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THE SPACE-TIME SOLUTION ELEMENT METHOD -
A NEW NUMERICAL APPROACH FOR THE NAVIER-STOKES EQUATIONS

James R. Scott* and Sin-Chung Changt
NASA Lewis Research Center
Cleveland, Ohio

Abstract

This paper is one of a series of papers describing
the development of a new numerical method for the
Navier-Stokes equations. Unlike conventional numeri-
cal methods, the current method concentrates on the
discrete simulation of both the integral and differen-
tial forms of the Navier-Stokes equations. Conserva-
tion of mass, momentum, and energy in space-time is
explicitly provided for through a rigorous enforcement
of both the integral and differential forms of the gov-
erning conservation laws. Using local polynomial ex-
pansions to represent the discrete primitive variables
on each cell, fluxes at cell interfaces are evaluated and
balanced using exact functional expressions. No inter-
polation or flux limiters are required. Because of the
generality of the current method, it applies equally
to the steady and unsteady Navier-Stokes equations.
In this paper, we generalize and extend the authors’
2-D, steady-state implicit scheme. A general closure
methodology is presented so that all terms up through
a given order in the local expansions may be retained.
The scheme is also extended to nonorthogonal Carte-
sian grids. Numerous flow fields are computed and
results are compared with known solutions. The high
accuracy of the scheme is demonstrated through its
ability to accurately resolve developing boundary lay-
ers on coarse grids. Finally, we discuss applications
of the current method to the unsteady Navier-Stokes
equations.
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1. Introduction

This paper is concerned with the continued devel-
opment of a new numerical method} for solving the
Navier-Stokes equations.!~3 The distinguishing fea-
tures of the current method have been previously de-
scribed, and may be summarized as follows: The
current method (i) provides for a unified treatment
of space and time; (ii) represents the local discrete
primitive variables through Taylor series expansions
that identically satisfy both the integral and differ-
ential forms of the Navier-Stokes equations; (iii) bal-
ances fluxes across cell interfaces as an integral part
of the numerical formulation; (iv) evaluates fluxes at
cell boundaries using exact functional expressions (to
the order of accuracy of the local expansions); and (v)
solves explicitly for the unknown derivatives of the lo-
cal discrete primitive variables.

Scott and Chang! developed a Newton’s method
implicit scheme for the two-dimensional, steady
Navier-Stokes equations. Calculations of laminar flow
in a channel showed that the developing boundary
layer could be accurately resolved using as few as six
cells per channel width. Scott® extended the internal
flow scheme to external flows, and showed that the
boundary layer on a finite flat plate could be accu-
rately resolved using only ten cells from the wall to
the free stream. Chang? developed an explicit scheme
for the one-dimensional, unsteady Navier-Stokes equa-
tions, and presented numerical results for the shock
tube problem with viscosity. It was shown that the
shock and contact discontinuities could be crisply re-
solved without the use of flux limiters or weighting
functions.

In this paper we are concerned with the fur-
ther development of the steady-state flux conserva-
tion scheme first presented in Reference [1). Here we

tKnown most completely as The Space-Time Conser-
vation and Solution Element Method, and frequently
abbreviated as the STS Method, Conservation Ele-
ment Method, Solution Element Method, or the CE-
SE Method.



generalize the scheme by (i) providing a general clo-
sure methodology so that all discrete unknowns of the
same order in the local expansions may always be re-
tained and (ii) by extending the scheme to nonorthog-
onal Cartesian grids. Calculations of a variety of flow
fields indicate that developing laminar boundary lay-
ers can be accurately resolved on grids which are much
coarser than those employed by conventional numeri-
cal methods.

In the next section we begin by considering the
general problem of steady-state flux conservation in
two space dimensions. Following that, we summarize
the steady-state flux conservation scheme as originally
presented in [1] and [3]. Then we show how the scheme
may be generalized and extended to general flow fields
and nonorthogonal grids. Finally, we discuss applica-
tions of the present approach to the unsteady Navier-
Stokes equations.

II. Steady-State Flux Conservation
i ce Dimensions
We begin by considering the system of integral
conservation laws

f b -d5 =0 (2.1)
(V)

in E;, where Em, m = 1,...,.M is a steady-state flux
density vector which is a function of M intermediate
(primitive) variables. S(V) is an orientable surface
inclosing an_}arbitrary volume V in two-dimensional
space, and ds is the outward area vector which is nor-
mal to S(V). Equation (2.1) is the governing equation
for steady-state flux conservation in two space dimen-
sions.

Suppose that (2.1) holds for any V in a fixed
domain D in E;, and that each by varies smoothly
throughout D. Then one obtains, by way of the diver-
gence theorem, the differential conservation law

V-bm = 0, (2.2)

where V = (£ %) If information about the be-

havior of the by, (or their intermediate variables) on
the boundary B(D) of D is also known, then equa-
tion (2.2), along with the known boundary informa-
tion, represents a steady-state boundary value prob-
lem. We will subsequently refer to equation (2.2) and
its associated boundary conditions as boundary value
problem (2.2).

Suppose that D is the rectangular teglon shown
in Figure 1, and that hm, m = 1,..,M is the exact

solution to boundary value problem (2.2). In addition,
let eaca Ay, be analytic throughout D. (From here on,
we drcp the m subscript for clarity.) Then near any
(Zer90)in D, b & R
the uniformly convergent Taylor series expansions

= (h*, h¥) may be expressed by
3

hz(z7y) h* (zn:yO) + a,:: (zo,yo) (z—z,)
+ ;, (o %) (¥ = 30) + ... (2.3)
o -z, n—k - % k
= "Z_%kZ[azn-kayk (Zo,yo)] (z(n_i)! (y k?)
hY(z,y) = h¥(zo,%) + -ag(zo,yo)(z—zo)
hY
+ a (z,,yo) (y—yo) + ... (24)
Y =2z (y— )
- gg[azﬂ"‘ay*(z“ °)] Y Y

If the infinite series (2.3) - (2.4) is truncated at some
point, then it becomes an local approximation to the
exact solution A.

