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The Stability of Two-Phase Flow

Over a Swept-Wing
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Abstract

We use numerical and asymptotic techniques to study the stability of a two-

phase air/water flow above a flat porous plate. This flow is a model of the boundary

layer which forms on a yawed cylinder and can be used as a useful approximation

to the air flow over swept wings during heavy rainfall. We show that the interface

between the water and air layers can significantly destabilize the flow, leading to

traveling wave disturbances which move along the attachment line. This instability

occurs for lower Reynolds numbers than is the case in the absence of a water layer.

We also investigate the instability of inviscid stationary modes. We calculate

the effective wavenumber and orientation of the stationary disturbance when the

fluids have identical physical properties. Using perturbation methods we obtain

corrections due to a small stratification in viscosity, thus quantifying the interfacial

effects. Our analytical results are in agreement with the numerical solution which

we obtain for arbitrary fluid properties.
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under NASA Contract No. NAS1-19480 while the author was in residence at the Institute for Com-

puter Applications in Science and Engineering (ICASE), M/S 132c, NASA Langley Research Center,
Hampton, VA, 23681-0001. This work was also supported by the Science and Engineering Research
Council.
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1 Introduction

Tile laminar flow over an infinitely long cylinder can become unstable as the Reynolds

number increases. When the axis of the cylinder is inclined at an angle relative to

the free stream, the developed three-dimensional mean flow can be separated into two

components, one lying in a plane normal to the axis, the other parallel to the generators

of the cylinder. Small amplitude disturbances to the flow can take the form of Tollmien-

Schlichting waves, crossfiow vortices, or Taylor G6rtler vortices (if there are regions of

concave curvature).

Tile flow over a swept cylinder has been studied in detail, primarily because of its

important application and relevance to the boundary layer which forms on the surface of

swept-wing. Understanding the mechanisms of flow instability for this model, can lead

to significant development of methods used in the reduction of laminar to turbulent flow

transition.

The model we use in this paper, is a classical Heimenz stagnation point flow, together

with a superposed non-zero component of velocity parallel to the axis. The equations

governing the flow are written in cartesian coordinates (see Prandtl [24]). The velocity

component parallel to the axis of the cylinder can be determined independently by

decoupling the momentum equations. The relevance of this solution to the realistic flow

which forms on a swept wing is discussed in section 3.2.

Using linear stability theory, Hall, Malik & Poll [12] calculated critical Reynolds

numbers for an infinite swept attachment line boundary layer. They examined the effects

of both suction and blowing at the boundary. Surface suction can be used as an effective

laminar flow control since it thins the viscous boundary layer and leads to a reduction

in the local Reynolds number. In addition, the vorticity distribution is modified so that

a more stable flow is established. Hall et al. obtained numerical and asymptotic results

which clearly illustrate that even a small amount of suction can significantly stabilize

the flow. Their results are in excellent agreement with the experimental investigations

of Gaster [8], Pfenninger & Bacon [21] and Poll [22],[23]. These authors investigated the

stability of the attachment lines on swept wings and swept cylinders to small disturbances

of naturally occurring frequences.

In 1986, Hall & Malik [11] extended their linear stability results to include the non-

linear regime. The weakly nonlinear stability of this flow was examined using a Stuart-

Watson expansion procedure. The primary motivation was to explain why experimental

observations all correspond to modes near the lower branch of the neutral curve. Hall

& Malik showed that apart from a small region near the critical Reynolds number, fi-

nite amplitude solutions bifurcate from the upper branch when the Reynolds number

is below the neutrally stable value elucidated from a linear stability analysis (subcrit-

ical). Equilibrium states associated with the upper branch are not therefore observed

experiment.ally, since these solutions are unstable.

In addition these authors used numerical methods to integrate the time-dependent
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Navier-stokes equations which govern tile fully nonlinear problem. Using a Fourier-

Chebyshev spectral method IIall & Malik found the existence of supercritica] finite-

amplitude states near the lower branch of the neutral curve.

Recently there has been much interest in the aerodynamic penalties associated with

adverse weather conditions on aircraft flight. In a review of recent studies into the effects

of heavy rain during take-off and landing, Dunham, Dunham & Bezos [6] showed that

short duration, heavy precipitation can result in a premature loss of lift of 15 - 20% and

an increase in drag coefficient of up to 20%.

The exact mechanisms which cause these significant flight characteristics are not

clearly understood. One possible explanation is that the presence of a thin water layer

on the wing surface leads to a loss in stability of the laminar air flow. The growth

of small disturbances in either tile water or air layers could then promote transition.

In this paper, we consider the interfacia] stability of an infinite swept attachment line

boundary layer consisting of a water layer and air flow above. The interface which

separates these two viscous fluids may be susceptible to instability of the form first

discovered by Yih [28]. Yih showed that long wavelength disturbances to plane Couette

and plane Poiseuille flow of two immiscible liquids of different viscosities and densities

can lead to a mode of instability which is a due entirely to the discontinuity in the fluid

properties. The growth rate of the interfacial deflection approaches zero asymptotically

as the viscosities of the two fluids become equal, hence this mode is not operational for

a single fluid. The relative depths of the fluid layers is a crucial factor in characterizing

the flow instability.

Since Yih's work, there have been. numerous investigations of interfacial instability

which have important applications in many situations. For example, Blennerhassett [2]

showed that the interracial instability of air flow over water can lead to the generation of

finite amplitude waves. The effects of surface tension and gravity have been quantified

in a variety of numerical and analytical studies which consider short, moderate and long

wavelength perturbations to the basic state (see Hooper & Boyd [15], [16], Hooper [14]

and Renardy [25]).

In this paper we quantify the effect of interfacial stability on the air flow over a

swept wing during heavy rainfall. Using the model described above we obtain an exact

solution of the Navier-Stokes equations which govern the viscous two-phase flow. The

domain consists of two separate regions. In the upper region of the boundary layer we

have a two-dimensional stagnation point air flow together with a superposed crossflow

component (due to the angle of inclination to the free-stream). Below the air, is a layer

of water which can enter or leave the boundary layer through a porous plate below.

In Section 2 we calculate the exact solution for the basic state. In Section 3 we

investigate the linear temporal stability of the flow to disturbances when the Reynolds

number is finite. Since the basic flow is an exact solution of the Navier-Stokes equations,

we are able to calculate the critical Reynolds numbers for a disturbance of arbitrary

wavelength'. By varying the viscosity and density ratios of the two fluids, we determine

the stabilizing/destabilizing effect of the interfacial mode. We find that for both wall

2



blowing and suction, the in;_erfacesignificantly destabilizestile flow. More precisely,
we show that the flow is susceptibleto traveling wavedisturbancesat lower Reynolds
numbersthan is the casefor flow in the absenceof a water layer.

