resultof the increased number of branches leaving each state of

a trellisrepresentationof the encoder. The number of branches leaving each state

iscalledthe branch complexity. A (no,ko,m) basic convolutional code has a branch

complexity of2k°,while a (mno, mko, 1) UMC has a branch complexity of 2"k°. There-

fore,the cost of"a (potential)increase in the freedistance isan increasein the branch

complexity. The state complexities of the (no,ko,m) basic convolutional code and

(mno, mko, I) UMC are both 2"k°. While statecomplexity isthe primary measure of

Viterbi decoding complexity, the branch complexity effectsare not negligible.How-

ever, the branch complexity per decoded information bit of the basic encoder and

UMC are identical.

The results obtained by Lee for UMCs led to the study of Double Memory Codes

[35], which are discussed in the next section.
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2.5 Double Memory Codes
m

This section describes double memory convolutional Codes and presents an upper

bound on their free distance [35]. It is shown that the free distance upper bound

can be larger than the free distances previously attained by codes with relatively

prime k and n. For certain rates, the bound is aS large as the upper bound for unit

memory codes. A double memory code which has a free distance larger than the free

distance of the optimal basic code is briefly described. Double memory codes have

lower branch complexities then the corresponding unit memory codes.

A double memory code (DMC) is a convolutional code with m = 2 that can be

described by vt = UtGo + ut-lG1 + ut-2G2. It is assumed unless explicitly stated

otherwise that the memory allotted to every input line is 2. It can be seen that
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any (no, ko, 2m) convolutional code with (ko × no) encoding matrices go, gl, ..., g2,_ is

equivalent to the (mno, rnko, 2) DMC with (mko × mno) encoding matrices

go gl "'" g,_-i

0 go g,_-2

: "., :

0 ... go

G2 --

G1 -"

grn grn+l " " " g2m--I

g,_-I gm g2,_-2

: ".. :

gl g2 "'" g,_

g2,,, 0 ... 0

g2m-1 g2rn 0

: ",. :

grnq-1 " "" g2m

(2.21)

w

It should be noted that the class of double memory codes, although smaller than

the class of UMCs, is larger than the class of basic convolutional codes. This results

from the fact that every basic code can be converted to an equivalent DMC, and every

DMC can be converted to an equivalent UMC, but the reverse relationships (UMC

to DMC, and DMC to basic code) do not hold for all UMCs or DMCs.

An upper bound on the free distance may be developed in the same way that

the bound for UMCs was developed. The free distance is again recognized as the

minimum weight vector resulting from an information sequence that is non-zero at

time 0. For an (n, k, 2) DMC, the set of such uo's and their associated outputs can be

considered as a (3n, k) block code with Vo,2 = uo[GoG1G2]. Accordingly, the optimal

df,.,, is upper bounded by the highest attainable minimum distance of a (3n, k) block

code.

The free distance bounds for k > i axe shown in Table 2.5. As for UMCs, the free

distance of the optimal basic code with the appropriate rate and state complexity
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(n, k) K

DMC UMC

upper upper
bound bound

(4,2) 4 S S

optimal optimal

UMC basic
i

8 7

(6,3) 6 10 10 10 10

(s,4) s 12 14 12
(10,5) 10 15 16 14
(6,2) 4 12 12 12 12

(9,3) 6 15 16 16 15

(12,4) S 18 22 22 18

(15,5) 10 22 27 22

(18,6) 12 26 32 24

Table 2.2: Upper Bounds for Double Memory Codes

provides a lower bound on the optimal DMC free distance. The table lists the k and

n used for the DMC. The DMC at a given rate is compared to the optimal (no, ko)

basic convolutional code with the same memory order, K, and the optimal (2n, 2k)

UMC with the same memory order. In some cases, the block code upper bound for

the DMC free distance is larger than the free distance achieved by the optimal basic

code of the same rate and state complexity: In particular, considerthe rate 2/4, 5/10,

and 6/18 bounds. However, the existence of a DMC that attains the block code upper

bound is not guaranteed. A rate 2/4 DMC encoder with free distance 8 was found.

The encoding matrices for that encoder are:

[1 1 1 0] [1 0 0 1] and G2=[ 1 1 10] (2.22)G0= 0 1 0 1 , GI= 1 1 1 1 ' 0 1 0 1
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Double memory codes are interesting for several reasons. First, the free distance

performance of a DMC is at least as high as the free distance of the basic code of

the same rate and state complexity, in some cases, the upper bound for DMCs are
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equal to the upper bound for the UMC of the same states complexity. In addition,

as with UMCs, the form of DMCs is byte-oriented, which is attractive for use in

concatenated coding systems. Finally, partial double memory codes, in which fewer

than two memory units are allocated to a portion of the input lines, show potential as

unequal error protection codes, due to the unbalanced distribution of memory units.

2.6 Complexity Concerns

In general, when decoding a (n, k, m) convolutional code with state complexity

K, a Viterbi decoder must have a 2 _ x 2" lookup table, and performs 2 g. 2 k additions

and 2 g. (2 k -- l) binary comparisons to decode k information bits. The Viterbi

decoding complexities of a (mno, mko, 1) UMC, (_no, _ko,2) DMC, and (no, ko,m)

basic convolutional codes are compared in this section. In the example that follows,

no = 2, leo = 1, and m = 4. The free distance for the optimal (2, 1,4) convolutional

code is 7, while the free distance of the optimal (8, 4, 1) UMC and the (4, 2, 2) DMC

is 8.

To decode 4 information bits, the Viterbi decoding for the UMC requires a 256 ×

256 lookup table, and performs 16.16 = 256 additions and 16- 15 = 240 comparisons.

On the other hand, the Viterbi decoder for the DMC requires a 16 × 16 lookup table,

and 16 - 4 = 64 additions and 16 • 3 = 48 comparisons to decode 2 information bits.

Finally, to decode 1 information bit, the Viterbi decoding for the basic convolutional

code performs 16 • 2 = 32 additions and 16 • 1 = 16 comparisons, and uses a 4 x 4

lookup table.

The requirements per decoded information bit for the three codes are shown in

Table 2.6. The complexity of the basic convolutional code is obviously the smallest,

while the complexity of the UMC is the largest. For this example, the DMC provides
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a larger free distancethan the basic code,with a reduceddecodingcomplexity when

comparedto the UMC. In general, the tradeoffs of performancevs. complexity are

dependenton the specific codesof interest.

UMC DMC basic

lookup table: 256×256 16×16 4×4

additions: 64 32 32

comparisons: 60 29 16 -

Table 2.3: Decoding Complexity Comparison

2.7 Summary

The increase in free distance exhibited by Unit Memory Codes When compared

,

to the appropriate basic code led to the hope that, rather than increasing the. free

distance and error protection encountered by all information bits, the error protection

for one input bit position could be significantly increasedl That is, the additional

capabilities of the unit memory code could be focus on a specific information bit

position. The next chapter introduces unequal error protection coding, and reviews

previous work done in the area. The subsequent chapter then discusses unequal error

protection with convolutional codes.
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CHAPTER 3

Unequal Error Protection Coding

3.1 Introduction

w

w

In certain environments, a discrepancy in the amount of error protection placed

on different information bits is desirable. For example, the sign bit and high order

bits of pulse coded modulation (PCM) data are more critical to system performance

than the lower order bits [57]. In packet switched networks, the header information

requires more error protection than the data, and in multi-user environments, different

users may require more error protection than others. In Adaptive Predictive Coding

and Code-book Excited Linear Prediction, the filter coefficients and the codebook

choice are more important than the residual information. Systems in which some

information is non-essential enhancement information, e.g. embedcled coding schemes

and high definition television, are also potential application environments. Encoders

which provide more than one level of error protection to information information

bits are called linear unequal error protection (UEP) codes. It is also possible to

provide unequal error protection the channel bits, but that is not discussed in this

work. The purpose of unequal error protection is to provide a higher degree of error

protection for the more important bits, without increasing the associated increase in

complexity/cost/bandwidth that would occur if the protection were increased for the

24
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entire information stream.

This chapter briefly reviews unequal error protection approaches that have been

published in the past. The bulk of unequal error protection (UEP) codes have .been

block codes. The general concepts of UEP block cod_ _ pres-ente_ in°SeCtion 3.2

Multi-level coding with unequal error protection is discussed in Section 3.3.

3.2 UEP Block Codes

Wolf and Manisck introduced unequal error protection block codes [34]. Since

then new results have been presented for classes of codes that include nonsystematic

cyclic UEP codes, codes derived form difference set, iterative and concatenated de-

signs of UEP codes, cyclic code classes, and linear a UEP codes derived form shorter

codes [331 [511 [63][11] [64].

An important concept in evaluating UEP block codes is the separation vector,

first defined in [11]. For a linear (n,k) binary code C, the separation vector s(G) =

[s_(G),..., sk(G)] with respect to encoder matrix G of C, is defined as
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si(G) = minwH(uG) for all u such that u, # 0,

where ui is the i th bit of the k-bit message u. The definition of the separation vector

immediately leads to the following result. For a linear (n, k) code with encoding

matrix G, complete maximum likelihood decoding guarantees correct decoding of the

i th information bit whenever the error pattern has a Hamming weight less than or

equal to l(s,(G)-1)/21. If a linear code C has an encoding matrix G with a separation

vector for which components are not mutually equal, then the code is called a linear

unequal error protection code. It is possible to order the separation vector so that

the components are non-increasing, simply by reordering the rows of G. Every code
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has an optimal generator matrix G', whose separation vector is componentwise larger

than or equal to the separation vector of any other generator matrix of the code The

separation vector of a linear code is defined as the separation vector of the optimal

generator matrix of the code.