Let D be discretized by the rectangular mesh
shown in Figure 2, and let (z;,y;) denote the center
point of each cell. Let (Ry);; denote the order-two

Taylor series expansion of A about the point (=i, 95)-

Then
(h3)ij = (25)
_ 2 n Mh* (z — )" -k (v —y; )k
= =3 pord azﬂ—kayk (Z', y] ] k)l -
and
(A = (26)
- n-k E
,,Z_(:,kzo[azn—kayg(zny; ]( i)' (v kfj,) .

As an approximation to k on the (i,7)th cell, it
can be shown that® the error of (hs); j is bounded
by L4""-[max(Az:, Ay)]3, where M;; is a local bound
on the third derivatives of A. Thus, {(h2)ij,i =
1,...,N;,j =1,..,N;} is a discrete approximation to
the exact solution & on D. .

The local Taylor series expansion (h);; is a so-
lution of the differential conservation law (2.2), since
its divergence is identically zero.3 This follows from



the fact that (2.3) - (2.4) also satisfies equation (2.2).
Since (il.z).' ; is a second-order polynomial that pro-
vides the exact values of i and its derivatives through
order two at the point (z;,y;), it will be referred to as
the ezact second-order solution of equation (2.2).

Since the derivatives of h are well-defined
throughout D, we may now consider the approzimate
second-order solution hy to boundary value problem
(2.2), where

B, %R = (h°,0) (2.7)

with B
o (z,y;6,5) 2 (2.8)

h:..o + hf,o(z - z") + h:.x(y - yj) +
RZ (2 —z:)* + kD, (z—z)(y—y) + ho.(y— v;)?

and
b (z,y;4,5) & (2.9)

hg,o + hg,o(z= - zi) + hg,:(y - yj) +
B (2 —2i)® + B, (z— z:)(y—y5) + hea(y— y;)*-
The coefficients hZ_, hT

0,0? 1,0?
logues of h*(z:,y;), Q}'}(z.-,yj), etc., and are un-
knowns that are to be determined (the i, j subscripts
have been omitted for clarity). Generally, the un-
known coefficients above are expressed in terms of one
or more intermediate variables. This will become clear
later, but need not concern us here.

To faithfully represent h throughout D, the dis-
crete approximation {(h); j,i=1,.., N;,j = 1,...,Nj}
should: (i) satisfy (2.1) on each cell and each union of
cells in D; (i) have zero divergence; and (iii) satisfy
the boundary conditions on B(D).

Let the vertices of the (i, 7)th cell be denoted by
P,Q,R, and S as shown in Figure 3. Then (i) above
requires that

etc., are the numerical ana-

—_

f h-ds = 0,
PQRS,,;

where we have taken the integration to be positive in
the counterclockwise sense. Let [J(PQ)]; ; denote the

flux of E through the line segment PQ; j» and similarly

for J(QR), J(RS), and J(SP). Then, omitting the
i, j subscripts, one obtains the flux expressions

J(PQ) =

b=l

(2.10)

(2.11)

12 4 2
J(QR) = (2.12)
A Az? A
- S H, - au [T R, - AL+ A
J(RS) = (2.13)
Az® Ay? A
- Mo~ ae [T - L+ by

J(SP) = (2.14)

Az

Ay? Azx?
12 h:,: + Ay [ 4 h:.o + Thf,o + h:,o]'

Equation (2.10) requires that the fluxes satisfy
J(PQ) + J@QR) + J(RS) + J(SP) = 0. (2.15)
Thus, one obtains the fluz conservation constraint

hi, + Ay, = 0. (2.16)
In view of (2.10), each cell in the mesh is called an
conservation element. Since E may be discontinuous
across cell interfaces, each cell is also called an solution
element.*
Imposing condition (2.16), one obtains from
(2.11) - (2.14) the following normalized flux expres-

sions:

J(PQ
—(A}—) = (2.17)
Az? Ay? Ay
T e + R - SR+
J@R)
- = 2.18
~ (2.18)
Ay? Az? A
_l%—h:,n + _4z_h:.o - zh‘r:» + h:,o
J(RS
- (Az) - (2.19)
Az? Ay? A
S Mo + S, + kT + B



IGP) _
Ay (2.20)
A A 2 Az
A b+ B2 ks, 4 20, 4 e,

12

Equations (2.16) - (2.20) are sufficient to ensure
that (2.1) is satisfied on each cell. To ensure that (2.1)
is satisfied globally, it is necessary that fluxes be con-
served across cell interfaces.

Let the (4, 7)th conservation element be denoted
by CE(i,j). Consider the vertical interface between
CE(i,j) and CE(i + 1,5). The flux leaving CE(3, j)
through this interface is given by [J(SP)); ;. On the
other hand, the flux leaving CE(¢ + 1, j) through this
same interface is given by [J(QR)}i+1,. Flux conser-
vation across the interface requires the sum of the two
to be zero. Thus, one obtains the interface condition

A A 2 Az
[ lg h’ : h:..o + Thf,o + h:.o] (2'21)
iy
Ay? . Az, Az, .
- —_hn.a + Th:o - —2_'h + ho.o = 0.
i+1,5

Similarly, acroes horizontal interfaces, one obtains the
interface condition

A A
[ 12 B, + A” SR, - SERL + hz..,] (2.22)
i
[___,,, A% b+ ShL+ hz,o] =0
i+l

Equations (2.16) - (2.22) above ensure that the
integral form of the governing conservation law will be
satisfied throughout D.

Having provided for the satisfaction of the more
fundamental integral conservation law, we may now
turn our attention to the differential conservation law
(2.2). Requiring A to have zero divergence on each
conservation element, one obtains the two second-
order constraints

2K, + hY, =0 (2.23)

2K, + K%, = 0.

