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ABSTRACT

A multilevel optimization approachwhich is applicableto nonhierarchiccoupledsystems

is presented.The approachincludesa generaltreatment of design(or behavior) constraints

and coupling constraints at the discipline level through the useof norms. Three different

types of normsareexamined-themax norm, the Kreisselmeier-Steinhauser(KS) norm, and

the lp norm. The max norm is recommended.The approachis demonstratedon a classof

hub frame structures which simulatemultidisciplinary systems.The max norm is shownto

producesystem-levelconstraint functions which arenon-smooth. A cutting-plane algorithm

is presentedwhich adequatelydealswith the resulting cornersin the constraint functions.

The algorithm is testedon hub frameswith increasingnumberof members(which simulate
disciplines), and the resultsare summarized.
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I. Introduction

This paper is concerned with the optimization of systems whose mathematical model is an assembly of

coupled modules, each transforming input to output. Analyses and optimizations, usually corresponding

to engineering disciplines or physical components, may be executed within these modules. The term

"discipline" will be used throughout to mean such a module.

Approaches to this problem can be divided into single-level optimization approaches and multilevel

optimization approaches (Balling and Sobieszczanski-Sobieski 1994). In the former, only a single

optimization problem is solved for the entire system, while in the latter, optimization problems are solved

within the disciplines as well as for the system as a whole. Thus, in a two-level optimization approach,

there is an optimization at the system level, and there are optimizations at the discipline level. It may be

possible to view a discipline as a system itself composed of subdisciplines. It this case, a three-level

optimization approach may be employed wherein optimizations occur at the system-level, the discipline-

level, and the subdiscipline-level. This scheme is readily extendable beyond three levels. The focus of

this paper is on multilevel optimization, although single-level optimization is used for comparison.

Over a decade ago, a method for linearly decomposing a single large optimization problem into

multilevel optimization problems was suggested (Sobieszczanski-Sobieski 1982). In that method, the

system was decomposed into disciplines, and optimizations and analyses were performed at the system

level and within each of the disciplines. The disciplines were coupled to the system but not to each other.

Such a system was referred to as a "hierarchic system" as shown in Figure 1. The discipline-level

optimization problems sought to minimize violation in the design (or behavior) constraints while satisfying

equality constraints on the coupling variables passed from the system to the discipline. The need to satisfy

equality constraints was identified as a source of numerical difficulties that occasionally arose in

applications (Thareja and Haftka 1986). In alternative formulations, the discipline-level optimization

problems seek to minimize discrepancy in the coupling equations while satisfying the design (or behavior)

constraints (Schmit and Ramanathan 1973; Sobieszczanski-Sobieski 1993).

The first objective of this paper is to present a more general multilevel optimization approach than

the approaches suggested in Sobieszczanski-Sobieski 1993. The multilevel optimization approach

presented here has been extended to nonhierarchic multidisciplinary systems. In nonhierarchic systems,

all disciplines are on the same level, and analysis and optimization associated with the coordination of the

system is implied (see Figure 1). In nonhierarchic systems, each discipline may be coupled to every other

discipline. The traditional hierarchic system may be viewed as a nonhierarchic system by treating the

"system" as a discipline on the same level as the other disciplines (see Figure 1). The multilevel

optimization approach presented here also generalizes the treatment of the design constraints and coupling

equations at the discipline-level. The discipline-level optimization problem is formulated as the

minimization of a norm of both design constraint violation and discrepancy in the coupling equations.

Such a formulation guarantees that a feasible solution always exists for the discipline-level optimization

problem. Three different norms will be examined---the max norm, the KS norm (Kreisselmeier and

Steinhauser 1983), and the lp norm.



Thesecondobjectiveof this paper is to present an algorithm for efficiently solving the system-level

optimization problem. It will be demonstrated that when the max norm is used in the discipline-level

optimization problems, the system-level optimization problem possesses constraint functions which are

non-smooth. A cutting-plane algorithm embedded within a move-limit strategy will be presented which

adequately treats non-smooth functions. Results will be presented for test problems of increasing size.