It is easily seen that the minimum distance of the code is equal to the smallest

component of the separation vector, i.e. d,,,i, = mini [si]. It should be noted that the

separation vector is a measure associated with a particular encoder realization of a

code

Van Gils [63] [64] defined the minimal length necessary to achieve a specific sepa-

ration vector for a given rate as a basic parameter of UEP block codes. He developed

several bounds on that parameter. He first defined n(s) as the length of the shortest

linear binary block code dimension k with a separation vector of at least s.

An (n(s),k, sl code is called optimal if an (n(s),k,t] code with t > s, t # s,

does not exist. The inequality between the two vectors indicates a componentwise

comparison. For example, if s = (2,3,4), t = (3,3,4), and w = (2,5,5), then t > s,

and w > s. The relationship between w and t is best described by the equations

w#t,w_t, andw_t.

An upper bound on n(s) is
k

n(s) < _ si.
i=l

The proof of 3.2 is straightforward. For I = 1,.-.

[1,1,-..,1]. Then, each matrix Gl has minimum distance sz. Let G be defined

as the (k x n(s) matrix G = diag[G1G2...Gkl. Then G has:separation vector

s = and _

An interesting lower bound on n(s) discussed in [631is

(3.2)

, k, let Gt be the (1 x st) matrix
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k

n(s) > __,[s_12'-'], (3.3)
i----1

where the components of s are ordered so that they are nonincreasing.

The proof of 3.3 follows. Let C be a linear (n = n(s), k, s) binary code, and let

G be a minimal weight generator matrix for C. It can be shown that the first row

of G, denoted by rl, has Hamming weight sx. Without loss of generality, the first sx

columns of G have a 1 in the first row. Deleting the first sl columns and the first

row of G yields a (k - 1) x (n - sx) binary matrix, (_, with rank k - 1. Hence, (_ is

a generator matrix of an (n - sx, k - 1) code with separation vector, § = (_2,'", gk).

Let j E {2,..., k}, and let u be the message block that is non-zero only in the jth

bit position. Then c = uG -- (c1[c2), where cl has length sl and WH(C2) = _j. By

definition of the separation vector,

w_(cl) + _j > sj. (3.4)

Furthermore, at least WH(Cl) components of cl equal 1, so

I

I

J

g

i

_--=

I

g

I

N

wn(row(i)- c) _<s, - + (3.5)

However,

w//(row(i) - c) >__max(s,,sj), (3.6)

SO

Repeating the process results in the bound given in 3.3.

Table 3.2 presents some of the separation vectors that were shown in [63]. The

optimal minimum distance for each rate (n, k) is shown in the column labeled'do,,t,

and the achieved separation vectors are shown in the column labeled s.
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rt k doet 8

4 2 2 (3,2)
5 2 3 (4,2)
5 3 3 (3,2,2)
6 2 4 (5,2)
6 3 3 (4,2,2)
8 2 5 (7,2), (6,4)
8 3 4 (6,2,2),(5,4,4)
8 4 4 (5,2,2,2)

Table 3.1: Selected UEP Block Code Results

In addition to, or, in some cases, is lieu of the separation vector, several authors

use a mean distortion vector as a measure of LUEP block code performance [51]. The

design criterion is the overall mean square error between the numerical representations

of the decoded k-bit sequence and the original k-bit information sequence. However,

mean square error is dependent on the method of numerical representation, and not

as closely related to the bit error rate. The method is useful for specific applications

but is not used in this dissertation.

w

_=.

w

!

3.3 Multi-level Coding

Multi-level coding is another method used to achieve UEP [28, 50, 6]. The informa-

tion sequences that require more error protection are assigned to the more powerful

subcoders in the multi-level coding system. Multi-level codes have the disadvantage

of high decoder complexity. The advantage of the method lies in the ease of achieving

large disparity in the protection provided.

The first technique proposed in [6] is a time sharing generalization in which the

code specifies the multiplexing rule that is to be chosen. That is, two different code sig-

nal constellations are possible, and the choice of the constellation is dependent on the

importance of the data. The second UEP technique proposed in that paper combined
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multi-level coding and non-standard set partitioning. In a nonstandard partitions,

less important data may be assigned to the points within a subset, thereby allowing

the minimum intr-subset distance to be smaller than the standard set partitioning.

The important data may then have an increased minimum Euclidean distance.

m

m

m
u

i

3.4 Summary

In this chapter, unequal error protection coding was introduced. In particular,

binary linear UEP block codes were discussed. The separation vector was defined,

and some bounds on the necessary code length for a givenseparation vector were

presented. The next chapter discusses unequal error protection with convolutional

codes.
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CHAPTER 4

Unequal Error Protection with

Convolutional Codes

L_
w

w

"-w

w

=

r

4.1 Introduction

In this chapter, we examine the unequal error protection capabilities of convo-

lutional codes by presenting classes of convolutional codes which satisfy the basic

property of LUEP codes, that is, provide unequal error protection for each input in-

formation digit. The LUEP property is satisfied for certain rates R = k/n, where

k > 2 and k and n are not necessarily relatively prime.

In contrast with the UEP block codes discussed in Chapter 3, the LUEP convolu-

tional codes presented in this dissertation lack algebraic structure. For that reason,

good codes are found by a search procedure. Optimal decoding 'for UEP convolu-

tionai codes remains the Viterbi decoding for short-constraint-length, or sequential

decoding for long constraint-length.

This chapter is organized as follows. In Section 4.2, the effective free distance vec-

tor is presented. Section 4.3 presents a modified transfer function for convolutional

encoders from which the unequal error protection capabilities of a code can be cal-

culated. Several bounds on the unequal error protection capabilities of convolutional

encoders are derived and discussed in Section 4.4. Finally, Section 4.5 presents the

3O



results of searches for UEP codes.
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4.2 The Effective Free Distance Vector

It is convenient to define an effective free distance vector, d, as an alternative

to the free distance as a primary performance parameter for UEP convolutional en-

coders. The effective free distance vector is similar to the separation vector concept

of linear UEP block codes discussed in_tlae previous chapter. _Similar vectors have

been proposed in [43], [40], [36], [37], [35], [49].

For a given (n, k), k _ 1 convolutional encoder, G, the effective free distance

vector is defined as the k-dimensional vector

d = (do, dx,...,dk_l) (4.1)

where dj, the jth effective free distance, is the lowest Hamming weight among all code

sequences that are generated by input sequences with at least one "1 " in the jth

position, i.e.,

dj = min {WH(V[o,t+,q): V[o,t+,,q = ut0,t].G, Vt} (4.2)
V[o,t+ml

where the jth bit of u, is non-zero for some s E [0,t], and u, = 0 for s > t. If

an effective free distance vector d corresponding to a convolutional encoder with

generator matrix G is such that its components are not mutually equal, then we call

this encoder a linear unequal error protection convolutional code. It is evident from

the previous definitions that the free distance of the code equals

Thus, di > dl,.,_.

d/,.e_ = min {do, dl,- • •, dk-1} (4.3)

From the above definition, we have the following error-correcting capability of a

convolutional code when used in a binary-input symmetrlc-output channel. An (n, k)
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convolutional encoder, with generator matrix G and Viterbi or Sequential decod-

ing algorithm, guarantees that the jth input information digit is decoded correctly

whenever the error pattern has Hamming distance less than or equal to [(d# - 1)/2J.

Note that for a given memory distribution vector M = (ml, m2, ...... , rnk), and a

given set of encoder matrices Gi, each permutation of the k components of M and the

corresponding rows of each G/leads to effective free distance vectors with components

that are permutations of the set {do, dl,'..,d_-l}. Let d(C) = "{J0, dl, ...... ,dk-1}

denote the vector formed by ordering the components of d in a nondecreasing order.

An (n, k, m) UEP convolutional encoder, G, with state complexity K and ordered

effective free distance vector d(G) is optimum if there exists no other (n, k, m) UEP

convolutional encoder,G' with state complexity K and ordered effective free distance

vector d(G') which is larger (componentwise) than d(G).

As an example, consider the (3,2) convolutional encoder with M = (1,1), and

submatrices

G°= [0 10];GI= [ 1 1 0]i 1 1 1 0 1

The encoder diagram and the associated trellis are shown in F'igs. 4.1, and. 4.2,

respectively.

Examining the possible paths through the trellis reveals that the first effective free

distance, do, is 3, and the second effective free distance, dl, is 4. That is, d = (3,4).

The non-zero path through the trellis with weight 3 is shown by dotted lines. The

non-zero paths with weight 4 are shown with dark lines. All other paths have weight

greater than 4. It can be seen that the weight 3 path is created by an input vector
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Figure 4.1: A specific (3, 2) encoder
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sequence that is non-zero only in the first input bit position, (01, 00). When the input

sequences are non-zero in the second position, the minimum weight of any path is 4.

It is important to recognize that the first "1" in the jth position does not necessarily

occur at time zero. For instance, the input sequence (10 O1 00) is one of the sequences

that must be considered when determining the second effective free distance, dx, of

an encoder with two input lines (k = 2), and i = (1, 1). On the other hand, the

input sequence (10 10 00) does not affect dl.