The inviscidstability of a three-dimensionalboundarylayerwasfirst comprehensively
studied by Gregory,Stuart & Walker [9]. Theseauthors usedboth experimental and
theoretical techniquesto developan extensiveunderstandingof the stability of the flow
which forms on a rotating disk, and their findingshaveimportant consequencesfor the
stability of generalthree-dimensionalboundary layers.

The experimental work of Gregory et al. [9] was based on the china-clay evapora-

tion technique. They observed a regularly spaced pattern of equiangular spiral vortices

which remain stationary, relative to the rotating disk. The angle made between these

vortices and the radius vector of the disk was found to be in excellent agreement with

the inviscid theory developed by Stuart. The prediction for the number of vortices was

not, however, in such close agreement with the experimental observations. This dis-

crepancy was attributed to viscous effects, and was resolved later when Hall [10] used

a self-consistent asymptotic theory to study the problem. Hall extended the inviscid

analysis of Gregory et al. taking into account non-parallel flow effects. His results were

consistent with those obtained by the parallel flow numerical investigation of Malik [19],

although this approximation is not valid at finite Reynolds numbers. In this work, Malik

obtained a neutral curve for these stationary disturbances, and he also found a second

stationary mode of instability which had been discovered experimentally by Federov,

Plavnik, Prokhorov & Zhukhovitskii [7].

In Section 4 we consider the inviscid stationary modes of instability of the flow de-

scribed in Section 2. Using numerical methods we calculate the eigenvalues and eigen-

functions when the fluid properties are equated. We then compare these with our calcu-

lations for air flow over a water layer. In addition, we use asymptotic techniques for the

case when the fluids have similar viscosities. This gives a useful method for quantifying

the onset of the interracial instability. We find that stationary modes are susceptible to

interfacial effects due to a discontinuity in the shear stress at the unperturbed interface

position. In Section 5 we draw some conclusions.

2 Formulation of the Basic State

We consider the three-dimensional flow of two viscous, incompressible fluids above an

infinite, horizontal, porous flat plate. The two fluids are immiscible and occupy separate

regions. The upper fluid velocity is denoted by U_ and the lower fluid velocity by U_.

We use cartesian coordinates, with the (x*,z*) axes lying in a plane parallel to the

plate which is positioned at a vertical height y* = -d. The porous plate allows us to

model either the case of wall blowing, where there is a flux of fluid into the lower region,

or wall su6tion where the normal velocity at the plate is in the -y* direction. The

streamlines in the (x*, y*) plane extend to infinity, the volume of fluid in each layer is
then assumed to be constant and the interface between the two fluids is located at a



height y* = 5q* (z*, t*) where 71" is an unknown function, and 6 is constant.

The upper and lower fluids ]lave viscosities gl, Ii2 and densities pl and p2 respectively,

so that the kinematic viscosities are vl (= Iq/Pl) and v2 (= t_2/P2). We define the fluid

velocity and pressure to be

U;__,,_ = [x'U;(y',z',t'),F(y',z',t'),W;(y*,z*,t*)], (1)

P]=,,: = P] (y*,z',t'), (2)

and the Navier-Stokes equations are

v, aU; OUs i OP;°_" + u;_+ _ o_. + W Oz.+ = vjv_u;' (3a)
Or* x*pj Oz*

or; o_" v_,. oP; _ .jv2v; ' (3b)or. + v;-$yy.+ _U + pjov"

Ol,V; 01¥; OW_ OP_ vjV2l¥;, (3c)
Ot'--7 + V70y* + 1¥70z------7+ pjOz-----:=

o_? orU
Ui+--_y.+ Oz* = 0. (3d)

The Laplacian is defined as

02(.) + 0: ()
V2 (') - Oy" Oz"_ '

and the subscript denotes the upper and lower fluids respectively. The form of the

velocity and pressure fields (1) and (2) corresponds to an exact solution of the momentum

equations (3a-d), hence it is not necessary to make the boundary layer approximation

when deriving the basic flow, and in the subsequent analysis.

The tangential velocity of the lower fluid satisfies the no-slip boundary condition

(x'U_, W2*) (y* = -d) = (0, 0). The velocity perpendicular to the plate is prescribed by

V2*(y* = -d) = V0, where V0 > 0 corresponds to blowing, and Vo < 0 represents suction
at the wall.

The conditions far from the plate are given by

Uo
U1 _ I ' WI* ---' Wo, as y_oo.

1

Define A = (p_I/Uop_)_, 1 is a length-scale in the streamwize direction and the velocity-

scale is W0, so that

(x',_',z') = _ (x, 7, z),

(z'u*, v', w') = Wo(xu, v, w).



Time t', and pressure Pi'=l,2 are made dimensionless by A/Wo and pll,Vo 2 respectively.

We also define the following non-dimensional parameters

l,VoA p _ Vo R, d
Re = , _ - D = --

tq l'Vo' A'
tt2 P2 1.'2

rn = _, p= _, v = w.
Jtl Pl vl

R_ is the Reynolds number, _ is the dimensionless normal velocity at the wall, and D is

the depth of the lower fluid, scaled with respect to the length A. The parameters m, p

and u are the viscosity, density and kinematic viscosity ratios respectively.

At the interface between the upper and lower fluid layers, both velocity and tangential

stress are continuous. The normal stress exhibits a discontinuous jump due to the effect

of surface tension a. Using the notation

- ,- ('h ('),

we obtain the following conditions which are applied at the non-dimensional interface

position Y = _

[ ((a'))') 2vja_On,ay"mPj 1+ _-_-

2m OWj _ _
R_ OZ

[vD_= 0, [_512: 0, [%1_, = 0,

o% ( (o% l
OZ ] + t'_ \1- tS-_-_) ) \ _ + OZ,J J , = O,

ttJ-'_ " - _Itj Oz OZ 1 = O,

2j,_oo(o% or,
+ no az tb¥-+-b-2 ) -

1

+ = o,

where J = alplW2o A is the non-dimensional surface tension coefficient. In addition, we

must satisfy the kinematic condition

D (y _ 6¢/) = 0 =_ 1/_=, a 5 _- + I,Vj , at Y 6_. (4)
Dt

Let us now regard the flow in each region as a small perturbation of the basic state, so

that with/7 << 1,

(x-_,v w) (Y)+_(xd,_,_)j(Y,z,_),(xu, v,w)j_,,_= t Z, _'
(5)



and the pressure is written in the form

_ (UoXa__ -p_ _j.P_=,,2=-_ /-G J +_+
Note that since 6 << 1, the unperturbed interface position is Y = 0. We substitute

this flow into the Navier-Stokes equations (aa'd), and take the limit 6 --+ 0 to yield the

following system of equations which determine the basic state.