The paper begins by presenting the general single-level and multilevel optimization approaches for

nonhierarchic systems. The calculation of sensitivities for the approaches will be discussed. The

approaches will then be demonstrated on an example of a hub frame which was selected because the data

flow in the analysis and optimization of a structure composed of substructures or finite elements is a good

analog of the data flow in the analysis and optimization of a system composed of coupled disciplines.

The paper will then use this example to examine the three norms for the discipline-level optimization

problem. The cutting-plane algorithm and move-limit strategy for the system-level optimization problem

will be presented, and numerical results will be discussed.

II. Single and Multilevel Optimization Approaches

Consider the three-discipline coupled system shown in Figure 2. Each discipline in this system has an

associated analysis program which computes output values of the functions from input values of the

variables. A three-discipline system was chosen as a basis for discussion because it is small enough to

keep the discussion simple but large enough to see a general pattern.

The system is nonhierarchic because each discipline is coupled to every other discipline, and no

discipline is viewed as being "above" the others. The vectors Y12,Y13,Y21,Y_, Y31,and Y32are the coupling

functions. Note that Yijcontains those functions computed in Discipline i which are needed as input to

Discipline j. It is these coupling functions which complicate the order of execution of the disciplinary

analyses. By associating with each vector of coupling functions a corresponding vector of coupling

variables (Y_2*, Y13", Y21*,Yz3*,Y31*, and Y32"), the disciplinary analyses may be executed in parallel. Each

receives coupling variables as input and computes coupling functions as output. One of the tasks of the

single-level or multilevel optimization approach is to satisfy coupling constraints which enforce equality

between each coupling variable and its corresponding coupling function.

The vectors x, x 1, x2, and x3 are mutually exclusive sets of design variables needed as input to the

analyses. Note that x contains system design variables needed by more than one discipline, while the

vectors xi, x 2, and x3 contain disciplinary design variables needed by Disciplines 1, 2, and 3, respectively.

The vectors g_, g2, and g3 contain the design constraint functions. These represent the constraints which

pard against unacceptable behavior. Only inequality constraints are considered iaere, and it is assumed

that each constraint has been formulated such that zero is its allowable value, and it is satisfied when less

than zero. The vectors fl, f2, and f3 contain the design objective functions. These represent objectives

such as the maximization of benefits and the minimization of costs. It is assumed that each objective has

been formulated such that it is improved through minimization, and the value of zero is associated with

a selected target value.
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The optimization problem may be solved on a single level as follows:

Single-Level Optimization Problem

Find: f,X, X1,X2,X3,YI2 ,Y13 ,Y21 ,Yea ,Y3_ ,Y32

Minimize: f

Satisfy: g_ < 0, g2 < 0, g3 < 0,

fl<f, f2<f, f3<f,

Y12= Y12", Y13= Yla*,

Y21= Y21", Y23= Yea*,

Yal = Y3_*, Y32= Ya2*

Note the addition of the scalar design variable, f, the system obiective. By minimizing this variable

and constraining it to be greater than each of the design objectives, the maximum of the objectives is

effectively minimized. This "minimax" formulation is just one of several ways for treating pareto-

optimization problems. A reminder should be made that the optimal results will be affected by the scaling

and the choice of allowable/target values for the design constraint and objective functions. The minimax

formulation essentially transforms design objectives into design constraints.

The single-level optimization problem may be solved directly (Haflka et al. 1992), or it may force

satisfaction of the coupling constraints at each optimization iteration (Grossman et al. 1989; Hajela et al.

1990; Sobieszczanski-Sobieski et al. 1991; Haftka et al. 1992). The coupling constraints may be satisfied

via Newton's method or via a nongradient fixed-point iteration method.

The optimization problem may also be solved on two levels: the system level and the discipline level.

