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Summary 

A force method formulation, the Completed Beltrami­
Michell Formulation (CBMF), has been developed for ana­
lyzing boundary value problems in elastic continua. The 
CBMF is obtained by augmenting the classical Beltrami­
Michell Formulation with novel boundary compatibility con­
ditions. It can analyze general elastic continua with stress, 
displacement, or mixed boundary conditions. The CBMF 
alleviates the limitations of the classical formulation, which 
can solve stress boundary value problems only. In this report, 
the CBMF is specialized for plates and shells. All equations 
of the CBMF, including the boundary compatibility condi­
tions, are derived from the variational formulation of the 
Integrated Force Method (IPM). These equations are defined 
only in terms of stresses. Their solution for kinematically 
stable elastic continua provides stress fields without any ref­
erence to displacements. 

In addition, a stress function formulation for plates and 
shells is developed by augmenting the classical Airy's formu­
lation with boundary compatibility conditions expressed in 
terms of the stress function. The versatility of the CBMF and 
the augmented stress function formulation is demonstrated 
through analytical solutions of several mixed boundary value 
problems. The example problems include a composite circu­
lar plate and a composite circular cylindrical shell under the 
simultaneous action of mechanical and thermal loads. 

Introduction 

Boundary value problems (BVP) for analyzing elastic con­
tinua have been classified into three categories according to 
the type of prescribed boundary conditions. These categories 
are BVP I, where only stresses are prescribed on the bound­
ary; BVP II, where only displacements are prescribed; and 
BVP III, or mixed BVP, where both stresses and displace­
ments can be prescribed on the boundary. 

Two distinct methods (which are classified according to 
the primary variables used) are available in the literature for 
solving these problems: (I) the Navier's displacement 
method (ref. I) expresses the governing equations in terms of 
displacement variables, and (2) force methods use stresses in 
the problem description. The Navier's displacement method 
can solve all three types of BVP's because the stress bound­
ary conditions may be easily expressed in terms of the kine­
matic variables. The stresses, however, have to be calculated 
indirectly when the displacement method is used. This may 
introduce errors in the stress variables, especially when 
approximate techniques are followed. Thus, the displacement 
method may not always be a reliable tool for calculating 
stresses, and alternative methods are needed for direct and 
accurate stress analyses. 

The force method, known as the Beltrami-Michell's For­
mulation (BMF) in elasticity, was developed at the turn of the 
20th century. It is applicable only to BVP I, where stresses 



are prescribed on the boundary. Neither BVP II, with pre­
scribed displacement boundary conditions, nor BVP III, with 
prescribed mixed boundary conditions, can be solved by the 
BMF because it cannot handle the displacement boundary 
conditions. Therefore, the BMF had a very limited impact 
because many realistic engineering problems require the 
solution of BVP II and III. 

The classical BMF was deficient because a set of boundary 
conditions were unavailable. These boundary conditions, 
which have recently been derived for both discrete (ref. 2) 
and continuum analyses (refs. 3 to 5), have been identified as 
boundary compatibility conditions. Augmenting the BMF 
with these boundary compatibility conditions resulted in the 
Completed Beltrami-Michell Formulation (CBMF), which 
can solve all three types of BVP's. It overcomes the limita­
tion of the classical formulation and is as versatile as the 
Navier's displacement method. A variational functional for 
the CBMF, known as the variational formulation of the Inte­
grated Force Method (IFM), also has been developed (ref. 6). 
The stationary condition of the IFM functional yields both 
field and boundary equations, including the boundary com­
patibility conditions that are necessary to solve the problem 
in terms of stresses. Recently, the IFM functional was used to 
develop a corresponding finite element formulation (refs. 2 
and 7 to to). 

Published CBMF developments include the analysis of flat 
membrane plates and flat plates in flexure (refs. 3, 4, and 6). 
For both cases, the response was obtained for mechanical 
loads only. The CBMF remained to be developed for shell 
structures wherein the membrane and the flexural responses 
are coupled and for thermomechanical analysis of structures. 
In this report, the CBMF is developed for the thermome­
chanical analysis of composite, circular cylindrical shells in 
which the membrane and bending responses are coupled. The 
formulation for circular plates also is extended for the 
thermomechanical analysis of composite plates. 

