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THE SPACE-TIME SOLUTION ELEMENT METHOD -

A NEW NUMERICAL APPROACH FOR THE NAVIER-STOKES EQUATIONS

James R. Scott* and Sin-Chung Chang_
NASA Lewis Research Center

Cleveland, Ohio

Abstract

This paper is one of a series of papers describing

the development of a new numerical method for the

Navier-Stokes equations. Unlike conventional numeri-
cal methods, the current method concentrates on the

discrete simulation of both the integral and differen-
tial forms of the Navier-Stokes equations. Conserva-

tion of mass, momentum, and energy in space-time is

explicitly provided for through a rigorous enforcement

of both the integral and differential forms of the gov-

erning conservation laws. Using local polynomial ex-

pausions to represent the discrete primitive variables

on each cell, fluxes at cell interfaces are evaluated and

balanced using exact functional expressions. No inter-

polation or flux limiters are required. Because of the

generality of the current method, it applies equally

to the steady and unsteady Navier-Stokes equations.

In this paper, we generalize and extend the authors'

2-D, steady-state implicit scheme. A general closure
methodology is presented so that an terms up through

a given order in the local expansions may be retained.
The scheme is also extended to nonorthogonal Carte-

sian grids. Numerous flow fields are computed and

results are compared with known solutions. The high

accuracy of the scheme is demonstrated through its

ability to accurately resolve developing boundary lay-

ers on coarse grids. Finally, we discuss applications
of the current method to the unsteady Navier-Stokes

equations.
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I. Introduction

This paper is concerned with the continued devel-

opment of a new numerical method_ for solving the
Navier-Stokes equations. 1-s The distinguishing fea-
tures of the current method have been previously de-

scribed, and may be summarized as follows: The

current method (i) provides for a unified treatment

of space and time; (ii) represents the local discrete

primitive variables through Taylor series expansions
that identically satisfy both the integral and differ-

ential forms of the Navier-Stokes equations; (iii) bal-
ances fluxes across cell interfaces as an integral part

of the numerical formulation; (iv) evaluates fluxes at

cell boundaries using exact functional expressions (to

the order of accuracy of the local expansions); and (v)

solves explicitly for the unknown derivatives of the lo-

cal discrete primitive variables.
Scott and Chang 1 developed a Newton's method

implicit scheme for the two-dimensional, steady

Navier-Stokes equations. Calculations of laminar flow
in a channel showed that the developing boundary

layer could be accurately resolved using as few as six

cells per channel width. Scott s extended the internal
flow scheme to external flows, and showed that the

boundary layer on a finite flat plate could be accu-

rately resolved using only ten cells from the wall to
the free stream. Chang _ developed an explicit scheme

for the one-dimensional, unsteady Navier-Stokes equa-

tious, and presented numerical results for the shock

tube problem with viscosity. It was shown that the
shock and contact discontinuities could be crisply re-

solved without the use of flux limiters or weighting

functions.

In this paper we are concerned with the fur-

ther development of the steady-state flux conserva-

tion scheme first presented in Reference [1]. Here we

_Known most completely as The Space-Time Conser-
vation and Solution Element Method, and frequently

abbreviated as the STS Method, Conservation Ele-

ment Method, Solution Element Method, or the CE-
SE Method.



generalize the scheme by (i) providing a general clo-

sure methodology so that all discrete unknowns of the

same order in the local expansions may always be re-

tained and (ii) by extending the scheme to nonorthog-

onal Cartesian _ids. Calculations of a variety of flow

fields indicate that developing laminar boundary lay-

ers can be accurately resolved on grids which are much

coarser than those employed by conventional numeri-
cal methods.

In the next section we begin by considering the

general problem of steady-state flux conservation in
two space dimensions. Following that, we summarize

the steady-state flux conservation scheme as ozi&dnally

presented in [I] and [3]. Then we show how the scheme

may be generalized and extended to general flow fields

and nonozthogonal _ids. Finally, we discuss applica-

tions of the present approach to the unsteady Navier-

Stokes equations.

II. Steady-State Flux Conservation
in Two Svaee Dimensions

We begin by considering the system of integral
conservation laws

_s hm'_-- 0 (2.1)
(v)

in E2, where l_m, m - I,...,Mis a steady-stateflux

densityvector which isa function of M intermediate

(primitive)variables. S(V) is an orientablesurface

inclosingan arbitraryvolume V in two-dimensional

space,and _ssisthe outward area vectorwhich isnor-

mal to S(V). Equation (2.1)isthe governing equation

forsteady-stateflux conservationin two space dimen-

sions.

Suppose that (2.1)holds for any V in a fixed

domain 2) in E2, and that each l_m variessmoothly

throughout 2). Then one obtains,by way ofthe diver-

gence theorem, the differentialconservationlaw

_._. = o, (2.2)

where V - (_, _). If information about the be-

havior of the hm (or their intermediate variables) on

the boundary B(2)) of 2) is also known, then equa-

tion (2.2), along with the known boundary informa-

tion, represents a steady-state boundary value prob-
lem. We will subsequently refer to equation (2.2) and

its associated boundary conditions as boundary value

problem (2.2).
Suppose that 2) is the rectangular region shown

in Figure 1, and that h_, m -- 1,...,M is the exact

solutionto boundary valueproblem (2.2).In addition,

leteac_ hm be analyticthroughout 2). (From here on,

we dzcp the m subscriptfor clarity.)Then near any

(Xo,No) in 2), _tm de..f _ = (h=, hy ) may be expressed by

the uniformly convergent Taylor series expansions s

h'(x, N) = h-(,0, No)+ _---_(_o,No)(_ - _.)

_h s .

+ -_-y (z.,yo) (Y-- No) + ... (2.3)

k__oLaz"-kay ' "(_--- _)! .

h'(_,y) = h'(_o,N0)+ _--'(_.,yo)(_-_o)

oqh¥ -Xo '

+ -_y( No) (Y-- No) + --- (2.4)

oo . _hy (N-No)_

If the infinite series (2.3) - (2.4) is truncated at some

point,then itbecomes an localapproximation to the
exact solutionh.