In this multilevel approach, the system-level optimization problem is:

System-Level Optimization Problem

Find: f,x,y12 ,Y13 ,Y21 ,Yea ,Y31 ,Y32

Minimize: f

Satisfy: d I < 0, d 2 < O, d 3 < 0

The scalars dl, d2, and d 3 are discrepancy functions which are computed by solving the discipline-level

optimization problems which can be formulated using three different norms: the max norm, the KS norm,

and the 1v norm. The discipline-level optimization problem for Discipline i using the max norm is:
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Discipline-Level Optimization Problem (Max Norm)

Find: xi,d i

Minimize: d i

Satisfy: gi<_, (1)

fi-f < di, ( 2 )

Yij-Yij*< di, for j_i ( 3 )

YJj*-Yij< di for j_i ( 4 )

Note that discipline-level optimization seeks to minimize the max norm of the violation in the design

constraints (1), (2) and the coupling constraints (3), (4). The system design variables and the coupling

variables are treated as fixed parameters during discipline-level optimization. The optimum value of the

discrepancy function is the only function which is sent back from discipline-level optimization to system-

level optimization.

An alternative to the max norm in discipline-level optimization is possible which uses the KS family

of norms. For Discipline i:

Discipline-Level Optimization Problem (KS Norm)

Find: x i

Minimize: d, = (l/p) hi{ _exp(pgi) + 5:exp(p(f_-f))+(1/2)_:j.i[Eexp(P(Y_FYij*))+:Zexp(P(Yij*-Yij))] }

The parameter p is a positive real number, the sum _j,i is over disciplines other than Discipline i, and

the other sums are over the elements of the vectors involved. As p goes to infinity, the KS norm becomes

equivalent to the max norm. Otherwise, the KS norm is greater than the max norm by an amount which

is bounded by (1/p)ln(m) where m is the sum of the sizes of the vectors gi, fi, and Yijfor j_i.

Another family of norms that is possible for discipline-level optimization is the lp family. For

Discipline i:

Discipline-Level Optimization Problem (1_Norm)

Find: x_

Minimize: di = {Z(max(0,gi)y, + Z(max(0,g_f))p+2j._[_:lyey_j.i p] },/p

4
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The parameter p is a positive integer and the sums are the same as for the KS family of norms. The

12 norm is the familiar Euclidean norm, and as p goes to infinity, the ]1,norm becomes equivalent to the

max norm.

IH. Sensitivity Analysis

Since the optimization algorithms used to solve the single-level, system-level, and discipline-level

optimization problems are gradient-based, it is necessary to compute derivatives of the constraints and

objectives with respect to the variables in each optimization problem.

Derivatives of outputs with respect to inputs for Analyses 1, 2, and 3 may either be approximated by

finite differences or analytically calculated as part of the analysis itself. The latter approach yields more

accurate derivatives, and may be more computationally efficient.

In the case of multilevel optimization, the discipline-level optimizations are viewed from the system

level as black boxes, and their sole purpose is the calculation of the discrepancy functions and their

sensitivities. For example, Discipline i must compute d i through discipline-level optimization and

derivatives of the optimum di with respect to yji* and y_j* (for j_i). These optimum sensitivities can be

calculated directly from the Lagrange multipliers of the discipline-level optimization and the sensitivities

computed by Analysis i (Barthelemy and Sobieszczanski-Sobieski 1983). Specifically, if the max norm

formulation is used for Discipline i:

ddJd(yj,*)t = for j_i

ddJd(yij*)k = (v-/Ok for j_i

where the subscripts outside the parentheses refer to elements of the vectors within the parentheses. The

vectors _, _,,p, and v contain the Lagrange multipliers of constraints (1), (2), (3), and (4), respectively.

IV. Application to Hub Frames

Consider the two-member hub frame of Figure 3. It is the simplest case of a hub frame whose members

extend radially from Node P like spokes from a hub. The loads for each loading case, the material

properties, and the nodal coordinates are f'Lxed, and it is desired to find the optimum cross-sectional

dimensions of the two members. Volume is to be minimized, and design constraints are imposed on the

displacements at Node P as well as on stress and buckling in the members.



Consideringthestructureas an analog of a multidisciplinary system, the two-member hub may be

treated as a system composed of three disciplines:

Discipline 1:

Discipline 2:

Discipline 3:

frame analysis of the entire hub

analysis of Member PQ

analysis of Member PR

Table 1 indicates how each of the vectors of variables and functions defined for the general three-

discipline system of Figure 2 may be specialized for this specific example. In this table, N, M, and V are

the axial force, bending moment, and shear force, respectively, at End P of the member, and A and I are

the area and moment of inertia of the member. The displacement constraints at Node P for each loading

case consist of constraints on the resultant translational displacement and on the rotational displacement.