To introduce the basic concepts of the CBMF, we first con­
sider a two-dimensional plane stress problem. When treated 
separately, the equilibrium equations cannot be solved for 
stresses, neither can the compatibility conditions be solved 
for strains. However, both sets of equations, combined with 
the traction boundary conditions and the boundary compat­
ibility conditions, provide enough equations to solve all three 
types of BVP's only in terms of stress variables. 

Next, by using the IFM functional, we develop the CBMF 
for plate and shell bending (ref. 6) problems. The IFM func­
tional is formulated for both problems, and all the necessary 
field equations and boundary conditions, including the 
boundary compatibility conditions, are derived from its 
stationary condition. The boundary conditions are specialized 
to establish transition Uump) conditions on the interfaces 
of domains with different material properties. Then, the 
transition conditions are used to calculate the response of 
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composite plates and shells. The field and the boundary com­
patibility conditions also are modified to account for initial 
deformations and are used next for the thermal analysis of 
circular plates and shells. 

Augmented stress function formulations also are devel­
oped for both problems. These formulations, which are 
obtained by adding the boundary compatibility conditions to 
classical Airy's types of formulations, can solve all three 
types of BVP. This report demonstrates the capabilities of the 
CBMF by solving several mixed BVP for plates and shells. 
The examples include composite domains, mechanical and 
thermal loadings, and general boundary conditions. 

Review of the Completed BeItrami­
Michell Formulation 

The CBMF represents a method for solving mixed BVP in 
elasticity solely in terms of stress variables. It concatenates 
equilibrium equations and St. Venant compatibility condi­
tions both in the field and on the boundary in an attempt to 
obtain a complete system of equations, all expressed in terms 
of stresses. To review the basic concepts of the CBMF, we 
consider a plane stress problem. For simplicity, initial defor­
mations and body forces are neglected in this review, and 
homogeneous displacement boundary conditions are 
assumed. 

Governing Equations for the Completed Beltrami­
Michell Formulation 

The CBMF was originally established by augmenting the 
classical BMF with newly developed boundary compatibility 
conditions. All equations required for the CBMF have also 
been derived from the IFM variational functional (ref. 6.). 
These equations can be divided into five groups: Group la, 
equilibrium equations in the field; Group Ib, equilibrium 
equations on the boundary; Group IIa, field compatibility 
conditions; Group lib, boundary compatibility conditions; 
and Group III, continuity conditions. For a plane stress prob­
lem, these equations are given as follows: 

Group fa: Equilibrium equations in the fU!ld.-

d(J d'rxy 
__ x +--=0 
dx dy 

(1) 
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Group Ib: Boundary equilibrium equations (or traction 
conditions ).-

g( (a) = axnx + rxyny - Px = 0) 
g2(a) = rxynx +ayny - Py = 0 

(2) 

where ax, aY' and rxyare three components of the stress ten­
sor; nx and ny are the direction cosines of the outward normal 
vector; and Px and Py are prescribed boundary tractions. In 
the field, the equilibrium equations are functionally indeter­
minate (ref. II) because three unknown stresses are 
expressed in terms of two equations of Group la. 

Group 11a: Field compatibility condition.-The functional 
indeterminacy in the domain is alleviated with St. Venant's 
field compatibility condition, which can be written in terms 
of strain components Ex, E), and Yxy as 

:12 2 :12 
a Ey J E a Y xy __ + __ x ---=0 
Jx 2 Jy2 JxJy 

(3) 

and in terms of stresses as 

(4) 

Equations (I), (2), and (4) represent the stress or the clas­
sical BMF in elasticity which was developed in 1900 
(ref. 12). This incomplete formulation is not applicable to 
BVP II and III because of stress indeterminacy on the bound­
ary. This is evidenced by the three stresses on the boundary 
being expressed in terms of two traction equations (eqs. (2)). 
Thus, there is one degree of functional indeterminacy. The 
field compatibility condition given in equation (4) alleviated 
functional indeterminacy in the field. However, because 
St. Venant did not formulate the compatibility on the bound­
ary, the stresses remained indeterminate on this type of 
boundary. 