4.3 A Modified Transfer Function

State diagram analysis has long been used to determine the transfer functions of

low complexity (n, k, m) convolutional encoders. The transfer function, in turn, is

then manipulated to determine the free distance, event error probability, and bit er-

ror probability of the encoder. The bit error probability derived from the standard

transfer function is the probability that an input bit is decoded incorrectly. How-

ever, the error probability which is relevant for unequal error protection codes is the

probability of bit error at each specific bit position.

This section presents a modified transfer function analysis for time-invariant con-

volutional encoders that yields the individual bit error probability for any specified

input bit position. First, standard transfer function analysis will be briefly reviewed.

Then, the modified transfer function will be described and illustrated with an ex-

ample. An upper bound on the average bit error probability for a specific input bit

position is presented. Then the unequal error protection capabilities of several codes

are presented and discussed.



Recall that the two-variable transfer function of a codehas the form
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T(X, Y) = __, __, Ab,d X _ yb, (4.4)
d=dlr,g b=l

where Ab,d is the number of code sequences with Hamming weight d that have corre-

sponding (inPut) message sequences with Hamming weight b. The average bit error

probability for a specific transfer function is bounded by

(4.5)1 __,BdPd,
Pb(E) < -_

where Bd = _ b Ab.d is the total number of non-zero information bits associated with

all codewords of weight d, and Pd = (¢4p(t- p))d. For the sake of simplicity, we

assume a binary symmetric channel with crossover probability p.

When the individual bit error probability is desired for each of the k input po-

sitions, then the split:state diagram must be modified before Mason's formula is

(4.6)

applied. Each branch label has the new form

XiY_° YlJ' . . . Y_:_' ,

where jq is equal to the input bit in the qth position, and i is the Hamming weight

of the branch output. Obviously, the sum of the jq'S is the Hamming weight of the

input message block. The modified transfer function is then calculated in the same

way described in [32]. The resulting modified transfer function is

¢0 J'_ b
T(X, Yo, Y_, ... ,Vk-1) = __, __, C,,jXaYo_"Y1 '_ "'" Y,**'"Jk-,, (4.7)

d=d l_e_ j=O

where Cd,j is the number of paths associated with the jta input sequence distri-

bution of l's that generates code vectors of weight d, ja is the number of distinct

input sequence distributions that generate code vectors of weight d, and the entity

bo,j, bl,j, ...... ,bk-l,j represents a particular input sequence distribution of l's. The
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probability that a decoding error occurs for a bit located in the i *h position of a

message block in the message sequence is then

P_i)(E) < __, B(d i} Pd for 0 < i < k- 1, (4.8)
a

where B (0 id= _i=o b_,jCd,j is the total number of 1's in bit position i contained in all

input vectors that generate code vectors of weight d. Note that the new parameters

are related to the original parameters by the equations Bd = Zi B (i) and Pb(E) =

(l/k) E_=ok-1pb(,)(E). In addition, the smallest d in the bound for p(bi)(E) for which

B(ai) is non-zero is the effective free distance of the i th input position, di.

In Section 4.2, the effective free distance vector of the (3, 2) convolutional encoder

with M = (1, 1) and encoding matrices

oo[010] o1__[110]- 1 1 1 1 0 1

was shown to be (3,4). The modified state diagram for the encoder is shown in Figure

4.3. The modified transfer function is

T(X, Yo, Y_) = X3Yo+

x 4(2YoY,+ Yo_+ Yo_Y_)+
x 5(Y_+ 3Y2Y,+ 3YoV__ + Yo3+ 3Yo_Y,_+ 2Y2Y,2+ Yo_Y,4)+ ......

(4.10)

The transfer function indicates that there is one path of weight 3 through the

trellis, and it is generated by the input sequence that has one 1 on line 0 and is zero

on line 1.

The bound for the probability of a bit error in the first input position is then

P_°)(E) < P3 + 6P4 + 30P5 + ....... Similarly, the bound for the probability of a bit

error in the second input position is given by P_I)(E) < 4P4 + 27P5 + .......



37 u
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X 2
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_X Y1

X 2

Figure 4.3: Modified state diagram for a specific (3,2) encoder'with d = (3, 4)

Consider the (3, 2) convolutional encoder with M = (1, 1) and encoding matrices

[101] o[011]Go= 1 1 1 1 0 1 (4.11)

The encoder representation is shown in Figure 4.4, and the modified state diagram

for the encoder is shown in Figure 4.5. The modified transfer function is

T(X, Yo, Y_) = X3 (YoY_)-t - (4.12)

X4(yo + YoY_ 2 + 2Yo2Y_2)+

Xs(Y_ + 2YoY_ + 3Y02Y_ + YoY_ 3 + 3Y0_Y_3 _- 4Yo3Y_3) +""

and the effective free distance vector is (3,3).

The encoder represented in (4.11) is equivalent to the encoder in (4.9). -The

difference in the effective free distance vectors demonstrates the dependence of the

effective free distance on the encoder realization of the code.

An obvious drawback of the state diagram analysis is the high level of complexity

when the memory order and input vector dimension are not restricted to low val-
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Figure 4.4: A specific (3,2) encoder with d - (3,3)

= :

YoY1

X3Y_

Figure 4.5: Modified state diagram for a specific (3, 2) encoder with d = (3, 3)
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ues. As the totalmemory increases,the number of statesincreasesexponentially. In

addition,as the dimension of the input vector increases,the number of branches leav-

ing each state increasesexponentially. However, existingalgorithms which attempt

to reduce the computational complexity of calculating the transferfunction can be

modified to incorporate the additional information needed to determine the unequal

error protection provided by the code. In addition, the same branch labels can be

used in modifications of other algorithms [8]which were developed to determine the

freedistance vector of an encoder without calculatingthe transferfunction.

4.4 Two-Way Bounds

In this section, a bound on the individual effective free distances is derived.

Evaluating the bound is a useful tool in determining the unequal error protection

capabilities of encoders of specified rate and memory distribution. In addition, it

allows a comparison between the effective free distance of a specific encoder and the

theoretically optimal effective free distance. First, a bound on the Hamming weight of

the sum of two vectors with known Hamming weights is presented. Then this bound

is applied to effective free distances and the implications axe discussed.

Let x and y be n-bit binary vectors and let z be the modulo 2 sum of x and y,

Z "-- (Zl,Z2, ...... ,Zn) (4.13)

-'x_y

= (zl $ yl, =2 • y2, ...... , z. • y,,)

Assume that the Hamming weights of x and y are known and are w= and w_,

respectively. It can be shown that the Hamming weight of z is upper bounded by the

following relationship
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w, <_ mln {n - w_:, wu} + min (n -- w_, w=} . (4.14)

The proof of the bound in (4.14) is given below.

There are two cases which result in zi - 1 and which contribute to the Hamming

weight of z. Case 1 occurs when zl is 1 and yl is 0; Case _ occurs when zi is 0"and

yi is 1. The Hamming weight of z is equal to the total number of bit positions in

which either of the two cases appears. Therefore, w, can be upper bounded by the

sum of the maximum number of occurrences of Case I and the maximum number of

occurrences of Case _. The number of bit positions in which Case 1 occurs can be

no greater than the minimum of the number of 1 's in x and the number of O's in y.

Similarly, the number of bit positions in which Case _ occurs can be no greater than

the minimum of the number of O's in x and the number of l's in y. Therefore,

< rain{n- + rain - (4.15)

The bound in (4.14) can be applied to a convolutional encoder and provides the

basis for a bound on the effective free distance of eLparticular input line as a function

of the effective free distance of another llne.

Recall that a rate R -- kin convolutional encoder with input (message) se-

quence u = (u0, ut, ...... ), code sequence v = (v0, vt, ...... ), and memory distribution

M =(mo, rnt, ...... ,rnk_l), with mo _< mt _< ...... _< rnk-1, can be represented by the

equation

vj = uj.Go $ u_-l.Gt 6) ...... 6) uj_,,__, .G,,_b_ ,, (4.16)

where ui is a binary k-tuple, vi is a binary n-tu;,le, and Gi is a (k x n) binary matrix.
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We will denote the encoding matrix, G, by the concatenation of the submatrices G_,

0 __.i _< ink-x, that is, _ .... _

mR

I

m
m

G = [Go[GI[---[G._,_,] (4.17)

Because the effective free distance of input line j, di, is the minimum Hamming

weight of all codewords associated with input sequences that are non-zero on line j,

the effective free distance of a particular input line is no larger than the Hamming

weight, wj, of the corresponding row in the encoding matrix G. In addition, from the

definition of dj, we know that the Hamming weight of the binary sum of row i and

row j is at least equal to dj, for all i _ j, so that

= : _ _ _ , \ _i-_ _ : : _: ) , : : : : , :

_,(,._(i) e ,.o_(j)) >_,t_. (4.18)

Applying the bound of (4.14) to the bound of (4.18) yields an upper bound on dj

in terms of wi and wj, that is

,t, < w(,._(i)e,._(j)) < _n{_(m__, + 1)- _,,_} + _n{_(m___ + 1)- _,_,}

<_ [n(ml,_i"l-I) - w,] % [n(mk-I -F1) --wj]

-- 2n(mk-1 -'l- 1) - wi -- w i.