Let 2) be discretisedby the rectangular mesh

shown in Figure 2, and let (zi,Nj) denote the center

point of each cell. Let (h2)ij denote the order-two

Taylor series expansion of h about the point (zi, yj).
Then

= (2.5)(h2),z =

and

(h_),_= (2.6)

2 " [ e'hy ] (__ _).-k (y )_=
m:O k:O

As an apprommation to h on the (i,j)th cell, it

can b_ shown that _ the error of (_t:)_j is bounded

by -_[max(Az, AN)]s, where M_j is a localbound

on the'.third derivativesof h. Thus, {(h_)_j,i =

1,...,]_,j- 1,...,N_}isa discreteapproximation to

the expectsolutionh on 2).

The localTaylor seriesexpansion (h_)_j isa so-

lutionof the differentialconservationlaw (2.2),since

itsdivergence is identicallyzero.s This followsfrom

2



the fact that (2.3) - (2.4) also satisfies equation (2.2).

Since (h2)_j is a second-order polynomial that pro-

vides the exact values of h and its derivatives through

order two at the point (zi,yj), it will be referred to as

the ez_ct second-order solution of equation (2.2).
Since the derivatives of h are well-defined

throughout 9, we maynow consider the approzimate
second-order solution h2 to boundary value problem

(2.2), where

_2 d,__/_= (h.h,) (2.7)

with

h*(x,u;i,j) _&1 (2.8)

AZ 3 lAY 2 hy+ L-T- o,"+ ho',+ h:,o]

s(_) =

Ay 3
h:, - _/--h:,

12 ' L 4 '

(2.12)

Az
h*_o + h_ ]

t 0,0

J (R--S)- (2.13)

A_3 [AU2 AUh_ + hL]t2 h_,° - A_ t-'T-nL 2

h:.o + h_'o(_-_,) + hoL(y- u_)+

h_.o(X- _,)_ + hL(, - ,_)(u- yi) + h:.,(u - ui)_

and

h.'(_,u; i,j) dg (2.9)

h_.o+ hL(x- _,) + hL(y- ui)+

hL(, _ _,)2 + nL(, - _,)(y- _) + hL(y- u_)_.

The coefficients h_,o, h_,o, etc., are the numerical ana-

logues of hZ(zi,yj), -_'(zl,yj), etc., and are un-

knowns that are to be determined (the i, j subscripts

have been omitted for clarity). Generally, the un-
known coefficients above are expressed in terms of one
or more intermediate variables. This will become clear

later, but need not concern us here.

To faithfully represent h throughout _), the dis-

crete approximation ((h)ij,i = 1 .... ,Ni,j = 1, ...,Nj}

should: (i) satisfy (2.1) on each cell and each union of

cells in _D; (ii) have zero divergence; and (iii) satisfy

the boundary conditions on B(_D).

Let the vertices of the (i, j)th ceil be denoted by

P,Q,R, and S as shown in Figure 3. Then (i) above

requires that

/_ __._ = 0, (2.1o)
QR$_,i

where we have taken the integration to be positive in

the counterclockwise sense. Let [J(P---"_)]ij denote the

flux of _ through the line segment P--Q_j, and similarly

for J(Q'R), J(_), and J(S-'P). Then, omitting the

i, j subscripts, one obtains the flux expressions

s(_---_)= (2.11)

J(S-P) = (2.14)

[,,:-i-if-_:' + _ _:o+ +, t 4 . -Y nL

Equation (2.10) requires that the fluxes satisfy

J(_---_)+ s(_-_) + J(_-_) + J(_--P)- o. (2.1s)

Thus, one obtains the fluz conservation constraint

h_o + h_,, = O. (2.16)

In view of (2.10), each cell in the mesh is called an

conservation element. Since h may be discontinuous

across cell interfaces, each cell is also called an solution
element. 4

Imposing condition (2.16), one obtains from

(2.11) - (2.14) the following normalized flux expres-
sions:

s(_-_) _ (2.17)
Az

Az _ Ay 2 h_ Ay
i--Y_,°+ _ °." 2 hL + _o

s(_-_)
Ay

At/_ h_ Az 2 Az h_ ° + ho_,o

(2.18)

s(_)
Az

Az _
h_ ° + Ay2

I"-2- ' --_ h_'z ÷ _ h_,o + h_o,o

(2.19)



J(_P-) -- (2.20)
Ay

-iE,,. _ + -T-^,., + -Eh_., + h:.o.

Equations (2.16) - (2.20) are sufficient to ensure

that (2.1) is satisfied on each cell. To ensure that (2.1)

is satisfied globally, it is necessary that fluxes be con-
served across cell interfaces.

Let the (i,])th conservation dement be denoted

by CE(i,j). Consider the vertical interface between

CE(i,j) and CE(i + 1,j). The flux leaving CE(i,j)

through this interface is given by [J(S"P)]ij. On the

other hand, the flux leaving CE(i+ 1,j) through this

same interface is given by [J((_)]/+ld. Flux conser-

vation acroes the interface requires the sum of the two

to be zero. Thus, one obtains the interface condition

(2.24) ensure the satisfaction of a necessary condition
for the second-order discrete unknowns to converge to

their zespective analytical counterparts.

We should also emphasize that (2.23) - (2.24) are

local conditions, as is the first-order constraint (2.16).

Thus, a high-order-accurate simulation of the differ-

ential conservation law is possible without stringing

together more and more mesh points.
The above approach provides the conceptual

framework for the discrete simulation of steady-state

flux conservation in two space dimensions. We now
demor, strate the app]icabi]ity of the framework to the

Navier-Stokes equations.

HI. Conservation of Mass and Momentum

in Incompreasible, Viscous Flow

A. Discrete Flux Vectors

[Ay2h. _z_., _z = h= ] (2.21)-_- ..2 + -_--h,.o + -_-h,.o + .,o ,_

The governing equations for the conservation of

mass and momentum in a steady, two-dimensional, in-

compressible flow field can be written s

[AY2h" _-_h_,. AZh= h=]- L- o,=+ ,,0+ °.o = o
i+lj

Similarly, across horizontal interfaces, one obtains the
interface condition

[ Az_ AY'h, AYh_o+h_..l (2.22 )"_ "hL + --C 0,_ 2 .

_ + =
ij+l

Equations (2.16) - (2.22) above ensure that the

integral form of the governing conservation law will be

satisfied throughout _).