_7,+E = O, (6a)

re,, (v,), + -V,V_'-I = O, (65)

w_-v,w', = o, (6c)
_2 + T7'== o, (ra)

vV=;'+ (V'2) 2- V2V_'- p-' = O, (7b)

_- v=w'== o. (7c)
The boundary and interface conditions become

U2(-D)=W_(-D)=O,

U, (oo) = 1,

u2(0) = u, (0),
v_(o) =o,

mG (o)= E (o),

W2(-D) = _, (8)

W,(co) = 1, (9)

W_(0) = w, (0), (10)
G (0) = 0, (11)

mw'_(o) = w; (o), 02)

where (.)' denotes differentiation with respect to the normal coordinate Y.

Before finding a solution to the above equations, we firstly analyze the behavior of

the basic flow as Y + oo. For large Y, the asymptotic form for 1/'1 and W1 can be

expressed as

V, = -{+pox, x << 1, (laa)

|]q = 1-Ao +E exp - , (13b)

1 3 15 (-1)" (2n - 1) (2n - 3) • • • 3.1

E = -{--g+ {s {r +"" + {2n+, +..-, (13c)

where { = Y + r, X = X ({) and r, Po are constants (see Rosenhead, Chapters V and

VIII [26]). After substitution into equations (6a-7c) we integrate with respect to Y to

obtain the following asymptotic form for X as Y --+ oo

1

X = g[X"+_X'],

X 2 + E + _2E exp

6
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Having derived expressions (13a-c) above, we obtain numerical values for the basic flow

using a fourth order Runge-Kutta scheme to integrate equations (6a-7c) with respect to

Y, from Y_ to -D, where Y_ is an arbitrarily large number. Initial values for r and F0

were chosen, and then improved in order to satisfy the no-slip conditions (8) at the wall,

and the kinematic condition (11) to within a specified tolerance. For the case of a single

fluid, (m = 1 = p) a step length of 1.0 × 10 -s gave excellent agreement with the results

published in Rosenhead [26] (chapter V on page 232). To model the flow of air over

water we obtain a solution of tile system governing the basic state using the viscosity

and density ratios shown in Table 1 (see Batchelor [1]). The basic flow profiles U, V and

W are illustrated in Figures l(a) and l(b) for ])lowing and s/tction respectively. Each

figure shows the velocity components with depth of water D = 0.5, 1,2, 3 and 4.

Given a constant depth of water D, we calculate the corresponding blowing or suction

x at the porous plate, the results are illustrated in Figure 2(a). For the case _ > 0 (wall

blowing), we see that the velocity at the plate increases almost linearly with depth of

lower fluid D. With suction at the wall, the relationship is more involved.

Before we examine the flow stability for both cases, we firstly discuss the basic flow

properties. The way in which a constant depth of lower fluid is maintained may not be

immediately obvious, especially in the case of wall suction. This is made clear by an

analysis of the streamlines. By integrating XU1 and XU2 with respect to the normal

coordinate Y we obtain Figures 2(b) and 2(c) which show the streamlines at a particular

location along the spanwize direction. We have chosen representative examples: x =

0.04, D = 2.0; and _ = -0.12, D = 12. With a positive normal velocity at the plate,

fluid enters the lower layer and moves towards a stagnation point at X = 0 = Y. The

flow in the upper layer is directed towards the plate, in the -Y direction. This is a

classical Heimenz stagnation point boundary layer solution together with an imposed

crossflow W acting in the spanwize direction.

For the case of suction, two stagnation points occur. There is a region above the

interface (positioned at Y = 0), where Vt > 0 and U1 < 0 as shown by the velocity

profiles in Figures l(a) and l(b). The depth of this region increases with the suction,

so that with a depth D = 1.61 and x = -0.1022 (suction is a minimum here) the

two stagnation points almost coincide. For 0 > Y > -D the flow is towards the

porous plate where the tangential velocity satisfies the no-slip condition. At Y = 0

the kinematic condition (11) is imposed to prevent the transfer of fluid particles across

the unperturbed interface (since the fluids are immiscible). The tangential velocity is

continuous here although the gradient is discontinuous due to the viscosity ratio m # 1

(namely equation (12)).

The relationship between x and D shown in Figure 2(a) can be analyzed as follows.

For n >> 1 and Y ,--O(1) equations (6a- 7c) yield solutions

Y+D
U2 = _+...,

p_

_ (Y+D) 2
112 = _ + ...,

2p_¢



=,
Imposing the kinematic condition V2 (Y = 0) = 0 yields

O = (2p)½ _; ,+ 40.4_,

which is in excellent agreement with the numerical vMues presented in Figure 2(a).

For wall suction, the limit x --+ -oo corresponds to the singularity in the depth D.

As x ---+-c_, we see that D << 1, and momentum conservation in the spanwize direction

suggests the use of the scaled variable

¢=

so that for _" ,--, O (1)

(Y+ D)I_lp
m

7122_ 2
1f2 ,-.,

2p3_3 +''"

We now investigate the stability of the basic flow calculated above. We consider two

distinc t cases of physical interest: in Section 3 we look at the temporal stability of the

flow when the Reynolds number iS finite; in Section 4 we investigate inviscid stationary

modes at high Reynolds numbers.

3 Viscous Modes

The aim of this work is to quantify the effect of the interfacial viscosity and density

stratification upon the stability of the basic flow when viscous effects are included. For a

single fluid, linear and nonlinear stability analyses have shown that unstable disturbances

propagate along the attachment line. The three-dimensional basic flow is independent of

the spanwize coordinate Z (and is therefore an entirely parallel flow). Hence we employ

periodic boundary conditions (in that direction) on the flow disturbances. Such methods

cannot of course be used for flows which are spatially growing (non-parallel) such as the

Blasius boundary layer which forms on a fiat plate.

The flow described in the previous section is a first approximation to the boundary

layer which forms on a swept wing, and is used to gain an understanding of the instability

mechanisms which lead to transition from laminar to turbulent flow. To this end, we

consider a convective instability in which disturbances propagate away from their source.