There are nine stress constraints for each loading case for each member at locations throughout the cross-

section at both ends of the member. There are nine buckling constraints for each loading case for each

member including in-plane and out-of-plane buckling of the member as a whole as well as local buckling

of the flanges and the web. Computational details of these constraints are given in the Appendix.

The analysis for Discipline 1 (Analysis 1) receives A's and I's as input and computes the frame

volume, the displacements at Node P, and the N's, M's, and V's for the members. Analyses 2 and 3

receive their N's, M's, V's, and b's, t's, and h's as input and compute their A's, I's, and stress and

buckling constraints.

The traditional approach to frame optimization is a single-level optimization approach where the

coupling constraints are implicitly solved for the coupling variables at each optimization iteration. Solving

the coupling constraints can be accomplished without iteration in the case of frame optimization because

although the N's, M's, and V's are functions of the A's and I's, the A's and I's are not functions of the

N's, M's, and V's. Thus, at each optimization iteration, a portion of Analyses 2 and 3 is executed to

compute Y2_and Y31, then Analysis 1 is executed to compute Y12,Y13,fx, and g_, and finally the remainder

of Analyses 2 and 3 is executed to compute g2 and g3- With the coupling variables and coupling

constraints eliminated in this fashion, the single-level optimization problem for the two-member hub

becomes:

Single-Level Optimization Problem

Find: x2,x 3

Minimize: fl

Satisfy: gl < 0, g2 < 0, g3 < 0
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Note that since this problem has a single objective which is computed in Discipline 1, one may take

f=fl-

The multilevel optimization approach to the hub problem includes system-level optimization and

discipline-level optimization for Disciplines 2 and 3. There is no discipline-level optimization for

Discipline 1 since this discipline has no design variables to be optimized. It is assumed that Analysis 1

is always executed sequentially before the optimizations of Disciplines 2 and 3. This allows elimination

of the coupling variables Y12* and Y13" since the coupling functions Y12 and Y13 are available for input

directly into Analyses 2 and 3. The system-level optimization problem is"

System-Level Optimization Problem

Find: Y21*,Y31*

Minimize: f_

Satisfy: gl < O, d2 < O, d 3 < 0

At each iteration of system-level optimization, Analysis 1 is executed to compute f_, g_, Y12, and Yls,

and then the optimization problems for Disciplines 2 and 3 are solved to compute d 2 and d3. The

discipline-level optimization problem for Discipline 2 (similar for Discipline 3) is:

Discipline-Levd Optimization Problem (Max Norm)

Find: x2,d 2

Minimize: d 2

Satisfy: g2 < d2,

Y21-Y21* < d2,

Y21*-Y21< d2

Discipline 2 receives Y12and Y21" from the system level which are held fixed during discipline-level

optimization. At each iteration of discipline-level optimization for Discipline 2, Analysis 2 is executed

to compute g2 and Y2r

Discipline-level optimization can also be formulated for the hub problem using the KS and the lv

norms. For Discipline 2 (similar for Discipline 3):



Discipline-Level Optimization Problem (KS Norm)

Find: x 2

Minimize: d2 : (I/p)In{ Zcxp(pg2)+ (I/2)[Yexp(p(y21-Y2,*))+ Zexp(p(Y21*-Y2,))]}

Discipline-Level Optimization Problem (lp Norm)

Find: x2

Minimize: d2= { X(max(0,g2))p + _:lY2_y2,lp }i/p

The single-level, system-level, and discipline-level optimization problems are easily formulated for

hub frames with more members such as shown in Figures 4 and 5. Note that the frame analysis for a

several-member hub is as simple as the frame analysis for a two-member hub since there are only three

displacement degrees of freedom in either case. Thus, hub frames provide a convenient tool for studying

the effect of increasing the size of the system by increasing the number of members without increasing

the system analysis dimensionality.