By virtue of equations (2.23) - (2.24), the approximate
second-order solution E satisfies (2.2) identically, as
does the exact second-order solution 71'2. In Reference
[3] it was rigorously proved that conditions (2.23) -

(2.29)

(2.24) ensure the satisfaction of a necessary condition
for the second-order discrete unknowns to converge to
their respective analytical counterparts.

We should also emphasize that (2.23) - (2.24) are
local conditions, as is the first-order constraint (2.16).
Thus, a high-order-accurate simulation of the differ-
ential conservation law is possible without stringing
together more and more mesh points.

The above approach provides the conceptual
framework for the discrete simulation of steady-state
flux conservation in two space dimensions. We now
demorstrate the applicability of the framework to the
Navier-Stokes equations.

II1. Conservation of Mass and Momentum
in Incompressible, Viscous Flow

A. Discrete Flux Vectors

The governing equations for the conservation of
mass and momentum in a steady, two-dimensional, in-
compressible flow field can be written®

Ou v

F + - 0 (3.1)
7] 8
az(u +p— Tzz) + —x—l-(uv - Ty) =0 (32)

] é
U )+ 50 P ny) =0 (39
where 9 P 8
u v
Tes = 3Re, C 3z T Oy (34)
1 6u Ov
™= %oy t 52 (35)
2 v Ou
= 3Re, Coy T B (36)

The independent variables z and y are horizontal and
verticzl Cartesian coordinates, respectively, and u and
v denote their respective velocity components. p de-
notes the static pressure, and Rep is the Reynolds
number, =L where the viscosity y and density p
are ass umecf to be constant. L and U, refer to some
referer.ce length and velocity, respectively.
The integral form of (3.1) - (3.3) is given by

f Fac-ds =0 (3.7)
S(V)

S(V)



f ﬁyu . 2‘; =0 (3-9)
S(vV)

where it‘,,, I-z.x,,, and ’-;yu are defined by

def

Ba = (u,v) (3.10)
B re 4 (W4 p = Tos,uv — Toy) (3.11)
Bvac e/ (uv — Toy, v2+ p — Tyy). (3.12)

Equations (3.7) - (3.9) are a coupled system of in-
tegral conservation laws whereby mass and momentum
are conserved by way of the primitive (intermediate)
variables u, v, and p. The system of equations (3.7) -
(3.9) is of the same form as system (2.1).

Corresponding to the continuous flux vectors de-
fined by (3.10) - (3.12), we introduce the second-order

discrete flux vectors h,., hxar, and Ey", where

b 2 (39) (3.13)

e & @4 p - Tez,ur — 1) (319)

By & (wy — Ty, ¥2+ p— Tyy)  (3.15)
and

T = ga(20u/0z — Bu/by)  (316)

Tey = 5 (Ou/0y + Bu/6) (3.17)

T = ga(20u/0y - Bu/Be).  (318)

By definition, the discrete primitive variables u, v, and
p are then second-order expansions which may be
written d
. . {J
wz,pi4) ¥ (3.19)
Yoo + Uro(Z— %) + Uoa(y—y;) +

tao(z — )% + tha(z—2:)(¥— %) + voa(y— 4;)?

o(z,ui,5) ¥ (3.20)
Voo + 1’1,»(17 - Z.') + vo.l(y - yj) +

Vao(z = 2i)? + via(z — 2i) (Y — 9) + voa(y —45)°

p(z,u;i5) & (3.21)

Doo + Pn,n(z - zi) + Pu.x(y - yj) +

Pao(z — z:)? + Pua(z — zi)y — 4;) + Poaly — 4;)*.
For clarity, the i, j subscripts have been omitted from
the discrete Taylor coefficients 4,4, Vo0, Po,o, €tC.
These coefficients are the unknowns to be solved for.

Each of the discrete flux vectors Eu, Exm and
Bys may be expressed in the form of (2.7) - (2.9),
where hZ,, h¥,, etc., are functions of ¥y, Yo,0s Po.es
Uy 0, Vi) P10y etc. For example, in reference to E =
Bxa, hZ, is the constant term of the expression u?+
P~ Tes, which is given by uf.,-i-po,o—ﬁ%(?ul_.,—u,,l).
In the Appendix, we present the functional expressions
for each component of the discrete flux vectors A,
Exu, and EYM-

B. Constant-Pressure-Gradient Flows

1. Laminar Flow in a Straight Channel

Consider the channel geometry and associated
mesh shown in Figure 4. On each solution element,
we represent u, v, and p through the second-order ex-
pansions (3.19) - (3.21). There are 18 discrete un-
knowns on each cell. Since there are 18 N; N; unknowns
altogether, 18N;N; conditions are required to have
a closed system of equations. Thus, for the present
equilibrium-type boundary value problem, closing the
system requires a global matching of numbers of con-
ditions and unknowns.

The conditions to be imposed are obtained from
Section II. For each of the three conservation laws
(3.1) - (3.3), we must impose the local constraints
(2.16), (2.23) and (2.24) on each conservation element.
This provides 9N; N; conditions. (See equations (A.1)
- (A.9) in the Appendix.) The interface conditions
(2.21) and (2.22) must also be satisfied. This pro-
vides an additional 3N;(N; — 1) + 3Ni(N; — 1) =
6N,'1Vj —3N; — 3Nj conditions.

Another 4N;+3N; conditions are obtained by way
of boundary conditions. At the channel inlet, we spec-
ify the two components of velocity, and at the exit we
specify the pressure. Along the upper and lower walls
we require that there be zero mass flux. In addition,
we impose the no slip condition for u at the midpoint
of the wall face of each cell.