Having provided for the satisfaction of the more

fundamental integral conservation law, we may now
turn our attention to the differential conservation law

(2.2). Requiring h to have zero divergence on each

conservation element, one obtains the two second-
order constraints

2h_,o + h_._ - 0 (2.23)

2hi. 2 + h_., = O. (2.24)

By virtue of equations (2.23) - (2.24), the approximate

second-order solution _ satisfies (2._ identically, as
does the exact second-order solution h2. In Reference

[3] it was rigorously proved that conditions (2.23) -

8 2 8
_(u + p - ,-_)+ _(,,,,- ,-,,)= o

a--(uv - I'._)+ a 2az _(v + p- _,,)= o

where

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

h.. d'-_ = 0 (3.7)
(v)

L.-d-7= 0 (3.s)
(v)

2 8u 8v

_. = -i-_(2 _ _)

i .Ou Ov

2 c% 8u

"'= 3-'_':(2oy _)"

The independent variables z and y are horizontal and

vertical Cartesian coordinates, respectively, and u and

denote their respective velocity components, p de-

notes the static pressure, and ReL is the Reynolds

number, _L_._. where the viscosity p and density P
are a_umed to be constant. L and Uoo refer to some

refere_,ce length and velocity, respectively.

T_e integral form of (3.1) - (3.3) is given by



_,,,,. _ = 0
(v)

where _u, hxu, and hYu are defined by

(3.9)

hu a'J (u,v) (3.10)

hxu de/ (u2 + p _ r== ,uv - r_) (3.11)

hYu de__/(uv - r_, v2+ p - ru,). (3.12)

Equations (3.7) - (3.9) are a coupled system of in-

tegral conservation laws whereby mass and momentum
are conserved by way of the primitive (intermediate)

variables u, _, and p. The system of equations (3.7) -

(3.9) is of the same form as system (2.1).
Corresponding to the continuous flux vectors de-

fined by (3.10) - (3.1_, we introduce the second-order
discrete flux vectors h u, .hxu, and hyu, where

_hu d_ (u,r) (3.13)

h_xu _,I (92+ P _ [==, u v - _=,) (3.14)

hyu _ (9_ - r=y, v2+ p- [,y) (3.15)

and

__=== 3-_(20_1a= - O_lOy) (3.16)

1

_=, - -_(OulOy + O_laz) (3.17)

2

_,v = 3Re_ (2/)r/Oy - oqu/oq=). (3.18)

By definition,the discreteprimitivevariables9,v,and

p are then second-order expansions which may be

written

u(z,y;i,j) ae__/ (3.19)

.o,o + u.,.(=- =,) + u0.,(y-yi)+

U_.o(=- =,)_ + u,.,(= - =,)(y - _i) + Uo,,Cy-y_)*

de.f
_(z,y;i,j) = (3.20)

,_o,0+ ,_,,0(=-=,) + ,_=.,(y-yj)+

_,,.o(=- z+)2 + ,_,.,(=- =,)(y - yi) + "o.=(y- yJ)=

v(=,y;i,j) d# (3.21)

po.°+ P,,.(= - =,) + po.,(y - _i)+

P,.o(=- =,)" + v,.,(= - =,)(y - yi) + Po.,(y- _i)_-

For clarity, the i,j subscripts have been omitted from

the discrete Taylor coefficients Uo.o, Vo.0, Po.0, etc.
These coefllcients are the unknowns to be solved for.

Each of the discrete flux vectors /_'_r, _hxu, and

.hY_r may be expressed in the form of (2.7) - (2.9),

, ho,0, etc., are functions of Uo.o, Vo.°, Po.o,where ho=0,

U_,o, U_.o, P_.o, etc. For example, in reference to /" =

_hx_, ho=.ois the constant term of the expression u2-1-

p _==, which is given by 2 2. - %,.+Po,o- _ (2U,,o-Vo.=).

In the Appendix, we present the functional expressions
for each component of the discrete flux vectors h u,

L_, =d _L_.

B. Constant-Pressure-Gradient Flows

1. L.aminar Flow in a Straight Channel

Consider the channel geometry and associated

mesh shown in Figure 4. On each solution element,

we represent u, v, and p through the second-order ex-

pansions (3.19) - (3.21). There are 18 discrete un-

knowns on each cell. Since there are 18NiNj unknowns

altogether, 18NiN_ conditions are required to have
a closed system of equations. Thus, for the present

equilibrium-type boundary value problem, closing the

system requires a global matching of numbers of con-
ditions and unknowns.

The conditions to be imposed are obtained from
Section II. For each of the three conservation laws

(3.1) - (3.3), we must impose the local constraints

(2.16),(2.23)and (2.24) on each conservationelement.

This provides 9NINy conditions.(See equations (A.I)

- (A.9) in the Appendix.) The interfaceconditions

(2.21)and (2.22)must also be satisfied.This pro-

vides an additional3N#(N_ - 1) + 3N_(N# - 1) =

6NiNj - 3Ni - 3Nj conditions.

Another 4N¢-F3Nj conditions are obtained by way
of boundary conditions. At the channel inlet, we spec-

ify the two components of velocity, and at the exit we

specify the pressure. Along the upper and lower walls

we require that there be zero mass flux. In addition,

we impose the no slip condition for u at the midpoint
of the wall face of each cell.

For laminar flow in a straight channel, it is well

known that the streamwise pressure gradient is nearly

constant, except in a short entrance region. Thus,



_ 0 and -.v.._ _ 0 throughout most of the channel.
It is reasonable then to make the simplifying assump-

tion that p_,, = 0 and p_,l - 0 on each cell. This

provides an additional 2N_N i conditions.
The number of conditions still needed to close the

system is then Ni(Nj - 1). Since this is the num-
ber of horizontal interfaces in the mesh, there is an

additional degree of freedom in specifying horizontal

interface conditions. We choose to close the system

by requiring the u velocity to be continuous st the

midpoint of _ horizontal interface.

The discrete boundary value problem outlined

above is s coupled system of second-order polynomial

equations in the unknowns u,.o, v,.,, p,.., etc. How-

ever, six of the higher-order unknowns can be eas-
ily eliminated from the system using the local con-

straints (A.1) - (A.9). (See equations (A.10) - (A.15).)
The total number of unknowns that must be explicitly

solved for is thus reduced from 16N_Nj to IONINj.

Of the equations that remain, 3NiNj represent local

conditions, and the remaining 7NiNj represent inter-
face and boundary conditions. Numerical solutions to

the nonlinear system of equations may be obtained by
Newton's method. 1 The Jscobian matrix has the form

shown in Figure 5.