V. Plots of the Discrepancy Function

The single-level optimization problem and the discipline-level optimization problems are well-posed

problems and may be solved by standard nonlinear programming (NLP) algorithms. However, the system-

level optimization problem is a non-smooth optimization problem. Figure 6 shows contour plots of the

discrepancy function for Member PQ of the two-member hub as it looks from the system level. The two

axes are the elements of the Y21" vector (i.e., the A and I for member PQ). The elements of the Y3_*

vector (i.e., the A and I for member PR) wcrc held fixed in these plots. Data for the plots wcrc generated

by dividing the plotted region into a 21 x 21 point rectangular mesh and computing d 2 at each mesh point.

The computation of d 2 at each mesh point required a frame analysis followed by a discipline-level

optimization for Member PQ. The discipline-level optimizations employed the three different norms as

indicated for the three different plots.

The large upper fight region of the plot for the max norm has a constant value of zero. This region

may bc regarded as the conservative region. Hcrc the values in the Y2_*vector sent down from the system

level arc large enough that the discipline-level optimization is able to completely satisfy both the design

and coupling constraints. Specifically, this means that the discipline-level optimization was able to find

values for the b's, t's, and h's for Member PQ which satisfied all stress and buckling constraints as well

as matched the A and I sent down from the system. This was not possible for the region on the left side

and on the bottom of the plot which are regarded as the nnconservative region. In this region, violation
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remains in either the design constraints or the coupling constraints or both, and the maximum value of that

violation is positive.

Note also the sharp comers in the contours at the lower left portion of the plot for the max norm.

These comers occur when there is a change in the set of active constraints at the optimum of the

discipline-level optimization problem. The set of active constraints are those design and coupling

constraints which control the max norm. Thus, on one side of the comer, one set of constraints is

maximum, while on the other fide, another set of constraints is maximum. In the case of the two-member

hub, the optimum to the system-level optimization problem lies at the intersection of the locus of these

comers with the conservative region.

One would expect these phenomena to be observed in multilevel optimization problems in general.

Specifically, one would expect the existence of a conservative region where all design and coupling

constraints can be satisfied. One would also expect corners in the discrepancy function in the

unconservative region as changes occur in the set of active constraints in the discipline-level optimum.

Furthermore, it is likely that the system-level optimum lies at such corners on the boundary of the

conservative region.

Note that the corners for the KS norm are rounded. Note also that the spacing of the contours

increases as one moves from the unconservative region to the conservative region. In fact, there is no

clear boundary between the two regions. The value of discrepancy in the conservative region is

asymptotic to a positive value equal to (1/p)ln (number of active constraints). Since the number of active

constraints in the conservative region is not known a priori, this asymptotic value is difficult to estimate.

In the system-level optimization problem, discrepancies must be constrained to be less than some positive

which is greater than this asymptotic value rather than be constrained to be less than zero. To converge

to the true optimum, one must let p go to infinity and e go to zero during the system optimization process.

A drawback to using the KS norm is the difficulty in selecting appropriate values for p and e throughout

the optimization process. Another disadvantage of the KS norm is that although it smoothes out the

corners in the discrepancy function, it does so by increasing nonlinearity. This will increase the

computational effort to solve the system optimization problem.

The contour plot for the 12norm is very similar to that of the max norm. Although the corner is sharp

at the boundary of the conservative region, it becomes rounder as one moves further into the

unconservative region. Two characteristics make the use of the 12norm undesirable. First, solution time

for discipline-level optimization using standard NLP software is noticeably longer than when the max

norm is used---almost an order of magnitude longer for hub frames. Second, the results of discipline-level

optimization appear to be noisy along the left side of the conservative region. Both the increased solution

time and the noise arise from the fact that the 12objective function in the discipline-level optimization

problem is relatively flat near the optimum. This makes it difficult for standard NLP algorithms to

converge to the optimum even when fight convergence tolerances are imposed.

Therefore, it is recommended that the max norm be used in multilevel optimization. It will be

assumed that the max norm is used throughout the remainder of this paper.



VI. System-LevelOptimization Algorithm

The algorithm for solving the system-level optimization problem should exploit the fact that sensitivities

of the discrepancy functions can be obtained at virtually no extra cost beyond calculating the discrepancy

functions themselves as indicated in Section 3. Therefore, it is recommended that the system-level

optimization algorithm consist of the successive solution of a series of approximate optimization problems.