.... (4.19)

The upper bound in (4.19)can be further manipulated to eliminate the depenJe_ce

on a particular encoding matrix. The bound is loosened in the process, but it applies

to any encoder with the same rate and memory distribution.

Equation (4.19) can be rewritten as , :_ ...... :=
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d# + wj < 2n(mk-t + 1)- wi.

Since dj <_w j,the bound on dj can be loosened to

(4.20)

2ct#< 2n(m__1+ t)- w_ (4.21)

Similarly,since d_ < wi,

2aj< 2n(mk_1+ I)- d_ (4.22)

or
w

d_< (i/2)[2_(m__i+ i)-d,] (4.23)

The bound in (4.19) requires knowledge of the Hamming weights of rows i and j

of the encoding matrix, whereas the bound in (4.23) presents a relationship between

two effective free distances, regardless of the encoder. In addition, the bound in (3,.23)

can be used to compute the maximum possible value of an individual effective free

distance when the minimum value of d, i.e. dl,,,, is known.

To tighten the bound for encoders with unbalanced memory distributions, we

consider input sequences constructed so that a periodic impulse of period mj q- 1

enters each input line j. The original encoder has the encoder matrix

G = [GolG_I-..IG,_k_,] (4.24)

r0

rl

rk-i

ii (4.25)
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Using the appropriate periodic input sequences, we can form two vectors i

_', =_
b times

(4.26)

and

_ = [rjlrjl...IrA, (4.2r)
times :C

wMch axe valid code sequences.

?

Note that w i = wH(rJi) = bw_ and w_ = w_(r_i) = cwi. From the definitionof

the effectivefreedistance,

dj< ws(r'i• r'j). (4.28)

Let N = nma.x[b(mi + 1),c(mj % 1)]. From the vector bound in (4.14),

wH(r'i _ r_) < (4.29)

(4.30)
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So,

Rewriting,

or

_< [_v- ,,,_]+ [_v- "5]

! ?

= 2N w i - w_.

'<2N

d i + bwi +cwi _< 2N.

(4.31)

(4.32)

(4.33)

(4.34)

" TY}

(4.35)

(4.36)
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Since dj __ wj and di __ wl, the bound can be loosened to

b_+ (c+ 1)dj< 2_v= 2.m= [b(mi+ I),c(m_+ I)] (4.37)

When the number of information lines, i.e. k, is larger than 2, it is possible to

repeatedly apply the two-way bounds to the effective distances. For instance, if k = 3,

then the following bounds hold

z :

w

w

do+ 2dI< 2n(m+ I)

do % 2d2 _<2n(m % I) (4.38)

dl 4" 2d2 <_ 2n(m 4" 1),

where m = max{mo, ml,m2}. The bounds are tightest when do, d1, and d2 are

ordered so that do < dl < d2. Assuming such an ordering, do = df,._, the largest

possible value of d2 is ½(2n(m + 1) - do), which occurs when dl = do = dlr,,. If the

effective distance of line 1 is to be increased to do + a, then the maximum allowed

value of d2 is decreased to {(2n(m + 1) - do - a). As an example, for a rate 3/4

encoder with M = (1, 1, 1), if do is 2 and dl is 3, then the largest possible value of d2

is 6. In fact, when d2 is 6, the bound permits values of do and dl up to 4.

4.5 k-Way Bounds

An alternative bound also applies to the effective free distances. The advantage of

this bound is that is applies to more than two distances at one time. When k = 2,

the following bound reduces to the bound in Equation (4.23).

Again, assume that mo _< ... _< ink-1. No assumption on the relative sizes of the

effective distances is necessary.

The generator matrix forms a rate k block code with d = (do, d),-1).
_,(mh_l+l) • . .
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It isobvious that

do_<,,(,no+ 1). (4.39)

Because the generator matrix has at least one zero in each row, j, for which rnj _ 0,

the first equation of the k-way bound can be tightened slightly, to

do_<n(_o + i) - I. (4.40)

Following the development of the Griesmer bound [17], rearrange the columns so

that the first row has only ones in the first do positions, and only zeros in the remaining

of l's in the first do positions of row j.

Then for j - 1,..., k - 1, row j can have either:

n(mk-1 + 1) - do positions. SeverM variables are useful in the bound development.

o 0
We define Yi as the number of l's in the last n(mi + 1) - do positions of row j, s i as

the number of l's in the first do positions of (row j @ row 0), and li as the number

a)_>[_1 l's or

b) > r_l o's

in the first do positions.

o< do_r_1.Situation a) implies than sj _

o 0
toH(rowj _ romO) - s._+ yj ,

0 0
sj + _tj >_ di.

Since wH(rowj _ romO) >_ clj and

So, :

r_] o °> d_,do- +y?_> sj+yj _ (4.42)

or

d_o d_-(do- r-_1).Y./--
*$

(4.43)
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Since yo is obviously upperbounded by n(rn_ + 1) - do,

'E

d_- (do- [_1) < n(_j + 1)- do (4.44)

or

4_+ I'_1 _ ,,(,',,_+ 1).

AUowing j = 1 and defining X1 = [_], we have

(4._)

dl + 2(1 <_ n(ml + 1) (4.46)

cam*

for j= 1,...,k- 1.

Because lj is the number of 1's in the first do positions of row j, and situation

b) assumes that there axe at least r$] O,s in the first do positions, this implies that

do - f_] > l#_> 0. Also, because the Hmming weight of row j isno lessthan d#,

o> d, (4.47)l;+y;_

or

It then follows that

°> d_-(do-[@1).Yj-- (4.48)

dj + r2 1 _< n(ra# + 1). (4.49)

This isthe same as the resultwhen situation a) isassumed."

When the firstrow and the firstdo columns of the encoding matrix axe removed,

t-_ . withd > (d1-(do-we are left with a residual block code of rate ,(_,,_a+l)-do

X1), d_ - (do - X0,..., d__x - (do - X_)). To continue, we foUow the same procedure

as we did for the original block code That is, first rearrange the columns so that the

first row has only ones in the first dl - (do - X1) positions, and only zeros in the

remaining n(rnj,_z) - do - (d_ - (do - Xx)) = n(mk-_) -d_ - X_ positions. Then for
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j = 2,..., k- 1, the portion of the original row j that belongs to the residual code can

have either: a) _> [_] l's or b) >_ [_t-(_-x,)] O's in the first dt - (do - X1)

positions.

Again, more variables are defined. Let yJ be the number of l's in the last n(m i +

i be the number of l's in the first1) - do - (dx - (do - X1)) positions of row j, sj

dl - (do - X1) positions of row j _ row 1, and lj be the number of l's in the first

dx - (do - X1) positions of row j.

, < d,- (do- x,) - Sincew,(,o jSituation a) implies than sj _

m 1 1row1) > d¢ - (do - X1) and wu(rowj _ ro_l) = s¢ + y¢ ,

1> dj-(do-Xl)sj + yj _ (4.50)

or

y} >_dj - Cdo- Xx) - (dx - (do - Sx ) - [dx - (do2 - X')l))

or

> d_-a, + [,/1-(do-YJ- 2 Xl)].

But y] < n(mj + 1) - do - (dx - (do - X_)), so

di - dl + [d_ - (do-2 X,)] <.(_+t)_do_(d__(do_X,)),

or

,-_ ......... dj + X, + Xl < n(mj + l),

where X2 - r l,for j = 2,..., k- 1. if j = 2, then

d2 + X2 + X1 < n(m2 + 1).

(4.51)

(4.s2)

(4.83)

(4.54)

(4.55)

'Situation b) impliessimilarresults.
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The process can be repeated for the residual block codes up to rate

resulting in a set of k equations:

2

-(,_h-;+1)-do-(a_-(_o-X_))....-

<_ n(mo ÷ l) - l, (4.5e)

and

i

dr + _ x, _<n(m_+ l) (4.57)
l----1

j = 1,...,k- ,he,oX, = r$1, x, = r,,-,-,,;,+x,-,1 l= 2,...k- 1.

4.6 Plotkin-Type Bound

w

The Plotkin bound for block codes states that a code of length n with M codewords

has minimum distance

n 1

d,_i. <_ 2 1 - l/M" (4.58)

When the non-zero input to a convolutional encoder has length h, the encoder can

be considered as a block code with 2hk codewords of length h(mk-1 + 1). Therefore,

the free distance of the code may be upperbounded [30] by

di,e e < n(m_-i + h) 2h_
- 2 2hk------_, h = 1,2,.... (4.59)

The effective distance for a specific input line, j, is the minimum Hamming weight

among codewords that are associated with inputs that contain at least one I on that

input line. A code generated by the inputs of length h which have at least one 1 on

line j is called the restricted block code, C_. The set of such inputs and outputs may

be considered as a series of block codes, similar to the approach used for the Plotkin

bound. We define C_ as the number of codewords in the restricted block code C_.

Then, C_ is equal to the total number of codewords in the unrestricted block .code
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........ with the same size input vectors minus the number of codewords that are all-zero on

linej_ or , . _ : .

_ "- 2 hk __ 2h(k-l) (4.60)

or

C_' = 2 h(k-t) (2 h - l). (4.6t)

Then, using the bound in (4.59), dj is upper-bounded by

ds < n(mk-t + h) 2h(k-t)(2 h -- 1)
-- 2 2h(k-t)(2 h -- 1) -- 1 'h = 1,2, .... (4.62)

for j = 0,--., k- 1. Note that each effective distance is subject to the same bounding

value, i.e., the bound is independent of j.