For laminar flow in a straight channel, it is well
known that the streamwise pressure gradient is nearly
constant, except in a short entrance region. Thus,



2% ~ 0 and 22 = 0 throughout most of the channel.
It is reasonable then to make the simplifying assump-
tion that p,, = 0 and p,, = 0 on each cell. This
provides an additional 2¥; N; conditions.

The number of conditions still needed to close the
system is then N;(N; — 1). Since this is the num-
ber of horizontal interfaces in the mesh, there is an
additional degree of freedom in specifying horizontal
interface conditions. We choose to close the system
by requiring the u velocity to be continuous at the
midpoint of each horizontal interface.

The discrete boundary value problem outlined
above is a coupled system of second-order polynomial
equations in the unknowns g, Vg0, Poe, etc. How-
ever, six of the higher-order unknowns can be eas-
ily eliminated from the system using the local con-
straints (A.1) - (A.9). (See equations (A.10) - (A.15).)
The total number of unknowns that must be explicitly
solved for is thus reduced from 16N;N; to 10N;N;.
Of the equations that remain, 3N;N; represent local
conditions, and the remaining 7N;N; represent inter-
face and boundary conditions. Numerical solutions to
the nonlinear system of equations may be obtained by
Newton’s method.! The Jacobian matrix has the form
shown in Figure 5.

In Figures 6 and 7 we present numerical re-
sults from calculations performed at Reynolds num-
bers (based on channel height h) of 100 and 2000.
The specified inlet velocity profile for each case is
ui = I [1-[2(y—1)]®] (following Dill and Himansu®).
Along with the numerical results, we also show the in-
let profile and fully developed analytical solution. The
Re = 100 results were obtained from the 39 x 6 grid
shown in Figure 4. Due to the thinner boundary layer,
the Re = 2000 results were obtained from a 39 x 10
mesh. For each case, Newton’s method converged to a
maximum residual error of 10~2° in four and five iter-
ations, respectively (starting from uniform flow). The
corresponding CPU times on a Cray YMP were 1.1
and 3.5 seconds.

2. High-Reynolds-Number Flow
Around a Finite Flat Plate

In Figure 8 we show a typical mesh for calculation
of the thin airfoil boundary layer problem. The airfoil
lies on the z-axis between 0 and 1, and the mesh in-
cludes both an upstream and wake region. The grid
spacing is exponentially stretched in the y direction,
and the spacing may also be nonuniform in the z di-
rection.

As in the channel flow problem, there are a total of
18 N;N; unknowns to be solved for. The methodology

for clcsing the system here closely follows that given
in the previous section.

L2t N, denote the number of solution elements
between the airfoil leading and trailing edges. Then
(2.16) and (2.21) - (2.24) provide 9N; N; + 3N;(N; —
1)+3V;(Nj —1)-3N, = 15N;N; —3N; —3N; —3N,
conditions.

Boundary conditions provide an additional 4N; +
3N; + 4N, conditions. For each cell adjacent to the
airfoil, we require the mass flux through the wall face,
and the u velocity at the midpoint of the wall face, to
be zero. At the upstream boundary, we specify the ve-
locity, and downstream we specify the pressure. Along
the free-stream boundary cells, we specify zero y gradi-
ent conditions for u and v. Imposing the zero pressure
gradient condition, we set p,, = 0 and p,,, = 0 on
each cell, for an additional 2V; N; condtions. Finally,
an additional N;(N; — 1)~ N, conditions are obtained
by requiring the u velocity to be continuous at the
midpoint of horizontal cell interfaces.

In Figure 9 we compare the predicted boundary
layer profile with the Blasius solution at four differ-
ent locations along the airfoil. The Reynolds number
based on airfoil chord is 100,000. The results were ob-
tained from an 81 x 20 grid with uniform z spacing and
nonuniform y spacing with 12.5% exponential stretch-
ing. Only ten cells are used across the boundary layer,
since the flow field is computed on each side of the air-
foil. The y spacing at the wall was Ay,, = .0015, and
the free stream boundaries were located at y = £.027.
The CPU time required on a Cray YMP was 50.7 sec-
onds (nine Newton iterations), with uniform flow as
the starting solution.

F:gure 10 compares the predicted v velocity at z
= .805 with the Blasius v velocity. The differences
that appear near the edge of the boundary layer are
believed to be due to finite airfoil effects [7, p. 137].

Ir Figure 11 we show the pressure coefficient in
the trailing edge region. The results were computed on
an 110 x 22 grid that was refined near the trailing edge
with exponential z stretching. The z spacing at the
trailing edge was .007. Our results show the pressure
coeflicient to have a minimum value of - .014, which
agrees well with the Reduced Navier-Stokes (RNS) cal-
culations of Srinivasan and Rubin.®

C. General Flow Fields
1. Generalized Closure Procedure

For a general two-dimensional problem with an N;
x N; mesh, the local expansions (3.19) - (3.21) provide
a total of 18N;N; unknowns. Thus, 18N;N; condi-
tions are always required to close the discrete system of



equations. In Section II. B., we imposed 16N;N; gen-
eral conditions, and then added the 2N;N; special con-
ditions [p,,cij = 0, [P1.1)i,j = 0. Since the general con-
ditions already ensure that the integral and differential
forms of the governing conservation laws are fully sat-
isfied, it will be necessary to introduce higher-order
conditions to close the system. Such higher-order con-
ditions can be imposed either on the discrete primitive
variables, or on the discrete flux vectors. Due to the
more fundamental nature of the flux vectors, the sec-
ond alternative is generally preferred over the first.

We are thus led to consider the first-order dipole
moment interface conditions

z3 - - —
/ (z — zi)(hij = hij4r) -ds = 0 (3:22)
2
and
Y3 - - —
/ (v—yi)(Bij — higr5) -ds = 0, (3:23)
21

where z; and z; denote the endpoints of an horizon-
tal interface between CE(i,j) and CE(i,j + 1), and
y1 and y; denote the endpoints of an vertical inter-
face between CE(i, j) and CE(i+1,5). Since aerody-
namic flow fields are generally dominated by gradients
in the cross-flow direction, equation (3.22) will usually
be preferred over equation (3.23). However, both con-
ditions are fully justifiable, since the exact solution h
satisfies both equations.