In each such optimization problem, linear approximations of the discrepancy functions are constructed

from the values and sensitivities computed at the current design.

The system-level optimization algorithm just described is basically the Sequential Linear Programming

(SLP) algorithm. A major difficulty with using SLP to solve the system-level optimization problem arises

from the existence of corners in the discrepancy functions. These corners may cause oscillatory behavior

in the SLP algorithm as solutions to the successive linear programming (LP) problems jump back and

forth from one side of a corner to the other. Oscillatory behavior is also observed when other NLP

algorithms are used which determine a gradient-based search direction followed by a line search since

search directions are based on information from only one side of the comer. The oscillatory behavior in

SLP may be circumvented to some extent by imposing tight move limits so that the current design can

carefully "creep up" on such corners, but this may require solution of a prohibitively large number of LP

problems.

A truly non-smooth optimization algorithm is needed. One can modify the basic SLP algorithm so

that it uses gradient information on both sides of corners by simply retaining the linearizations of the

discrepancy functions from the previous LP problems. Thus, the number of constraints grows from one

LP problem to the next as the linear approximation of each di < 0 at the current design is appended to the

linear approximations of the same at previous designs. Thus, each of the non-smooth constraints di < 0

is approximated by cutting planes from all prior LP problems. The smooth design constraints from

Discipline 1 (gl < 0) on the displacements at Node P may also be approximated by cutting planes from

all prior LP problems. This algorithm is a form of Kelley's Cutting Plane (KCP) algorithm (Kelley 1960).

The steps for the KCP algorithm applied to the two-member hub are shown in the inner box of Figure 7.

Since the contours of the discrepancy function for the max norm shown in Figure 6 appear to be

nearly piecewise linear, one might expect the KCP algorithm to be quite efficient for the hub frame. It

has also been observed in the field of structural optimization that linear approximations of displacement

functions are reasonable. The KCP algorithm will converge to the optimum of the non-smooth system-

level optimization problem if all of the discrepancy and displacement functions are convex. If any of

these functions are concave, the KCP algorithm may:

Case #1) converge to a feasible, though suboptimal, solution;

Case #2) encounter an LP problem for which there is no feasible solution.

The KCP algorithm may be embedded in a move limit strategy as shown in Figure 7 to mitigate the

above two problems. Initially, large move limit ranges are assumed and the KCP algorithm is executed.
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If normalconvergenceoccurs(Case#1)for thisfirst cycle, the move limit ranges are centered about the

new optimum, and the move limit ranges are reduced for those variables which were not pushed up against

the previous move limit bounds. All previous linear approximations are then thrown out and the KCP

algorithm is executed again for the next cycle. If at any cycle the KCP algorithm encounters an LP

problem with no feasible solution (Case #2), one must return to the feasible design at the start of the cycle,

reduce the move limit ranges, throw out all previous linear approximations, and execute the KCP

algorithm again. If this happens in the first cycle and the starting design is infeasible, a feasible (or more

nearly feasible) starting design must be found by some other means such as suggested in (Barthelemy and

Riley 1988). Since the move limit strategy is basically heuristic, designer expertise should be consulted

in selecting starting and reduced move limit ranges.

VII. Results

The multilevel approach using the KCP algorithm to solve the system-level optimization problem was

applied to the two-member hub to solve the following two problems:

Problem A: constraints on displacements at Node P neglected

Problem B: constraints on displacements at Node P considered

Results are plotted in Figure 8 for two different starting designs---a conservative feasible starting

design and an infeasible starting design. The normalized frame volume is plotted versus iterations of the

KCP algorithm. The frame volume was normalized by dividing by the optimum frame volume as

computed from single-level optimization. A sequential quadratic programming algorithm (SQP) was used

to solve both the single-level optimization problem and the discipline-level optimization problems.

Note that the KCP algorithm reached the optimum after 4-7 iterations. Additional move limit cycles

were not necessary for the two-member hub since the optimum was achieved in one cycle. The design

after the first iteration was quite infeasible and had a very low frame volume. The optimum design was

then approached from the infeasible side. There are four optimization variables for the system-level

optimization problem, namely: Y21" = {A, I for member PQ} and Y31" = {A, I for member PR}. The

optimum solutions for both Problems A and B had four controlling cutting planes. For Problem A, the

optimum lies at the intersection of two cutting planes from each of the constraints d2 < 0 and d 3 < 0. For

Problem B, the optimum lies at the intersection of one cutting plane from each of the constraints d 2 < 0

and d 3 < 0 and two cutting planes from the translational displacement constraint of Load Case 1.