4.7' Another bound

Another bound which applies to the effective free distance ds is quickly seen from the

fact that the allowable inputs include the set of inputs which are all-zero on all lines

that are not the line of interest. Therefore,

ds< do,,(,,,t,mA, (4.63)

where dopt(n, 1, ms) is the optimal achievable free distance of the rate l/n, memory

m s convolutional encoder. However, bound (4.63) is always looser than bound (4.62),

making it useful only as a quick indication of the maximum possible effective distance

vector. The bounds are applied to encoders of various rates and memory distributions

.....in Tagles_4.i - 4'4,_For each listed encoder configuration, the bounds on the effective

distance vector for the given free distance are listed. The optimal (achieved) free

clist_ce, do_,t is provided for reference.
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L

L

b,=#

Rate=2/3

M d_t Bound "Bound Bound Bound

(4.23) (4.37) (4.57L (4.62)

(1,1)3 (3,4) (3,4) (3,4) (3,4)
(1,2) 4 (4,T) (4,7) (4,7) (4,s)

(3,8) (3,s) (3,7) (3,6)
(2,2) 5 (5,6) (5,6) (5,6) (5,6)

(4,7) (4,7) (4,7) (4,6)

, (3,7) (3,7) (3,7) (3,6)
(1,3) 5 (5,9) (5,7) (5,9) (5,8)

(4,10) (4,8) (4,10) (4,8)
(3,10) (3,9) (3,10) (3,s)

(1,4) 8 (5,12) (5,10) (5,12) (5,9)

(4,13) (4,11) (4,13) (4,9)

(3,13) (3,12) (3,13) (3,9)

' (2,3) 6 (6,9) (6,9) (6,9) ({_,8)

(5,9) (5,9) (5,9) (5,8)
(4,10) (4,10) (4,10) (4,8)

(3,10)(3,10)(3,10)(3,8)

Table 4.1: UEP bounds for Rate 2/3 Convolutional Encoders

4.8 Results

w

w

w

_mJ

A non-exhaustive search for codes that meet these bounds was conducted. The FAST

algorithm presented in [8] was used with the branch labeling method presented in Sec-

tion 4.3 to determine the effective free distances. The search method stepped through

successive possible encoding matrices, and immediately rejected encoders which con-

rained a row with a Hamming weight less than the specified desired minimum distance

for the corresponding input llne. In addition, the search algorithm rejected encoders

which had taken _too many" (typically 5*rnk-1)steps along a path without increasing

the Hamming weight of the output. Theoretically, this criterion may reject encoders

that are not catastrophic and that have the desired effective free distance vector, but

it greatly reduced search time.

Tables 4.5 and 4.6 give the result for rate 2/3 and rate 2/4 encoders, respectively.
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g

m

Rate-2/4

M dov, Bound Bound

(4.23) (4.37)

(1,1) 5 (5,5) (5,5)
(4,6) (4,6)

(1,2) 6 (6,9) (6,9)

(5,9) (5,9)

(4,10.). (4,10)

(2,2)

(1,3)

7/8

718

8(1,4)

(2,3) 8

(8,8) (8,8)
(7,8) (7,8)
(6,9) (6,9)
(5,9) (5,9)
(7,12) (7,9)

(6,13) (6,10)

(5,13) (5,11)

(4,14) (4,12)

(3,14) (3,13)

(7,16)(7,13)
(6,17)(6,14)
(5,17)(5,15)
(4,18)(4,16)
(3,18) (3,17)
(8,12)(8,12)
(7,12) (7,12)
(6,13)(6,13)
(5,13)(5,13)
(4,14)(4,14)
(3,14)(3,14)

Bound

(4.57) i

(5,5)
(4,6)

(6,9)

(5,9)
..(4,!0.)

(8,8)
(7,8)
(6,9)

(5,9)
(7,12)

(6,13)

(5,13)

(4,14)

(3,14)

(7,16)
(6,17)
(5,17)
(4,18)
(3,18)
(8,12)

(7,12)

(6,13)

(5,13)

(4,14)

(3,14)

Bound

(4.62)

(5,6)
(4,6)

(6,8)

(5,8)
(4,8)

(8,8)
(7,8)
(6,8)
(5,8)
(7,1o)
(6,1o)
(5,1o)
(4,1o)
(3,10)
(7,13)
(6,13)
(5,13)
(4,13)
_3,13)
(8,10)
(7,10)
(6,1o)
(5,10)
(4,10)
(3,10)

Table 4.2: UEP bounds for Rate 2/4 Convolutional Encoders
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Rate=2/5

M dopt Bound Bound Bound Bound

(4.23) (4.37) , (4.57) (4.62)
(1,1) 6 (6,7) (6,7) (6,7) (6,8)

(5,7) (5,7) (5,7) (5,8)
(4,8) (4,8) (4,8) (4,8)

(1,2) 9 (9,10) (9,10) (9,10) (9,10)

(8,11) (8,11) (8,i1) (8,10)
(7,11) (7,11) (7,11) (7,10)

(6,12) (6,12) (6,12) (6,10)

(5,12) (5,12) (5,12) (5,10)

(2,2) 9 (10,10) (10,10) (10,10)(10,10)

(9,10) (9,10) (9,10) (9,10)

(8,11) (8,11) (8,11) (8,10)

(7,11) (7,11) (7,11) (7,10)

(6,12) (6,12) (6,12) (6,10)

(5,12) (5,12) (5,10)

(1,3) 5 (9,15) (9,11) (9,15) (9,13)

(8,16) (8,12) (8,16) (8,13)

(7,16) (7,13) (7,16) (7,13)

(6,17) (6,14) (6,17) (6,13)

(5,17) (5,15) .(5,17) (5,13)
(1,4) 8 (9,20) (9,16) (9,20) (9,16)

(8,21) (8,17) (8,21) (8,16)

(7,21) (7,18) (7,21) (7,16)

(6,22) (6,19) (6,22) (6,16)

(5,22) (5,20) (5,22) (_,.16)
(2,3) 6 (13,13) (13,13) (13,13)(13,13)

(12,14) (12,14) (12,14)(12,13)

(11,14) (11,14) (11,14)(11,13)

(10,15) (10,15) (10,15) (10,13)

(9,15) (9,15) (9,15) (9,13)

(8,16) (8,16) (8,16) (8,13)

(7,16) (7,16) (7,16) (7,13)
(6,17) (6,17) (6,17) (6,13)

(5,17) (5,17) (5,17) (5,13)

Table 4.3: UEP bounds for Rate 2/5 Convolutional Encoders
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I

|

M

(1,1,1)

(1,1,2)

(i,2,2)

(2,2,2) 6

dop_

4

4

5

Rate=3/4
Bound

(4.23)

(5,5,5)
(5,5,9)

(4,4,10)
(4,6,9)
(6,6,9)
(6,8,8)

(4,4,10)
(6,6,9)

(6,8,8)
(4,4,1o)

Bound

(4.37)
(5,5,5)
(5,5,9)

(4,4,10)
(4,6,9)
(6,6,9)

(6,6,9)
(6,8,8)

(4,4,10)

(1,1,3) 5 (5:5,i3)(5,5,11)

(4,4,14)(4,4,12)
(4,6,13) (4,6,10.)

(1,2,3) 6 (7,8,12) (7,8,9)

(6,9,11)

Bound

(4.57)
(4,4,5)

(5,5,7)
(4,4,9)
(4,6,8)

(6,6,7)
(4,7,7)

(4,6,8)

(4,4,10)

(6,6,7)
(5,6,8)
(4,4,9)
(4,7,7)
(5,6,11)
(5,8,10)
(4,4,13)
(4,6,12)
(7,8,9)

(7,7,10)

(6,7,11)

(6,9,10)

Bound

(4.62)

(4,5,5)

(5,8,8)

(6,8,8)

(6,8,8)

(5,10,10)

(7,10,10)

Table 4.4: UEP bounds for Rate 3/4 Convolutional Encoders
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A primary goal of the searches was to find encoders with at least one effective distance

greater than the free distance of the optimal code of the same rate and memory order.

A decrease in free distance is acceptable. In Table 4.5, there are four instances in

which the higher effective free distance is larger than the optimal free distance for

rate 2/3 encoders with the same state complexity. For M = (1, 1), d = (3, 4), and

dfree = 3 for the time-invariant conv01utional code, and dl_e_ = 4 for the time-varying

eonvolutional code as shown in [48]. Similarly, the optimal encoder for M = (1, 1)

[32] has an effective free distance vector d = (4, 5). These two encoders are examples

of encoders which provide unequal error protection while maintaining a free distance

equal to the optimal free distance for the same rate and state complexity. Two

encoders with state complexity 4 have one effective free distance vector d = (4, 6).

One has memory distribution M - (2, 2), and the other has memory distribution

M = (1,3). An encoder with d = (6,6) requires a state complexity of 5 [32], so

allowing the protection of one bit to drop from an effective distance of 6 to an effective

distance of 4 allows a reduction in the State complexity. The trellis associated with

an encoder of state complexity 4 has 24 = 16 states, while the trellis associated with

an encoder of state complexity of 5 has 2 s = 32 states.

