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Summary of Progress

In this report, we will focus on the results included in the Ph.D. dissertation of Dr. Diane
G. Mills. Dr. Mills completed her dissertation and received her Ph.D. degree in August 1994.
A copy of the dissertation is included as Appendix A to this report. Two journal papers have
been submitted based on Dr. Mills’ research [1,2]. In addition, three conference presentations
have resulted from this work [3-5]. The following paragraphs contain a brief summary of this
research.

The purpose of unequal error protection (UEP) is to provide a higher degreee of error
protection for the more important bits, without incurring the associated increase in complex-
ity /cost/bandwidth that would occur if the protection were increased for the entire information
stream. For example, UEP coding can be used to transmit images over noisy channels where
different parts of an image require different levels of error protection. A potential application
is the transmission of images over NASA’s deep space network. The goal of this research was
to investigate the unequal error protection capabilities of convolutional codes and to extend
the results to trellis codes.

First, the effective free distance vector, d, was defined as an alternative to the free-distance
as a primary performance parameter for UEP convolutional encoders. For a given (n, k,m)
convolutional encoder the effective free distance vector is defined as the k-dimensional vector
d = (do,dy, -+ ,dx-1), where d;, the j** effective free distance, is the lowest Hamming weight
among all code sequences that are generated by input sequences with at least one “1” in the
7th position. It is evident that the free distance of the code is the minimum of the effective free
distances. Although the free distance for a code is unique to the code and independent of the
encoder realization, the effective free distance vector is dependent on the encoder realization.

A modified transfer function, which provides a method to calculate d, was developed. The
modified transfer function incorporates a new branch labeling method which may be used to
calculate the effective free distance vector when used in conjunction with standard algorithms
that were originally developed to calculate the free distance of a code.

Several upper bounds on the effective free distance vector were derived. The bounds may
be used to identify encoder configurations that have good potential for unequal error protec-
tion. Then computer searches for good unequal error protection encoders were conducted.
A primary goal of the searches was to find encoders with at least one effective free distance
greater than the free distance of the optimal code of the same rate and memory order. A
decrease in free distance was acceptable. A number of binary convolutional encoders meet-
ing this goal were found. Bit error rate (BER) performance for the encoders was simulated,
and this confirmed the effective free distance as a measure of unequal error protection. At the
same time, the BER plots indicated that the number of code sequences with Hamming weights
equal to the individual effective free distance is also an important measure of performance.

Next, trellis coded modulation (TCM) systems with unequal error protection were inves-
tigated. It was determined that providing unequal error protection with TCM coding is more
difficult due to the limitations of the signal constellations. A limited number of trellis codes
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were found, however, that provide a measure of unequal error protection. Further work on
this subject is in progress.

References

[1] D. G. Mills, D. J. Costello, Jr., and R. Palazzo, Jr., “Achieving Unequal Error Protection
with Convolutional Codes”, IEEE Trans. Inform. Th., submitted for publication.

[2] D. G. Mills and D. J. Costello, Jr., “On the Unequal Error Protection Capabilities of
Trellis Codes”, IEEE Trans. Inform. Th., submitted for publication.

[3] D. G. Mills and D. J. Costello, Jr., “An Upper Bound on the Free Distance of Double
Memory Convolutional Codes”, Proc. Allerton Conf. on Commun., Cont., and Comput.,
pp. 20-26, Monticello, IL, September 1992.

[4] D. G. Mills and D. J. Costello, Jr., “Using a Modified Transfer Function to Calculate
Unequal Error Protection Capabilities of Convolutional Codes”, Proc. IEEE International
Symposium on Information Theory, p. 144, San Antonio, TX, January 1993.

[5] D. G. Mills and D. J. Costello, Jr., “A Bound on the Unequal Error Protection Ca-
pabilities of Rate k/n Convolutional Codes”, Proc. IEEE International Symposium on
Information Theory, p. 274, Trondheim, Norway, June 1994.






Appendix A

The Unequal Error Protection Capability
of Convolutional and Trellis Codes






THE UNEQUAL ERROR PROTECTION CAPABILITIES
OF CONVOLUTIONAL AND TRELLIS CODES

A Dissertation

Submitted to the Graduate School
of the University of Notre Dame
in Partial Fulfillment of the Requirement

for the Degree of
Doctor of Philosophy
by

Diane Grieselhuber Mills, BSEE, MSEE

Daniel J. Costello, Jr., Director

Department of Electrical Engineering
Notre Dame, Indiana

July, 1994



In loving memory of
Anna BeCraft Grieselhuber,
who inspired us all with her

" class, determination, and strength.

ii

I, | I {



THE UNEQUAL ERROR PROTECTION CAPABILITIES
OF CONVOLUTIONAL AND TRELLIS CODES
Abstract
by
Diane Grieselhuber Mills

The research discussed in this dissertation studies the unequal error protection
capabilities of convolutional and trellis codes. In certain environments, a discrepancy
in the amount of error protection placed on different information bits is desirable.
Examples of environments which have data of varying importance are a number of
speech coding algorithms, packet switched networks, multi-user systems, embedded
coding systems, and high definition television. Encoders which provide more than
one level of error protection to information bits are called unequal error protection
(UEP) codes.

In this work, the effective free distance vector, d, is defined as an alternative to the
free distance as a primary performance parameter for UEP convolutional and trellis
encoders. For a given (n, k), convolutional encoder, G, the effective free distance
vector is defined as the k-dimensional vector d = (do, dy, -+ -, dx_1), where d;, the j*
effective free distance, is the lowest Hamming weight among all code sequences that
are generated by input sequences with at least one "1 ” in the j** position. It is shown
that, although the free distance for a code is unique to the code and independent of
the encoder realization, the effective distance vector is dependent on the encoder
realization.

A modified transfer function, which provides a method to calculate d, is presented.

The modified transfer function developes a new branch labelling method that allows
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standard algorithms that were originally developed to calculate the free distance
of a code to calculate the effective distance vector.

Several upper bounds on d are derived and compared. The results of searches for
good unequal error protection codes are presented. A primary goal of the searches
was to find encoders with at least one effective distance greater thap the free distance
of the optimal code of the same rate and memory order. Bit error rate (BER) plots for
the enocders are presented, confirming the effective distance as a measure of unequal
error protection. At the same time, the BER plots show that the number of code
sequences with Hamming weights equal to the individual effective distance is more
impofta.nt than expected.

Trellis coded modulation (TCM) systems with unequal error protection are inves-
tigated. It is determined that providing unequal error protection with TCM coding
is difficult due to the limitations of the signal constellations. Topics for future inves-

tigation are identified.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

The purpose of a communication system is to transmit information or data from
one point to another. Using the sampling theorem, analog data may be digitized
without ldss of quality or information, allowing the use of digital communication
systems. Digital communications systems typically perform better than analog com-
munication system, for a number of reasons. For instance, digital processing reduces
signal degradation, allows source coding to remove redundancies, thereby decreasing
the transmission rate, and allows channel coding to decrease the error rate. Digital
systems are generally more reli#ble and easier to maintain than analog systems. In
addition,- becauéé diéital syste>rns>ré.l; rﬁo;‘e von software than hardware, it is often
relatively easy to upgrade a digital system.

As the volume of transmissions increases, bandwidth and energy-limited channels,
introduce more errors. Transmission errors degrade the performance by reducing
throughput, storage capacity, or reliability. Error control can be viewed two ways:
for the same power and cost, the error rate may be decreased, or the error rate may
be maintained, at a reduction in power and hardware costs. Channel coding, an error

control technique, improves the reliability of digital data links and storage media.
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Examples of systems in which coding is appropriate include computer storage sys-
tems, communication networks, deep-space transmission systems, telephone channels,
satellite channels, and optical storage system [32].

This chapter reviews basic communications concepts. Section 2 briefly describes
a general digital communications system and discusses the issues that are usually

important. Section 3 outlines the dissertation.

1.2 Digital Communications Systems

A model] of a typical digital communication system is shown in Figure 1.1.

.01t u’ v
Source Channel
Source Encoder Encoder Modulator ——
Channel
..010.. o
Source Y Channel v
Destination Decoder Decoder Demodulator [«

Figure 1.1: General communications system

The information source produces digital information which is to be transmitted to
the destination. Using the information from the source, the source encoder generates
a binary k-bit message u,, at each time instant ¢. It is not necessary that the the
source encoder produces a binary output, but the assumption simplifies the discussion.
Examples of sources include: a voice, a measuring instrument, and a computer. The
information sequence, u, is a semi-infinite binary sequence. The channel encoder

converts the information sequence into the code sequence, v, following some channel



coding rules. The goal of the channel encoder is to add enough redundancy so that
the information may be reliably transmitted over the channel. The codewords are
passed to the modulator, which generates continuous channel wave forms, s(t), called
channel signals. The channel signals are then transmitted over the channel to the
receiver. The channel is any type of transmission medium, which may be, for example,
a telephone line, satellite link, optical link, or magnetic storage media. Included in
the channel model is a noise source, which is dependent on both the type of channel,
and the specific channel used. The noise corrupts the original §ignal so that the
continuous waveform at the output of the channel is r(¢). The demodulator produces
the received sequence, r. It is assumed that an optimum demodulator, such as a
matched filter or correlation detector followed by a sampling switch and quantizer,
is used. The channel decoder applies a decoding rule to the binary sequence r and
produces an estimate, ;‘r, of the transmitted code sequence v, and, consequently, an
estimate, i, of the message u.

An optimum decoding rule must minimize the probability of a decoding error,
P(£). The conditional probability of decoding error, given that r is received is defined
as P(&|r) = P(V # v). It is easily seen that P(£) = ¥, P(£|r)P(r). Since P(r)
is independent of the decoding rule, the decoder will to mixiimize the probability of
error by minimizing P(€ |r) for all r, or equivalently, maximizing P(\‘r = v|r) for all
r. Therefore, an optimum decoder must, for a given received sequence r, decide which
is the most likely code sequence, v. That is, the decoder must choose the codeword

estimate v as the codeword v which maximizes

P(v|r) = LFIPW (1.1)

If all codewords are equally likely, then maximizing P(v | r) is equivalent to maximiz-
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ing P(r|v). Furthermore, if the channel is a discrete memoryless channel (DMC),
P(r|v)=TI; P(ri| v), where v.= (... viu1 v; 0341 ...)and v = (... Fi_g 7§ Tigp -..).
Therefore, minimizing the probability of decoding error is equivalent to maximizing
log¥; P(r;| v;). A decoder which maximizes P(r| v) is called a maximum likeliilood
decoder.

The source decoder then uses @ to generate an estimate of the original source
information. This dissertation focuses on the channel coding operation, and the
modulation operation. For that reason, the source coding/decoding is ignored. The
primary design criterion considered in this dissertation is error probability. Other
factors with affect the cost and performance of the overall communication system
include throughput and implementation complexity.

There are three common types of error probabilities used to measure the perfor-
mance of a channel coding system. The bit error probability,P,(€), is the expected
number of information bit decoding error per decoding information bit. The syfnbol
error probability, P,(£), is the probability that a channel signal or symbol is decoded
incorrectly. and the first event error probability, P;(£), is the probability that a chan-
nel signal or symbol is decodes incorrectly for the first time after a specific signaling
interval. The bit error probability is the best measure of the probability that the
information transmitted is properly received, but symbol error probability or the first
error event probability are often easier to calculate for specific systems. Primarily,

bit error probabilities are examined in this work.

1.3 Outline of Dissertation

In certain environments, a discrepancy in the amount of error protection placed

on different information bits is desirable. For example, the sign bit and high order bits



of pulse coded modulation (PCM) data are more critical to system performance than
the lower order bits [57]. In packet switched networks, the header information reqﬁires
more error protection than the data;, and in multi-user environments, different users
may require more error protection than others. In Adaptive Predictive Coding and
Code-book Excited Linear Prediction, the filter coefficients and the codebook choice
are more important than the residual information. Systemsin which some information
is non-essential enhancement information, e.g. embedded coding schemes and high
definition television, are also potential application environments [6] [68]. Encoders
which provide more than one level of error protection to information information
bits are called linear unequal error protection (LUEP)V codes. It is also possible to
provide unequal error protection the channel bits, but that is not discussed in this
work. The purpose of unequal error protection is to provide a higher degree of error
protection for the more important bits, without increasing the associated increase in
complexity/cost /bandwidth that would occur if the protection were increased for the
entire information stream. The research discussed in this work studies the unequal
error protection capabilities of convolutional codes.

The dissertation is organized as follows. Chapter 2 discusses error control coding,
particularly block codes and convolutional codes. In addition to general convolutional
codes, two specific types of convolutional codes, unit memory codes and double mem-
ory codes are presented. Some basic concepts that are used later in the dissertation
are introduced. Chapter 3 discusses previous work on unequal error protection codes.