For a rectangular grid, equations (3.22) and (3.23)
become

[A, Ayh”]' [, A”hﬂ]_

= 00329

and

respectively.

We now consider again the channel and flat plate
flow fields. For channel flow, we impose (3.24) for
h = hxa and k = Ryy, thereby obtaining an addi-
tional 2N;(N; —1) conditions. The final 2N; conditions
may be obtained by imposing an additional boundary
condition on the upper and lower walls. From the y-
momentum equation one obtains the pressure bound-
ary condition®

= 0, (3.25)

o _ 1o

dy = Re 0y?’

which may be imposed at the center point of the wall
face of each cell. (Equation (3.26) is not a boundary

(3.26)

condition in the usual sense, but is instead a differ-
ential equation to be satisfied on a wall parallel to
the z-axis. Even though we already require the y-
momentum equation to be satisfied identically on each
cell, equation (3.26) still represents an independent
condition which may be imposed along the wall.)

For the flat plate problem, imposing (3.24) for the
z- and y-momentum equations provides 2N;(N; —1)—
2N, conditions, where N, is the number of cells be-
tween the leading and trailing edges. Applying (3.26)
to each side of the airfoil gives 2N, conditions, and im-
posing the zero pressure gradient condition as a free-
stream boundary condition provides the final 2N; con-
ditions.

In general, conditions (3.22) - (3.23), together
with additional boundary conditions, can be used to
close the discrete system of equations for an arbitrary
flow field. By introducing such higher-order condi-
tions, the system is not only closed, but additional
physics are brought into the scheme. Thus, it is pos-
sible to adapt one’s particular choice of closure to the
physics of a specific flow field.

In the general case, there are an additional 2N;N;
unknowns to be solved for. However, the size of the
system to be solved is still 10N;Nj, as in the con-
stant-pressure-gradient scheme. The reason is that,
in the general case, the two new unknowns p,, and
P11 can be explicitly eliminated from the system. (See
equations (A.20) - (A.21).) Thus, a total of 8N;N;
unknowns are eliminated, and 10N;N; still remain.

Application of the generalized scheme described
above to the channel fiow problems of Figures 6 and
7 reproduces the earlier results. The comparison is
shown in Figures 12 - 13.

For flat plate flow, the neglected terms p,, and
p.. become significant for Reynolds numbers less
than about 7500. Figures 14 and 15 compare re-
sults from the two schemes at Reynolds numbers
of 7500 and 1000. As Re decreases, the boundary
layer becomes much thicker and the pressure gradi-
ent varies significantly throughout the flow field. At
the lower Reynolds number, the improved accuracy of
the general scheme over the constant-pressure-gradient
scheme is readily apparent.

2. Extension to Nonorthogonal
Cartesian Grids

Extension of the generalized scheme presented
above to nonorthogonal grids can be accomplished in a
straightforward manner. Consider the nonorthogonal
mesh shown in Figure 16. We denote the mesh points



by {(zij, %) i=0,..,N;,j =0,...,N;} and the cen-
ter points by {(2¢ij,¥ei ;)i =1, Nij=1,..., N;}
where zei; % (zic1j-1 + Zijo1 + Tij + Zio1,5)/4
and yei ; & (fi-1j-1 + tij-1 + Bij + %i-1,5)/4. On
each solution element, the discrete flux vectors and
primitive variables are expanded about the cell center
(zeij:ycij)- .. .

Since we require h,,, Axa, and Ay, to be identical
solutions of the differential conservation law (2.2), lo-
cal flux conservation on each CE(i, j) is assured. This
follows from the divergence theorem. Consequently,
to guarantee global flux conservation, we need only
ensure that fluxes are conserved across the nonorthog-
onal cell interfaces. This in turn requires that the nor-
malized flux expressions (2.17) - (2.20) be generalized
to account for the nonorthogonality of the mesh.

The generalized fluxes are derived most easily us-
ing a local coordinate system relative to the cell center
(see Figure 17). The cell vertices P, @, R, S, relative to
(ZeijsVer ), ave given by (552, 542), (-2, 8s),
(—2%=, —A}L), (A—;'-, —-Az’-'-), where

T = Tij — Tei (3.27a)
ATVP g - Vei s (3.27b)
AT‘L Y reiy —Tio1 (3.27¢)
_‘-‘:2!/_« o 1 — Yei (3.27d)
A;" def cij = Ti-1,j-1 (3.27¢)
ATy' Y yeij = Yi-1j-1 (3.279)
A;' o Tij-1— Tei g (3:27g)
% Y i = Yijor- (3.27h)

We assume that -A—;'-, Ag’-, A—;l, etc., are all positive.

For the flux through an PQ or RS interface, let

Cn—k,l = hgl—k,k - m h:—k,k (3.28)
forn=0,1,2,k=0,..,n,
where m will be defined shortly. Then
—A—;I(LQA)S— = Co,o + & Co’l + 52 Co,z (329)
=+

+ A (C10 + mCo1 + §C1y + 2m6Co,)
+ A?(Cz0 + mCyy1 + m*Coy)

where
def Ay Ay, Az, Az
m = (= S/(5E+ =51 (3:299)
PR ] (3.29b)
2 2
1 deg 1 Az, Az,
Al = 2(—2 < ) (3.29¢)

and

det 1[,Azp\2 Az, Az Azg\2
ar 5[( 2,) - 2P 2,+( 21)] (3.294)

-—J(—Iﬂ— = Co,o + 600,1 + 52 Co,z (330)