Table 4.6 shows several rate 2/4 encoders with one effective free distance that is

larger than the optimal free distance for rate 1/2 encoders'with the same rate and

state complexity. Several are noted in the following discussion. For M = (1, 2) the

encoder with effective free distance d = (6, 7) increases the protection provided to

one of the input bits. In comparison, the rate 1/2, M = 3 optimal encoder provides

a free distance of 6 for all input bits, and a state complexity of 4 is required for

a rate 1/2 encoder to provide a free distance of 7 to all input bits. The encoder

that provides error protection d = (4,8) with M = (1,2) increases the effective

t
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_. freedistance on the second bit position by two, with the cost being a corresponding

decrease in the effectivefreedistance on the firstbit.Note that the optimal rate I/2

encoder that provides a freedistance of 8 requiresa statecomplexity of5.The encoder

with M = (2,2) and d = (8,8) although not being a LUEP code, it is interesting

because itachieves the free distance shown to be achievable by unit-memory codes

[31],and both effectivefreedistance exceed the freedista.nceprovided by the optimal

rate I/2, Af = 4 encoder. The M = (i,3) encoder with effectivef_eedistance vector

d - (4,9) provides protection to one of the bitswhich exceed the protectionofferedby

even unit-memory codes of the same state complexity. The M - (2,3) encoder with

effectivefreedistance vector d -- (8,9) isinterestingbecause itprovides unequal error

protection while maintaining a freedistance equal to the optimal value of 8. However,

some encoders axe obviously better choices for implementation. For instance,when

the memory distributionisM -- (I,2), the encoder with d = (4,8) isbetter than the

encoder with d = (3,8).

The tightestbounds for the effectivefreedistances axe listedin the tables.Itcan

be seen that the derived bounds axe relativelytightwhen the memory distributionis

balanced. The bounds appear to loosen as the memory increasesand as the memory

distribution becomes more unbalanced. The bounds also loosen as/c increases."For

example, the bound for rate 3/4, M = (I,I,I) encoders islooserthan the bound for

rate 2/4 M = (I,I) encoders.

Figures 4.6 - 4.33 show the bit error rate (BER) plots for the codes presented in

Tables 4.5,4.6,4.9,using Viterbi decoding with soft decision decoding. Three sets

of data points axe shown in each plot. The data points described by the 'x'are the

(simulated) bit errorrate for input line0. Simil_ly, the data points described by the

'o'are the (simulated) bit error rate for input line1. The overallBElts axe marked
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h_

v

w

Rate-2/3

M do_,t d(bound) d G

(1,1) 3 (3,4) (3,4) 64
53

(1,2) 4 (4,6) (4,5) 53 0
315

4 (3,6) (3,5) 230
575

(2,2) 5 (5,6) (5,5) 546
353

5 (4,6) (4,6) 1 5 1
726

(1,3) 5 (5,7) (5,5) 3 7 0 0
4676

5 (4,8) (4,6) 6300
1375

(1,4) 6 (5,9) (5,6) 75000
51247

6 (4,9) (4,6) 35000
51214

(2,3) 6 (6,7) (6,6) 5730

3155

6 (5,8) (5,6) 1560
3213

6 (4,8) (4,6) 4 2 5 0
0317

Table 4.5: Rate 2/3 UEP Convolutional Encoders

r

w
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(1,1) 5 (5,5)

P_te=2/4
d G

(1,2) 6 (6,8)

(2,2)

(1,3)

(1,4)

(2,3)

6 (5,8)

- (7,8)

(6,8)

7/8UMc (7,9)

(5,7)

(4,8)

(8,8)

(7,7)

(6,8)

(7,7)

15 14

03 07

17 06 00

06 12 15

07 06 O0

13 10 13

14 05 O0

07 17 13

16 11 16 •

05 17 05

15 06 14

03 05 13

Ol 07 03

14 13 16

07 17 O0 O0

10 11 15 03

(6,10) (6,8) 13 15 O0 O0

15 13 Ol 13

(5,10) (5,7) 14 07 O0 O0

17 02 01 16

(4,10) (4,9) 14 03 O0 O0

07 ii 01 16

(3,10) (3,10)

(7,8)

(6,10)

02 06 O0 O0

15 13 01 13

8 (7,13)

8 (6,13)

8 (5,13)

8 (4,13)

8 (3,13)

8 (8,10)

8 (7,10)

8 (6,10)

8 (5,10)

17 07 O0 O0 O0

061301 14 12

16 13 O0 O0 O0

05 0313 11 15

(5,9) 11 07 O0 O0 O0

16 05 14 04 13

(4_10) 12 14 O0 O0 O0
17 15 04 07 13

(3,12) i0 06 O0 O0 O0

17 15 04 07 13

(8,9) 05 17 05 00

13 14 15 16

(7,8)

(6,8)

(5,9)

05 12 13 O0

13 06 15 07

01 03 07 O0

14 03 I0 16

05 12 01 O0

13 06 07 14

Table 4.6: Rate 2/4 UEP Coavolutional Encoders
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M

(i,i)

(1,2)

(2,2)

6

9

9

(1,3)12

P,_te=2/5

! d(bound) d G

(6,7) (6,7) 13 26
34 3,5

(7,1o) (7,8)

(6,1o) (6,1o)

(9,10) (9,9)

(8,10) (8,10)

(8,11) (8,9)

(7,12)(7,10)

(6,13)(6,11)

03 32

37 15

07 37 O0

31 21 23

15 17 O0

03 36 32

03 27 O0-

35 32 24

33 Ol 17

11 36 32

03 23 07

11 36 32

35 17 O0 O0

26 32 11 07

36 25 O0 O0

33 04 15 13

16 26 O0 O0

33 04 15 13

Table 4.7: Rate 2/5 UEP Convolutional Encoders

Rate-=3/4

M dop, d(baund)

(0,1,2) 4 (4,4,9)

(3,3,9)

(1,2,2) 5 (5,6,7)

(4,4,10)

d

(3,3,5)

(4,4,6)

G

17 O0 O0

05 06 O0

03 04 03

03 O0

17 06

04 17

11 17

05 05

03 04

Ol

03

16

13

03

04

Table 4.8: Rate 3/4 UEP ConvolutionaJ

O0

O0

12

O0

11

03

O0

14

12

Encoders
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by '*'s.For cases in which BER was lower than 10-7, data points do not appear. For

comparison, the BER plotsfor the optimal freedistance codes listedin [32]axe shown
_._._ -_ 17 _ _ -" : "_?:: __ _ _

in Figures 4.34 - 4.42. The encoding matrices and effectivefreedistance vectors for

the optimal codes are listedin Table 4.9.

(n, k) M d G

(3,2) (1,1) (3,3) 4 7
34

(1,2) (4,5) 5 3 o
315

(2,2) (5,5) 5 46

353

(2,3) (6,6) 5730

3155

(3,3) (7,7) 5 725
3753

(2,1) (2) (5) 313

(3) (6) 3 31 3

(4) (7) 3 1 12 3

(5) (8) 3 213 13

Table 4.9: Optimal convolutional encoders

Some observations about the BER plots for the UEP convolutional encoders follow.

Examining Figure 4.7, it is seen that for the rate 2/3, M = (1, 2) encoder, which has
..... 0

d = (4, 5), the BER for line 1 is lower for all SNRs than the BER for line 0, whicli was

expected. The diSp_ty in the protection offered tothe two input positions increases

as the SNR increases,similarto the manner in which the disparityin average BER

for two codes with differentfreedistances increaseswith increasingSNR. Every error

probability for the rate 2/3, d = (4,5) enc0der is lower than the error probability

for the optimal encoder, shown in Figure 4.35. The average BERs in Figure 4.7 axe

lower than the average BERs in Figure 4.8, which is expected for encoders which have

effective distance vectors d = (4, 5) and d = (3, 5), respectively. In addition, although

line I for both encoders have the same effective free distance of 5, the BER of line I in
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Figure 4.7 is lower than the BEI_ of line 1 in Figure 4.8. This phenomemon is seen in

comparisons of other encoders, also. The phenomenon is possibly "due to an in,ease

in the number of codewords at each distance, so that while the effective distances are

equal, the differences in multiplicities are large enough to affect the individual error

rates.

The rate 2/3, M = (2, 2) encoder with d - (4, 6) is an encoder which achieves

an effective free distance on one line that is higher than the optimal free distance by

reducing the effective free distance of the other line. Comparing the error rates in

Figure 4.10 to the rates for the comparable optimal code in Figure 4.36, it is seen

that, as expected, the optimal code has a lower average BER at every SNB.. However,

line 1 of Figure 4.10 has a significantly lower BER. at 4 dB.

The encoder analyzed in Figure 4.16 was constructed from a basic (2, 1, 2) encoder,

which can provide no unequal error protection [43]. The slight differences in the

individual BERs for line 0 and line 1 at 3 dB and 4 dB are probably due to the

limited number of information bits that were encoded and decoded in the simulation.

The rate 2/4, M -- (1, 2), d -- (6, 7) encoder, when compared to the (2,1, 3),

free distance 6 optimal encoder, has a slightly lower average BER at 3 d B and 5 dB,

with a slightly higher average BER at 4 dB. At 5 dB, the individual bit error rate is

significantly lower for line 0.