Unequal error protection block codes and multi-level codes are briefly reviewed. Next,

new work on the unequal error protection capabilities of convolutional codes is pre-
sented in Chapter 4. The effective free distance vector is defines as a performance

parameter. A modified transfer function which allows analysis of unequal error pro-
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tection convolutional codes is presented. Upper bounds on the effective free distances
are derived. Also, results of code searches are presented and bit error rate simulations
for specific encoders are discussed. Chapter 5 presents extensionls of the results in
Chapter 4 to trellis coded modulation. Chapter 6 contains conclusions and sugges-

tions for further research.



CHAPTER 2
Error Control Coding

2.1 Introduction

The purpose of an error control code is to increase the probability that a message
will be reliably transmitted over a noisy channel. This chapter begins by reviewing
two common classes of error control codes: block codes and convolutional codes. Both
types operate on bit streams emitted from information sources. It is assumed that
the information stream is binary, i.e. consists only of 0’s and 1’s, but results may be
generalized to an arbitrary alphabet. Block codes are discussed in Section 2.2. The
distinction between a code and an encoder is made, and the minimum distance of a
code is discussed. Section 2.3 describes convolutional codes. The section includes a
general description of convolutional codes, as well as several exa,rr'lples. In addition,
the minimum free distance of a convolutional code is defines. Section 2.4 describes
Unit Memory Codes, a special class of convolutional codes. Another special class of

convolutional codes, Double Memory Codes, are discussed in Section 2.5.
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2.2 Blo ck Codes

A block encoder divides the message sequence into message b.locks of k-bits, u,
and transmits associated codewords, v, of length n. Figure 2.1 shows a general block
codes. There is a one-to-one correspondence between each possible message block
and its associated codeword. Because each message block consists of k bits, there
aré 2* codewords. The (n, k) binary block code is the set of 2¥ n-dimensional binary
codewords. Each codeword depends only on the current input, so the system is
memoryless. The rate of the code is defined as R = k/n. For block codes, the rate
is generally expressed as a proper fraction. That is, a code with k=2 and n =4 is

called a rate 1/2 code.

i 0
o |
1
b I
2
Rt | ;
. n-1

Figure 2.1: General Block Code Encoder

A distinction between a code and an encoder is made. An encoder is the rule
that maps each possible k-bit input to a specific n-bit codeword. That is, an encoder
divides an information sequence into blocks of length k, between each k-bit message
block and n-bit codeword. An encoder realization 6f a specific code is not necessarily,

and in fact is not normally, unique. For instance, consider the rate 1/2 code,'C =

{0000,1010,0101,1111}. The code is the set of four codewords listed. One possible



encoder realization of the code makes the following associations between the input

messages and the codewords.

u — v

00 0000
01 0101 (2.1)
10 1010
11 1111

Another possible encoder makes the following different associations between the input

messages and the codewords.

u — \4

00 0000
01 1010 (2.2)
10 1111

i 11 0101

Although the encoders generate the same code, or set of n-tuples, the associations
between input and outputs differ.

An encoder can be represented by a generator matrix G, which spans the space
of the codewords and shows the relationships between the message words and the

codewords with the equation

v=u-G - (2.3)

The first encoder example, given in ( 2.1) has the generator matrix

1010
G= [o 10 1]’ (2:4)

while the encoder in ( 2.2 ) has the generator matrix

1111
o[t 113] -
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The two encoders, and their corresponding generator matrices, are different realiza-
tions of the same code. To rephrase, a code is the set of n-dimensional vectors, while
an encoder can be thought of as a set of ordered pairs of k-bit information blocks and
n-bit codewords.

A useful performance parameter of a linear binary block code is the minimum
distance, dmin, between any two codewords. The Hamming distance between two
codewords v and v/, dg(v,Vv’) is the number of corresponding bits of v and v’ that
are different. The minimum distance of a code C is then defined as the minimum

Hamming distance between any two codewords, i.e.
= mi n . ’
dmin ‘r,rilsll[dg(v,v) v, v €] (2.6)

For linear block codes, an equivalent definition of d;, is the minimum Hamming
weight of any codeword, where the Hamming weight of a codeword v is the total
number of 1’s in v, and is denoted by wg(Vv).

Maximum likelihood decoding of binary block codes chooses the codeword that
differs in the fewest number of bit positions from the received n-tuple, r. That is, a
maximum likelihood decoder chooses the codeword that is “closest” to the received
n-tuple. When maximum likelihood decoding is used, a code with minimum distance
dmin is guaranteed to detect (dmin — 1) bit errors introduced by the transmission
channel. The error detection capability stems from the fact that corruption of (dpin —
1) or fewer bits of the transmitted codeword will results in an n-tuple that does not
belong to the set of codewords. In that case, it is apparent to the receiver that the
received n-tuple is corrupted. However, if dyin or more bits are changed, it is possible
that the received n-tuple is itself a codeword, but not the codeword that was sent.

The decoder has no way to tell that this is the case. Similarly, a code with minimum
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distance dpn is guaranteed to correct |(dmin —1)/2] transmission errors, because an
error pattern of (dmin — 1) or fewer errors will not move the received n-tuple to a

point closer to a codeword different from the transmitted codeword.

2.3 Convolutional Codes

Elias [12] proposed convolutional codes as an alternative to block codes. Like block
codes, convolutional codes separate the information sequence into k-bit message
blocks and n-bit codewords. However, with convolutional codes, encoder output
depends on both the current and previous message blocks. The k-i)it message blocks
can be viewed in (at least) two ways: a sequence of k consecutive bits that originated
as a sequence from one information source, or one bit from each of k¥ information
sources. Either model is appropriate, although one or the other is sometimes more
conducive to better unéerstanding for specific applications. The distinction between
code and encoder that was made in Section 2.2 is applicable to convolutional codes.
A general convolutional encoder is shown in Figure 2.2. The k-bit block entering
the encoder at time ¢ is u;, and the n-bit codeword leaving a convolutional encoder at
time ¢ is v;. Let u,, ., be the entire message sequence entering the encoder from times
toto by, i.e. Uy, = (UgUtgtr,--- Uy ). Similarly, Vi s, = (Vg Veg41 - .- V4, ) denotes the
entire code sequence leaving the encoder during times ¢ to t;. An (n,k,m) binary

convolutional code can be represented by the encoding equation
V= utGo + U,g_.lGl + ...+ ut_me, (27)

where the encoding matrices, G;, ¢ =0,1,...,m, are (k x n) binary matrices. The
memory distribution vector M = (mg, ma,...,m_1) indicates the size of the shift

register on each input line. For example, the first input line has mo memory units.

il
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Figure 2.2: A General Convolutional Encoder
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The maximum number of memory units on any one line is m. The state complexity, or
memory order, of a convolutional code is defined to be the number of state variables,
K= Z m;.

An alternative equation description of a convolutional encoder is
v=u-G, (2.8)

where u = (uou; ...) is the semi-infinite sequence of message blocks, v = (vgv;...) is
the semi-infinite sequence of codewords, and G is the semi-infinite generator matrix

formed from the encoder matrices

Gy G, - Gn

0 o
G=|0 G, G - G, O

(2.9)

Figure 2.3 shows a (3,2,2) convolutional encoder with M = (1,2), K = 3, and

encoding matrices -

010 001 000
G°‘[111]G“[011]G2"[110] (2.10)

The free distance, df,., of a convolutional code, C, is the minimum Hamming

distance between all pairs of code sequences. Formally,

dfree = min [dg(Vo,, Vo) andvo'g,v{,; € C]. (2.11)
V0,67 Vg,e

Due to the linearity of binary convolutional codes, the free distance is also the mini-

mum Hamming weight of any non-zero code sequence,
dfrce = min[wH(vo,t # 0: Vo, € C)] (212)

It is assumed that the first non-zero input to the encoder arrives at time 0. The

free distance can be difficult to determine because code sequences may be of infinite

Ll |
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Figure 2.3: A Specific (3,2,2) Convolutional encoder

length. Often, bounds are calculated for the maximum achievable free distance (upper
bounds) [9, 30, 19, 17] so that the performance of a pé.rticula.r code can be compared
to the best theoretical }aerformance.

Convolutional encoders are occasionally described by a transfer function. The
concept of the transfer function of a convolutional encoder is used later in the dis-
sertation, and is reviewed here. It is assumed that the reader is familiar with the
method of determining a transfer function from an augmented state diagram using

Mason’s gain formula [32], or some other algorithm [66], [54], and [8].

The two-variable transfer function has the form

T(X,Y)= Y. 3 Ap.XY', (2.13)

d=d e b=1

where A4 is the number of code sequences with Hamming weight d that have cor-

responding (input) message blocks with Hamming weight . The average bit error
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probability for a specific transfer function is bounded by
P(E) < % " B.Py, (2.14)
d

where By = Y, b.A; 4 is the total number of non-zero information bits associated with
all codewords of weight d, and P; = (\/m)ih]?’orrthe sake of simplicity, we
have assumed a binary symmetric channel with crossover probability, p.

Examining the above equation, it is seen that the dominating term in the upper
bound on the bit error probability is the term with the lowest value of d, which
happens to be the free distance. This explains the use of the free distance as a
performance measure for convolutional codes.

Typically, the Viterbi algorithm [32], [67], [38], [14], [15] is usecll to decode convo-
lutional codes with relatively small memory orders. Viterbi decoding is a maximum
likelihood decoding algorithm, i.e. it selects the code word that minimized the prob-
ability of decoding error, assuming all codewords are equally likely. The complexity
of the Viterbi algorithm increases dramatically as the number of states in the trellis
increase. For that reason, sequential decoding, [69] [13] [73] [22], is generally used for

encoders with K > 10.

2.4 Unit Memory Codes

An interesting class of binary convolutional codes are unit memory codes [31] [29]
[25]. A unit memory code (UMC) is a binary convolutional code with memory m = 1
and multlple input lines, i.e. k& > 1. Therefore, the encoding equation of a UMC
is v, = utGo 4+ u;-1G;. An (n,,, ko,m) convqutxonal code with (k, x n,) encoding

matrices go, g1 , s , gm, is equlva.lent to the (n = mn,, k= mko, 1) UMC which has

the two (mk, x mn,) binary encoding matrices

[l L}
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8 & - Bmoi gn 0 -+ 0
0 m— m— m 0

Go=|., ¥ Bl g=|f (2.15)
0 .- g & v Bm

The two encoders are equivalent in the sense that they generate identical outputs
when operating on identical input sequences. This is easily verified by comparing
the semi-infinite generator matrices of the two encoders. For the basic encoder, the

semi-infinite generator matrix is

go gl cen  wwe gm—l 0
Gigsic=| 0 8B 8 =+ = Bma 0 - | (2.16)
0 o0 - ..

where each entry is a (k, X n,) sub-matrix. On the other hand, the semi-infinite

generator matrix for the unit memory code is

Gyo G, O
Gomc=| 0 Go Gi 0 - |, (2.17)
’ 0 O )

with (mk, X mn,) sub-matrices. Replacing Go and G; with the expressions from

2.15,
[ B & ' Bm-1 &m 0 -+ 0
0 go gm-2 Em-1 E&m 0 0
o ... go g1 En
Guume = go 81 °°° Bm-1 gm o --- 0
SN L
0o --- £o g - gm
i 0 0 )
(2.18)

Comparing Equations (2.16) and (2.18) confirms Equation (2.15.
As an example, consider the (2,1,3) basic convolutional encoder with encoder
matrices go = [1 1], 8 = [1 1], 82 = [0 1], andgs = [1 1]. When the input to

the encoder is the message sequence (101110010 -..), the code sequence is
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(11111011 01 01 10 00 11---). The associated (6,3,1) unit memory encoder has
encoding matrices ,
11 11 01 11 00 00
Go=|00 11 11 and G;=| 01 11 00 (2.19)
00 00 11 11 01 11
When the input to the unit memory encoder is the message sequence (101 110 010 - - ),

the code sequence is (111110 110101 100011 -- ).

Let n, and k, be relatively prime. The class of (n,,k,,m) convolutional codes
will hereafter be called basic convolutional codes. The encoding matrices of a UMC
that has been converted from a basic code must adhefe to the form in Equation 2.15.
However, the encoder matrices for a general UMC are not under the same restric-
tion. That is, general UMC matrices are not block triangular ma.tliices with constant
diagonals. It follows that UMCs are a larger class of codes than basic convolutional
codes. In addition, since every basic convolutional code can be converted to a UMC
of the same rate and state complexity, the optimal UMC has a free distance at least
as large as the free distance of the optimal basic code.