In Figures 6 and 7 we present numerical re-
suits from calculations performed at Reynolds num-

bers (based on channel height h) of 100 and 2000.
The specified inlet velocity profile for each case is

ui = _ [1 -[2 (y-½)] s] (following Dill and HimansuS).
Along with the numerical results, we also show the in-

let profile and fully developed analytical solution. The

Re = 100 results were obtained from the 39 x 6 grid

shown in Figure 4. Due to the thinner boundary layer,
the Re = 2000 results were obtained from a 39 x 10

mesh. For ea_ case, Newton's method converged to s
maximum residual error of 10 -1° in four and five iter-

ations, respectively (starting from uniform flow). The

corresponding CPU times on a Cray YMP were 1.1
and 3.5 seconds.

2. High-Reynolds-Number Flow

Around a Finite Flat Plate

In Figure 8 we show a typical mesh for calculation

of the thin airfoil boundary layer problem. The airfoil

lies on the z-axis between 0 and 1, and the mesh in-

dudes both an upstream and wake region. The grid

spacing is exponentially stretched in the y direction,

and the spacing may also be nonuniform in the z di-
rection.

As in the channel flow problem, there are a total of

18 NiNj unknowns to be solved for. The methodology

for clc_dng the system here closely follows that given

in the previous section.
I_.t N, denote the number of solution elements

between the airfoil leading and trailing edges. Then

(2.16) and (2.21) - (2.24) provide 9NiNj + 3Nj(Ni -

1) + 3N_( Nj - 1) - 3N, -- 15 NiNj - 3Ni - 3Nj - 3N,
conditions.

Boundary conditions provide an additional 4Ni +

3Nj + 4N, conditions. For each cell adjacent to the

airfoil, we require the mass flux through the wall face,

and the u velocity at the midpoint of the wall face, to

be zero. At the upstream boundary, we specify the ve-

locity, and downstream we specify the pressure. Along

the free-stream boundary cells, we specify zero y gradi-

ent conditions for u and v. Imposing the zero pressure

gradient condition, we set P_.o = 0 and Px.x = 0 on

each cell, for an additional 2NiNj condtions. Finally,

an additional NI(Nj - 1) - N, conditions are obtained
by requiring the u velocity to be continuous at the

midpoint of horizontal cell interfaces.

In Figure 9 we compare the predicted boundary

layer profile with the Blasius solution st four differ-

ent locations along the airfoil. The Reynolds number

based on a/rfoil chord is 100,000. The results were ob-

tained from an 81 x 20 grid with uniform z spacing and

nonuniform y spacing with 12.5% exponential stretch-

ing. Only ten cells are used across the boundary layer,
since the flow field is computed on each side of the air-

foil. The y spacing st the wall was Ayw = .0015, and
the free stream boundaries were located at y = ±.027.

The CPU time required on a Cray YMP was 50.7 sec-

onds (nine Newton iterations), with uniform flow as

the strutting solution.
F:_ure 10 compares the predicted v velocity at z

= .805 with the Blasius v velocity. The differences

that appear near the edge of the boundary layer are

believed to be due to finite afrfoil effects [7, p. 137].

I_ Figure 11 we show the pressure coefficient in

the tre.iling edge region. The results were computed on

an 110 x 22 grid that was refined near the trailing edge

with exponential z stretching. The z spacing st the

trailin._ edge was .007. Our results show the pressure
coefficient to have s minimum value of- .014, which

agrees well with the Reduced Navier-Stokes (RNS) cal-
culations of Srinivasanand Rubin.6

C. General Flow Fields

1. Generalized Closure Procedure

For a generaltwo-dimensionalproblem with an N_

x Nj nmsh, the localexpansions (3.19)-(3.21)provide

a totalof 18NiNj unknowns. Thus, 18NiNj condi-

tionsare always requiredtoclosethe discretesystem of



equations. In Section I[.B., we imposed 16N_Nj gen-
eral conditions, and then added the 2N_Nj special con-

ditions Lv2,o]ij = 0, [P_,l]ij = 0. Since the general con-

ditions already ensure that the integral and differential

forms of the governing conservation laws are fully sat-

isfied, it will be necessary to introduce higher-order
conditions to close the system. Such higher-order con-

ditions can be imposed either on the discrete primitive

variables, or on the discrete flux vectors. Due to the
more fundamental nature of the flux vectors, the sec-

ond alternative is generally preferred over the first.
We are thus led to consider the first-order dipole

moment interface conditions

and

2(Z -- Zi)(_i,j -- .h/d+1)" _ = 0 (3.22)

(y-yj)(hij-hi+xj)'ds = 0, (3.23)
1

where Zl and z2 denote the endpoints of an horizon-

tal interface between CE(i, j) and CE(i, j + 1), and

Yx and Y2 denote the endpoints of an vertical inter-

face between CE(i,j) and CE(i+ 1,j). Since aerody-
namic flow fields are generally dominated by gradients

in the cross-flow direction, equation (3.22) will usually

be preferred over equation (3.23). However, both con-

ditions are fully justifiable, since the exact solution

satisfies both equations.

For a rectangular grid, equations (3.22) and (3.23)
become

AYh ]1 _2 t'ffiJij

and

. 1 - [h" 1

= 0 (3.24)

= o,(3.25)

respectively.
We now consider again the channel and fiat plate

flow fields. For channel flow, we impose (3.24) for

_h = .hx_ and h" = _r_, thereby obtaining an addi-

tional 2N_(Nj-1) conditions. The final 2N_ conditions

may be obtained by imposing an additional boundary

condition on the upper and lower walls. From the y-

momentum equation one obtains the pressure bound-

ary condition s

0p_ 1 __02 (3.26)
ay Re ay_'

which may be imposed at the centerpoint ofthe wall

face of each cell.(Equation (3.26)isnot a boundary

condition in the usual sense, but isinstead a differ-

entialequation to be satisfiedon a wall parallelto

the z-axis. Even though we already require the y-

momentum equation to be satisfiedidenticallyon each

cell,equation (3.26)stillrepresentsan independent

conditionwhich may be imposed along the wall.)

For the fiatplateproblem, imposing (3.24)forthe

z- and y-momentum equations provides2Ni(Nj - 1)-

2]7, conditions,where N, isthe number of cellsbe-

tween the leadingand trailingedges. Applying (3.26)

toeach sideofthe airfoilgives2N, conditions,and im-

posing the zero pressuregradient condition as a free-

stream boundary conditionprovides the final2Ni con-

ditions.