For a discussion of absolute and convective instabilities the reader is referred to the

review paper by Heurre & Monkewitz [13]. Following the work by Hall, Malik & Poll

[12], we consider the temporal development of small amplitude perturbations having a

normal mode expansion

(7],/5j:i,2) = (17,Pj:,,2)exp (ik [Z - ct]) , (14a)

(D,9, i_)j:,,2 = (u, v, w)j exp(ik[Z - c4). (14b)

I|1



These perturbations are spatially periodic with wavelength 2rc/k and with speed c.

The system of equations which govern the linearized stability problem are given

by substituting equations (5 and 1,/a-b) into the Navier-Stokes equations (3a-d) and

associated boundary/interface conditions and then discarding terms which are o (*). We
obtain

L_(U_) 2-U1UITUll,+V,U_, (15a)

L_(14) = R_P_ + ]7'a14 + VII_ ', (15b)

L_(Uq) = iX.hoP,+ g,W[ + R_W',I6, (15c)
U_ 4- l/( 4- i/,:W, - 0, (15d)

- ' (15_)L_(U_) = 2-_U: + -O'y_+ V_U:,

L_(14) = R.P_ 4-V,2V2 4-]72V_, (15f)
P

L] (1¥2) = ikR_P2 + V21'V_ + R_I,I--7'_V2, (15g)
P

U_. 4- V_ 4- i k W2 = 0, (15h)

where

r_ (.) =- (.)"- k:(.)- _kno(w, - c)(.),

Li(.)-= ,,(.)"-_k_(.)-_:R,(W_-c)(.).
The velocity perturbation to the lower fluid satisfies the no-slip condition at the

plate, and the conditions at the interface are obtained by expanding the velocity and

stress components as Taylor expansions about the unperturbed interface position Y = 0.
--!

v; vl

?77.

w_+ .W'_ = w, + ._,

) _+ Vv_.+ ikv_+ T,1_ = _. + w_'. + i_:v,+ w:,

( ) +v;,mkR ° +u_ = n---:-

p2 + r/P'2 (2r/1-7; 2I_'_ r/_ 2r/V'--"1' 2V 1'
R-'--_-- m \_ 4- Re / = P' 4- R_ R_ R,

- k2r/J.

The kinematic condition (4) becomes

R_V,
7] = (16)

9



The upper fluid velocity U1 must match tile undisturbed flow as we move far away
from the plate, we therefore require the perturbed flow to decay exponentially as Y

becomes large, tIall et al. [12] showcd that by replacing the basic flow by its asymptotic

dependence for 1" >> 1 (equation (13a-c)), the perturbed velocity in the upper fluid has
the form

U_ '_ 1'I;'_,-_ exp (-Y2/2),

111~ exp (-kY), ]
as]"---_ oo.

Equations (15a-h) govern the stability of tile lower fluid and are defined on the domain

-D < Y < 671, whilst those for the upper fluid are defined for 671 _< Y _< oo. These

equations in general require a numerical solution.

For a given Reynolds number Re, and real wavenumber k, we obtain the correspond-

ing complex eigenvalue c. The imaginary part, denoted ci, determines kci, the linear

temporal growth or decay of the perturbation to the basic state. When ci > 0 the flow

is said to be linearly unstable and for ci < 0 it is linearly stable.

3.1 Numerical Solution

Solving the stability problem by means of a standard shooting method becomes pro-

hibitively expensive as the Reynolds number increases. The rapidly varying nature of

the eigenfunctions results in a loss of independence of orthogonal solutions due to the

introduction of a 'parasitic' error at each integration step. lligh accuracy can only be

guaranteed if the step-length is made vanishingly small. These difficulties were overcome

by implementing a compact fourth order finite difference scheme of the form developed

by Malik, Chuang & Hussaini [20]. This method was later used by Hall et al. [12]

to investigate the attachment line stability of a single fluid, a detailed account of the

implementation of this scheme is given by these authors. The method is applicable to a

set of linear first order ordinary differential equations with an equal number of boundary

conditions prescribed at each end of the domain. Our solution strategy is as follows,

the equations describing the stability problem above have been formulated as two sixth

order ordinary differential systems with coupled interface conditions. We define two

column vectors

¢_=,.2 = (¢U, ¢2j, 53j, 54j, ¢5j, Csj) T = (Uj, I_, l,'l_, Pj, U;, I_I_') T,

where, as before, tim subscript j = 1,2 denotes the upper and lower fluids respectively,

and T denotes the transpose of the vector. The equations can now be formulated as

twelve first order linear differential equations such that

dCtj 6

n=l

d2¢u 6
- ¢.j,

dY2 ,,=1

/-1,2,...6, j _ 1,2,

I=1,2,...6, j=1,2,

10



Defining
following

(a15)2 = 1,
(aa6)2 = 1,

(I/43)2 = ikpV_R'[',

(a66)_= mn-rg2.

bin daln 6
-- dY + _ atpavn"

p=l

f2 = k2rnp -1 + ik(W2 - c)Re, we find that the 6 x 6 matrix (at,)2 has the
non-zero elements

(a21)2= -1,
(,,_,)_ = pi7_n:',

(a,,5)2= -mR.; "1,
(as_),= p,-,,-'g'_,
(a63)2 = pm-lf2,

(a2a)_ = -ik,

= -&' +v;) ,
(a46)_ = -ikmR-[ 1,

(as_)2 = p,,_-,V2,

(a_4)2 = ikm-IRe,

The corresponding matrix (a1,,)1 is obtained from the above by setting m and p to unity.

The numerical method is then derived using the Euler-Maclaurin formulae

(17)

(18)

n n n T
¢_t _- (¢I,¢2:''''¢6)j-- Cj(Yn),

h. = Y.-Y.__,

+ o (h:).
The nodes are distributed so that in the upper fluid

gl = y= ,
L,(n-1)

N9, - (n - 1)'
n=l,2,...,N+l,

(19)

where N + 1 is the total number of nodes, }_ is the edge of the boundary layer, and

the sealing parameter chosen such that 1411(L1/2) = 0.5. Malik et al. [20] showed that

such a choice of 51 yielded maximum accuracy. Similarly in the lower fluid layer

D+L_
g2 --

D '

r2(n- 1)
1,_ = n=l,2,...,M+l,

Mg2 - (n - 1)'

such that H-72 (52/2) = a]2.