Lee developed an upper bound on the free distance of a (n,k,1) UMC, which
is now presented. As previously stated, the free distance, df,.., of a convolutional
code is the minimum Hamming distance between all pairs of code sequences that are
associated with input sequences that differ in at least one message block. It can be
assumed without loss of generality that one of the code sequences in the comparison
is always the all-zero sequence, and that the first non-zero portion of the other code
sequence in the comparison occurs at time 0. So, the free distance is the minimum
Hamming weight among all code sequences generated by input sequences that are

non-zero in the message block at time 0, i.e.

dfree = 1111-10;% [wy(vo,) for allt]. v 7 (2.20)

( ¢ ¢ el e m e e «En W m e ul
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When the only non-zero portion of the information sequence is ug, then the only non- -
zero output is occurs at times 0 and 1, and is vo,; = ug[GoG1]. The set of all such up’s
and vo,,’s forms a (2n, k) block code. Therefore, at least one code sequence belonging
to the UMC has a Hamming weight less than or equal to the minimum distance of the
optimal (2n, k) block code. The minimum distance of the optimal (2n, k) block code
will be denoted d,:(2n, k). It follows that the optimal free distance of the (n,k,1)
UMC is upperbounded by d,,:(2n, k). The optimal block code minimum distances are
ta.bula.ted'in [18, 65]. In several cases, the UMC upper bound is larger than the free
distance attained by the optimal basic codes of the same rate and state complexity.
Lee conducted an exhaustive search for the optimal UMCs and found several UMCs
with a larger free distance than the optimal basic codes of the same rate and state

complexity. Lee’s results are shown in Table 2.4.

UMC
(n,k) | upper | optimal | optimal

bound | UMC basic
(4,2) 5 5 5
(6,3) 6 6 6
(8,4) 8 8 7
(10,5) 9 9 8
(12,6) | 10 10 10
(6,2) 8 8 8
(9,3) 10 10 10
(12,4) | 12 12 12
(55 15 | 15 | 13
(18,6) | 16 16 15
(8,2) 10 10 10
(12,3) | 13 13 13
(16,4) | 16 16 16
(20,5) | 20 20 18
(24,6) | 24 24 20

Table 2.1: Optimal Unit Memory Codes

A drawback associated with UMCs is a possible increase in Viterbi decoding com-
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plexity when compared to the complexity of basic convolutional codes. The increase
in complexity is a result of the increased number of branches leaving each sta.-te of
a trellis representation of the encoder. The number of branches leaving each state
is called the branch complexity. A (n,, k,,m) basic convolutional code has a branch
complexity of 2%, while a (mn,, mk,,1) UMC has a branch complexity of 2™*. There-
fore, the cost of a (potential) increase in the free distance is an increase in the branch
complexity. The state complexities of the (n,, k,,m) basic convolutional code and
(mn,,mk,,1) UMC are both 2m%. While state complexity is the primary measure of
Viterbi decoding complexity, the branch complexity effects are not negligible. How-
ever, the branch complexity per decoded information bit of the basic encoder and
UMC are identical. . S '

The results obtained by Lee for UMCs led to the study of Double Memory Codes

[35], which are discussed in the next section.

2.5 Double Memory Codes

This section describes double memory convolutional codes and presents an upper
bound on their free distance [35]. It is shown that the free distance upper bound
can be larger than the free distances previously attained by codes with relatively
“prime k and n. Foi' certain ré,tes, the bound is a.sila.irgieas the upper bound for unit
memory codes. A double memory code which has a free distance larger than the free
distance of the optinﬁl ba51c code is briefly descnia;ci Double memory codes ha&e
lower branch complexities then the corresponding unit memory co'des.

A double memory code (DMC) is a convolutional code with m = 2 that can be

described by v; = u,Go + u;-1G; + u;-2G;. It is assumed unless explicitly stated

otherwise that the memory allotted to every input line is 2. It can be seen that



20

any (n,, k,, 2m) convolutional code with (k, X n,) encoding matrices go, g1, ..., E2m is

equivalent to the (mn,, mk,,2) DMC with (mk, x mn,) encoding matrices

go 81 " Bm-1 gn  Bm+1 7" B2m-1
Go=| ) & Bilg |8t B Eime (2.21)
. & & &
Zom 0 --- 0
G, = ngtz-l g2m . 0
gm+1 g2m

It should be noted that the class of double memory codes, although smaller than
the class of UMCs, is l'arger than the class of basic convolutional codes. This results
from the fact that every basic code can be converted to an equivalent DMC, and every
DMC can be converted to an equivalent UMC, but the reverse relationships (UMC
to DMC, and DMC to basic code) do not hold for all UMCs or DMCs.

An upper bound on the free distance may be developed in the same way 'that
the bound for UMCs was developed. The free distance is again recognized as the
minimum weight vector resulting from an information seqlience that is non-zero at
time 0. For an (n, k,2) DMC, the set of such ug’s and their associated outputs can be
considered as a (3n, k) block code with Vo,2 = Wo[GoG1G3). Accordingly, the optimal
djree is upper bounded by the highest attainable minimum distance of a (3n, k) block
code.

The free distance bounds for k¥ > 1 are shown in Table 2.5. As for UMCs, the free

distance of the optimal basic code with the appropriate rate and state complexity
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DMC UMC
(n,k) K upper upper optimal optimal

bound bound UMC basic
(4,2) 4 8 8 8 7
(6,3) 6 10 10 10 10
(84) 8 12 14 12
(10,5) 10 15 16 14
(6,2) 4 12 12 12 12
(93) 6 15 16 16 15
(12,4) 8 18 22 22 18
(155) 10 22 27 6p)
(18,6) 12 26 32 24

Table 2.2: Upper Bounds for Double Memory Codes

provides a lower bound on the optimal DMC free distance. The table lists the £ and

n used for the DMC. The DMC at a given rate is compared to the optimal (n,, k,)

basic convolutional code with the same memory order, K, and the optimal (2n, 2k)

UMC with the same memory order. In some cases, the block code upper bound for

the DMC free distance is larger than the free distance achieved by the optimal basic

code of the same rate and state complexity. In particular, consider the rate 2/4, 5/10,

and 6/18 bounds. However, the existence of a DMC that attains the block code upper

bound is not guaranteed. A rate 2/4 DMC encoder with free distance 8 was found.

The encoding matrices for that encoder are:

1
1

],andG;»:[(l) i (1) 0

] (2.22)

Double memory codes are interesting for several reasons. First, the free distance

performance of a DMC is at least as high as the free distance of the basic code of

the same rate and state complexity. in some cases, the upper bound for DMCs are

¢« F a1 { TN { i win .mn e sEe o s el s
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equal to the upper bound for the UMC of the same states complexity. In addition,
as with UMCs, the form of DMCs is byte-oriented, which is attractive for use in
concatenated coding systems. Finally, partial double memory codes, in which fewer
than two memory units are allocated to a portion of the input lines, show potential as

unequal error protection codes, due to the unbalanced distribution of memory units.

2.6 Complexity Concerns

In general, when decoding a (n, k,m) convolutional code with state cornpléxity
K, a Viterbi decoder must have a 2" x 2" lookup table, and performs 2 - 2* additions
and 2X . (2¥ — 1) binary comparisons to decode k information bits. The Viterbi
decoding complexities of a (mn,, mk,,1) UMC, (%n,, 3k,,2) DMC, and (n,, k,, m)
basic convolutional codes are compared in this section. In the example that follows,
n, = 2, k, = 1, and m = 4. The free distance for the optimal (2,1,4) convolutional
code is 7, while the free distance of the optimal (8,4,1) UMC and the (4,2,2) DMC
is 8.

To decode 4 information bits, the Viterbi decoding for the UMC requires a 256 x
256 lookup table, and performs 16-16 = 256 additions and 16-15 = 240 comparisons.
On the other hand, the Viterbi decoder for the DMC requires a 16 x 16 lookup table,
and 16 - 4 = 64 additions and 16 - 3 = 48 comparisons to decode 2 information bits.
Finally, to decode 1 information bit, the Viterbi decoding for the basic convolutional
code performs 16 - 2 = 32 additions and 16 - 1 = 16 comparisons, and uses a 4 x 4
lookup table.

The requirements per decoded information bit for the three codes are shown in
Table 2.6. The complexity of the basic convolutional code is obviously the smallest,

while the complexity of the UMC is the largest. For this example, the DMC provides
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a larger free distance than the basic code, with a reduced decoding complexity when
compared to the UMC. In general, the tradeoffs of performance vs. complexity are

dependent on the specific codes of interest.

UMC DMC \basic

lookup table: 256 x 256 16 x 16 4 x 4
additions: 64 32 32
comparisons: 60 24 16

Table 2.3: Decoding Complexity Comparison

2.7 Sﬁrn'mary

The incré‘a,se' irrrlr fréé”dista.nce erxhibitedr by Uﬁiﬁ Memory :chi)rciiréismv;lléjriliébmpared
to the appropriate basic code led to the hope that, rather than increasing the. free
distance and error protection encountered by 5:11 iﬁf;rmation bits, trhe errorbrotection
for one input bit position could be significantly increased. That is, the additional
capabilities of the unit memory code could be focus on a specific information bit
position. The next chapter introduces unequal error protection coding, and reviews
previous work done in the area. The subsequent chapter then discusses unequal error

protection with convolutional codes.

1]



o

' !

(e

CHAPTER 3

Unequal Error Protection Coding

3.1 Introduction

In certain environments, a discrepancy in the amount of error protection placed
on different information bits is desirable. For example, the sign bit and high order
bits of pulse coded modulation (PCM) data are more critical to system performance
than the lower order bits [57]. In packet switched networks, the header information
requires more error protection than the data, and in multi-user environments, different
users may require more error protection than others. In Adaptive Predictive Coding
and Code-book Excited Linear Prediction, the filter coeflicients and the codebook
choice are more important than the resxdual information. Systems in which some
information is non-essential enhancement information, e.g. embedded coding schemes
and high definition television, are also potential application environments. Encoders
which provide more than one level of error protection to information information
bits are called linear unequal error protection (UEP) codes. It is also possible to
provide unequal error protection the channel bits, but that is not discussed in this
work. The purpose of unequal error protection is to provide a higher degree of error
protection for the more important bits, without increasing the associated increase in

complexity/cost/bandwidth that would occur if the protection were increased for the

24
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entire information stream.
This chapter briefly reviews unequal error protection approaches that have been

published in the past. The bulk of unequal error protection (UEP) codes have been

ity

block codes. The general concepts of UEP block codes are pfé;;niéj in Section 3.2

Multi-level coding with unequal error protection is discussed in Section 3.3.

3.2 UEP Block Codes

Wolf and Manisck introduced unequal error protection block codes [34] Since
then new results have been presented for classes oft cg(ie;,thatllgclude ﬁonsfstéﬁatic
cyclic UEP codes, codes derived form difference set, iterative and concatenated de-
signs of UEP codes, cyclic code classes, and linear a UEP codes derived form shorter
codes [33] [51] [63][11] [64].

An important conc;ept in evaluating UEP block codes is the separation vector,

first defined in [11]. For a linear (n, k) binary code C , the separation vector s(G) =

[s1(G),. .., sx(G)] with respect to encoder matrix G of C, is defined as
3;(G) = minwy(uG) for all u such that u; # 0, (3.1)

where u; is the i** bit of the k-bit message u. The definition of the separation vector
immediately leads to the following result. For a linear (n,k) code with encoding
matrix G, complete maximum likelihood decoding guarantees correct decoding of the
i** information bit whenever the error pattern has a Hamming weight less than or
equal to |(s;(G)—1)/2]. If alinear code C has an encoding matrix G with a separation
vector for which components are not mutually equal, then the code is called a linear
unequal error protection code. It is possible to order the separation vector so that

the components are non-increasing, simply by reordering the rows of G. Every code
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has an optimal generator matrix G*, whose separation vector is componentwise larger
than or equal to the separation vector of any other generator matrix of the code The
separation vector of a linear code is defined as the separation vector of the optimal
generator matrix of the code.

It is easily seen that the minimum distance of the code is equal to the smallest
component of the separation vector, i.e. dp;n, = min; [s;]. It should be noted that the
separation vector is a measure associated with a particular encoder realization of a
code

Van Gils [63] [64] defined the minimal length necessary to achieve a specific sepa-
ration vector for a given rate as a basic parameter of UEP block codes. He developed
several bounds on that parameter. He first defined n(s) as the length of the shortest
linear binary block code dimension k& with a separation vector of at least s.

An (n(s), k,s] code' is called optimal if an (n(s),k,t] code with t >'s, t # s,
does not exist. The inequality between the two vectors indicates a componentwise
comparison. For example, if s = (2,3,4), t = (3,3,4), and w = (2,5,5), then t > s,
and w > s. The relationship between w and t is best described by the equations
w#t,wH}t,andwLt.

An upper bound on n(s) is

. ‘ :
n(s) <> si. (3.2)

i=1
The proof of 3.2 is straightforward. For [ = 1,---,k, let G; be the (1 x s;) matrix
[1,1,---,1]. Then, each matrix G; has minimum distance s;. Let G be defined
as the (k x n(s) matrix G = diag[G1Gy---Gi]. Then G has separation vector
s = (81,82,--,8), and n(s) < T5, s;.

An interesting lower bound on n(s) discussed in [63] is
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k
n(s) 2 3 [s:/271, (3-3)

=1

where the components of s are ordered so that they are nonincreasing.