In general, conditions (3.22) - (3.23),together

with additionalboundary conditions,can be used to

closethe discretesystem ofequations for an arbitrary

flow field. By introducing such higher-order condi-

tions,the system isnot only closed,but additional

physicsare brought into the scheme. Thus, itispos-

sibleto adapt one'sparticularchoiceof closureto the

physicsof a specificflow field.

In the generalcase,there are an additional2NiNj
unknowns to be solved for. However, the sizeof the

system to be solved is stillION_Nj, as in the con-

stant-pressure-gradientscheme. The reason is that,

in the general case,the two new unknowns p2,oand

p_,1can be explicitlyeliminatedfrom the system. (See

equations (A.20) - (A.21).) Thus, a total of 8N_Nj

unknowns are eliminated,and ION_N.i stillremain.

Application of the generalizedscheme described

above to the channel flow problems of Figures 6 and

7 reproduces the earlierresults. The comparison is

shown in Figures12 - 13.

For flatplateflow, the neglected terms P2,oand

P.a become significantfor Reynolds numbers leas

than about 7500. Figures 14 and 15 compare re-
sults from the two schemes at Reynolds numbers

of 7500 and 1000. As Re decreases,the boundary

layerbecomes much thickerand the pressure gradi-

ent variessignificantlythroughout the flow field.At

the lower Reynolds number, the improved accuracy of

the general scheme over the constant-pressure-gradient

scheme is readily apparent.

2. Extension to Nonorthogonal

Cartesian Grids

Extension of the generalized scheme presented

above to nonorthogonal grids can be accomplished in a

straightforward manner. Consider the nonorthogonal

mesh shown in Figure 16. We denote the mesh points



by {(z,j,ga),i = o,..., _v,y = o,..., _H _d th_ cen-
ter points by {(zc/j,yc,j),i = 1,...,Nd,] = I,..., Nj),

where z¢_j Je__/(zi-Id-t + zdj-t + zij + zi-Id)/4

and Y©ij _ (_-1j-1 + Y/j-I + _j + g-lj)/4. On

each solution element, the discrete flux vectors and

primitive variables are expanded about the cell center

(z.+_,y_).
Since we require h_, .hx_, and _r_ to be identical

solutions of the differential conservation law (2.2), Io-

cal flux conservation on each CE(i, ]) is assured. This

follows f_m the divergence theorem. Consequently,

to guarantee global flux conservation, we need only
ensure that fluxes are conserved acrom the nonorthog-

onal cell interfaces. This in turn requires that the nor-

realized flux expressions (2.17) - (2.20) be generalized

to account for the nonorthogonality of the mesh.

The generalised fluxes are derived most easily us-

ing a local coordinate system relative to the cell center

(see Figure 17). The cell vertices P, Q, R, S, relative to

(z¢ij,Y¢ij), ate given by (--_,._), (_..._,._.t),

(-_'_,--_-_2 )' ,'_2 '- _2 -_ where

J'Y (3.27a)
2 -- Xij -- Xcid

A_ _,_/. (3.27b)
-_- - y_j - y¢_j

2 = Zeij --Zi--l_ (3.27C)

Ayq <leJ
-- = Yi-td- t/cij (3.27d)2

Az, _ (3.27e)
T -- ZcI_/ -- Zi-1_-1

Ayr Jel
T = Yei,j -- t/i-t,j-I (3.27f)

T = Zi_-t- Z¢i,j (3.27g)

At�, _ t/ctj - t/ij-l. (3.27h)
2

We assume that -_J:, %-_, "_, etc., are all positive.

For the flux through an PQ or RS interface, let

C.-_,k = hy - m h__t, _ (3.28)n--k,k

for n = 0,1, 2, k = 0, ..., n,

where m will be defined shortly. Then

y(_-0)
a_._ + ____

2 2

--" (_0,0 "_" 6_0,1 _- 62 Co,2 (3.29)

"_-A 1 (Cl,o + _r8Co,1 "1t" 6C1,1 "_-2Tn6Co,2)

+ A s (C_,o + m Cl,1 + m2Co,2)

m_

where

(__yp Ayq _ / ( Azp Azf _ (3.29a)2 _,-'T + 2 "

6 de__/ At/__+ + m Azf (3.29b)
2 2

1 (A_z_ ___,,,_ (3.29c)AI _ _" 2 2"

and

A_ 2 2 + ( )2 (3.29d)

3(_--S)

2 -- 2

= G_0,0 q" _Co,1 "_ 6 2 Co,2 (3.30)

"1" A1 (_1,0 + m_0,1 + _1,1 + 2_0,2)

"1" A2 (C2,o "l- m _1,1 "P m2Co,2)

where

_ ( 2 )/( + 2 " (3.30a)

AZ r
6 _-.-I Ay, + m- (3.30b)

2 2

A _ d+,l 1 (____, __z,._ (3.30c)= 2"2 2"

sad

AS ___/1 Az, 2 Az, Az, Az, 2
[(-"2") 2 2 $" (T) ] (3.30d)

_fhe normalized first-order dipole moment flux

through an PQ interface is

2 2 J dp

(3.31)

A 1 (Co,o + _0,1 4" _2 Co,2)

+ A 2 (C1,o + mCo, t + 6C1,1 + 2m6Co,2)

+ A_(C=,o+ _ c_,_ + m_Co,=)

where



A3 deJ= (3.31a)

- -tT) T+T,T ,4

and allother parameters ate defined as in (3.29a)-

(3.29d). Similarly, the normalized first-order dipole
moment flux through an _ interface is

a(_) 1
_--Z._-, =

2 " 2 Jdp

(3.32)

A_(Co,o+ aCo,_+ _2Co,2)

+ A2 (Cl,o + m C0,1 + 6 C1,1 + 2 m 6 C0,2)

+ Aa (C2,0 + m Cl,l + m2C0,2)

where

A 3 d'=] (3.32a)

1 .Az,,3 (Az,_2Az, A_,,Az,,2 (__)3],[(T ) -'T" T + TiT ) -

and all other parameters are defined as in (3.30a) -

(3 .SOd).

For the flux through an Q"R or S-'P interface, let

= -- m hn_k, kC,_-k,k h_-k,k _ (3.33)

for n = 0,1, 2, k = 0, ..., n.