Ay
+ Al (Cl,o + mCo,j, + 501,1 + 2m500,2)
+ A% (Cy0 + mC11 + m*Cop)

where
o def (A2y, _ A;.)/(Azzr + A;:.) (3.30a)
54 A2yr + mA;' (3.30b)
AL & %(A;- _ A;') (3.30¢)
and
N

The normalized first-order dipole moment flux
through an PQ interface is

J(PQ)
2 2 dp
A (Coo + 6Coy + 6%Co2)
+A*(Ci0 + mCoy + 6C11 + 2mé6Co2)
+ A% (Ca0 + mCi1 + m?Cop)

where



a3 (3.31a)

-]

: [(Az,) _ (Azp)zA:c, Az,,(Az,)z

and all other parameters are defined as in (3.29a) -
(3.29d). Similarly, the normalized first-order dipole
moment flux through an RS interface is

__"LR—S;)__] =
dp

Az Az
azry 4 Az,
5= +

(3.32)

A'(Coo + 6Coy + 6% Cop2)
+A%(Cio + mCoy + 6C1y + 2méCoy2)
4+ A3 (Ca0 + mCiy + m?Coy)

where

A ¥ (3.32a)

: [(Az,) _(Az,)zAz, Az,(Az,.) _ (Az,) ]

and all other parameters are defined as in (3 30a) -
(3.30d).

For the flux through an QR or SP interface, let

Cnip = hj_pp — mhl_4, (3.33)
forn=0,1,2, k=0,..,n
Then similar to the above, we have
J(@R)
- m = C(),o -+ 501,0 + 52 Cg,o (334)

+ A} (Co1 + mCro + 6C11 + 2m6Cy)
+ A% (Coz2 + mCiy + m?Cayp)

where
d Az, Az A A
m ¥ (SE-SIEE+TY) ()
PR . (3.34b)
2 2
det 1 ,A Ay,
ar ¥ 5(_%’-’-_2&) (3.34c)
and

Ag def 1 [(qu) qu Ayr+(Ayr ] (334d)

J(SP)

M = Co,o <+ 601,0 + §2 Cz,o (3.35)

+ A (Co1 + mCro + 6C11 + 2m6Ca0)
+ A? (Co,z + mCiy + m? Cz,o)

where
m e (A _ 82,8 Dby (335)
% Az B (3.35b)
2 2
L dy LBy Ay
Al = 2( 2 5 ) (3.35¢)

and

det 1 1,Ayp 2 Ay A A
5 L[y - 28 (3] om0

The normalized first-order dipole moment flux
through an QR interface is

_[_H_Q?);] -

By, By (3.36)
2 2

A! (Cop + 6Ci10 + 62 Cay0)
+ A% (Coy + mCro + §C11 + 2m 6 Cay0)
+ A% (Co2 + mCiy + m?Cayp)

where

As % (3.36a)

% [(Ay1)3 _ (qu)szr + A2yq (Ayr)Z _ (Ayr)3]’

and the remaining parameters are defined by (3.34a) -
(3.34d).

Finally, the normalized first-order dipole moment
flux through an SP interface is

[ J(SP)

Ay, + Ayp = (3'37)
2 2

dp
Al (Coo + 6C1p0 + §2Cz,0)
+ A% (Co1 + mCyo + 6C11 + 2méCay)
+ A% (Coz2 + mCyy + m?Cap)



where

as ¥ (3.37a)

3 [y - (Bl S 4 S (Bl - (B,

and the remaining parameters are defined by (3.35a) -
(3.35d).

To complete the nonorthogonal formulation, one
must modify the pressure boundary condition (3.26)
to account for any variation in the wall slope. The re-
maining boundary conditions require no special treat-
ment.
In Figures 18 - 20 we consider channel flow with
a converging or diverging section. For each case, the
ramp length is one channel height, and the inlet ve-
locity is w; = £ [1 — [2(y — 1)]°]. The ramp angles
for the three cases are 10, 15, and 5 degrees, respec-
tively. In Figures 18 b. and 20 b., we consider flow at
a Reynolds number of 100. The calculations were run
on the 32 x 8 grids shown in Figures 18 a. and 20 a.
The two cases converged in six and eight Newton itera-
tions, respectively. For both cases, the results indicate
that the flow becomes fully developed by the end of
the channel. In Figure 19 b., results are presented for
flow at a Reynolds number of 200. The calculations
were performed on the 32 x 10 grid shown in Figure 19
a. For this nonsymmetrical flow at a higher Reynolds
number, Newton’s method required ten iterations to
converge (11.0 seconds on a Cray YMP). Unlike the
results in Figures 18 b. and 20 b., the flow does not be-
come fully developed by the end of the channel. This
is consistent with the theory for developing laminar
flow in a channel [7, p. 186).

A similar calculation to the above, using a geperal
coordinates STS implicit scheme, has been carried out
by Dill and Himansu.®

D. Accuracy of Derivatives

The numerical results presented thus far have
demonstrated that the current method can resolve de-
veloping boundary layers on coarse grids. This clearly
indicates that the discrete derivatives, at least through
some order, are being obtained accurately. The accu-
racy of the discrete derivatives is a current research
topic, and will be discussed in detail in a future paper.

Our experience to date indicates that the accuracy
of the first-order derivatives is in general very good.
On the other hand, the accuracy of the second-order
derivatives varies considerably, and appears to depend
on a number of factors.

As a model problem for estimating the accuracy
of the derivatives, we consider the flow field around a
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finite flat plate. The Blasius similarity solution pro-
vides the first-order asymptotic solution to the Navier-
Stokes equations which is valid near the wall and away
from the leading and trailing edges.1° Thus, at very
high Reynolds numbers, the Blasius solution can be
used to obtain analytical values for the derivatives of
u and v.

In Figure 22, we compare the predicted % (ie.,
%,,,) with the Blasius %. There is in general very
good agreement between the two. (The numerical is-
sues involved in obtaining accurate derivatives of the
Blasius solution are addressed in a paper which is cur-
rently being written.!) The large value of 3 near the
wall is also evident.