The results in Figure 4.18 are interesting. The protection on line 0 follows the

standard curve shape, but the protection on line 1 has a non-standard from. The

error rate on line 1 is lower than the average BER for the corresponding optimal

code.

It is interesting that the differences in the effective distance vectors of the rate 2/4

encoder with d = (8, 8) and the corresponding optimal basic code with dl,,, = 7 do
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not correspond to significantdifferencesin the BER plots.The error rates in Figure

4.20 axe lower, but the differencesin the two plots do not indicate that the effective

distance vectors axe significantlydifferent.This is an instance in which the number

of low weight codewords isa significantfactor,which can be seen from the transfer

functionsof the two encoders. The modified transferfunction forthe rate2/4 encoder

is

m

I

mm

r(x,Yo,YO = xs(yo+Y_+3YoY_+3YoY__+YoY__+Y_+2Yo_Y_+Yo_Y__+Yo'Yo')+-.-.

(4.64)

On the other hand, the transferfunction for the rate 1/2 encoder is

T(X,Y) = XT(Y + y3) + xS(r2 + y4) + .... (4.65)

The rate 1/2 encoder has a total of four code sequences of weight 8 or less, while the

rate 2/4 encoder has fourteen code sequences of weight 8. - .....

The rate 2/4 encoder with d = (6, 8) has lower BERs than those of the optimal

encoder with dl,_ = 7, which is the desired effect.

The BER plots illustrate the dependence of the probability of error on each input

_ lineon both the effective_ee distance aud the number of codewords at that effective

distance. The effectivedistance vector alone provides valid information about the

disparityin unequal error protection,but the multiplicitiesprovide additional useful

_ information.
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4.9 Summary

In this chapter, we examined the unequal error protection capabilities of convolu-

tional codes. The effective free distance vector is presented and defined as a measure

of the unequal error protection. Also, a modified transfer function for convolutional

encoders from which the unequal error protection capabilities of a code can be cal-

culated was defined. Several bounds on the unequal error protection capabilities of

convolutional encoders were derived and discussed, and the results of searches for

UEP codes were presented. It was shown that convolutional encoders can provide
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unequal error protection. Several encoders which provided more protection to one in-

formation position than the protection offered by the optimal free distance encoder.

The cost of the increased protection for a specific input line is typically a decrease in

the protection offered to the other information bits.
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CHAPTER 5 I

Achieving Unequal Error
Protection with  ellis Coded

Modulation

5.1 Introduction

Traditional channel coding techniques achieve coding gain (i.e. reduce the required

signal-to-noise ratio for a specified error probability) at the expense of the required

bandwidth. For instance, a rate 1/2 code doubles the bandwidth relative to an

uncode_d-ir_smls-s]on:-Bandwidth: expansion is _often not possible on band-limited

channels. Trellis coded modulation (TCM) was developed as a bandwidth efficient

means to achieve coding gain [60].

Trellis coded modulation is a combined modulation and coding technique that

can realize coding gains without increasing the required bandwidth. A finite state

encoder, such as a convolutional encoder, determines the selection of the modulation

signals and generates coded signal sequences. This chapter discusses the unequal error

capabilities of TCM. Section 5.2 briefly review modulation techniques and describes

trellis coded modulation. Search results for unequal error protection TCM codes are

presented in Section 5.3.
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5.2 TrellisCoded Modulation

Modulators convert a discrete signal into an analog waveform, for transmission

over a channel. During each signaling interval,the modulator maps k bits into one

of M ffi2k possible channel signals. The demodulation receivesa corrupted version

of the transmitted channel signal,and estimates the m originalbitsby choosing the

channel signal which was closestto the received signal and performing the inverse

mapping.

Signal set representations for two amplitude modulation schemes are shown in

Figures 5.1;two PSK signal constellationsare shown in Figure 5.2. If the average

signalenergy isheld constant, the signalpoints move closertogether as the sizeof the

signalset increases.Because a maximum likelihooddemodulator chooses the channel

signalclosestto the received signal,more opportunities for errorsoccur for the larger

signalset.

I •

2-AM

16-QAM

Figure 5.1: Amplitude Modulation Signal Sets
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Modulation and error-correctioncoding axe performed independently, the results

axe mediocre. Consider the example presented in [61].Both the 4-PSK modulation

system without coding and the 8-PSK system with independent rate2/3 convolutional

: coding transmit two information bitsper modulation interval.The 8PSK system has

a BER exceeding 10-2 when it is operated at the signal-to-noiseratio (SNR) for

which the 4-PSK system exhibits a BER of I0-s. The increased error rate isdue to

closersignalpoints in the 8 PSK constellation. The rate 2/3 code requires a state

complexity of K -- 6 to reduce the error rate of the 8PSK system to I0-s. The

convolutional code require a 64-stateViterbi decoder, which isfairlycomplex. That

is,the 8PSK coded system ismore complex and transmits no more reliablythan the

simpler 4PSK uncoded system. The difficultyin developing a simple,reliablesystem

with independent coding and modulation led to the development of TCM.

k/(k+1)

encoder

m

N

select

signalfrom
subset

selectsubset

._c
Q.
(:3.

m

c-

lm

¢JO

signal
sequence

Figure 5.3: A General TCM System

Trelliscoded modulation isa combined modulation and coding technique that can

realizecoding gains without increasingthe required bandwidth. A finitestateencoder_

such as a convolutional encoder, determines the selectionof the modulation signals

and generates coded signalsequences. Figure 5.3 shows a general block diagram for a
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TCM system which doubles the signal set. There are k information bits entering the

system, of which _: bits enter the rate _/(_ + 1) convolutional encoder, and (k - _)

remain uncoded ....

Consider the rate 2/3 TCM coded 8PSK system with a 4-state, rate 1/2 convo-

lutional encoder, which will be compared to an uncoded 4 PSK system. The 4 PSK

signal space is shown in Figure 5.2; the labelled 8PSK signal space is shown in Figure

5.4.

011

100
A
W

101 •

A 2

0

• (

11

10

O0
IP'

• 111

Figure 5.4: A Labeled 8PSK Signal Set
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It is possible to partition the signal set, which involves repeatedly dividing the

signal set (or subset) into two smaller subsets with a larger smallest intra-set cl/s-

tance, _i, where i is the number of times the partitioning has been conducted. .

The partitioning for the 8PSK constellation is Shown in Figure 5.5. The Coded bits

produced by the encoder select a subset, while the uncoded bit chooses a signal from

the selected subset. The free Euclidean distance, dE of a TCM code is defined as the
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minimum Euclidean distance between any two valid signal sequences, or

_t

where y, is the n th channel signal in the sequence.

v_w
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/
tOtO _OoO

,,J\

11oi 010

011 t 010

• o _0_

!

101° l • Ill

0j11

101 •

\
011

041

101 • • Ill

/ \
001 011

• 111

Figure 5.5: Partitioning an 8PSK Signal Set

(5.1)

Assume the convolutional encoder has the trellis diagram shown in Figure 5.6.

Then the trellis for the TCM code is aas shown in Figure 5.7. Parallel transitions

occur on the trellis due to the uncoded input bit, and limit the free distance of the

code. To offset this limitation, the signals associated with parallel transitions are

assigned to the signal points that are most distant. In fact,_the branch labels of the

trellis for the convolutional code are assigned as signal set labels according to the

three rules:

a) Parallel transitions are associated with signals with the maximum Euclidean

distance between them,

b) Transitions exiting or entering a node in the trellis are assigned to signal points

with the next largest Euclidean distance between them, and
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c) All signal points are used with equal frequency.

The signal labels in Figure 5.4 were+assign_ according to the above rules. The

signals assigned to the parallel transitions have Euclidean distance 2. On the other

hand, any two signal sequences that+ _ave_di_ver_g paths +'_n tlie trellis have at least

EucUdeandistance_/no_+ n_+ no_ = _/no_+n] = V_-_. Therefore,thefr_
+

Euclidean distance of the code is 2. Since the free distance of the uncoded system

in this example is v_, the coded TCM system has a coding gain, in decibel (dB), of

101og((--_2)_) - 3 dB.

00 0_/_

00 _ 00

10 010

11 • 011

Figure 5.6: A 4-State Binary Trellis

I

B

|

i

I

u

B

g

m

O0_00

o_o_,]_ _,._ • .j. oo,

100__ 1 010

11 • 011

Figure 5.7: A 4-State TCM Trellis

In general, the free Euclidean distance of a TCM code is the minimum of the

minimum distance between parallel transitions and the minimum distance between
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non-parallel paths through the trellis. Because linearity does not hold for TCM code

sequences, the Euclidean distance between every pair of TCM signal sequences must

be computed to determine the free distance if an unmodified trellis is used for the

calculations. However, the reference path may be the all zero path if each binary

branch label on the trellis is replaced with the minimum squared distance between

all pairs of signal points with binary labels which differ by the value of the original

branch label. With the modification, algorithms which are used to evaluate binary

linear trellises may be used to determine the free Euclidean distance of a TCM code.

This modification significantly simplifies the analysis of a TCM code.

5.3 Unequal Error Protection with Trellis Coded

Modulation

When considering UEP with TCM, the free Euclidean distance vector is similar to

the effective free distance vector for binary codes. The free distance vector for TCM is

dE = (dE1,..., dE2), where dEi is the minimum Euclidean distance between any two

code sequences with input sequences that differ in the jth position. Combining the

branch label modifications presented in Section 4.3 and Section 5.2, the free Euclidean

distance vector of a specific encoder may be calculated with the same algorithms that

calculate free distance and the effective free distance vector.