Then similar to the above, we have

J(Q-R) = (70,0+ a V_,o+ 62C2,o (3.34)
__._ + __1_

2 2

+ A1 ((70,1 + m C1,0 + 6 C1,1 + 2 m 6 C2,0)

+ A2 (Co,. + m C1,1 + m2C2,0)

where

a.] (_z_, Azq _ AyqI" = , 2 2 )/( +T" (3.34a)

and

6 de! Az,. Ay,. (3.34b)
= -T + mT

1 (.___ ._) (3.34c)41 '_'J_

= 3 2 2 + (3.34d)

J(S-P) = (70,0 + 6 Ci,o + 62 C2,o (3.35)
__._L+ A_.

2 2

+ A1 (Co,1 + m Cl,o + 6 C1,1 + 2,- 6 C2,o)

+ A2 (Co,_ + me1,1 + m2C2,o)

where

de/ (Axe Az. I / {Aye _Y' ) (3.35a)m = , 2 _'"T +-

6 ae! _'o Aye (3.35b)
= 2 +r.--_-

= _'2

and

A2'LJ

The normalized first-order dipole moment flux

through an _ interface is

--_2_9--Y-'+(-_-) 2] (3.35d)

j(___)] =
2 2 d_

4 1 (C0,0 Jr 6C1,0 Jr 6 2C2,0)

-_- 4 2 (C0,1 -t- 711C1, 0 Jr 6C1,1 Jr 2w16C2,0)

Jr A3 (Co,2 Jr me1,1 Jr m 2 C2,0)

(3.37)

A1 (Co,0 Jr 6Cl,o Jr 6 2 C2,o)

Jr A2 (Co,1 Jr mCl,o Jr 6C1,1 Jr 2_N6(72,o)

+ 4 _(Co,,.+ m C1,_+ m_C2,o)

where

A a %/ (3.36a)

and the remaining parameters are defined by (3.34a) -

(3.34d).

Finally, the normalized first-order dipole moment

flux through an S--P interface is

(3.36)



where

_3 de=/ (3.37a)

and the remaining parameters are defined by (3.35a) -

(3.35d).

To complete the nonorthogonal formulation, one

must modify the p_easure boundary condition (3.26)
to account for any variation in the wall slope. The re-

maining boundary conditions require no special treat-
ment.

In Figm_ 18 - 20 we consider channel flow with

a converging or diverging section. For each case, the

ramp length is one channel height, and the inlet ve-

locity is ui = _ [I - [2(y- ½)]6]. The ramp angles
for the three cases are 10, 15, and 5 degrees, respec-

tively. In Figures 18 b. and 20 b., we consider flow at

a Reynolds number of 100. The calculations were run

on the 32 x 8 grids shown in Figures 18 a. and 20 a.

The two cases converged in six and eight Newton itera-
tions, respectively. For both cases, the results indicate

that the flow becomes fully developed by the end of

the channel. In Figure 19 b., results are presented for
flow at a Reynolds number of 200. The calculations

were performed on the 32 x 10 grid shown in Figure 19

a. For this nonsymmetrical flow at a higher Reynolds
number, Newton's method required ten iterations to

converge (11.0 seconds on a Cray YMP). Unlike the
results in Figm_ 18 b. and 20 b., the flow does not be-

come fully developed by the end of the channel. This

is consistent with the theory for developing laminar

flow in a channel [7, p. 186].

A similar calculation to the above, using a general

coordinates STS implicit scheme, has been carried out

by Dill and Himansu. s

D. Accuracy of Derivatives

The numerical results presented thus far have
demonstrated that the current method can resolve de-

veloping boundary layers on coarse grids. This clearly

indicates that the discrete derivatives, st least through
some order, are being obtained accurately. The accu-

racy of the discrete derivatives is a current research

topic, and will be discussed in detail in a future paper.

Our experience to date indicates that the accuracy

of the first-order derivatives is in general very good.

On the other hand, the accuracy of the second-order

derivatives varies considerably, and appears to depend
on a number of factors.

As a model problem for estimating the accuracy
of the derivatives, we consider the flow field around a

finite fiat plate. The Blasius similarity solution pro-

vides the first-order asymptotic solution to the Navier-

Stoke_ equations which is valid near the wall and away
from the leading and trailing edges. 9,1° Thus, at very

high Reynolds numbers, the Blasins solution can be

used to obtain analytical values for the derivatives of
U and _.

Ill Figure 22, we compare the predicted _ (i.e.,

u0,1) with the Blasius a__-_. There is in general very

good agreement between the two. (The numerical is-

sues involved in obtaining accurate derivatives of the
Blasius solution are addressed in a paper which is cur-

rently being written. II) The large value of _ near the
wall is aleo evident.

Figure 23 compares the predicted _ (i.e., 2 UO,2)

with the Blasius e2u
_-T. Although not as accurate as uo.l,

the relative error of uo,2 is of the order of 10 -3 at a

number of grid points. Note that the magnitude of

is gre_ter than 103 throughout most of the boundary

layer, and obtains a maximum value which is greater
than 104 .

IV. Space-Time Flux Conservation for the

Unsteady Navier-Stokes Equations

The discrete formulation presented above for

the steady, incompressible Navier-Stokes equations

is designed and constructed to simulate steady-state

boundary value problems which are of equilibrium

type. However, when considering the unsteady Navier-
Stoke_ equations, one is confronted with an initial-

boundary value problem which is of a marching type.
Thus, the problem of space-time flux conservation es-

sentiaJly reduces to how to march the discrete solution

forward in time in such a way that space-time flux

conservation is always satisfied. In general, one may

advan,:e the solution in an explicit or implicit man-

ner. In either case, the focus of the current method

is to _nsure that fluxes axe conserved in space-time,

throu_ih the use of Taylor series expansions that iden-

tically satisfy the governing integral and differential
conservation laws.