The proof of 3.3 follows. Let C be a linear (n = n(s), k,s) binary code, and let
G be a minimal weight generator matrix for C. It can be shown that the first row
of G, denoted by r;, has Hamming weight s;. Without loss of generality, the first s;
columns of G have a 1 in the first row. Deleting the first s; columns and the first
row of G yields a (k — 1) x (n — s;) binary matrix, &, with rank k¥ — 1. Hence, & is
a generator matrix of an (n — s;, k — 1) code with separation vector, § = (s3,- -, $k).
Let j € {2,---,k}, and let u be the message block that is non-zero only in the j*
bit position. Then ¢ = uG = (ci|cz), where c; has length s; and wy(cz) = §;. By

definition of the separation vector,
wy(c1) + §; = s8;. ' (3.4)

Furthermore, at least wy(c;) components of ¢ equal 1, so

wy(row(i) — ¢) £ 5y — wy(c1) + 3;. (3.5)

However,
wy(row(z) — c) > max(sy, 8;), - (3.6)
n(s)(s, -y o) 2 o1 + ([, [5]): (3.7)

Repeating the process results in the bound given in 3.3.
Table 3.2 presents some of the separation vectors that were shown in [63]. The
optimal minimum distance for each rate (n, k) is shown in the column labeled d,p,

and the achieved separation vectors are shown in the column labeled s.
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n k dopg S

I 2 2 3.2)

5 2 3 (4,2)

5 3 3 (3,2,2)

6 2 4 (5,2)

6 3 3 (4,2,2)
32 5 (1,2, (64)
8 3 4 (622),(544)
8 4 4 (5,.2,2,2)

Table 3.1: Selected UEP Block Code Results

In addition to, or, in some cases, is lieu of the separation vector, several authors
use a mean distortion vector as a measure of LUEP block code performance [51]. 'The
design criterion is the overall mean square error between the numerical representations
of the decoded k-bit sequence and the original k-bit information sequence . However,
mean square error is dependent on the method of numerical representation, and not
as closely related to the bit error rate. The method is useful for specific applications

but is not used in this dissertation.

3.3 Multi-level Coding

Multi-level coding is another method used to achieve UEP [28, 50, 6]. The informa-
tion sequences that require more error protection are assigned to the more powerful
subcoders in the multi-level coding system. Multi-level codes have the disadva.xitage
of high decoder complexity. The advantage of the method lies in the ease of achieving
large disparity in the protection provided.

The first technique proposed in [6] is a time sharing generalization in which the
code specifies the multiplexing rule that is to be chosen. That is, two different code sig-
nal constellations are possible, and the choice of the constellation is dependent on the

importance of the data. The second UEP technique proposed in that paper combined
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multi-level coding and non-standard set partitioning. In a nonstandard partitions,
less important data may be assigned to the points within a subset, thereby allowing
the minimum intr-subset distance to be smaller than the standard set partitioning.

The important data may then have an increased minimum Euclidean distance.

3.4 Summary

In this chapter, unequal error protection coding was introduced. In particular,
binary linear UEP block codes were discussed. The separation vector was defined,
and some bounds on the necessary code length for a given separation vector were
presented. The next chapter discusses unequal error protection with convolutional

codes.
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CHAPTER 4

Unequal Error Protection with
Convolutional Codes

4.1 Introduction

In this chapter, we examine the unequal error protection capabilities of convo-
lutional codes by presenting classes of convolutional codes which satisfy the basic
property of LUEP codes, that is, provide unequal error protection for each input in-
formation digit. The LUEP property is satisfied for certain rates R = k/n, where
k > 2 and k and n are not necessarily relatively prime.

In contrast with the UEP block codes discussed in Chapter 3, the LUEP convolu-
tional codes presented in this dissertation lack algebraic structure. For that reason,
good codes are found by a search procedure. Optimal decoding for UEP convolu-
tional codes remains the Viterbi decoding for short-constraint-length, or sequential
decoding for long constraint-length. |

This chapter is organized as follows. In Section 4.2, the effective free distance vec-
tor is presented. Section 4.3 presents a modified transfer function for convolutional
encoders from which the unequal error protection capabilities of a code can be cal-
culated. Several bounds on the unequal error protection capabilities of convolutional

encoders are derived and discussed in Section 4.4. Finally, Section 4.5 presents the

30
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results of searches for UEP codes.
4.2 The Effective Free Distance Vector

It is convenient to define an effective free dlstancevector,d, as an ;ltefnative
to the free distance as a primary performance parameter for UEP convolutional en-
coders. rI"he eﬁ'ecfive f;éé distance vectio;: is simﬂa.r tohtlrle sépa.ratioﬁ vector cbncept
of linear UEP block codes discussed in the previous chraia,rprter. ‘Similar vectors have
been proposed in [43], [40], [36], [37], [35], [49].

For a given (n,k), £ # 1 convolutional encoder, G, the effective free distance

vector is defined as the k-dimensional vector
d = (d07d1v"',dk—1) (41)

where d;, the j** effective free distance, is the lowest Hamming weight among all code
sequences that are generated by input sequences with at least one "1 ” in the jt
position, i.e.,

dj = min {wH(Vioesm) : Viot+m] = Upp .G, Vt} (4.2)
where the j* bit of u, is non-zero for some s € [0,¢], and u, = 0 for s > ¢. If
an effective free distance vector d corresponding to a convolutional encoder with
generator matrix G is such that its components are not mutually equal, then we call

this encoder a linear unequal error protection convolutional code. It is evident from

the previous definitions that the free distance of the code equals
dfrce = min {d07 dla ) dk—l} (4'3)

Thus, d.' Z dfree-
From the above definition, we have the following error-correcting capability of a

convolutional code when used in a binary-input symmetric-output channel. An (n, k)

ul
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convolutional encoder, with generator matrix G and Viterbi or Sequential decod-
ing algorithm, guarantees that the j** input information digit is decoded correctly
whenever the error pattern has Hamming distance less than or equal to |(d; — 1)/2].

Note that for a given memory distribution vector M = (m;, m,,...... ,myi), and a
given set of encoder matrices G;, each permutation of the ¥ components of M and the
corresponding rows of each G; leads to effective free distance vectors with components
that are permutations of the set {do,dy,"+-,dx—1}. Let d(C) = '{c‘fo,cﬂ, ...... ,c‘fk_l}
denote the vector formed by ordering the components of d in a nondecreasing order.
An (n,k,m) UEP convolutional encoder, G, with state complexity K and ordered
effective free distance vector d(G) is optimum if there exists no other (n, k,m) UEP
convolutional encoder,G’ with state complexity K and ordered effective free distance
vector d(G') which is larger (componentwise) than d(G).

As an example, consider the (3,2) convolutional encoder with M = (1,1), and

submatrices

010 110
G°‘[1 1 1]’G‘=[1 0 1]

The encoder diagram and the associated trellis are shown in Figs. 4.1, and 4.2,

respectively.

Examining the possible paths through the trellis reveals that the first effective free
distance, do, is 3, and the second effective free distance, d;, is 4. That is, d = (3,4).
The non-zero path through the trellis with weight 3 is shown by dotted lines. The
non-zero paths with weight 4 are shown with dark lines. All other paths have weight

greater than 4. It can be seen that the weight 3 path is created by an input vector
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sequence that is non-zero only in the first input bit position, (01,00). When the input
sequences are non-zero in the second position, the minimum weight of any path is 4.

It is important to recognize that the first “1” in the j** position does not necessarily
occur at time zero. For instance, the input sequence (10 01 00) is one of the sequences
that must be considered when determining the second effective free distance, d;, of
an encoder with two input lines (k = 2), and M = (1,1). On the other hand, the

input sequence (10 10 00) does not affect d;.

4.3 A Modified Transfer Function

State diagram analysis has long been used to determine the transfer functions of
low complexity (n, k,m) convolutional encoders. The transfer function, in turn, is
then manipulated to determine the free distance, event error probability, and bit er-
ror probability of the encoder. The bit error probability derived from the standard
transfer function is the probability that an input bit is decoded incorrectly. How-
ever, the error probability which is relevant for unequal error protection codes is the
probability of bit error at each specific bit position.

This section presents a modified transfer function analysis for time-invariant con-
volutional encoders that yields the individual bit error probability for any specified
input bit position. First, standard transfer function ana.lysis: will be briefly reviewed.
Then, the modified transfer function will be described and illustrated with an ex-
ample. An upper bound on the average bit error probability for a specific input bit
position is presented. Then the unequal error protection capabilities of several codes

are presented and discussed.
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Recall that the two-variable transfer function of a code has the form

TX,Y)= Y Y AuX'Y?, (4.4)
d=djpqe b=1
where A; 4 is the number of code sequences with Hamming weight d that have corre-

spondmg (mput) message sequences w1th Ha.mmmg welght b. The average bit error

proba.blhty for a specific transfer functlon is bounded by

P(FE) < Z B; Py, (4.5)

where By = 3, b As 4 is the total number of non-zero information bits associated with
all codewords of weight d, and Py = (\/md. For the sake of simplicity, we
assume a blnary symmetnc cha.nnel with crossover probability p.

When the individual bit error probablhty is desxred for each of the k mput po-
sitions, then the split-state diagram must be modified before Mason’s formula is

| applied. Each branch label has the new form
XiYOJ'o Yljl .. Yj:II ; (46)

where j, is equal to the input bit in the gt position, and : is the Harﬁiﬁiné weight
of the branch output. Obviously, the sum of the j,’s is the Hamming weight of the
input message block. The modified transfer function is then calculated in the same

way described in [32]. The resulting modified transfer functlon is *

o Jd
by ; bi—1.s
T(X,Yo, Y, Yic1) = 3. 3 Ca X0V Y™ - Yk, (4.7)
d=dfree j=0 S
where Cy; is the number of paths associated with the j** input sequence distri-
bution of 1’s that generates code vectors of weight d, js is the number of distinct

input sequence distributions that generate code vectors of weight d, and the entity

bo,jy b1,jy eveee- ,bi_1; represents a particular input sequence distribution of 1’s. The

]
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probability that a decoding error occurs for a bit located in the i** position of a

message block in the message sequence is then
POE)< S BY P for0<i<k—1, (4.8)
d

where BY) = _?}“:0 b ;Ca,; is the total number of 1’s in bit position ¢ contained in all
input vectors that generate code vectors of weight d. Note that tﬁe new parameters
are related to the original parameters by the equations By = ¥°; B,Si) and P,(FE) =
(1/k) £52 PY(E). In addition, the smallest d in the bound for PP(E) for which
By) is non-zero is the effective free distance of the 7** input position, d;.

In Section 4.2, the effective free distance vector of the (3,2) convolutional encoder

with M = (1, 1) and encoding matrices

010 110
_G0=[111],G1=[101] (4.9)

was shown to be (3,4). The modified state diagram for the encoder is shown in Figure

4.3. The modified transfer function is

T(X,Ys, Y1) = X*Yo+
X4 (2YoY: + Y& + YOV )+
X3 (Vi + 3YSY: + BYoY7 + Y3 + 3Y2YR + 2V3Y2 + YOV + o
The transfer function indicates that there is one path of weight 3 through the
trellis, and it is generated by the input sequence that has one 1 on line 0 and is zero
on line 1.
The bound for the probability of a bit error in the first input position is then
PPYE) < Ps + 6P, + 30P; + ....... Similarly, the bound for the probability of a bit

error in the second input position is given by P,,(l)(E) < 4P, +27P;s + .......
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X2Y,Y,
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Figure 4.3: Modified state diagram for a specific (3,2) encoder ‘with d = (3,4)

Consider the (3,2) convolutional encoder with M = (1,1) and encoding matrices

Go=[}?”;<},=[?éi] (4.11)
The encoder representation is shown in Figure 4.4, and the modified state diagram
for the encoder is shown in Figure 4.5. The modified transfer function is
T(X,Yo, Vi) = X3(YoXi)+ (4.12)
X4(Yo + YoY? +2Y5' Vi) +
X5(Y: + 2YoY; + 3Y@Y) + Yo + 3YZYP +4Y5Y) + - -
and the effective free distance vector is (3,3).

The encoder represented in (4.11) is equivalent to the encoc.ler in (4.9). -The
difference in the effective free distance vectors demonstrates the dependence of the
effective free distance on the encoder realization of the code.

An obvious drawback of the state diagram analysis is the high level of complexity

when the memory order and input vector dimension are not restricted to low val-
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B

Figure 4.4: A specific (3,2) encoder with d = (3, 3)

Figure 4.5: Modified state diagram for a specific (3,2) encoder with d = (3,3)
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ues. As the total memory increases, the number of states increases exponentially. In
addition, as the dimension of the input vector increases, the numbe;f gf branches leav-
ing each state incrgases exponentially. However, existing algorithms which attempt
to reduce the comp:tational complexity of calculating the transfer function can be
modified to incorporate the additional information needed to determine the unequal
error protection provided by the code. In addition, the same branch labels can be
used in modifications of othei' élgoﬁthms [8] which were developed to determine the

free distance vector of an encoder without calculating the transfer function.