The results for binary encoders may be used as guidelines for expected results

for the TCM. A TCM code is represented by a trellis that is topologically identical

to the binary trellis at the same rate and memory distribution. If the branches

of the TCM trellis are to be labelled with the minimum distances associated with

the all signal pairs with labels that differ by the encoder branch output, then the

only differences between the two trellises are the weights assigned to the branches.
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Furthermore, a given signal constellation, with a specified labeling or mapping, has a

unique ordered set of minimum distances that are placed on the trellis. For example,

consider the 8PSK constellation with natural mapping, shown in Fignre 5.4. :_The

minimum squared distances associated with the branch labels of the trellis are:

Iabel mlnlm_n squared
branch distance

000 ........... 0.000
001 0.586

010 0.586

011 2.000

100 0.586

101 2.000

110 4.000

111 3.414

Therefore, the ordered set of the minimum squared distancesw_h_chFeplace the binary

branch labels is {0.000, 0.586, 0.586, 0.586, 2.000, 3.414, 3.414, 4.000}.

1000 1101
• •

1111 1010
• •

0100 0001

• •

0011 0110
• •

1100 1001
• •

1011 1110 _

• •

ooO0 0101

0111 O010
• •

Figure 5.8: A Labeled 16QAM Signal Set

Similarly, the 16QAM with standard mapping, shown in Figure 5.8 has the mini-
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w

mum squared branch distances

label minimum squared

branch distance

0000 0

0001 I

0010 2

0011 5

0100 4

0101 i

0110 2

0111 1

I000 8

1001 5

1010 2

I011 I

1100 4

II01 5

1110 2

1111 5

so the orderedset ofbranchdista.nces is{0, 1, I, i, I, 2, 2, 2, 2, 4, 4, 5, 5, 5, 5, 8}.

The ordered set of branch distances for a binary encoder isequal to the (ordered)

Hamming weights of the binary branch labels.So then, the ordered set of distances

for a rate k/3 binary encoder is {0,1,i,I,2,2,2,3}, and the ordered set of branch

distances for a rate k/4 binary encoder is {0,I,I,1,I,2,2,2,2,2,2,3,3,3,3,4}.

The maximum possible free Euclidean distance vector for a specificTCM code

with a certainsignalmapping and memory distributionmay be calculatedfrom the

trellisof the optimal UEP binary convolutional encoder of the same configuration.

The free Euclidean distance vector for a specificTCM is no largerthan the effec-

tive distance vector of the optimal UEP binary encoder, evaluated with its branch

distances replaced by the minimum mapping distances of the signalset that occupy

the same relativeplace in the ordered set of distances. That is,the ordered branch

distances forthe labelledconstellationare aligned with the ordered branch distances
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for the binary encoder, and then are assigned as the branch distances on the the

treUis. When the trellis for the optimal UEP binary encoder is evaluated with the

new branch labels, the effective squared Euclidean distance of the system with the

most advantageous branch labeling is found. The resulting free Euclidean distance

vector is not necessarily achievable, nor is necessarily achievable with the encoder

that is the optimal binary encoder. Instead, the resulting effective distance vector

is the distance that would be achieved for a constellation mapping with the given

set of squared Euclidean branches, mapped so that the smallest squared Euclidean

distance is aligned with the smallest Hamming weight, etc. It is possible that with

the sa_ne constellation mapping, a different encoder may be found that produces the

011

100

110 e

same effective distance vector.
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It is hypothesized here that the natural mapping for the 8PSK signal constellation

and the typical 16QAM mapping produce the largest ordered sets of branch distances

among all possible mappings. That is, rearranging the mapping so that one or more
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M
Rate-2/3, 8PSK

..(o,1)
(1,1) o
(0,2) 1
(0,3) o
(1,2) o
(1,2) o

' (2,2i' 0

uncoded

bits

i (2.586,2.586

(3.172,3.172

4.0,4.586

4.0,5.172)

(4.586,4.586)
4.0,5.172)

(5.172,5.172)

Table 5.1: Unequal Error Protection with 8PSK TCM

w

causes a decrease in another value that is at least as large in magnitude. As an

example, consider the 8PSK constellation with the mapping shown in Figure 5.9.

The minimum squared distance between all pairs of signals with labels that differ

by 001 was increased from .586 to 2.0, when compared with the natural mapping

shown in Figure 5.4. However, not only was the minimum squared distance between

all pairs of signals with labels that differ by 010 decreased from 2.0 to .586, but

the minimum squared distance between all pairs of signals with labels that differ by

011 was reduced to from 3.414 to .586. Non-exhaustive searches for signal mappings

with a larger (componentwise) ordered set of minimum distances than the standard

mappings for the 8PSK constellation or the 16QAM constellation were conducted.

None were found, leading to the the conclusion that the standard' mappings possess

the largest ordered sets of branch distances.

The results of searches for 8PSK systems with unequal error protection are shown

in Table 5.1. A criterion of the search was that at least one effective squared Eu-

clidean distance must be larger than the corresponding effective free distance of the

typical system. The components of the distance vectors listed in Table 5.1 are the

squared values. Similarly the results of searches for 8PSK systems with unequal er-
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Rate--2/4, 16QAM
M tmcoded

bits

(0,1) 0
1

1

(1,1) 0
0

(0,21 o
(1,2) 0

0

a_

(6,6)
(5,6)
(4,7)

(9,9)
(8,10)
(8,10)
(11,11)
(7,,1o) :

Table 5.2: Unequal Error Protection with 16QAM TCM

ror protection are shown in Table 5.2. The components in the vectors listed for the

16QAM results are the unnormaUized, squared distances.

5.4 Summary
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Trellis coded modulation systems with 8PSK and 16QAM were examined as potential

UEP coding systems. It was shown that the free Euclidean distance vector of a TCM

system can be upper bounded if the signal mapping and the optimal UEP binary

code of the appropriate configuration are known. However, the results were scarce,

due to the limitations of the signal sets.
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CHAPTER 6

Conclusions and

Recommendations for Future

Research

w

=

The unequal error protection capabilities of convolutional encoders were investigated.

The effective free distance vector, d, was defined as an alternative to the free distance

as a primary performance parameter for UEP convolutional encoders. It was shown

that, although the free distance for a code is unique to the code and independent

of the encoder realization, the effective distance vector is dependent on the encoder

realization.

A modified transfer function, which provides a method to calculate d, was pre-

sented. The modified transfer function developed a new branch labeling method

that allows standard algorithms that were originally developed to calculate the free

distance of a code to calculate the effective distance vector.

Several upper bounds on d were derived. The bounds indicate that convolu-

tional encoders with unbalanced memory distributions may provide more pronounced

unequal error protection than encoders with balanced memory distributions. The

bounds are evaluated and compared. The results of searches for good unequal error

protection codes are presented. Both balanced and unbalanced memory allocation

96
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configurations are examined. A primary goal of the searches was to find encoders

with at least one effective distance greater than the free distance of the optimal code

of the same rate and memory order. A decrease in free distance was acceptable. A

number of binary convolutional encoders meeting the goal were listed. Bit error rate

(BEI_) plots for the encoders were presented, and confirmed the effective distance as

a measure of unequal error protection. At the same time, the BER plots show that

the number of code sequences with Hamming weights equal to the individual et_ective

distance is more important than expected.

Extensions to trellis coded modulation were examined. It was found that providing

unequal error protection with TCM coding is di_cult due to the limitations of the

Signal constellations. However, it was shown that the optimal binary UEP encoder

provides information about the maximum possible free Euclidean distance for a TCM

code with the same configuration.

Topics for future study are now identified. Because the effective distance is de-

pendent on the encoder realization, and because k > 1 for UEP encoders, ways to

reduce the search space would be extremely useful. For instance, tighter bounds on

the effective distance vector would better identify encoder configurations with UEP

potential. It is possible that the approach used to developed bound (4.37) may be ap-

plied to the k-way bound of (4.57), resulting in a tighter bound. Identifying features

common to good UEP encoders would also help focus searches.

Extensions of the results to trellis coded modulation are limited for the 8PSK and

16QAM systems, due in part to the restrictive nature of the constellations themselves.

It is possible that larger standard, as well as nonstandard, constellations will have

enough flexibility to provide unequal error protection with TCM. : _

Similarly, multi-dimensional codes may have unequal error protection capabilities.
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In particular, it is possible that altering the signal set partition/ng developed in [48]

will bring about unequal error protection to the information bits.

_ =

rate 1/2
encoder

rate 3/4
encoder

Figure 6.1: A Concatenated UEP System

v_m

w

L_

=

An example of another configuration which holds promise as an UEP coding sys-

tem is the multi-level concatenated system shown in Figure 6.1. Although specific

rates are shown in the figure, the rates are unspecified for the general system. It

is expected that the information bits which enter the first encoder will have larger

effective distances than the information bits which pass through only one encoder.

Furthermore, the disparity in error protection may be enhanced by choosing appro-

priate UEP binary encoders codes. A simplified decoding algo_thm for a system

similar to the one in Figure 6.1 would be important.

Providing unequal error protection with binary convolutional encoders and trellis

coded modulation remains a viable area of research.

w
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