As a model problem for the unsteady Navier-
Stokes equations, Chang 2 considered the shock tube

problem with viscosity. The governing equations are

the 1-1D, unsteady Navier-Stokes equations. Let p, v,

p, and -f be the mass density, velocity, pressure, and

constant specific heat ratio, respectively. Let

ul = p (4.1)

10



u2 = pv (4.2)

us = P/(7 - 1) + (1/2)pv 2 (4.3)

fl = u2 (4.4)

f2 = (_ - 1).3+ (1/2)(3- v) (-2)21-1 (4.5)

f3 -- 7 u2 us/ul -- (1/2)(7 -- 1)(u2)al(ul) 2 (4.6)

and let

il = 0 (4.7)

4 u2 (4.8)
/2 - 3Re Ul

where Re and Pr denote the Reynolds number and

Prandtl number, respectively. Then the governing

equations may be written 2

Our. + af,. a2/" = O, m=I,2,3, (4.10)
az Oz 2

or

¢.h,,_ = 0 (4.11)

where

and

_ae1: (0--_'_'0) (4.12)

m = 1, 2, 3. (4.13)

The integral form of (4.11) is then

_s h,n" d'-_ = O, (4.14)
(v)

where V is an arbitrary region in the space-time E2.

Let E2 be discretized by solution elements

SE(j, n) and conservation elements CE(j, n) of Type

I, as described in [2] and [12]. Then, associated with

each SE(j,,), let urn, f,n and fm be represented in

discrete form through the linear expansions

u*(z,t;j, n) d_ (4.15)

(,,,.)j + (,,m.)_(=-x_)+ (u.,,,)j (t-,")

_m(z,t;j, n) a,J (4.16)

n _ B

(fm)j + (f,n,)$ (z -- =./) + (f,n,)i (t -- t n)

f_(z,t;j,n) d_=y (4.17)

(/.,); + (i,,,,):'. + (i,,,,):'.(,-t-)
m -- 1,2,3.

The discrete coefficients (um)_, (u,n,)_, and

(um_)_, rn -- 1,2,3, represent nine unknowns associated

with each SE(j,n). The coefficients (fm)_, (/m)_,

etc., are known functions of the (um)_, (Um_)_, and

(un,)_. By requiring h_n de!= (/,_- a=,_ u_), m =

1,2,3, to satisfy (4.11), each (_,.)_ may also be ex-

pressed as a known function of the (um)_ and (umz)'_.
Thus, the marching problem from one time level to the

next may be expressed entirely in terms of the discrete

unknowns (um)_ and (umz)_. The matching condi-

tious for (um)_ and (um=)_ are obtained by requiring

K_. to satisfy

_;.._ = o,
(c_)(/,.)

(4.18)

for all (j, n). The reader is referred to Reference [2]
for the details.

In Figure 23, numerical solutions are presented to

the shock tube problem with viscosity at a Reynolds

number of 12,000. Note that the shock is resolved in a

single mesh point, and that the contact discontinuity

is spread over only three mesh points. No flux limiters,

weighting functions, or other ad hoc parameters were
used in the calculation.

Sunnnary

A new numerical method is being developed for

solving the Navier-Stokes equations. In this paper, the
authors' 2-D, steady-state implicit scheme has been

generalized and extended to nonorthogonal Cartesian

grids. Calculations of a variety of flow fields have

demonstrated the ability of the scheme to accurately

resolve developing boundary layers on coarse grids. In

addition to its high accuracy, the main advantages of

the present scheme are its conceptual simplicity, rig-
orous enforcement of both the integral and differential

forms of the governing equations, and its ability to
be extended to three dimensions in a straightforward

manner. Work in progress is directed toward extend-

ing the scheme to three dimensions and developing a

time-iterative solution technique for solving the dis-

crete system of nonlinear equations. Finally, a scheme

which uses cubic expansions to respresent the discrete

primitive variables is also under development.
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Avvendlx

Local Constraints:

Conservation of Mass

ut.o -F ve.x = 0

2Us.o + Vx.x -- 0

2v0._ + ul,l = 0

C onservation of z-Momentum

(A.1)

(A.2)

(A.3)

uz,, uo.o + uo.z re,0 + p_., (A.4)

1 2 (4U2.o- v_._)]= 0
_e [(2 u.., + v,.,) ÷

2 (A.5)2 (2ue,0 u2,e -}-ux.o + P2.o)+ u,,, V,.o

-t-Vz,_.Uo,o -'1"Ul,oVo,x -I" Uo,x 'Vl,o = 0

2(,,o.o,,o.,+ + (A.6)

+ 2u_.lUo.o + 2ul.oUo._ + p_._ = 0

Conservation of y-Momentum

Uo,o V_.o + vo.o _o,_ + Po._ (A.7)

1 2

/_e,[(2v,,o+u.,,) + g(4vo,:-u,,z)] = 0
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2(,,,.,_,.o + _o.o-,.o + _,,.o,,.o) CA.8)

+ 2 va.x Vo,o "t" 2 v..o vo.l -t" Px.x ---- 0

2

2 (2 v,., v,,, "t- v,,a + 1o,.2) + ux.t v,.,

"_" lPt,t UO, 0 _ _I,olPo,I 4" UO,t 1P1,o _ 0

General Eliminated Variables:

(A.0)

v,,,= - u1,o (A.10)

vt,1= - 2u2,o (A.I1)

u_,_ = - 2voa (A.12)

p,., = (A.13)

2

-m.,,,., - -,.,Vo., + -_(U_.o + ,o._)

p,._ = {A.14)

2

-v_.,,,., + U..o vo., + _-(v_.. + v.._)

po,,= (AaS)
1

- ,,0.o,,,.,- _("L + ,,o.,,,,.,)UO,O U2,O

Constant-Pressure-Gradient Scheme:

Local Constraints:

P2.o = _o,olPo,2 -- tgo.oIL_.o

I 2
-_("1.0+ -o.,V,.o)= 0

(A.16)

p,., = 2 (u,., Vo._ -- vo., uoa) = 0 (A.17)

UO,O 10o,2 -- 1_o, 0 UO,2)

-(v,,, u,,, - u,,, v2,o) = 0

Additional Eliminated Variables:

P2,0 ---- IP)O,O UO,2 -- Uo,o U2,o

1 2
-_(-,.o + '.,o.,.,,..o)

r,,., = 2 (",.o v,., - v,., t,,.,)

Flux Vector Components:

Conservation of Mass

h:, O -- U@,@

h z -- Ul,0
1,0

ho_,1 "- Uo,x

h_, 0 -_ t_;l.0

hi. = - 2 hi, = - 2 v..,

ho_,3= uo,2

Y, o "-- 1['10,0

hl_,O "-- _'31,0

hL = _ hL = _ ,,_.,

h_,o --" 'I)2, 0

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.20)

(A.27)

(A.2S)

(A.29)

(A.30)