For both the upper and lower fluids, equation (19) becomes

- T E _,%=,+_ E t,,;_;- T E _g' ¢;-'
p=l p=l p=l

h_ G
12 y'_ bg'¢;-' = 0 , n = 2,...,N+ 1, / = 1,2,...6,

p=l

11



which may be written in block-tridiagonal form so that the solution acrosseach fluid
layer is obtained efficiently. To this end, we introduce independentinhomogeneousve-
locity components at the interface, and equation (16) gives tile corresponding interfacial

deformation r/. We find a suitable linear combination of these three independent solu-

tions, so that for a specified lower fluid depth D, Reynolds number Re, and wavenumber

_r, the conditions of stress continuity at Y = 0 are satisfied, and tile complex eigenvalue

c is obtained. When we equate the densities and viscosities of the two fluids, the numer-

ical scheme yields exactly the eigenvalues found by IIall et al. [12]. When the imaginary

part of the eigenvalue c is zero, there is no temporal growth or decay of the disturbance

to the basic state, and tile flow is neutrally stable. We then iterate to obtain neutral dis-

turbances characterized by ci = 0. Figure 3 shows four neutral curves: an impermeable

plate with _: = 0; wall blowing with x = 0.137 and _¢= 0.4; and with suction x = -0.1.

Inside the curves, c has a positive imaginary part and the perturbations (Uj, Vj, Wj, 71)

grow exponentially in time.

The eigenvectors given in Figures 4(a)-4(c) have been normalized so that the maxi-

mum magnitude of each velocity component is unity. Figure 4(a) shows both real and

imaginary parts of the three velocity components when the fluid viscosities and densities

are equal. It has been verified that these (and other) eigenvectors are the same as those

published by Itall el al. [12]. In Figures 4(b,c) we clearly see the discontinuities in the

velocity and shear stress at the unperturbed interface position Y = 0 which is due to the

difference in viscosities and densities of the air and water layers. It is this discontinuity

which plays an important role in altering the stability of the flow. The neutral curves

for air flow over water are drawn in the (k, R_) plane. Figures 5(a) and 5(b) correspond

to cases of wall blowing and suction respectively. These results are discussed in the

following section.

3.2 Discussion

Before we discuss the novel results of our numerical calculations we firstly comment on

the relevance of the exact solution, to the actual flow which forms on swept wings and

swept cylinders. The boundary layer flow over a yawed, infinitely long cylinder was

investigated and by Sears [27], (and in the unpublished work of Schubart). Their work

is discussed in Chapter VIII of Rosenhead [26]. Using cartesian coordinates, the velocity

components are expanded in powers of x/l, where x is the distance measured along the

surface perpendicular to the cylinder generators and l is an appropriate length-scale.

Close to the leading edge of the cylinder, and for a sufficiently large radius of curvature,

the effects of curvature can be assumed negligible. The leading order solution (higher

powers of x/l are ignored) reduces identically to the flow which we have calculated in

Section 2. The accuracy of this approximation depends, therefore, on the geometry of

the cylinder or swept wing. Results using this model will be most relevant to wing
sections wtiich have a flat nose.

Since the basic flow is only a first approximation to the flow near the attachment

12



line, asymptotic methodsbasedo11a high Reynoldsnumber assumptionmust be used
to investigate tile practical problem.

It is worth makinga fewcommentsabout the dimensionalquantities in this problem.
Tile velocity componentsin eachfluid are madedimensionlessusing the spanwizefree
streamspeedW'0. The length scale A =(tLl 1/Uopl )1/2 is based on the streamwize velocity

U0 and length I. In a practical situation then, tile density and viscosity of the water and

air would be fixed parameters (given in Table 1), as would the normal velocity at the

surface, Vo. We have shown in the previous section, that with a given value of _ (the

dimensionless parameter quantifying the amount of blowing or suction) we can calculate

the corresponding nondimensional depth of water D. The actual height of the interface

is therefore not a free parameter and is determined by the dimensional speeds Uo, V0,1/1/o

so that A is known and hence the depth d = D/A can be deduced.

The results of our linear stability analysis are in excellent agreement with those of

Hall et al. [12] when the fluid properties are matched across the interface (see Figures

3 and 4). For a given wavenumber k, we calculate the Reynolds number which gives

neutral stability. In the absence of suction or blowing, our numerical scheme yields the

critical values (R,), = 583.14, k_ = 0.2881 in agreement with [12]. For R, < (R,)_

disturbances are damped and decay to zero exponentially in time. At points inside the

neutral curve, the boundary layer is susceptible to traveling wave instabilities which

propagate along the attachment line.

An additional check on the numerical results is given by halving the step-size used

in tile finite difference calculations. Table 2 illustrates the accuracy of the scheme as the

number of mesh points is doubled.

For a single fluid (corresponding to the case when the fluid properties are matched),

suction and blowing have opposite effects on the flow stability. As f¢(> 0) is increased,

the critical Reynolds number decreases, and the flow is linearly destabilized by a smaller

crossflow velocity. See for example, the neutral curves in Figure 3 with x = 0.137 and

t¢ = 0.4, and the results given by ttallet al. [12]. Suction however, can be a useful

laminar flow control. The stabilization induced by negative normal velocity at the

surface increases tile critical Reynolds number, as illustrated by the representative case

n = -0.1 in Figure 3. We have also calculated neutral stability results for other values

of x (namely t_ = -0.15,-0.2,-0.25). In each of these cases the flow is stable over the

range 0 < R, < 1500 illustrated in Figure 3. Tile asymptotic results of Hall et al. show

that as x _ -¢x_, (R,)_ can be made arbitrarily large. This however, does not take into

account the effects of nonlinearity. Hall & Malik [11] showed that solutions bifurcate

subcritically from the upper branch of the neutral curve. The linearly stabilizing role of

suction may therefore be destroyed by nonlinearity and transition may be enhanced by

the unstable nonlinear modes.

Upon introducing a viscosity and density difference across the interface, the results

of the linear stability analysis are significantly altered. For" the flow of air over water

(tire fluid properties are given in Table 1), we have obtained results in the case of both

blowing and suction at the wall. With a positive normal velocity at the porous plate,
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we havechosenthe representative cases: _ = 0.027, n = 0.04, and _: = 0.137. These

neutral curves are illustrated in Figure 5(a). To emphasize the interfacial effect, we

have also included tile curve (broken line) corresponding to the neutral stability of a

single fluid (see Figure 3). These eigenvalues were calculated by following the results

given by fluids with matched physical properties, and gradually introducing viscosity

and density stratification across the interface. As rn and p increase, the interracial mode

destabilizes the flow. For any given Reynolds number, the band of unstable wavelengths

is significantly increased. The upper and lower branches of the neutral curve open out

and the critical Reynolds number decreases. For example, with n = 0.137 and D = 6.0,

we obtain critical values L-¢ = 0.499 and (R_)c = 97.81, whereas for matched fluids the

critical values corresponding to t¢ = 0.137 are kc = 0.309 and (R_)c = 315.12.