Group lIb: Boundary compatibility condition.-The 
functional indeterminacy on the boundary that made the 
BMF incomplete was alleviated when Patnaik (ref. 6) formu­
lated the boundary compatibility condition. This boundary 
condition, when expressed in terms of stresses, for isotropic 
material with Poisson's ratio vhas the following form: 

-(I+V) ~n +~n =0 
[
Jr Jr ) 
Jxy Jy,x (5) 

The set of three equations-the traction conditions of equa­
tions (2) and the boundary compatibility condition of equa­
tion (5)---ensure stress determinacy on the boundary because 
three unknown stresses are expressed in terms of three 
equations. 

The set of six equations (eqs. (I), (2), (4), and (5)) repre­
sents the CBMF, which ensures the determinacy of the 
stresses in the field and on the boundary of an elastic con­
tinuum. The CBMF can solve a general elastic continuum, 
namely BVP I, II, and III. 

Group Ill: Continuity conditions (or displacement 
boundary conditions).-The stationary condition of the IFM 
functional also yields two displacement boundary conditions: 

u=!i=O v=v=O (6) 

where !i = 0 and v = 0 are prescribed boundary displace­

ments. In the CBMF the displacement boundary conditions 
do not appear explicitly in the stress calculations provided 
the structure is kinematically stable. Displacements, if 
required, can be calculated from stresses by integration where 
the kinematic boundary conditions are required to evaluate 
the constants of integration (refs. 3 to 5 and 13). 

Treatment of Displacement Boundary Conditions in the 
Force Method of Analysis 

Treatment of displacement boundary conditions in force 
and displacement methods of analyses can differ to some 
extent. In the displacement method, the two boundary condi­
tions given in equations (6) are used; but in the CBMF for 
stress calculations, only one boundary compatibility condi­
tion, that given in equation (5), is used instead of those in 
equations (6). The paradox-two conditions given in equa­
tions (6) in the displacement method versus one condition 
given in equation (5) in the force method-is first clarified 
through the force method analysis of a discrete structure, the 
two-bay truss shown in figure I. The concepts are next 
extended for continuous domains. The truss has 11 members 
with identical material and geometric properties. Nodes I and 
3 are restrained in both coordinate directions, resulting in dis­
placement boundary conditions: 
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(7) 

(8) 

The truss is subjected to the concentrated force of intensity 
P as shown in figure I. The primary set of unknowns consists 
of 11 member forces, {F}T = {FJ, F2, "', FII}, which can be 
obtained from the following system of equations: 

(9) 

(to) 

(II) 

4 

Equations (9) represent equations of equilibrium (Group 
Ia); equations (10) represent field compatibility conditions 
(Group IIa, ref. 14); and equation (11) represents the bound­
ary compatibility condition (Group IIb, ref. 14). Boundary 
equilibrium equations of Group lIb represent equations for 
unknown reactions at restrained nodes 1 and 3. These equa­
tions are not written here because they are not essential for 
calculating internal forces. 

The displacement boundary conditions for the truss can be 
divided into two categories: (1) three kinematic boundary 
conditions (UI = U3 = VI = 0) and (2) one indetermi­
nate boundary condition (V:3 = 0). The three kinematic bound­
ary conditions, which are required to ensure the kinematic 
stability of the structure, do not appear explicitly in the force 
method solution of the problem. The indeterminate boundary 
condition is replaced by the boundary compatibility 
condition. 

The displacement boundary conditions in the CBMF for 
continuous domains also can be divided into kinematic con­
ditions and boundary compatibility conditions. Kinematic 
conditions do not enter the CBMF explicitly. These are, how­
ever, essential for the overall kinematic stability of the struc­
ture, and they are also used to determine the constants of 
integration when the displacements are calculated from the 
stresses. Only the boundary compatibility condition is neces­
sary for calculating internal forces. 

In summary, the boundary compatibility conditions are 
sufficient for calculating stresses in kinematically stable 
domains. However, both kinematic conditions and the bound­
ary compatibility conditions are required to generate the total 
solution. which consists of stresses and displacements. 