Problems A and B were solved starting from a conservative feasible design and an infeasible design

for the eight-member hub shown in Figure 4 and the twenty-member hub shown in Figure 5. Results are

plotted in Figure 9 and Figure 10, respectively. Again, the frame volume at each iteration is normalized

by dividing by the optimum frame volume achieved by single-level optimization. Three move-limit cycles

are shown for the eight-member hub and six move-limit cycles are shown for the twenty-member hub.
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Additionalcyclesproducedlittle changein thefinal design. Move limit ranges were reduced by a factor

of two from cycle to cycle.

In each cycle, the KCP algorithm drops to a low-volume infeasible design within the move limits and

works its way back to a feasibIe design at the end of the cycle. Note that the optimum design was not

necessarily achieved after one cycle in these problems indicating a degree of concavity in at least some

of the constraint functions. For the eight-member hub, the designs at the end of the cycles form a

sequence of feasible designs whose frame volumes monotonically decrease to the optimum. However, the

frame volume of the sequence of feasible designs is not monotonically decreasing for the twenty-member

hub. In fact, additional cycles for Problem A of the twenty-member hub did not produce further

improvement. The lack of monotonicity and the convergence to a value of the objective somewhat higher

than the minimum for the twenty-member hub underscore the fact that the move limit strategy is a

heuristic procedure rather than a formal optimization algorithm.

It is interesting that the number of iterations per cycle does not appear to increase with number of

disciplines (members) but remains around ten. This means that for hub frames at least, ten frame analyses

and ten discipline-level optimizations yield a fairly good feasible design. Each cycle thereafter requires

an investment of ten more analyses and discipline-level optimizations to produce feasible designs with

generally improving frame volume.

It was noted that for the two-member hub, the computational time for conventional single-level

optimization was faster than the total time of multilevel optimization. For the eight-member hub, the

computational times were roughly the same. For the twenty-member hub, the computational time for

single-level optimization was significantly longer than the total time of ten cycles of multilevel

optimization. This can be explained from the fact that hub frames are optimization-intensive rather than

analysis-intensive. The analysis of a hub frame consists of solving a 3 x 3 set of linear stiffness equations

regardless of number of members. However, the single-level optimization problem involves:

eight-member hub

48 variables

292 constraints

twenty-member hub

120 variables

724 constraints

Multilevel approaches break these large optimization problems into smaller ones. Since typical NLP

algorithms involve direct equation solvers, one may solve several smaller optimization problems faster than

a single large problem. The discipline-level optimization problem for each member involves 6 variables

and 40 constraints, and the system-level optimization problem involves:

eight-member hub

16 variables

12 constraints

twenty-member hub

40 variables

24 constraints

12
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It should be noted that no attempt was made to exploit the opportunity for concurrent optimization

of the disciplines. That opportunity is intrinsic in the multilevel approach but absent in the single-level

approach. It generally alters the elapsed time comparisons in favor of the multilevel approach.

VII/. Conclusions

A multilevel optimization approach was formulated for northierarchic multidisciplinary systems and

specialized for hub frame structures. The discipline-level optimization problems were formulated as the

minimization of a norm of both coupling constraint and design constraint violation, and three different

types of norms were examined---the max norm, the KS norm, and the Ip norm. The max norm was

recommended; however, it was shown to produce system-level discrepancy functions which are non-

smooth. A cutting-plane algorithm and a move-limit strategy were developed and presented which

adequately deal with the non-smoothness of the discrepancy functions.