With suction at the wall, the viscosity and density stratification across the inter-

face also leads to destabilization and the flow is again unstable for a wider band of

wavenumbers. In Figure 5(b) we show neutral curves for the cases x = -0.1026 and

_¢ = -0.208 which correspond to water depths D = 1.0 and D = 0.5 respectively

(see Figure 2(a)). With a nondimensionat water depth of 1.0, the flow is unstable

even for small Reynolds numbers. Accurate numerical experiments yield critical val-

ues (R,), = 10.9887, kc = 0.7946. When the depth of the water layer is reduced (and

consequently the suction parameter is increased) the critical Reynolds number increases

along with the corresponding wavenumber. For example, with D = 0.5, we obtain

(R¢)¢ = 82.0096, kc = 1.4410. It is clear then, that the usual stabilizing effect of suction

at the plate, has been negated by the strongly destabilizing influence of the viscosity

and density discontinuities at the interface.

A comparison between the theoretical and experimental results is difficult. As dis-

cussed earlier, in-flight calculations and wind tunnel experiments indicate that a water

layer on the wing surface can have a detrimental effect on drag and lift. This is most

likely due to the premature transition from laminar to turbulent flow. The interracial

traveling wave instability observed here is a possible contributing factor in this process.

However, experimental investigations into the instability of superposed fluids have had

limited success in quantifying the interracial mode. Charles & Lilleleht [3] and Kao &

Park [18] studied the plane Poiseuille flow of oil and water in a channel. They found

instability at large Reynolds numbers which appears to arise in the water layer and

causes the interface to become wavy. It is not clear that this instability is caused by

the interracial effects, it is more likely that the presence of unstable Tollmien-Schlichting

waves in the less viscous fluid (water) are being observed at the interface. This mode

is present at high Reynolds numbers in the absence of a second fluid and is perhaps

the one observed experimentally because it has the largest growth rate. More successful

experimental results have been obtained for two fluid flows in cylindrical geometries,

where traveling waves are often observed at the interface. The books by Joseph and

Renardy [17] give a good review of recent experimental and theoretical investigations.

The flow described here is a crude model of the actual flow of air over water on

swept wings. To make qualitative comparisons between the theoretical calculations and
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observablephenomenonwould require a more sophisticatedmodel in which nonlinear
effectsare taken into account. The methods adopted by IIall & Malik [11] could be
applied to tile two fluid problem in an analogo,s manner, although the nonlinear in-
terfacial conditions would complicate the analysis. In addition, globM methods could
be usedto calculate the completeset of eigenvalues,relating the interfacial effectswith
other modesof instability.

4 Inviscid Stationary Modes

I,Ve now investigate tile stationary instability of two-phase flow of air above water over

a swept wing, when the Reynolds number is large. As before, we regard the flow in each

region as a small perturbation to the basic state. The normal Coordinate must now be

scaled on tile Reynolds number, so that the fluid Velocity and pressure are

_ (VoXAno)_ P--5

,v_,_,j) (x, _;z) , (20)

(21)

After substituting (20) and (21) into tile non-dimensional Navier-Stokes equations and

taking 6 _ 0, we recover the ordinary differential system (6a-7c) and boundary condi-

tions (8-12) which determine the basic state. At next order the equations governing the

linearized stability of the lower fluid layer are

° (x _O_) + ._v_-b-g+x n_v_-yf + x w_3g + _
U_ OX p OX R_

o2_;- + 1%-_- + 1_2 + W_-b- Z + V2i)_, (22b)p 0Y Bo

(22c)

(]2 + _ + R_ _ + OZ - O, (22,1)

where

t{00 0_(.)0_(")+ +_
V 2 (.) - OX 2 "01"_ OZ 2 •

The corresponding equations for the upper layer are obtained by replacing p and u by

unity in the above equations.

Following the inviscid instability theory of Gregory el al. [9] we expect the pertur-

bations to the velocity, pressure and interface to have the following modal expansions,
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_=

with wavelengths scaled oil the boundary layer thickness.

( [/x ])= (XUi, Vj, Wj)(Y)ex p iR) adX+flZ , (23a)

( [jx ])= (,I, Pj)(Y)exp iR_ c_dX+ _Z . (23b)

In particular we consider a flow which is neutrally stable so that the wavenumbers a

and/3 are real. As R_ _ oo, an zone develop ).inviscid will with depth O (R'; 1/2 This

inviscid region is asymptotically matched onto a viscous wall layer so that the no-slip

conditions can be satisfied at Y = -D. By balancing inertial and viscous terms in

equations (22a-d), we see that this viscous layer has thickness 0 (R-[2/z). The inviscid

perturbations US, Vj, Wj and PS and wavenumbers _ and/3 are then expanded in powers

ofo

Substitution of the neutral disturbances (23a-b) into equations (22a-d) yields the follow-

ing leading order system of equations which govern the inviscid stability of perturbations

to the upper and lower fluids when the Reynolds number is asymptotically large.

ix_suso+XVjo_';= i_o5o, (24a)
o

i_jl_o = P;o, (24b)
P

i_jl,Vso + VjoW, s = i/3oPjo, (24c)
P

iooXUio + V._ + ifloH_o = O, (24d)3

croXUjo + floWso = _jo. (24e)

Eliminating Ujo, W/o and Pjo fi'om equations (24a-e) we see that I/jo satisfies Rayleigh's

equation, (25a-f) in each layer.

_1(v,'_- _o_V,o)= F,'V,o, _"e [0,oo), (25a)
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E = E'V2o, y [-D,o], (2.5b)
V]o(oo) = o, (25¢)

V=o(-D) = o, (2Sd)
V2o(o) = V,o(o), (250

(i - .,.) _4o(o)u,o (o)
1_'o (0) = V_'o(0) + -- (25f)

mUio (0)

Here U---j is the 'equivalent' two-dimensional velocity profile, and -),o2 = _ +/3o 2 is the

'effective' wavenumber. Note that the continuity of stresses at the interface are satis-

fied trivially in the limit as R, --* oo. The inviscid solution ½0 is matched onto the

viscous perturbation in the wall layer, and in view of the continuity equation (22d) this

perturbation is O (R['/_), hence V2o satisfies the boundary condition (25d).

The point at which Uj = 0 is denoted by Y = }0, and as Y approaches this value, U0
==::t!

and Wo behave like 1/(Y - Yo). By careful choice of o_o/flo, Uj is also made to vanish

as Y _ Yo, so that Vo has no such singularity, and a classical critical layer analysis is

not necessary (see Hall [10]).