Solution for Composite Domains 

A brief description of using the CBMF to solve a mixed 
BVP for a composite elastic medium follows. Figure 2 shows 
a composite domain n that is composed of the two 
subdomains .Q1 and .Q2. which are made of different mate­
rials. The subdomains .QI and n2 are bounded by the outer 
contour rand the interface It. The stresses are assumed to be 
prescribed on a portion rs of the contour r, and the displace­
ments on the portion Tu. On both domains, equations (1) and 
(4) must be satisfied. A solution of these two sets of equa­
tions results in a number of integration constants that have to 
be calculated from conditions on the contours Tu. rs. and r ,. 
On the contour Ts. equations (2) must be satisfied. and on the 
contour ru. equation (5) is enforced. Additional equations are 
provided on the interface r,: 

two equilibrium conditions: 

(12) 
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Figure 1.-Two-bay truss. 
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Figure 2.-Composite elastic medium. 

and a compatibility condition : 

(13) 

where superscripts I and II denote subdomains .0, and .02, 

respectively. 

Properties of Compatibility Conditions 

Some properties of compat ibility conditions for a plane 
stress problem are given in this section. 

(1) The field compatibility condition written in terms of 
strains (such as that given in equation (3» is an unsymmetri­
cal equation, whereas the condition expressed in terms of the 
stress function rp (which is the dual variable of compatibility 
conditions) becomes a symmetrical equation: 

(14) 

(2) When written in terms of strains, the compatibility con­
ditions are independent of the material properties of the 
object being analyzed. 

(3) The compatibility conditions are functionally indeter­
minate because one condition given by equation (3) contains 
three unknown strain components. Consequently, strains can­
not be determined from compatibility conditions alone. 

(4) When written in terms of displacement variables u and 
v, the field compatibility condition becomes a trivial con­
straint, such as an identity /fiu, v) - J(u, v)] = 0, where the 
functionJrepresents the field compatibility condition. How­
ever, when written in terms of displacements, the boundary 
compatibility condition does not become a trivial equation. In 
terms of displacements, the boundary compatibility condition 
given by equation (5) becomes 
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The nontrivial property of the boundary compatibility condi­
tion contradicts the popular belief that a\l compatibility con­
ditions are automatically satisfied in the displacement 
method. 

(5) The field compatibility condition can be derived from 
the strain displacement relation by eliminating the displace­
ment components from the strain displacement relations. 
This logic, as yet, cannot be extended to the boundary com­
patibility condition. At present, the boundary compatibility 
conditions can be generated only from the IFM variational 
formulation. This is, perhaps, the primary reason why they 
could not be developed earlier. 

Integrated Force Method and the Completed Beltrami­
Michell Formulation 

The force formulations for stress analysis of structures that 
incorporate boundary compatibility conditions are, in various 
contexts, referred to as the CBMF and the IFM. Forces (or 
stress parameters) are the primary unknowns in both formula­
tions, and these are obtained directly by simultaneously solv­
ing both the equations of equilibrium and the compatibility 
conditions. The CBMF is related to the analytical solutions of 
the BVP in linear elasticity, whereas the IFM is most often 
related to the force formulation of the finite element method 
for the approximate solutions of these problems. The IFM 
represents the discretized version of the CBMF. 

The CBMF described here was developed for analyzing 
problems in two-dimensional elasticity. When combined with 
the field compatibility condition written in terms of stresses, 
the equations of equilibrium represent the complete set of 
field differential equations. The novel compatibility condi­
tion, when combined with the traction boundary conditions, 
provides a sufficient number of equations to calculate con­
stants resulting from the integration of the field equations. 
Thus, the solution is obtained solely in terms of stress vari­
ables. In subsequent sections, these concepts are applied to 
circular plates and cylindrical shells. The IFM variational 
functional is formulated for both problems, and its stationary 
condition is used to derive all required field differential equa­
tions and boundary conditions, including the boundary com­
patibility conditions. These equations may be solved for 
stress fields without any reference to displacement variables. 
The displacements can then be calculated by integrating 
strain-stress relations and using displacement boundary con­
ditions to calculate resulting integration constants. 