Figure 23 compares the predicted %%- (ie., 2u,,)
with the Blasius g,—?',‘-. Although not as accurate as u,,,
the relative error of u,, is of the order of 10-2 at a
number of grid points. Note that the magnitude of -g%‘}
is greater than 10° throughout most of the boundary

layer, and obtains a maximum value which is greater
than 10%.

IV. Space-Time Flux Conservation for the
Unsteady Navier-Stokes Equations

The discrete formulation presented above for
the steady, incompressible Navier-Stokes equations
is designed and constructed to simulate steady-state
boundary value problems which are of equilibrium
type. However, when considering the unsteady Navier-
Stokes equations, one is confronted with an initial-
boundary value problem which is of a marching type.
Thus, the problem of space-time flux conservation es-
sentially reduces to how to march the discrete solution
forward in time in such a way that space-time flux
conservation is always satisfied. In general, one may
advance the solution in an explicit or implicit man-
ner. In either case, the focus of the current method
is to ensure that fluxes are conserved in space-time,
through the use of Taylor series expansions that iden-
tically satisfy the governing integral and differential
conservation laws.

As a model problem for the unsteady Navier-
Stokes equations, Chang? considered the shock tube
problem with viscosity. The governing equations are
the 1-D, unsteady Navier-Stokes equations. Let p, v,
p, and vy be the mass density, velocity, pressure, and
constant specific heat ratio, respectively. Let
4.1)

Uy = p



us = pv (4.2)
us = p/(y—1)+(1/2)pv? (43)
fi=ug (44)
fa=(v—Dus+(1/2)B -7 (w2)*/u1  (45)
fs = 7uaus/uy — (Y2)(r — D(2)*/(m)*  (46)
and let _
h=0 (4.7)
fo= 2 (4.8)
3Re uy

z 2 fux\? 7 [us  (u2)?

5= 3R (ul) * RePrlu 2(u1)2]’ (4.9)
where Re and Pr denote the Reynolds number and
Prandt]l number, respectively. Then the governing

equations may be written?

aum afm azfm _ _
5 S - e = 0, m=123, (410)
or L.
Y hm =0 (4.11)
where
= d 0 9
v (5;,5) (4.12)
and
- afm _
hm = (.fm - a—z,um), m=1,23  (413)
The integral form of (4.11) is then
]{ Bim - ds = 0, (4.14)
5(v)

where V is an arbitrary region in the space-time E,.

Let E; be discretized by solution elements
SE(j,n) and conservation elements C E(j,n) of Type
I, as described in [2] and [12]. Then, associated with
each SE(j,n), let um, fm and fr, be represented in
discrete form through the linear expansions

ul (2, 5,n) ¥ (4.15)

(4m)] + (ume)] (& —25) + (ume); (= 17)

fa@ i) 2 (4.16)

()} + Ume) 2= 33) + ()] (¢~ 7)

falz,tiqn) & (4.17)

1

(Fm); + (fms)} (@ = 25) + (fme)j (t=1")
m = 1,2,3.

The discrete coefficients (um)?, (um:);, and
(4mt)7, m =1,2,3, represent nine unknowns associated
with each SE(j,n). The coefficients ()}, ( f,,,);-‘,
etc., are known functions of the (um);‘, (u,,.,);?‘, and

.. =, d . af*
(umt);"- By requiring hm g (fm - _oL,,-l,u:n)’ m=

1,2,3, to satisfy (4.11), each (um)? may also be ex-
pressed as a known function of the (um);' and (umz)j -
Thus, the marching problem from one time level to the
next may be expressed entirely in terms of the discrete
unknowns (um)? and (um)7. The marching condi-
tions for (m)} and (ums)} are obtained by requiring

h;, to satisfy

I
}{ R T =0, (4.18)
S(CE(i,n)

for all (j,n). The reader is referred to Reference [2]
for the details.

In Figure 23, numerical solutions are presented to
the shock tube problem with viscosity at a Reynolds
number of 12,000. Note that the shock is resolved in a
single mesh point, and that the contact discontinuity
is spread over only three mesh points. No flux limiters,
weighting functions, or other ad hoc parameters were
used in the calculation.

Summary

A new numerical method is being developed for
solving the Navier-Stokes equations. In this paper, the
authors’ 2-D, steady-state implicit scheme has been
generalized and extended to nonorthogonal Cartesian
grids. Calculations of a variety of flow fields have
demonstrated the ability of the scheme to accurately
resolve developing boundary layers on coarse grids. In
addition to its high accuracy, the main advantages of
the present scheme are its conceptual simplicity, rig-
orous enforcement of both the integral and differential
forms of the governing equations, and its ability to
be extended to three dimensions in a straightforward
manner. Work in progress is directed toward extend-
ing the scheme to three dimensions and developing a
time-iterative solution technique for solving the dis-
crete system of nonlinear equations. Finally, a scheme
which uses cubic expansions to respresent the discrete
primitive variables is also under development.
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Appendix

Local Constraints:
Conservation of Mass

Yo + v, =0 (A1)

2“2,0 + Vg = 0 (A.2)

2052 + 4, = 0 (A.3)
Conservation of z-Momentum

Us 0 Ugo + Ui Voo + Piro (A-4)

1 2
- .}_i;[(2u°'2 + v:,x) + é‘ (4 Uz — vx.x)] =0

2280020 + Uy + Pao) + Voo (AD)
+ V%0 + U0V, + YoaUyo = 0
2(Uo,0Vo,2 + Vo0 Yoz + Vo, Uo,) (A.6)
+2u, ;U0 + 2U, 0%, + P, =0

Conservation of y-Momentum

Yoo Vs0 + YooVos + Pon (A.T)

1 2
- E[(2vz.o + u;.x) + § (4‘”0.2 - ux.x)] =0



2(“0,0 Vy0 + Vo,oUso + Vi ux,o) (A.S)
+2v,,,0,0 + 20,00, + P11 = 0

2(2 Vo0 Yo,2 + vf,, + Po.z) + u,, V0 (AQ)

+ U Ugp + UoVoy F YoaVio = 0

General Eliminated Variables:

Vop = — Uy (A.10)
vy = —2u,, (A.11)
U, = — 29, (A.l?)
Pro = (A.13)

— Uy oUop — Yo Voo + l—(u + u,,)

1,0 0,0 0,1 V0,0 & 3,0 0,2
Doy = (A.14)

— ¥, 00 + UsoVoo + l(v + v.)