4.1 Asymptotic Solution for Similar Fluids

The above system may be solved numerically, to do this a suitable initial guess must be

made for the eigenvalue %. To assist the location of this eigenvalue, we firstly consider

the analogous problem where the two fluids have equal densities, and the viscosity ratio

is close to unity, that is m = 1 + c, where e << 1. This case corresponds to the flow of

two fluids with similar properties, this is a useful indication of the manner in which the

interfacial effects can alter the stability of the flow.

The basic flow and wavenumbers are then expanded in an asymptotic series as

Oto = aoo+_Ool +''',

,8o = floo+ _flol +'",

% = 7oo+ eT0x +'",

aoo_ol +/3oo,Bo,
_01 =

3'0o

U, = U_o+ct-7_ +...,

Vj = Vjo+ el/'j_ +...,

Wj = 1,1-7_0+ _I,l-7_ + ...,

Ui = Ujo+eUj_+...,

= .ooX  o +, ooWjo,
gjl =  vooXE1+ ooWj,+ , olXg o+/ o,Wjo.
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The leading order basic flow in each layer j = 1,2 satisfies

VIII _ ,_--¢11 (_l )jo = V.io V jo - Vjo

__ / .--t
W_o I joWjo.

Ylo(_ ) = -1,

W,o (_) = 1,

V2o(-D) = _,

VGo(-D)= o,
W,o(-D) = o,

2

+1,

with V-'-j, l,--Z_,vr'l,j,Wj, and W'j, continuous at Y = O.

At O(e),

"_lll "_ "J'-';.ll --I --I -- --II

11 = , 10Vll -- 2VloVn -I- VIIVlo,

V" V_oV[, =' ='51 = - 2V2oV21 + V21V_o - ="Vlo,

--" V,oW',+ v,,_¢;o,1'1711 = 1

W21 = ]/'20 ['][f;1 + g11W;0 - W_O,

i7'II1(oo) = O,

Wn (oo) = 0,

V'=x(-D) = 0,

W21(-D) = O,

1711 (0) -- 0 -- V21 (0),

W,1(o) = V',,(o),
*_'Tfl --tl --II11(o) = v_l(o)+ V_o(o),
l,V,,(o) = W_l(0),
w',l (o) = w;, (o)+w'_o(0),

To solve the above equations numerically, we require the asymptotic form of the O (e)

correction to the basic flow as Y ---+ oo. This is obtained in a manner similar to the

derivation of equations (13a-c). We find that

l,lql

= "q +FIX - "qFox',

Where rl, F1 and X1 are constants to be found. The equations governing the basic state

were then solved numerically and the results compared with the solution of equations

(6a-7c), choosing a value of m close to unity. The results we obtained gave excellent

agreement up to O (e2).
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Tile solution of (25a-f)may beobtained 1)ysolving the adjoint set of equations(see
Coddingtonand Levinson[4]). Werecollcctthat if M is an ordinary differential operator

over a region N, tlle adjoint problem is defined by

fN_M (¢)dy = fN CU+ (_)dy = O.

In our case the region N = [-D, co), contains two sub-regions I-D, 0] and [0, co). This

however, does not present a difficulty, following the work of Blennerhassett [2] we define
a vector

Z

f
= _ Zi O_<Y<_,

[ Z2 -D_<Y_<O,

and a 2 x 2 real matrix S_ such that

s_ = _ St 0<Y<_,

t S_ -D_<Y_<0.

For tipper and lower fluids (j = 1,2 respectively), Zj and S_j are then chosen such that

_0

Zj = =,_ , S j =
t_oUj

Uj

Uj

Equations (25a-b) may then be written in vector form Z' = S_Z, where Vj0 satisfies no-

slip at the boundaries and Z is continuous across the interface. The adjoint problem is

now defined by

Z() [()]Z+ T c_
D [Z'-SZ]dY" = Z+ TZ -D

_ L;z 
Writing S_S_4 = -S T the adjoint system becomes

=0.

(Z+) ' = S_S+Z+,
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wheretile adjoint fimction Z+ is alsocontinuousacrossthe interface, and _/_+satisfies
no-slip at tile boundaries.The problem is self-adjoint.

We now perturb the viscosity ratio about m = 1, and write

_% = l_oo+el_o,+'",

S__j = S_jo + eS_j_ + ---,

Zj = Zjo+eZj_ +.-..

Substitiution into tile Rayleigh equations in each fluid layer yields

Zjo

Z jl

I%0

l_ooUjo

Viol

_2

Ujo

S__/o

Ujo
1

go

Ujo

"7_o _jo

Uj_Ujo - UjoUj_
_2

Uio

27oo7_o UjoUjl _ Ujl Ujo-[

Neglecting,ter,ns of 0 (e2), it follows that the nm,nentum equations are

z -s_oZo = o,
0 (£) : Ztl -- S oZl --- SlZo.

(26)

(27)
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Vectors Zo and Zl remaincontinuousacrosstile interfaceand Vio o and Viol satisfy the

no-slip conditions at Y = -D and as Y _ (x_. For equation (27)'to have a solution, the

forcing term on the right hand side, must be orthogonal to tile adjoint function, hence

/ /5° + (Z,+o) _-0
D

After some manipulation we obtain

27oo7oi Io
h20 (0) Vlo (0)

= - I! -- 12, (28a)_o(0)

i: /5So = V_ody + 5_oodY, (28b)
D

[Vl't

I2 = f_o
D =2

U2o

The integrands of 11 and /2 are regular since the singularity at Y = Yo is removable,

for details see Coward [5]. We are now able to calculate 3'o_, the O (¢) correction to the

effective wavenumber, by finding a numerical solution to the leading order momentum

equations (26) and the solvability condition (28a).

4.2 Discussion

The Rayleigh equations (25a-b) and associated boundary and interface conditions (25c-

f) describe the inviscid stationary modes of the two phase flow with general viscosity

ratio m and density ratio p. These equations were integrated using standard a finite

difference method so that for given m and p the eigenvalue % was calculated to a high
degree of accuracy.

Figure 6 illustrates the dependence of 3,o2 upon the lower to upper fluid viscosity ratio

for 0.8 _< rn _< 24. The eigenvalue is a strictly increasing function for m > 0. The effect

of density stratification is more subtle, since it does not appear explicitly in equations

(25a-f), but manifests itself through the calculation of the basic flow.