(A.31)

p,.l = 2(,,o.,,,,.o - -0.0,,,.0)= o (A.IS)

General Scheme:

Local Constraint:

hL = -2h L = -2,+.,,

ho_.2 - v0,2

Conservation of z-Momentum

(A.32)

(A.33)
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2
(A.34)ho',, = U,,o + P,,o - _m,,

hT,, = -h.,.. =
2

- v,., u,.. + u,., m., + _-(u,., - u,.,)

(A.35)

ho_a - 2Uo.oUo.t -4- Vo., ux., - u,., vl., (A..36)

2
+ _ (_,.0+ 3130.,)

1
h2=,, = - _ h_,_ = (A.37)

1 2 I
_,.0u=., + 130.,13o.2+ _ u,., - _ u,., 131.,

htZl = -2h,Y= = (A.38)

- 2 (u,., 13o.2+ 13o.ou,.2 - m., Uo.,)

h_.2 = uo.,v,= + 13,.0u0.2 - Ux.oU,.t (A.45)

Conservation of y-Momentum

1
h_., = Uo., v,., - .-_(u,., + 13,.0) (A.46)

2
h,ffi., = u,., v,., + v,.,u,., - "-_(V2.o- Vo.2) (A.47)

2
ho', := ,,0.0,,,., - ,,0.0 ,,,.o - _(,,o._ - "2.0) (A.48)

h_.° = Uo.,V=.° + Vo.oU2., + vt.,ua., (A.49)

h_. 1 = - 2 Uo.o u2,, - 2 130,0 Vo,2

2
-It,,, -I- Uo.a 13t,o

(A.50)

h_., = Uo.,V,., + Vo.oUo.2 - U_.oU,._ (A.51)

hoZ/, = 2 tlo, o Uo,2 "1- Uo,o U2,° -- 13o,o 13o,2

2 1 2 I
-i-u,. t -- _ul. o -- _Uo.lVl.,

(A.39)

1
h,'o = _,0.°,,0.0- _-(,,0., + 13,.o) (A.40)

2
h_., = u,., 13,.0 + %.on,., - _(v2.,- v,._) (A.41)

2
hV,.a = Vo.oU,._ - Uo.oUt., - -_(u,.,-U2.o) (A.42)

h_., = u,.,v2., + Vo.oU_., + V_.oU_.o (A.43)

hYt.l = -- 2 Uo,°u2., -- 2 Vo.oVo.2

--tl2a,o 4" Ito,1 _1,0

(A.44)
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2
h,Y, 2= 13o.o+ V,., + _'_,.o (X.S2)

h_., = 2Vo,ovt., - u,., U,.o - Vo., u,._ (A.53)

2 (3 u_.,+ u,._)+_

h,Yt = -h_,, = (A.54)

2
-Uo.oV,.° - Vo.o,_,.,+ "-_(v2.,-Vo.2)

h_, = 2 Vo., 132.0+ v,., v,.2 - t,°., u_., (A.55)

1 2 1
+ 13_.0- _,,.0 - _,0._,,1.0

h,,., = - 2 hL = (A.56)

- 2 (Uo., v_., + v,., u2., + v_., u_.,)

1
h,Y.2 = - _ h_., = (A.57)

1 2 1
u,., u_., + v,., Vo.2+ _ u_., - _ u,., 13..,
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Figure I. Rectangular domain for boundary value
problem (2.2).
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Figure 4. Channel geometry and discretization.
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Figure 2. Discretization of domain I).
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Figure 3. Cell orientation for flux expressions.
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Figure 5. Jacobian matrix structure.
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Figure 6. Developing channel flow at 1, 3, 5, and 11

channel heights downstream. Re = 100. 39 x 6 grid.
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Figure 7. Developing channel flow at 1, 3, 5, 7, and

11 channel heights downstream. Re = 2000. 39 x 10

grid.
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Figure 8. Computational grid for a fiat plate airfoil.
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Figure 9. Developing boundary layer on a fiat plate
airfoil. Re = 100,000. 81 x 20 grid. 12.5% exponential

y stretching.

0.0250

0.020¢

0.01

Y

o.01o_

0.005o

--4-- NumIIIcsl

--m--

I i I i• , • ...... • • ....... • ....

0,00050 v 0.00100 0.001_} 0.00200 0.04250 O.OO$_D

Figure 10. Comparison of v velocity component with

Blasius solution. Re = 100,000. 110 x 28 grid.
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11. Pressure coefficient in the trailing edge

Re = 100,000. 110 x 22 grid.
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Figur,+ 12. Comparison of numerical results from the

gener;dized scheme and the constant-pressure-gradient

scheme. Channel flow at Re = 100. z = 1, 3, 5.
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Figure 13. Comparison of numerical results f_om the

generalized scheme and the constemt-pressure-gradient

scheme. Channel flow at Re = 2000. z = 1, 5, 9.
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Figure 14. Comparison of numerics] results fIom the

generalized scheme and the constant-pressure-gradient

scheme. Pressure coefficient in the trailing edge region

of a fiat plate airfoil. Re = 7500.
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Figure 15. Comparison of numerics] results f_om the

generalized scheme and the constant-pressure-graAient

scheme. Pressure coefficient in the trailing edge region

of a fiat plate airfoil. Re = 1000.
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Figure 16. Nonorthogonal Cartesian grid.
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Figure 17. Local coordinate system for flux evalua-
tion.

Figure 18 a. Computational grid for a converging

channel. Ramp angle = I0 degrees. 32 x 8 grid.
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Figure 18 b. Developing flow in a channel with a

converging section. Re = 100.

Figure 20 a. Computational grid for a diverging chan-

nel. P_mp angle = 5 degrees. 32 x 8 grid.
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Figure 19 a. Computational grid for a channel with a
15 degree ramp. 32 x 10 grid.
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Figure 19 b. Developing flow in a channel with a 15

degree ramp. Re = 200.
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Figure 20 b. Developing flow in a diverging channel

with _ 5 degree ramp. Re = 100.
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Figure 21. Comparison between Uo,, and the first y
deriw_tive of the Blasius solution, z = .805. 110 x 28

grid. Re = 100,000.
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Figure 22. Comparison between 2uo,2 and the second

y derivativeof the Blasius solution,z = .805. II0 x

28 gzid.Re = 100,000.
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Figure 23. Navier-Stokessolution to the shock tube

problem with viscosity.Re = 12,000.
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