4.4 Two-Way Bounds

In this section, a bound on the individual effective free distances is derived.
Evaluating the bound is a useful tool in determining the unequal error protection
capabilities of encoders of specified rate and memory distribution. In addition, it
allows a comparison between the effective free distance of a specific encoder and the
theoretically optimal effective free distance. First, a bound on the Hamming weight of
the sum of two vectors with known Hamming weights is presented. Then this bound
is applied to effective free distances and the implications are discussed.

Let x and y be n-bit binary vectors and let z be the modulo 2 sum of x and y,

Z = (21, 22y cereee s Zn) . (4.13)
=z Yy .
=(Il®y1732®y21 """" 7$n@yﬂ)

Assume that the Hamming weights of x and y are known and are w, and w,,
respectively. It can be shown that the Hamming weight of z is upper bounded by the

following relationship

!
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w; < min {n — w;,w,} + min {n — w,, w;}. (4.14)

The proof of the bound in (4.14) is given below.

There are two cases which result in z; = 1 and which contribut'e to the Hamming
weight of z. Case 1 occurs when z; is 1 and y; is 0; Case 2 occurs when z; is 0 and
yi is 1. The Hamming weight of z is equal to the total number of bit positions in
which either of the two cases appears. Therefore, w, can be upper bounded by the
sum of the maximum number of occurrences of Case ! and the maximum number of
occurrences of Case 2. The number of bit positions in which Case I occurs can be
no greater than the minimum of the number of 1 ’s in x and the number of 0's in Y-
Similarly, the number of bit positions in which Case 2 occurs can be no greater than

the minimum of the number of 0’s in x and the number of 1’s in Y. Therefore,

w; < min {n — w;,w,} + min {n — w,, w;}. (4.15)

The bound in (4.14) can be applied to a convolutional encoder and provides the

basis for a bound on the effective free distance of a particular input line as a function

of the effective free distance of another line.

Recall that a rate R = k/n convolutional encoder with input (message) se-

quence u = (ug, Uy, ...... ), code sequence v = (vg, vy, ...... ), and memory distribution
M = (mg, my, ...... yMi-1), With mo < m; < ...... < my.y, can be represented by the

equation
V= uJ-.Go &%) Uj_l.G'l & ...... 130) uj-mh-x‘Gmk-U (4.16)

where u; is a binary k-tuple, v; is a binary n-tuple, and G; is a (k x n) binary matrix.
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We will denote the encoding matrix, G, by the concatenation of the submatrices G,

0 <1 < mg_y, that is,

G =[G0[G1l se IG-m._;] o o (4.17)

Because the e&ective free distance of input line j, d;, is the minimum Hamming
~weight of all codewords associated with input sequences that are non-zero on line j,
the effective free distance of a particular input line is no larger than the Hamming
weight, w;, of tﬂé corrésponding row in the encoding matrix G. In addition, from the
definition of d;, we know that the Hamming weight of the binary sum of row ¢ and

row j is at least equal to d;, for all i # j, so that

w(row(z) ® row(s)) = d;. (4.18)

Applying the bound of (4.14) to the bound of (4.18) yields an upper bound on d;

in terms of w; and w;, that is

d; < w(row(:) ® row(j)) < min {n(mk_l + 1) —w;, w,} + min {n(mk-—1 + 1) — wj, w;}

[n(fme-x + 1) - wal + [n(mk 1+ 1) - w:]

= 2n(m;, 1 + 1) w; — wJ
(4.19)

The upper bound in (4.19) can be further manipulated to eliminate the'depeaéé;ce
on a particular encoding matrix. The bound is loosened in the process, but it applies
to any encoder with the same rate and memory distribution.

Equation (4.19) can be rewritten as - e

|l

|
|
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d; + w; < 2n(mk-1 +1) - w;. (4.20)

Since d; < w;, the bound on d; can be loosened to

2d; < 2n(mi_y +1) — w; (4.21)

Similarly, since d; < w;,
2d; < 2n(mi_y +1) — d; (4.22)
or
d; < (1/2) [2n(mamy +1) — di] (4.23)

The bound in (4.19) requires knowledge of the Hamming weights of rows i and j
of the encoding matrix, whereas the bound in (4.23) presents a rellationship between
two effective free distances, regardless of the encoder. In addition, the bound in (4.23)
can be used to compute the maximum possible value of an individual effective free
distance when the minimum value of d, i.e. d free, 1S known.

To tighten the bound for encoders with unbalanced memory distributions, we
consider input sequences constructed so that a periodic impulse of period m; + 1

enters each input line j. The original encoder has the encoder matrix

G = [GolGil"|Gnm,.,] (4.24)
To
= |7 (4.25)

Tk



Using the appropriate periodic input sequences, we can form two vectors

' l",' = [r,-[r;l ces [r.-] (4.26)
b times
and o
l";‘ = [rjlril.... ll‘jL (4.27)

c times
which are valid code sequences.

Note that w} = wgy(r;) = bw; and v} = wy(r';) = cw;. From the cieﬁﬁition of
the effective free distance,

d_,' < wH(r',- & l'lj). (4.28)

Let N = nmax [b(m; + 1), ¢(m; + 1)]. From the vector bound in (4.14),

wy(r;®r;)) < min {N - wl, w;} (4.29)
+ min {N - wj, wf} . (4.30)
So,
d; < min{N —uwf,u}} (4.31)
+ min {N — w}, w} S (4.32)
< IV -w]+[N - w]] (4.33)
= 2N —uw| - - " "(4.34)
Rewriting,
d; + w) + w; <2N (4.35)
or )
o d;j + bw; + cw; '5 2N. (4.36)
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Since d; £ w; and d; < w;, the bound can be loosened to
bd; + (c +1)d; < 2N = 2nmax [b(m; + 1), e(m; + 1)] (4.37)

When the number of information lines, i.e. k, is larger than 2, it is possible to
repeatedly apply the two-way bounds to the effective distances. For instance, if k = 3,

then the following bounds hold

do +2dy < 2n(m +1)
do + 2d; < 2n(m +1) (4.38)

d, +2d; < 2n(m + 1),

where m = max {mq,m;,m,}. The bounds are tightest when do,d,, and d, are
ordered so that dy < d; < d;. Assuming such an ordering, dy = djre., the largest
possible value of d; is 3(2n(m + 1) — dy), which occurs when d;, = dy = d tree. If the
effective distance of line 1 is to be increased to do + a, then the maximum allowed
value of d; is decreased to 1(2n(m + 1) — dy — a). As an example, for a rate 3/4
encoder with M = (1,1,1), if do is 2 and d; is 3, then the largest possible value of d;

is 6. In fact, when d; is 6, the bound permits values of dy and d; up to 4.
4.5 k-Way Bounds

An alternative bound also applies td the effective free dist;.nces. The advantage of
this bound is that is applies to more than two distances at one time. When & = 2,
the following bound reduces to the bound in qu:ation (4.23).

Again, assume that mo < ... < mi_;. No assumption on the relative sizes of the
effective distances is necessary.

The generator matrix forms a rate m block code with d = (dy, ..., dk-1).



It is obvious that
do < n(mo + 1). (4.39)

Because the generator matrix has at least one zero in each row, j, for which m; # 0,

the first equation of the k—Way bound can be tightéhéd slightly, to
do S n(mo + 1) - 1. (4.40)

Following the development of the Griesmer bound [17], rearrange the columns so
that the first row has only ones in the first dq positions, and only zeros in the remaining
n(mg_y1 + 1) — do positions. Several variables are useful in the bound developr;lent.
We define y} as the number of 1"5;;;; tie lés;t n(mJ + 1) — do positions of row j, s? as
7 _the number of I’s in the first do positions of (row j @ row 0), and /; as the number
of 1’s in the first dy positions of row j.

Theﬁ for‘_vi =1,...,k—1, row j can have either:

a) > [4] I'sor

b) > [4] 05
in the first dy pc;sitions.

Situation a) implies than s} < dy — [£]. Since wy(rowj ® rowd) > d; and

wy(rowj © rowl) = 5% + 37,

So,
o= T+l 28418 24, 442
or -
y; 2 d; — (do - I'?"I). (4.43)

m o wi e . il
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Since y7 is obviously upperbounded by n(m; + 1) — dy,
. % - -
4 = (do—[F]) Sn(m;+1) ~ do (4.44)

&+ [R] < n{m; +1) (4.45)

Allowing j = 1 and defining X; = [’42"-], we have

forj=1,...,k-1.
Because I; is the number of 1’s in the first dp positions of row j, and situation
b) assumes that there are at least [ 4"2‘1] 0’s in the first dy positions, this implies that

do — [%] > 1; > 0. Also, because the Hmming weight of row j is no less than d;,

IJ' + y}’ > dj , (4.47)
or
92 4~ (do = [2y), (4.48)
It then follows that
d
d; + [ ?°] <n(mj+1). - (4.49)

This is the same as the fesult when situation a) is assumed.-

When tﬁe first row and the first dy columns of the encoding matrix are removed,
we are left with a residual block code of rate m with d > (d; — (dp —
X1),d2—(do— X1),...,drey = (do — X1)). To continue, we follow the same procedure
as we did for the original block code That is, first rearrange the columns so that the
first row has only ones in the first dy — (dp — X1) positions, a.nd' only zeros in the

remaining n(my_;) —dy — (di = (do— X1)) = n(mi_1) — d, — X, positions. Then for



47

J=2,...,k—1, the portion of the original row j that belongs to the residual code can
have either: a) > [4={&=Xu)] 1’5 or b) > [4=(&=Xi)] ¢ in the first dy ~ (do — X3)
: bositions. ' |
Again, more variables are defined. Let y} be the number of 1’s in the last n(m; +
1) — dy — (d1 — (dp — X1)) positions of row j, 8} be the number of 1’s in the first
dy — (dp — X1) positions of row j @ row 1, a.ﬁd l; be the number of 1’s in the first
d, — (dp — X,) positions of row j.
Situation a) implies than s} < d; — (do — X3) — I'd‘—'(%;&l]. Since wy(rowj @

rowl) > d; — (do — X;) and wy(rowj @ rowl) = .s} + y} ,

or
42 i — (o — Xa) = (dy — (do — X)) - A= Hihyyy )
yj >dj—di + (= (dg — %), (4.52)

But y; < n(mj +1) — do — (di — (do — X1)), s0

N <nm; +1) —do— (di — (do— X3)),  (4.53)

dy — (do — X
dj —dy + [— (d; -

or

LTI e dJ-+X2 +X1 < n(mj-}-]_), (4.54)

where X, = [4=@=X)] for j=2,... ,k—1. Ifj =2, then
dz + Xg + X1 S n(mg + 1) (455)

'Situation b) implies similar results.
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The process can be repeated for the residual block codes up to rate

2
n(my—1+1)—do—(d1 —(do—X1))—...=

resulting in a set of k equations:
do < n(mg+1) -1, . (4.56)
and

i
d; + 3 Xi < n(m; +1) (4.57)

=1
for j=1,...,k =1, where X; = f%‘-’l,and X, = [iﬂﬂ‘—dl#!—-—l-] forl=2,...k—1.

4.6 Plotkin-Type Bound

The Plotkin bound for block codes states that a code of length n with M codewords

has minimum distance

n 1
i K — .

When the non-zero input to a convolutional encoder has length &, the encoder can
be considered as a block code with 2** codewords of length A(mi—; + 1). Therefore,

the free distance of the code may be upperbounded [30] by

n(mk_; + h) 2hk
2 2hk 17

dfrce < h= L2:..-. (459)

The effective distance for a specific input line, 7, is the minimum Hamming weight
among codewords that are associated with inputs that contz;.in at least one 1 on that
input line. A code generated by the inputs of length & which have at least one 1 on
line j is called the restricted block code, C}‘. The set of such inputs and outputs may
be considered as a series of block codes, similar to the approach used for the Plotkin
bound. We define C? as the number of codewords in the restricted block code Ch.