1,0 Yo,0 1,0 Vo,0 Re Ve 0,3
Do = (A.15)

Ug,0 Uz,0 — Vo,0Vo,3 — E(uf,o + uo, vx.n)

Constant-Pressure-Gradient Scheme:
Local Constraints:
Pao = VooVos — Uoolae (A.16)
1
- E(uf"’ + Uy 1) = 0

Py = 2(“0,0 Vo,2 — Yo,0 uo.z) =0 (A-17)
Prn = 2(VooUao — UooVae) = 0 (A.18)

General Scheme:
Local Constraint:

(uo,o VYo, — VYoo uo,z)

- (”o.n Y0 — YUo,0 vz,o) =0

Additional Eliminated Variables:

P20 = Voo Vo2 — Yoo tio

e 5("3,0 + 4o, vx,o)

Pr1a = 2(“0.0 Yo,2 — Vo, uo,z)

Flux Vector Components:
Conservation of Mass

T
ho.o = Ug,0

hf.o = %o
hy, = o,
h:.o = Uz

Y, = =2hY, = —2v,,
hS, = tos
hy, = vo,o
h¥,o = vl-o

hz,l = _hf.o ==Y

ko = Vs

hf.x = _2h:.o = —2u,,
h}s = v

Conservation of z-Momentum
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(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)



2
u?p,o + Poo — Egux.o (A.34)

hi, =

(A.35)

hf.o = —hg_‘ =

— Vol + Ugotro + E—(uo., —Uy)

h:,x = 2tpoty,y + Yool — Yoo Uie (A.36)
2
+ E (vg'g + 3”0,’)
hE o= —lp =
20 — _5 1,1 (A.37)
UpoUso t+ VooVoz + 5“?.0 - Eum V10
hi, = —2h], = (A.38)
_2("0,0”0,2 + Vo,0 UYo,2 — U1,0 uo,l)
he, = 2tgotos + UoolUse — VooVos (A.39)
1 1
+“3,l - Euf.o - 5“0.1”1,0
kY, = UgoVoo — L(u + vy0) (A.40)
0,0 0,0 Vo0 Re ‘Yo 1,0

%(v:,o - vo.z) (A-41)

h’z’.o = YgoUo + Yo,obro —

l(u.,,, —u,,) (A42)

y —
h Re

0,1 Vo,0 Yo,2

— Uoo U0 —

(A43)

hg.o = UgoVio + VoolUzo + Vil

(A.44)

hg.x = —2UyoUz0 — 24,0 Vo,3

2
— U, + YoV
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(A .45)

hg,z = Ugo Vo3 + Vo,oUoa — Uiola,

Conservation of y-Momentum

1
h::o = Ug,0Y,0 — E(uo.l'i"vl,o) (A..46)

£ -
hl.o = U V1o T Vool —

2
E(v,_o —v,,) (A47)

2
—R-;(u,_, —u,,) (A48)

z
ho.x ‘= Vo0 Yo,1 — Ug,o Y10 —

h:,o = U0 V30 + VoolUse + Violipe (A49)
hf,x = —2U%oUs0 — 2Vo,0 V0,2 (A50)
- u?,o + U1 Vi
h:,: = UooVoa + VoolUsa — UsoUs, (A51)
hg,o = v:o + Poo + Euu,o (A.52)
hiy = 205001,0 = UooUi0 — Vo, Uo, (A.53)
2
+ —R_e (3 Uy o + uo,,)
hi, = —hi, = (A.54)
2
— Ugo V1,0 — Vo,0U1,0 + E(Dg.o _vo,z)
hd o = 2v50¥a0 + VooVos — Uo,olae (A.55)
1 1
+v12.0 - 5"3,0 - '2"‘0.1”1,0
hf.l = —2}1:0 = (A56)
—2(UgoVao + VooUzo + VigUye)
K, = 1 hi, = A
03 — —5 11 = ( 57)
1 2
Yoo Uz0 + Voolos + 5‘!11.0 - '2"“0.1 V10
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Figure 13. Comparison of numerical results from the
generalized scheme and the constant-pressure-gradient
scheme. Channel flow at Re = 2000. z =1, 5, 9.
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Figure 17. Local coordinate system for flux evalua-
tion.
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Figure 18 a. Computational grid for a converging
channel. Ramp angle = 10 degrees. 32 x 8 grid.
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Figure 18 b. Developing flow in a channel with a
converging section. Re = 100.
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Figure 19 a. Computational grid for a channel with a
15 degree ramp. 32 x 10 grid.
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Figure 19 b. Developing flow in a channel with a 15
degree ramp. Re = 200.
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Figur= 20 a. Computational grid for a diverging chan-
nel. Bamp angle = 5 degrees. 32 x 8 grid.
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Figure 20 b. Developing flow in a diverging channel
with 1 5 degree ramp. Re = 100.
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Figure 21. Comparison between u,, and the first y
derivative of the Blasius solution. = = .805. 110 x 28
grid. Re = 100,000.
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Figure 22. Comparison between 2 u,, and the second
y derivative of the Blasius solution. z = .805. 110 x
28 grid. Re = 100,000.
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Figure 23. Navier-Stokes solution to the shock tube
problem with viscosity. Re = 12,000.
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