Radially Symmetrical Bending of 
Circular Plates 

In this section, the force formulation derived earlier for 
homogeneous circular plates under mechanical loadings is 
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extended for analyzing composite circular plates under both 
mechanical and thermal loadings. A modified form of the 
IFM functional is used, the stationary condition of which 
yields all previously derived equations, along with an addi­
tional boundary condition in terms of bending moments. This 
boundary condition, together with those derived previously, 
is used to establish the transition conditions on the interfaces 
between zones made of different materials. The transition 
conditions at the interfaces, along with other force boundary 
conditions, provide a sufficient number of equations for the 
CBMF solution of composite circular plates. 

Stress Function for the Bending of Circular Plates 

The stress function must be defined for the IFM functional 
formulation. For the bending of circular plates, this stress 
function is derived from the stationary condition of an auxil­
iary functional IT, defined by Washizu (ref. 15) as 

where M rand M cp are the radial and tangential moments, 
respectively; /(,. and /(cp are the radial and tangential curva­
tures; '¥ is the stress function; r is the radial coordinate; and 
the coordinates r ll and rb represent the inner and outer con­
tours of the plate, respectively, with ra = 0 for the full plate. 
The stationary condition of the functional fTs with respect to 
curvatures /(r and /(cp defines the stress function tp: 

d 
MqJ =-(r'¥) 

dr 

Variational Formulation of the Integrated Force 
Method for Circular Plates 

(17a) 

(17b) 

The governing equations for the plate bending problem arc 
now derived from the stationary condition of the IFM func­
tional fT,~' defined as 

fT;' = A + B- W (18) 

where the strain energy A, the complementary energy B, and 
the work of external forces W, are given as 

'1 II 



(19) 

frb 
W = 27r r qwrdr 

a 

Here, w is the transverse displacement; v is the Poisson's 
ratio of the material; a material constant, K, is defined as 
K = Eh3/l 2(1 - V2); h is the thickness of the plate; and E is 
the modulus of elasticity. The variation of the functional II; 
with respect to displacements wand the stress function If/ can 
be wri tten as 

(20) 

The stationary condition of the functional given in equa­
tion (20) yields all five sets of equations referred to earlier as 
Groups Ia and Ib, IIa and lIb, and III. The coefficient of Ow 
represents the field equation of equilibrium (Group Ia): 

d2 dM -rM ___ fP +rq=O 
dr2 r dr 

(21) 

The coefficient of (jlf/ represents the field compatibility 
condition (Group IIa): 

:r [r :r (MfP - vMr )]-(Mr - YMfP ) = 0 (22) 

Two contour terms in equation (20) that are associated 
with the variation of displacement wand its derivative pro-

vide boundary equilibrium equations (Group Ib), whereas the 
coefficient of olf/ in the third contour term provides the 
boundary compatibility condition (Group IIb): 

(23) 

Continuity (displacement) conditions of Group III can also 
be obtained from the stationary condition. The boundary con­
ditions for various support conditions for a homogeneous cir­
cular plate are given by Patnaik and Nagaraj (ref. 4) and are 
not repeated here. Only transition conditions on composite 
plate interfaces between zones with different material proper­
ties are presented. 

Transition Conditions at the Interfaces of Composite 
Plates 

For a plate composed of two regions with different mate­
rial properties, three constraints, referred to as transition con­
ditions, must be established on the interface between the 
regions. The transition conditions can be derived from the 
equilibrium and compatibility conditions at the interface. The 
first equilibrium condition at the interface is obtained by 
an appropriate extension of the first contour term of equa­
tion (20) as 

(24) 

which results in 

MI = Mil 
r r (25a) 

Similarly, the second equilibrium condition can be obtained 
as 

.!!.-(rMI) - MI = .!!.-(rMII) - Mil 
dr r fP dr r fP 

(25b) 

When similar reasoning is applied to the boundary compat­
ibility condition given in equation (23), the compatibility 
condition at the interface is obtained as 

_I_(MI -V1MI)=_I_(MII -vIlMII) I qJ r II qJ r 
K K 

(25c) 

The superscripts I and II denote two zones of different mate­
rial and geometric properties. 
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With appropriate boundary and transition conditions, equa­
tions (21) and (22) represent a sufficient number of equa­
tions to solve the radially symmetrical bending problem of 
composite circular plates in terms of stress variables only. 
The displacements, if necessary, may be calculated by inte­
grating the moment-curvature relations. 