Then, CJ’-‘ is equal to the total number of codewords in the unrestricted block code
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[_J
___ with the same size input vectors minus the number of codewords that are all-zero on -
line j, or e =
R 205 i
Ch = otk — 2h(-1) (4.60)
or "
h - =
Ch = 2h(¢=D(2h _ 1), (4.61) —
-
Then, using the bound in (4.59), d; is upper-bounded by =
h(k-1) (oh =
_n(me—1 +h) 22TH(2* - 1) _
d; < 5 RT3k 1) = l’h =1,2,... (4.62) =
: - -
for j =0,--+,k—1. Note that each effective distance is subject to the same bounding —
value, i.e., the bound is independent of j. -
4.7 Another bound -
Another bound which applies to the effective free distance d; is quickly seen from the -
fact that the allowable inputs include the set of inputs which are all-zero on all lines =
that are not the line of interest. Therefore,
& < dope(n, 1,m;), (4.63) )
where dg;:(n,1,m;) is the optimal achievable free distance of the rate 1/n, memory -
" m; convolutional encoder. However, bound (4.63) is always looser than bound (4.62), -
making it useful only as a quick indication of the maximum possible effective distance
vector. The bounds are applied to encoders of various rates and memory distributions
"“in Tables 4.1 - 4.4. For each listed encoder configuration, the bounds on the effective ?
distance vector for the given free distance are listed. The optimal (achieved) free N
| &iéﬁﬁaé,kﬂ,, is provided Vforj —réfefé;ce. - -
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Rate=2/3
M | d,;¢ | Bound | Bound | Bound | Bound
(4.23) | (4.37) | (4.57) (4.62)
(1L,1) | 3 (3,4) (3,4) (3,4) (3,4)
1L2)] 4 ] (47 | &) | &7) | (46)
(38 | 388 | (3,1 | (38)
(22)] 5 | (56) | (56) | (56) | (56)
47 | 47 | 47 | (46)
3,7) | (38,7 (3,7) (3,6)
I3) [ 5 | 59 | BT [ (59) | (58)
(4,10) | (4,8) | (4,10) | (4,8)
(3,10) | (3,9) (3,10) | (3,8)
(1,4) | 8 [ (512) [ (5,10) | (5,12) | (5,9)
(4,13) | (411) | (4,13) | (4,9)
(3,13) | (3,12) | (3,13) | (3,9)
(23)] 6 | (69) | (69) [ (6,9 | (68)
(59) | (59 | (5.9) | (58
(4,10) | (4,10) | (4,10) | (4.8)
(3,10) | (3,10) | (3,10) | (3,8)

Table 4.1: UEP bounds for Rate 2/3 Convolutional Encoders

4.8 Results
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A non-exhaustive search for codes that meet these bounds was conducted. The FAST

algorithm presented in [8] was used with the branch labeling method presented in Sec-

tion 4.3 to determine the effective free distances. The search method stepped through

successive possible encoding matrices, and immediately rejected encoders which con-

tained a row with a Hamming weight less than the specified desired minimum distance

for the corresponding input line. In addition, the search algorithm rejected encoders

which had taken “too many” (typically 5+m;._,) steps along a path without increasing

the Hamming weight of the output. Theoretically, this criterion may reject encoders

that are not catastrophic and that have the desired effective free distance vector, but

it greatly reduced search time.

Tables 4.5 and 4.6 give the result for rate 2/3 and rate 2/4 encoders, respectively.



Rate=2/4

M | dype | Bound | Bound | Bound | Bound
| 4.23) | (4.37) | (4.57) | (4.62)
@D 5 | 55 | 53 | 5 | 5:6)
L 46) | (46) | (48) | (46)
T2 6 1 69 | (69 | (69) | (6.8)
(59) | (5.9) | (59) | (5:8)

(4,10) | (4,10) | (4,10) | (4,8)

(2,2) [7/8 | (88) | (88) | (88) | (88)
(18) | (1.8 | (18) | (19)

(6,9) | (69) | (6,9) | (6,8)

(59) | (5,9) | (59) | (58

@3) [7/8 | (B12) | (1.9) | (h12) | (7,10)
(6,13) | (6,10) | (6,13) | (6,10)

(5,13) | (5,11) | (5,13) | (5,10)

(4,14) | (4,12) | (4,14) | (4,10)

(3,14) | (3,13) | (3,14) | (3,10)

@4 | 8 | (7.16) | (7,13) | (7,16) | (7,13)
(6,17) | (6,14) | (6,17) | (6,13)

(5,17) | (5,15) | (5,17) | (5,13)

(4,18) | (4,16) | (4,18) | (4,13)

(3,18) | (3,17) | (3,18) | (3,13)

(2,3) | 8 | (8,12) [ (8,12) | (8,12) | (8,10)
(7,12) | (7,12) | (7,12) | (7,10)

(6,13) | (6,13) | (6,13) | (6,10)

(5,13) | (5.13) | (5,13) | (5,10)

(4,14) | (4,14) | (4,14) | (4,10)

(3.14) | (3.14) | (3,14) | (3,10)

Table 4.2: UEP bounds for Rate 2/4 Convolutional Encoders
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Rate=2/5 '

M | d,: | Bound | Bound | Bound | Bound
(4.23) | (4.37) | (4.57) | (4.62)

(1,1)] 6 (6,7) (6,7) (6,7) (6,8)
G | 6D | 57 | (53)

(48) | (48 | (48) | (48)

(1,2) ] 9 (9,10) | (9,10) | (9,10) | (9,10)
(8,11) | (8,11) { (8,11) | (8,10)

(7,11) | (7.11) | (7,11) | (7,0)

(6,12) | (6,12) | (6,12) | (6,10)

(5,.12) | (5,12) | (5,12) | (5,10)

(2.2) | 9 | (10,10 | (10,10 | (10,10) | (10,10)
(9,10) | (9,10) | (9,10) | (9,10)

(8,11) | (8,11) | (8,11) | (8,10)

(7,11) | (7,11) | (7,11) | (7,10)

(6,12) | (6,12) | (6,12) | (6,10)

(5,12) (5,12) | (5.10)

(1L,3)| 5 (9,15) | (9,11) | (9,15) | (9,13)
(816) | (8,12) | (816) | (8.13)

(7,16) | (7,13) | (7,16) | (7,13)

(6.17) | (6,14) | (6,17) | (6,13)

(5.17) | (5,15) | (5,17) | (5,13)

(14)] 8 (9,20) | (9,16) | (9,20) | (9,16)
(8,21) | (8,17) | (8,21) | (8,16)

(7,21) | (7,18) | (7,21) | (7,16)

(6,22) | (6,19) | (6,22) | (6,16)

1 6522) | (520) | (522) | (5,16)

(2,3)| 6 |(13,13) | (13,13) | (13,13) | (13,13)
(12,14) | (12,14) | (12,14) | (12,13)

(11,14) | (11,14) | (11,14) | (11,13)

(10,15) | (10,15) | (10,15) | (10,13)

(9,15) | (9,15) | (9,15) | (9,13)

(8,16) | (8,16) | (8,16) | (8,13)

(7.16) | (7,16) | (7,16) | (7,13)

(6,17) | (6,17) | (6,17) | (6,13)

5,17 | (5.17) | (517) | (5,13)

Table 4.3: UEP bounds for Rate 2/5 Convolutional Encoders
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Rate=3/4
M dopt | Bound | Bound | Bound | Bound
(4.23) | (4.37) | (4.57) | (4.62)
(L) | 4 [ (555 | (655 | (4.45) | (455)
1L,12) ] 4 | (559 | (559 | (557 | (588)
(4,4,10) | (4,4,10) | (4,4,9)
| (4,6,9) | (4,6,9) | (4,6,8)
(1,22) | 5 | (6,6,9) | (6,6,9) [ (6,6,7) | (6:3,8)
' (6,8,8) (4,7,7)
(4,6,8)
(4,4,10) (4,4,10)
(2,22)] 6 | (66,9 | (6,6,9) | (6,6,7) | (6,8,8)
(6,8,8) | (6,8,8) | (5,6,8)
(4,4,10) | (4,4,10) | (4,4,9)
(4,7,7)
(L1,3) | 5 [(5513) | (5,5,11) | (5,6,11) | (5,10,10)
(5,8,10)
(4,4,14) | (4,4,12) | (4,4,13)
(4,6,13) | (4,6,10) | (4,6,12)
123)] 6 [(7.812)] (7.8,9) | (7,8,9) | (7,10,10)
(6,9,11) (7,7,10)
(6,7,11)
(6,9,10)

Table 4.4: UEP bounds for Rate 3/4 Convolutional Encoders
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A primary goal of the searches was to find encoders with at least one effective distance

greater than the free distance of the optimal code of the same rate and memory order.

A decrease in free distance is acceptable. In Table 4.5, there are four instances in

which the higher effective free distance is larger than the optimal free distance for
rate 2/3 encoders with the same state complexity. For M = (1,1), d = (3,4) , and

dfree = 3 for the time-invariant convolutional code, and dy,.. = 4 for the time-varying

“convolutional code as shown in [46]. Similarly, the optimal encoder for M = (1,1)

[32] has an effective free distance vector d = (4,5). These two encoders are examples
of encoders which provide unequal error protection while maintaining a free distance
equal to the optimal free distance for the same rate and state complexity. Two
encoders with state complexity 4 have one effective free distance vector d = (4,6).
One has memory distribution M = (2,2), and the other has memory distribution
M = (1,3). An encoder with d = (6,6) requires a state complexity of 5 [32], so
allowing the protection of one bit to drop from an effective distance of 6 to an effective
distance of 4 allows a reduction in the state complexity. The trellis associated with
an encoder of state complexity 4 has 2* = 16 states, while the trellis associated with
an encoder of state complexity of 5 has 25 = 32 states.

Table 4.6 shows several rate 2/4 encoders with one effective free distance that is

- larger than the optimal free distance for rate 1/2 encoders with the same rate and

state complexity. Several are noted in the following discussion. For M = (1,2) the
one of the input bits. In comparison, the rate 1/2, M = 3 optimal encoder provides
a free distance of 6 for all input bits, and a state complexity of 4 is required for
a rate 1/2 encoder to provide a free distance of 7 to all input bits. The encoder

that provides error protection d = (4,8) with M = (1,2) increases the effective
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... free distance on the second bit position by two, with the cost being a corresponding

decrease in the effective free distance on the first bit. Note that the optimal rate 1/2
encoder that provides a free distance of 8 requires a state complexity of 5. The encoder
with M = (2,2) and d = (8,8) although not being a LUEP code, it is interesting
because it achieves the free distance shown to be achievable by unit-memory codes
[31], and both effective free distance exceed the free distance provided by the optimal
rate 1/2, M = 4 encoder. The M = (1,3) encoder with effective free distance vector
d = (4,9) provides protection to one of the bits which exceed the protection offered by
even unit-mgmory codes of the same state complexity. The M = (2, 3) encoder with
effective free distance vector d = (8, 9) is interesting because it provides unequal error
protection while maintaining a free distance equal to the optimal value of 8. However,
some encoders are obviously better choices for implementation. For instance, when
the memory distribution is M = (1, 2), the encoder with d = (4, 8) is better than the
encoder with d = (3, 8).

The tightest bounds for the effective free distances are listed in the tables. It can

. be seen that the derived bounds are relatively tight when the memory distribution is

balanced. The bounds appear to loosen as the memory increases a:nd as the memory
[distribution becomes more unbalanced. The bounds also loosen as k increases. For
example, the bound for rate 3/4, M = (1,1,1) encoders is looser than the bound for
rate 2/4 M = (1,1) encoders.

Figures 4.6 - 4.33 show the bit error rate (BER) plots for the codes presented in
Tables 4.5, 4.6, 4.9, using Viterbi decoding with soft decision decoding. Three sets
of data points are shown in each plot. The data points described by the ’x’ are the
(simulated) bit error rate for input line 0. Similarly, the data points described by the

’0’ are the (simulated) bit error rate for input line 1. The overall BERs are marked
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Rate=2/3
M | dype | d(bound) [ d G
@D 3 | G4 [BA| 64
7 53
(1,2) | 4 (4,6) (4,5)] 530
315
4 (3,6) (351 230
575
22) | 5| o 63| 546
353
5| Go) [@e | 151
726
0| 5] G (G5 3700
4676
5 (4,8) (46) | 6300
1375
TH [ 6| GBI 16675000
51247
6 (4,9 (46) (35000
51214
@3) [ 6| (67 |68 5730
3155
6 (5,8) (56)] 1560
3213
6§ | (48) | @6 | 4250
0317

Table 4.5: Rate 2/3 UEP Convolutional Encoders
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Rate=2/4
M| dp; | d(bound) | d G
TD] 5 55 | (5,5) 15 14
03 07
12| 6 ®8) | 6,7) | 170600
06 12 15
6 G8) | (5.7) | 070600
13 10 13
6 @8 | &8 | 140500
0717 13
22) | 7/8°"C | (88) | (88) | 161116
051705
78 | (L) | 150614
03 05 13
63) | (68) | 010703
14 13 16
13) [7/8%™C | (7,9) | (7,7) | 07 1700 00
10 11 15 03
(6,10) | (6,8) | 13 150000
15130113
(5,10) | (5,7) | 14070000
170201 16
(4,10) | (49) | 14030000
07110116
(3.10) | (3,10 | 02 06 00 00
1513 01 13
O (7,13) | (7,8) | 17 07 00 00 00
o 06 13 01 14 12
8 (6,13) (6,10) | 16 13 00 00 00
0503131115
8 (5.13) | (5,9) | 11 07 00 00 00
16 05 14 04 13
8 (4,13) | (4,10) [ 12 14 00 00 00
171504 07 13
8 (3,13) | (3,12) | 10 06 00 G0 00
' 17 1504 07 13
23)| 8 (8,10) | (3,9) | 05170500
13141516
8 (7.10) | (7,8) | 051213 00
13 06 15 07
8 (6,10) | (6,8) | 01030700
1403 10 16
8 (5,10) | (5,9) | 05120100
13 06 07 14

Table 4.6: Rate 2/4 UEP Convolutional Encoders
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Rate=2/5
M | dope | d(bound) d G
(1,1} 6 (6,7) (6,7) 13 26
34 35
(5,7 (5,7) 03 32
37 15
(1,2) | 9 (8,10) (8,8) 07 37 00
31 21 23
(7,10) (7,8) 1517 00
03 36 32
(6,10) | (6,10) | 0327 00
3532 24
(2,2)] 9 (9,10) (9,9) | 330117
11 36 32
(8,10) | (8,10) | 032307
11 36 32
(1,3) | 12 (8,11) (8,9) | 35170000
: 26 32 11 07
(7,12) | (7,10) | 36 25 00 Q0 |-
3304 1513
(6,13) | (6,11) | 16 26 00 00
33 04 1513

Table 4.7: Rate 2/5 UEP Convolutional Encoders

Rate=3/4

M | dope | d(bound) d G
OL2) | 4 | (449) |(4.4,5) 170000
05 06 00
03 04 03
~(33,9) | (3,3,5) | 030000
17 06 00
0417 12
1.22) | 5 | (567 |(555) 111700
050511
03 04 03
(4,4,10) [ (4,4,6) |01 13 00
03 03 14
16 04 12

Table 4.8: Rate 3/4 UEP Convolutional Encoders
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by "*’s. For cases in which BER was lower than 10~7, data points do not appear. For

comparison, the BERV plots for the optimal free d15ta.nce codes hsted in [32] are shown

in Figures 4. 34 4.42. The encodmg ma.tnces a.nd effectxve free distance vectors for

the optimal codes are listed in Table 4.9.