In the absence of a discontinuity in viscosity across the interface, the wavenumber of

the inviscid stationary mode is

7_ = %2o = 1.4899.

Using the asymptotic methods for m - 1 << 1, we obtain the leading order correction

to 7o due to a small viscosity difference across the interface. The solvability condition
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(28a) representstwosimultaneousequationsto determineunknownsC_ol and flo, (taking

real and imaginary parts of (28a)). IIowever, it is more useful to evaluate

_'oo_o,+/3oo/3o,
"7oi

3'o0

We find that

:
: + +o(:).

Figure 7 shows the value of 7o2 evaluated using the numerical scheme for rn. close to unity.

The broken line represents the calculation of 7o2o+ 2 (m - 1)'),oo')'ol by the asymptotic

methods described above.

The eigenvectors illustrated in Figures 8(a) and 8(b) have been normalized so that

their maximum values are 1.0. Figure 8(a) shows 1-710 and V"--2owhen the two fluids are

identical. We notice that the maximum velocity perturbation is at Y = 0.0839. Figure

8(b) however, corresponds to the case m = 5. Although the velocity perturbation is still

continuous, a discontinuity in the first derivative at the unperturbed interface position

has developed due to the equation of tangential stress continuity. The maximum of Vlo

now occurs much further away from the interface, at Y = 1.341.

The orientation of the disturbances relative to the streamwize axis is determined by

the wave angle ¢ such that

oo ooo+ ( )= /3oo /_o_° ¢+O d,

= 0.7514 + 37.88e + O (e2),

_-
For matched fluid properties the effective wavenumber and wave angle given above cor-

respond to the single fluid case. As viscosity stratification is introduced, we obtain tim

above corrections to these quantities and these in turn are in agreement with our nu-

merical results for general viscosity and density ratios. These calculations are based

on an infinite Reynolds number assumption. This work could be extended to include

viscous effects in an analogous manner to the method used by Hall [10] for- the flow over

disk. Viscous effects enter at 0 (R[_/_6), the corresponding momentumrotating& equa-

tions must then be solved to determine Uj_, Vjl, Wjl,..., and the solutions matched onto

the inviscid flow. The analysis is, however, made more difficult due to the complicated

interfacial conditions which match the flow across tire two regions.

5 Conclusions

In Sections 3 and 4 we have considered both two and three-dimensional disturbances to

the flow of air over water. The exact solution of the Navier-Stokes equations described
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in Section 2, is a crude model of tile flow near the leading edge of a swept wing during

heavy rainfall. We have shown that the interracial forces ]lave a significant effect on

the stability of tile attachment line flow. Viscous traveling waves are predicted at lower

Reynolds numbers than is the case for air flow in the absence of a second fluid. The

instability is due to the discontinuity in the viscosity and density across the interface

between the two fluid regions and occurs with either blowing or suction at the plate.

At infinitely large Reynolds numbers, the interface also alters the neutral stability of

stationary modes of the form considered by Gregory et al. [9]. The three-dimensional

basic flow is written in terms of an 'equivalent' two-dimensional velocity profile which has

an inflection point when the velocity is zero. Consequently the critical layer is passive

and the ensuing calculations of the eigenvalues and eigenvectors for three-dimensional

disturbances follow in a straight forward manner. Using both general numerical methods

and asymptotic techniques for the flow of similar fluids we have obtained the corrections

to the disturbance wavenumber and orientation due to interfacial effects.
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Figure captions

Figure l(a).

Figure l(b).

Figure 2(a).

Figure 2(b).

Figure 2(c).

Figure 3.

Figure 4(a).

Figure 4(b).

Figure 4(c).

Figure 5(a).

Figure 5(b).

Figure 6.

Figure 7.

Figure 8(a).

Figure 8(t_).

Basic flow of air over water: velocity profiles with wail blowing and

water depth D = 0.5, 1.2, 3, 4.

Basic flow of air over water: velocity profiles with wall suction and

water depth D = 0.5, 1.2, 3, 4..

Basic flow of air over water: water depth D and corresponding blow-

ing/suction t:.

Basic flow of air over water: streamlines with wall blowing.

Basic flow of air over water: streamlines with wall suction.

Neutral curves with equal viscosities and densities: Impermeable plate

t¢ = 0, blowing with a = 0.137 and _¢= 0.4, and suction with J¢ = -0.1.

Neutral eigenfunctions U,V,W for a single fluid, Rc = 119, a = 0.4.

Real part of neutral eigenfunctions U, V, I,Iz for air flow over water,

R_ = 1580, _ = 0.04.

Imaginary part of neutral eigenfunctions U, V, W for air flow over water,

R_ = 1580, a -- 0.04.

Neutral curves: solid line corresponds to the flow of air over water with

increasing wall blowing; dotted line shows the neutral curve for a single

fluid with no wall blowing.

Neutral curves: the stability of air flow over water with suction at the

wall.

Eigenvalues 3'0 as a function of viscosity ratio m.

Eigenvalue 7o for similar fluids: a comparison of asymptotic and nu-

merical results when the viscosity ratio m is close to unity.

Eigenfunction: Equal densities and viscosities.

Eigenfunction: Equal densities, viscosity ratio m = 5.0.
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Tables

Density Viscosity Kinematic Viscosity

g cm -3 g c_l/-ls -1 cm2s -1

Air 1.225 × 10 -3 1.776 × l0 -4 1.450 × l0 -I

Water 9.991 x 10 -1 1.137 × 10 -2 1.138 × l0 -2

Water/Air 8.156 × 102 6.402 x 10' 7.848 × 10 -2

Table 1. Physical properties of air and water.

N

10

20

4O

8O

160

10

20

4O

8O

160

320

k {kc}
3.300581 x I0-' 1.226919 x 10-I

3.378719 × I0-i 1.267951 × 10-I

3.384238 x 10-I 1.270776 × I0-1

3.384613 × 10-I 1.270965 × I0-I

3.384638 x 10 -1

8.540221 x 10 -2

1.270977 × i0-'

2.284554 × 10-2

8.428938 x 10-2 2.243776 x 10-2

8.415787 x 10-2 2.238444 x 10-2

8.414404 × lO-2 2.237832 × i0-2

8.414255 × 10-2 2.237762 × I0-2

8.414239 × 10 -2 2.237753 x 10-2

K

0.0

0.0

0.0

0.0

0.0

0.4

0.4

0.4

0.4

0.4

0.4

Table 2. Neutral eigenvalues with decreasing step-size: m = 1, p = 1 and R, = 800.
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Figure 4(b).
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Figure 1 (a).
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Figure 2((]).
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