Analysis of Thermal Problems 

The treatment of thermal problems for circular plates is 
now considered. We assume that the upper and lower sur­
faces of the plate are unevenly heated or cooled, resulting in 
the initial curvatures 

/(/) = /((t) = a Lit 
r cp I h (26) 

where at is the thermal coefficient of the plate material; h is 
the plate thickness; and Lit is the temperature difference 
between the upper and the lower surface. The total curvatures 
are 

(27) 

Equations (27) are introduced into the IFM functional, 
resulting in the modified expressions for the field and bound­
ary compatibility conditions. The modified field compatibil­
ity condition that accounts for initial thermal effects is 
obtained as an extension of equation (22) and is given as 

d ( ) ( ) at dL1t r- M -vM +(1+v) M -M =-Kr---
dr cp r cp r h dr 

(28) 

Likewise, the boundary compatibility condition is 

(29) 

Thermal effects do not affect the equations of equilibrium, 
either in the field or on the boundary. 
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Augmented Stress Function Formulation for the Plate 
Bending Problem 

For completeness, an augmented stress function formula­
tion of the plate bending problem is now presented. This for­
mulation is obtained from the CBMF by eliminating the 
moments Mr and Mcp from equations (17) and (22) in favor of 
the stress function Po The stress function defined by equa­
tions (17) identically satisfies the homogeneous form of the 
equation of equilibrium given in equation (21). In the pres­
ence of distributed loads, equation (17b) must be augmented 
as 

d 
Mcp = -(rP) + x(r) 

dr 
(30) 

where x(r) = Jrq(r)dr and q(r) is the distributed load. The 
governing equation is the field compatibility condition that, 
when expressed in terms of the stress function, has the fol­
lowing form 

d(dP) dP dX l+v - r- +2-=--(r)---x(r) 
dr dr dr dr r 

(31) 

the boundary conditions for this formulation are given as the 
static (moment) boundary condition, 

(32a) 

and the boundary compatibility condition, 

1 [ dP ] - (1- v)lJ' + r- + x(r) = 0 
K dr 

(32b) 

Equations (31) and (32) represent the augmented Airy's stress 
function formulation of the circular plates, which can solve 
all three types of BVP. 

Example Problem: A Composite Plate SUbjected to 
Mechanical and Thermal Loads 

We can illustrate the CBMF by analyzing a composite 
plate subjected to mechanical and thermal loads (fig. 3). The 
plate consists of two segments: an inner plate with radius a, 
material properties EI and VI, and thickness hl~hereinafter 
referred to as region I-and an outer annular plate with inner 
radius a, outer radius b, material properties E2 and V2, and 

~TT I 
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Figure 3.-Composite circular plate subjected to a uniform load, q, and 

temperature, At. 

thickness h2-hereinafter referred to as region II. Region I is 
subjected to a unifonnly distributed mechanical load of inten­
sity q, and region II is exposed to an uneven heating with the 
temperature difference Ilt. The plate is clamped at the outer 
contour, given by r = b. This problem cannot be handled by 
the classical BMF. The CBMF, however, can readily solve 
this problem. The solution procedure consists of the follow­
ing three steps: 

Step 1: General solution of field equations for region 1.­
The field equations given in equations (21) and (22) are 
solved for the moments M r' and M~ . The solution of these 
equations for region I (0 ~ r ~ a) and for a distributed load of 
constant intensity q is 

(33) 

Step 11: General solution of field equations for 
region 11.-The system of equations that consists of the 
homogeneous equation (2 I) and the modified field compat­
ibility condition given in equation (28) is solved to obtain 
expressions for the moments in region II (a ~ r ~ b). Because 
the temperature difference Ilt is constant over the region II, 
the modified compatibility condition also results in a homo­
geneous equation that is same as equation (22). The solution 
of this system may be written as 

M;'(r)=- B2 +.!.C2(I+ V2)log r 
r2 2 

+±C2(I-V2)+~~ 
M~'(r)= Bz +.!..C2(1 + V2)log r 

r2 2 

(34) 

In equations (33) and (34), BI, Cit DIt B2, C2, and D2 are 
the six constants of integration, and superscripts I and II 
denote quantities defined in regions I and II, respectively. 