The cutting-plane algorithm was tested on several hub frame examples. The algorithm tends to move

deep into the infeasible region and work its way back to a feasible design. This process required about

ten iterations regardless of the number of members (disciplines), where an iteration consists of a single

call to each discipline for analysis and optimization. Additional cycles of the cutting plane algorithm may

be executed with an accompanying reduction in move limit ranges. This results in a sequence of feasible

designs at the end of each cycle which generally, though not strictly, converge toward optimality. Finally,

it was observed that for optimization-intensive problems such as hub frame problems, the multilevel

approach can reduce computation time over the single-level approach as the problem size increases even

without exploiting the concurrent execution opportunity.

Future research may be directed towards improving the robustness of the cutting plane algorithm and

move limit strategy. Another research need is to test the cutting plane algorithm on truly multidisciplinary

problems.
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Appendix: Computational Details of Hub Frame Constraints

Displacement Constraints at Node P:

6/8,, - 1 < 0 0/0,, -1 < 0

6 = resultant translational displacement

0 = rotational displacement

8a 0a

two-member hub 0.249 cm 0.0234 rad

eight-member hub 0.2 cm 0.01 rad

twenty-member hub 0.2 cm 0.01 rad

Stress Constraints:

Normal and shear stresses (o and "t) were evaluated within the cross section at the top and bottom

extreme fibers, at the centroid, and at the top and bottom of the web. This was done at both ends of

the member except for the centroidal stresses which are constant along the length of the member. The

following stress constraint was imposed at each location:

o_o,- 1 < 0

O_q = yon Mises-Huber equivalent stress = (o 2 + 3"t-:')1/2

o, = allowable stress = 25 kN/cm 2

In-Plane Buckling Constraint:

N/Nc_- 1 < 0

N = axial force (compression positive)

N_r = 2.05g2EIJL 2

E = modulus of elasticity = 20,000 kN/cm 2

I,_ = strong axis moment of inertia

L = member length

15



Out-of-Plane/ Lateral-Torsional Buckling Constraint (at each end):

(N/N_) + (M/M_) L75- 1 _ 0

N ..

M =

E =

G =

"V ----

I.=

L

axial force (compression positive)

magnitude of bending moment

2.05a_Elyy/L 2

_(ElyyGI-_)V2/L

modulus of elasticity = 20,000 kN/cm 2

shear modulus of elasticity = E/2(l+v)

Poisson's ratio = 0.3

weak axis moment of inertia

torsional moment of inertia = blt2+b2t23

+(h-tl-t2)b3 3

member length

Local Flange and Web Buckling Constraints (at each end):

o/o, + (x/%) 2- 1 < 0

o = normal stress (compression positive)

x = shear stress

(J "17

flanges extreme fiber mid-flange

web mid-web centroid

top flange 0.41E(2tl/bl) 2 0.55E(2tl/b1) 2

bottom flange 0.41E(2t2/b2) 2 0.55E(2t2]b2) 2

web 3.60E(b3/(h-h-t2)) 2 4.80E(b3/(h-h-t2)) 2

E = modulus of elasticity = 20,000 kN/cm 2
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Bounds on Section Variables:

lower upper

bl 2.0 cm

tI 0.1 _1

b 2 2.0 era

t2 0.1 cm

b3 0.1 cm

h 3.0 cm

A 0.68 cm 2

I 1.00 cm 4

6.0 crtl

1.0 cm

6.0 cm

1.0 cm

1.0 cm

8.0 cm

10.00 era 2

100.0 cm 4

Function Scaling Factors:

frame volume:

area coupling constraint:

moment of inertia coupling constraint:

1000 cm 3

9.0 cm 2

99.0 cm 4
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Table1: Variables and Functions for Two-Member Hub

Variable or

Function Content

x: empty set

xl: empty set

x2: {bl, b2, b3, h, t2, h for Member PQ}

X3: {bl, b2, b3, tl, t2, h for Member PR}

g: {displacement constraints at Node P}

g2: {stress and buckling constraints for Member

PQ}

g3: {stress and buckling constraints for Member

PR}

fl: {volume of the entire hub}

f2: empty set

f3: empty set

Y12: {N,M,V for Member PQ for each loading case}

Y_3: {N,M,V for Member PR for each loading case}

Y21: {A, I for Member PQ}

Y23: empty set

Y31: {A, I for Member PR}

Y32: empty set
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Fig. 5. Twenty-Member Hub Frame.
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Fig. 9. Results for Eight-Member Hub.
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