B ] M | d G
(3,2) [ (1,1) [ (3,3) 47
34

1,2) | (&3] 530

315
22 [(G5) | 546
353
23) | (66)| 5730
3155
B3| ()| 5725
3753

1)1 (2 | (5 313

(3) | (6) | 3313
@) | (7) | 31123
G) | (8 |321313

Table 4.9: Optimal convolutional encoders

Some observations about the BER plots for the UEP convolutional encoders follow.
Examining Figure 4.7, it is seen that for the rate 2/3, M = (1,2) encoder, which has
= (4,5), the BER for lme 1 is lower for all SNRs than the BER for line 0, which was
expected. The dxspa.nty in the protectlon oﬁ'ered to the two input positions increases
as the SNR increases, simila.r to the manner in which the dispa.rity in average BER

gt

for two codes w1th dﬁferent free dlsta.nces increases vnth mcreasmg SNR. Every error
probability for the r;.te 2/3, d = (4,5) encoder is lower than the error probability
for the optimal encoder, shown in Figure 4.35. The average BERs in Figure 4.7 are
lower than the a.verage BERs in Flgure 4.8, which is expected for encoders which have
effective dlsta.nce vectors d = (4,5) and d = (3, 5), respectively. In addition, although

line 1 for both encoders have the same effective free distance of 5, the BER of line 1 in

-l

i
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Figure 4.7 is lower than the BER of line 1 in Figure 4.8. This phenomemon is seen in
comparisons of other encoders, also. The phenomenon is possibly due to an increase
in the number of codewords at each distance, so that while the effective distances are
equal, the differences in multiplicities are large enough to affect the individual error
rates.

The rate 2/3, M = (2,2) encoder with d = (4,6) is an encoder which achieves
an effective free distance on. one line that is higher than the optimal free distance by
reducing the effective free distance of the other line. Comparing the error rates in
Figure 4.10 to the rates for the comparable optimal code in Figure 4.36, it is seen
that, as expected, the optimal code has a lower average BER at every SNR. However,
line 1 of Figure 4.10 has a significantly lower BER at 4 dB.

The encoder analyzed in Figure 4.16 was constructed from a basic (2,1, 2) encgder,
which can provide no unequal error protection [43]. The slight differences in the
individual BERs for line 0 and line 1 at 3 dB and 4 dB are probably due to the
limited number of information bits that were encoded and decoded in the simulation.

The rate 2/4, M = (1,2), d = (6,7) encoder, when compared to the (2,1,3),
free distance 6 optimal encoder, has a slightly lower average BER at 3 dB and 5 dB,
with a slightly higher average BER at 4 dB. At 5 dB, the individual bit error rate is
- significantly lower for line 0.

The results in Figure 4.18 are interesting. The protection on line 0 follows the
standard curve shape, but the protection on line 1 has a non-standard from. The
error rate on line 1 is lower than the average BER for the corresponding optimal
code. '

It is interesting that the differences in the effective distance vectors of the rate 2/4

encoder with d = (8,8) and the corresponding optimal basic code with d free = 1 do )
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not correspond to significant differences in the BER plots. The error rates in Figure

- 4.20 are lower, but the differences in the two plots do not indicate that the effective

~ distance vectors are significantly different. This is an instance in which the number

of low weight codewords is a significant factor, which can be seen from the transfer
functions of the two encoders. The modified transfer function for the rate 2/4 encoder

is

T(X,Yo, Y1) = X3(Yo+ Y1 +3Yo Y1 +3VY 3 + VoY + Y2+ 2Y Vi + YR Y2 + YY)+ - .
(4.64)

On the other hand, the transfer function for the rate 1/2 encoder is
T(X,Y)=X"(Y+Y)+ X3(Y’+Y") +---. (4.65)

The rate 1/2 encoder has a total of four code sequences of weight 8 or less, while the
rate 2/4 encoder has fourteen code sequences of weight 8.

The rate 2/4 encoder with d = (6,8) has lower BERs than those of the optimal
encoder with dj. = 7, which is the desired effect.

The BER plots illustrate the dependence of the probability of error on each input
line on both the effective free distance and the number of codewords at that effective
distance. The effective distance vector alone provides valid info1:ma.tion about the

disparity in unequal error protection, but the multiplicities brovide additional useful

_ information.

€ i @i«

i1

i RN &0«

i



10" r
*-R(E)
1o"; o-'®
’ x-Fle)
B "
3 o
f -
- x
10F
F o
n
5
10 3 x
o
e ]
10 »
10‘7 L i 1 1
2 4 8 8 7

Figure 4.6: BER plot for R = 2/3, M = (1,1) encoder with d = (3,4)
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Figure 4.7: BER plot for R = 2/3, M = (1,2) encoder with d = (4,5)
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Figure 4.10: BER plot for R = 2/3, M = (2,2) encoder with d = (4,6)
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Figure 4.11: BER plot for R = 2/3, M = (1,3) encoder with d = (5, 5)
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Figure 4.12: BER plot for R = 2/3, M = (1,4) encoder with d = (4, 9)
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Figure 4.14: BER plot for R = 2/3, M = (2,3) encoder with d = (5,6)
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Figure 4.15: BER plot for R = 2/3, M = (2, 3) encoder with d = (4,6)
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Figure 4.16: BER plot for R = 2/4, M = (1,1) encoder with d = (5, 5)
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Figure 4.17: BER plot for R =2/4, M = (1, 2) vgpgodg;r w1th d= (6, 7
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Figure 4.18: BER plot for R = 2/4, M = (1,2) encoder with d = (5,7)
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Figure 4.19: BER plot for R = 2/4, M = (1,2) encoder with d = (4,8)

68



69

10" y — r '
ol *-RE
] oK)
[ x~FE)
10°F ¥ 1
k] [
g 10“5 . 4
g | y
10‘; x
3 )
10°F
~7| 1 1 i ¥ L
192 3 4 5 8 7 8
SNR (E,,/N° , dB)
Figure 4.20: BER plot for R = 2/4, M = (2,2) encoder with d = (8,8)
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Figure 4.21: BER plot for R = 2/4, M = (2,2) encoder with d = (7,8)
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Figure 4.22: BER plot for R = 2/4, M = (1,3) encoder with d = (6, 8)
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Figure 4.23: BER plot for R = 2/4, M = (1,3) encoder with d = (5, 7)
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Figure 4.26: BER plot for R = 2/4, M = (1,4) encoder with d = (7, 8)
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Figure 4.28: BER plot for R = 2/4, M = (1,4) encoder with d = (5,9)
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Figure 4.29: BER plot for R = 2/4, M = (1,4) encoder with d = (4, 10)
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Figure 4.31: BER plot for R = 2/4, M = (2,3) encoder with d = (8,9)
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Figure 4.32: BER plot for R=2/4, M = (2,3) encoder with d = (7, 8)
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Figure 4.35: BER plot for optimal R = 2/3, M = (1,2) encoder with d = (4)

4.9 Summary

In this chapter, we examined the unequal error protection capabilities of convolu-
tional codes. The effective free distance vector is presented and defined as a measure
of the unequal error protection. Also, a modified transfer function for convolutional
encoders ﬁ'ou} which the unequal error protection capabilities of a code can be cal-
culated was éeﬁned. Several bounds on the unequal error protection capabilities of
convolutional encoders were derived and discussed, and the results of searches for

UEP codes were presented. It was shown that convolutional encoders can provide
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Figure 4.36: BER plot for optimal R = 2/3, M = (2,2) encoder with d = (5)
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Figure 4.37: BER plot for optimal R = 2/3, M = (2, 3) encoder with d = (6)
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Figure 4.42: BER plots for optimal R = 1/2, M = (5) encoder with d = (8)

unequal error protection. Several encoders which provided more protection to one in-

formation position than the protection offered by the optimal free distance encoder.

The cost of the increased protection for a specific input line is typically a decrease in

the protection offered to the other information bits.
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CHAPTER 5

Achieving Unequal Error
Protection with Trellis Coded
Modulation

5.1 Introduction

Traditional channel coding techniques achieve coding gain (i.e. reduce the required
signal-to-noise ratio for a specified error probability) at the expense of the required
bandwidth. For instance, a rate 1/2 code doubles the bandwidth relative t;) an
uncoded transmission. 'Ba',ndei’dﬁhréfcﬁiﬁSion.is Vof'rc;ﬁr ;6t possible on band-limited
channels. Trellis coded modulation (TCM) was developed as a bandwidth efficient
means to achieve coding gain [60].

Trellis coded modulation is a combined modulation and coding technique that
can realize coding gains without increasing the required bandwidth. A finite state
encoder, such as a convolutional encoder, determines the selection of the modulation
signals and generates coded signal sequences. This chapter discusses the unequal error
capabilities of TCM. Section 5.2 briefly review modulation techniques and describes
trellis coded modulation. Search results for unequal error protection TCM codes are

presented in Section 5.3.
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5.2 Trellis Coded Modulation

Modulators convert a discrete signal into an analog waveform, for transmission
over a channel. During each signaling interval, the modulator maps & bits into one
of M = 2* possible channel signals. The demodulation receives a corrupted version
of the transmitted channel signal, and estimates the m original bits by choosing the
channel signal which was closest to the received signal and performing the inverse
mapping.

Signal set representations for two amplitude modulation schemes are shown in
Figures 5.1; two PSK signal constellations are shown in Figure 5.2. If the average
signal energy is held constant, the signal points move closer together as the size of the
signal set increases. Because a maximum likelihood demodulator chooses the channel

signal closest to the received signal, more opportunities for errors occur for the larger

signal set.
- L d
2-AM
[ J [} [ ] ®
@ [ 2 [ ] e
® . ® [ ]
[ J [ ] ® L J
16-QAM

Figure 5.1: Amplitude Modulation Signal Sets



4-PSK

8-PSK

Figure 5.2: Phase Shift Keying Signal Sets
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Modulation and error-correction coding are performed independently, the results
are mediocre. Consider the example presented in [61]. Both the 4-PSK modulation
system without coding and the 8-PSK system with independent rate 2/3 convdltitx:onal

" coding transmit two information bits per modulation interval. The 8PSK system has
a BER exceeding 10~ when it is operated at the signal-to-noise ratio (SNR) for
which the 4-PSK system exhibits a BER of 10~5. The increased error rate is due to
closer signal points in the 8 PSK constellation. The rate 2/3 code requires a state
complexity of K = 6 to reduce the error rate of the 8PSK system to 10~5. The
convolutional code require a 64-state Viterbi decoder, which is fairly complex. That
is, the 8PSK coded system is more complex and transmits no more reliably than the
simpler 4PSK uncoded system. The difficulty in developing a simple, relia.iale system

with independent coding and modulation led to the development of TCM.

select

signal o
from g_

subset a signal

sequence

=
. S)) g
select o=
encoder } subset %°

Figure 5.3: A General TCM System

Trellis coded modulation is a combined modulation and coding technique that can
realize coding gains without increasing the required bandwidth. A finite state encoder,
such as a convolutional encoder, determines the selection of the modulation signals

and generates coded signal sequences. Figure 5.3 shows a general block diagram for a
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TCM system which doubles the signal set. There are k information bits entering the
_system, of which k bits enter the rate /(% + 1) convolutional encoder, and (k — k)
remain uncoded.
Consider the rate 2/3 TCM coded 8PSK system with a 4-state, rate 1/2 convo-
lutional encoder, which will be compared to an uncoded 4 PSK system. The 4 PSK
signal space is shown in Figure 5.2; the labelled 8PSK signal space is shown in Figure

5.4.

101 ® e

o
Figure 54: A Labeled 8PSK Signal Set

It is possible to imrtif.iqn the s__i_g_na.l set, which involves repeatedly dividing the
signal set (or subset) into two smaller subsets with a larger smallest intra-set dis-
tance, §;, where ¢ is the number of times the partitioning has been conducted. .
The p#rtitioning for the 8PSK constellation is shown in Flgure 55‘The coded bits

“produced by the encoder select a subset, while the uncoded bit chooses a signal from

the selected subset.; The free Euclidean distance, dg of a TCM code is defined as the
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(IR ([ i 4 a
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minimum Euclidean distance between any two valid signal sequences, or
dg = min3_ ly. - 5,/7], 6

where y, is the n** channel signal in the sequence.

o1

101®
/ "o /
010 .

001 1

[ ] LY
100 000
101® ®
110

Figure 5.5: Partitioning an 8PSK Signal Set

N

Assume the convolutional encoder has the trellis diagram shown in Figure 5.6.
Then the trellis for the TCM code is aas shown in Figure 5.7. Parallel transitions
occur on the trellis due to the uncoded input bit, and limit the free distance of the

~code. To offset this limitation, the signals assodi;ted with parallel transitions are
assigned to the signal points that are most distant. In fa.ct,‘ the branch labels of the
trellis for the convolutional code are assigned as signal set labels according to the

three rules:

a) Parallel transitions are associated with signals with the maximum Euclidean

distance between them,

b) Transitions exiting or entering a node in the trellis are assigned to signal points

with the next largest Euclidean distance between them, and



89

c) All signal points are used with equal frequency.

The signal labels in Figure 5.4 were assigned according to the above rules. The
signals assigned to the parallel transitions have Euclidean distance 2. On the other
hand, any two signal sequences that Kave dfverb#;g [;a.thsfn tl‘;?rélﬁs l;é.;éze;;least

Euclidean distance \[Ag + A} + A3 = JAj+ A} = v4.585. Therefore, the free

Euclidean distance of the code is 2. Since the free distance of the uncoded system

in this example is v/2, the coded TCM system has a coding gain, in decibel (dB), of

101og((72;)-,-) =3 dB.

00

0t

10

11

Figure 5.6: A 4-State Binary Trellis

001/101

Figure 5.7: A 4-State TCM Trellis

In general, the free Euclidean distance of a TCM code is the minimum of the

minimum distance between parallel transitions and the minimum distance between

Qi mman .l (11 e o«
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non-parallel paths through the trellis. Because linearity does not hold for TCM -code
sequences, the Euclidean distance between every pair of TCM signal sequences must
be computed to determine the free distance if an unmodified trellis is used for the
calculations. However, the reference path may be the all zero path if each binary
branch label on the trellis is replaced with the minimum squared distance between
all pairs of signal points with binfuy labels which differ by the value of the original
branch label. With the modification, algorithms which are used to evaluate binary
linear trellises may be used to determine the free Euclidean distance of a TCM code.

This modification significantly simplifies the analysis of a TCM code.

5.3 Unequal Error Protection with Trellis Coded
Modulation

When considering UEP with TCM, the free Euclidean distance vector is similar to
the effective free distance vector for binary codes. The free distance vector for TCM is
de = (dE1, . ..,dg;), where dg; is the minimum Euclidean distance between any two
code sequences with input sequences that differ in the jt* position. Combining the
branch label modifications presented in Section 4.3 and Section 5.2, the free Euclidean
distance vector of a specific encoder may be calculated with the same algorithms that
calculate free distance and the effective free distance vector.

The results for binary encoders may be used as guidelines for expected results
for the TCM. A TCM code is represented by a trellis that is topc;logica.lly identical
to the binary trellis at the same rate and memory distribution. If the branches
of the TCM trellis are to be labelled with the minimum distances associated with
the all signal pairs with labels that differ by the encoder branch output, then the

ounly differences between the two trellises are the weights assigned to the branches.
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&
- Furthermore, a given signal constellation, with a specified labeling or mapping, has a -
unique ordered set of minimum distances that are placed on the trellis. For example, =
 consider the 8PSK constellation with natural mapping, shown in Figure 5.4. The =
minimum squared distances associated with the branch labels of the trellis are: a
label minimum squared =
branch distance
-~ 000  0.000 S —
001 0.586 -
010 0.586 _
011 2.000 =
100 0.586 -
101 2.000 _
110 4.000 =
111 3.414 .
Therefore, the ordered set of the minimum squared distances which replace the binary =
branch labels is {0.000, 0.586, 0.586, 0.586, 2.000, 3.414, 3.414, 4.000}. B
=
1000 1101 1100 1001

L o o o =
1111 1010 1011 1110 -~ - §

o L J L o
%
0100 0001 0000 0101
@ L N _® =
0011 0110 0111 0010 -

L [ ] o o
Figure 5.8: A Labeled 16QAM Signal Set =
Similarly, the 16QAM with standard mapping, shown in Figurg 5.8 has the mini- -
S : . ST TuIr [ Tl . o T §
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mum squared branch distances

label minimum squared
branch distance
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Y

so the ordered set of branch distancesis {0, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 5, 5, 5, 5, 8}.

UN O = D UV OO0 DN o U1 R O

The ordered set of branch distances for a binary encoder is equal to the (ordered)
Hamming weights of the binary branch labels. So then, the ordered set of distances
for a rate k/3 binary encoder is {0,1,1,1,2,2,2,3}, and the ordered set of branch
distances for a rate k/4 binary encoder is {0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4}.

The maximum possible free Euclirdea.n distance vector for a specific TCM code
with a certain signal mapping and memory distribution may be calculated from the
trellis of the optimal UEP binary convolutional encoder of the sa..me configuration.
The free Euclidean distance vector for 2 specific TCM is no larger than the effec-
tive distance vector of the optimal UEP binary encoder, evaluated with its branch
distances replaced by the minimum mapping distances of the signal set that occupy
the same relative place in the ordered set of distances. That is, the ordered branch

distances for the labelled constellation are aligned with the ordered branch distances
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for the binary encoder, and then are assigned as the branch distances on the the
trellis. When the trellis for the optimal UEP binary encoder is evaluated with the
new branch labels, the effective squared Euclideé.n distance of the system with the
most advantageous branch labeling is found. 'Tﬁe resulting free Euclidean distance
vector is not necessarily a.chievable, nor is néééiéa.rily achievable with the encoder
that is the optimal binary encoder. Instead, the resulting effective distance vector
is the distance that would be acHeved for a constellation mapping with the given
set of squared Euclidean branches, mapped so that the smallest squared Euclidean
distance is aligned with the smallest Hamming weight, etc. It is possible that with

the same constellation mapping, a different encoder may be found that produces the

oin

same effective distance vector.

011 010
L ] L J
100 . .000
110® ® 111

_Figure 5.9: Alternative Labeling for anVSPVSKfSigng,IVSgt o e

Ttis hypothe31zed here that the natural m ma.ppmg for the 8PSK s1gnal constellatlon
and the typical 16QAM mappmg produce the largest ordered sets of branch d1sta.nces

a.mong a.ll possxble mappmgs Tha.tr 13 rea.rra.ngmg the mappmg $0 that one or more

of the “values in the set is reduced is mot a.ccompa.med by an mcrease in a.nother

value that offsets the original reduction. Conversely, increasing one value in the set
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Rate=2/3, 8PSK
M | uncoded df
bits
(0,1) I (2.586,2.586)
(1,1) 0 | (3.172,3.172)
(0,2) 1 | (4.0,4.586)
(0,3) 0 (4.0,5.172)
(1,2) 0 | (4.586,4.586)
(1,2) 0 (4.0,5.172)
(2,2) 0 (5.172,5.172)

Table 5.1: Unequal Error Protection with 8PSK TCM

causes a decrease in another value that is at least as large in rﬁa.gnitude. As an
example, consider the 8PSK constellation with the mapping shown in Figure 5.9.
The minimum squared distance between all pairs of signals with labels that differ
by 001 was increased from .586 to 2.0, whén compared with the natural mapping
shown in Figure 5.4. However, not only was the minimum squared distance between
all pairs of signals with labels that differ by 010 decreased from 2.0 to .586, but
the minimum squared distance between all pairs of signals with labels that differ by
011 was reduced to from 3.414 to .586. Non-exhaustive searches for signal mappings
with a larger (componentwise) ordered set of minimum distances than the standard
mappings for the 8PSK constellation or the 16QAM constellation were conducted.
None were found, leading to the the conclusion that the sta.nda.rd' mappings possess
the largest ordered sets of branch distances.

The results of searches for 8PSK systems with unequal error protection are shown
in Table 5.1. A criterion of the search was that at least one effective squared Eu-
clidean distance must be larger than the corresponding effective free distance of the
typical system. The components of the distance vectors listed in Table 5.1 are the

squared values. Similarly the results of searches for 8PSK systems with unequal er-



Rate=2/4, 16QAM
M | uncoded dg
bits
(0,1) 0 (6,6)
1 (5,6)
1 (4,7)
(1,1) 0 (9,9)
0 (8,10)
(0,2) 0 (8,10)
(1,2) 0 (11,11)
0 (7,10

Table 5.2: Unequal Error Protection with 16QAM TCM
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~ ror protectxon are shown in Ta.ble 5.2. The components in the vectors hsted for the

16QAM results are the unnormallized, squared distances.

5.4 Summary

Trellis coded modulation systems with 8PSK and 16QAM were examined as potential

UEP codmg systems It was shown tha.t the free Euchdea.n d13ta.nce vector of a TCM

system can be upper bounded 1f the srgna.l mapping a.nd the optlma.l UEP bma.ry

code of the appropriate configuration are known. However, the results were scarce,

due to the limitations of the signal sets.
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CHAPTER 6

Conclusions and
Recommendations for Future
Research

The unequal error protection capabilities of convolutional encoders were investigated.
The effective free distance vector, d, was defined as an alternative to the free distance
as a primary performance parameter for UEP convolutional encoders. It was shown
that, although the free distance for a code is unique to the code and independent
of the encoder realization, the effective distance vector is dependent on the encoder
realization.

A modified transfer function, which provides a method to calculate d, was pre-
sented. The modified transfer function developed a new bra.ncl'1 labeling method
that allows standard algorithms that were originally developed to calculate the free
distance of a code to calculate the effective distance vector.

Several upper bounds on d were derived. The bounds indicate that convolu-
tional encoders with unbalanced memory distributions may provide more pronounced
unequal error protection than encoders with balanced memory distributions. The
bounds are evaluated and compared. The results of searches for good unequal error

protection codes are presented. Both balanced and unbalanced memory allocation
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configurations are examined. A primary goal of the searches was to find encoders
with at least one effective distance greater than the free distance of the optimal code
of the same rate and memory order. A decrease in free distance was acceptable. A
number of binary convolutional encoders meeting the goal were listed. Bit éﬁdr rate
(BER) plots for the encoders were presented, and confirmed the effective distance as
a measure of unequal error protection. At the same time, the BER plots sh;w that
the number of code sequences with Hammingfweighi;s equal to the individual effective

distance is more important than expected.

Extensions to trellis coded modulation were examined. It was found that providing

unequal error protection with TCM coding is difficult due to the limitations of the
signal constellations. However, it was shown that the optimal binary UEP encoder
provides information about the maximum possible free Euclidean distance for a TCM
code with the same configuration. -

Topics for future study are now identified. Because the effective distance is de-
pendent on the encoder realization, and because & > 1 for UEP encoders, ways to
reduce the search space would be extremely useful. For instance, tighter bounds on
the effective distance vector would better identify encoder configurations with UEP
potential. It is possible that the approach used to developed bound (4.37) may be ap-
plied to the k-way bound of (4.57), resulting in a tighter bound. Identifying features
common to good UEP encoders would also help focus searches.

Extensions of the results to trellis coded modulation are limited for the 8PSK and
16QAM systems, due in part to the restrictive nature of the constellations themselves.
It is possible that larger standard, as well as nonstandard, constellations will -ha.ve

enough flexibility to provide unequal error protection with TCM.

Similarly, multi-dimensional codes may have unequal error protection capabilities.
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In particular, it is possible that altering the signal set partitioning developed in [48]

will bring about unequal error protection to the information bits.

rate 3/4
rate 1/2 encoder

encoder ____

Figure 6.1: A Concatenated UEP System

An example of another configuration which holds promise as an UEP coding sys-
tem is the multi-level coﬁcatena.ted system shown in Figure 6.1. Although specific
rates are shown in the figure, the rates are unspecified for the general system. It
is expected that the information bits which enter the first encoder will have larger
effective distances than the information bits which pass through only one encoder.
Furthermore, the disparity in error protection may be enhanced by choosing appro-
priate UEP binary encoders codes. A simplified decoding algorithm for a system
similar to the one in Figure 6.1 would be important. .

Providing unequal error protection with binary convolutional encoders and trellis

coded modulation remains a viable area of research.
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