Step Ill: Calculation of constants of integration.-The 
six constants of integration are calculated by applying bound­
ary conditions at the outer contour of the plate, transition 
conditions on the interface, and implicit conditions at the 
center of the plate. The six equations for the six constants of 
integration consist of one boundary compatibility condition 
at the outer contour, r = b (eq. (29»; three transition condi­
tions at the interface, r = a (eqs. (25»; and two implicit con­
ditions at the origin, r = 0, that ensure the finite values of tht" 
moments M, and Mcp. The implicit conditions result in 

and the transition condition of equation (25b) yields 

I 2 
C2 =--qa 

2 

(35) 

(36) 

After the expressions for moments in regions I and II, and 
the solutions for constants BI, C(, and C2, are substituted, the 
remaining three equations have the following fonns: 
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.!.~ + B-z _.!.~ =~(3+VI)qa2 -!(I-V2)qa2 
2 a2 2 16 8 

- ±(1 + V2)qa
2
10g a 

(37) 

The explicit solution of equations (37) for an arbitrary 
geometry and composite construction of a circular plate is 
rather cumbersome. Here, the solution is given for a specific 
plate with region I made of aluminum and region II made of 
steel. Numerical values for the material parameters in refions 
I and II, resRectively, are taken as EI = 10.6x10 psi, 
vI = 0.33, oJ ) = 12.6xlO--6fDF, E2 = 30.0x106 psi, V2 = 0.30, 
and uP) = 6.3xlO--6/°F. The radii are a = 6 in. and b = 12 in.; 
the thicknesses are hI = 0.2 in. and h2 = 0.15 in.; the magni­
tude of the distributed load is q = 100 Ib/in.2; and the tem­
perature difference is !It = 50 oF. The constants of integration 
for this particular case are 

BI = 0.0 

CI = 0.0 

DI = 1688.10 

B2 = -5203.06] 
C2 = -1800.00 

D2 = 4723.26 

and the solution for the internal forces becomes 

M; (r) = 844.05 - 20.81r
2

] 

M~(r) = 844.05-12.44r2 

for region 1(0 :S r :S a) 
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(38) 

(39) 

and 

(40) 

M~I (r) = 2676.63 - (52~;.06) -1170 log r 

for region II (a :S r:S b) 
Calculations of Displacements.-The displacements, if 

required, may be obtained by integrating the moment­
curvature relations. These relations for the case of bending of 
circular plates, are given as 

_! dw = /( = ~ (M - vM ) 
r dr f{J K f{J r 

(41) 

Solving equations (39) to (41) yields the displacement 
fields wI and wIl on regions I and II, respectively, as 

wI(r) = -O.03566r2 + 0.1757 x 10-3 r 4 + c2 } 

(42) 

wIl(r) = -O.1344r2 -0.7296 log r+0.04417r2 log r+cI 

The integration constants c] and C2 are calculated by 
imposing the kinematic boundary condition on the outer con­
tour, which ensures the kinematic stability of the plate, and 
by imposing the continuity condition on the interface 
between regions I and II. These conditions are 

(43) 

The constants of integration are determined from equa­
tions (43) as C] = 5.3614 and C2 = 3.1209. Substituting for c] 
and C2 in equations (42) yields expressions for the displace­
ments w for both regions I and II: 

wIl(r) = 5.3614-0.1344r2 -0.7296 log r (44) 

+ 0.04417r2 log r 



The solution for the displacement field given in equa­
tions (44) has been verified from the corresponding solution 
by the displacement method. 

Recapitulation 

The stationary condition of the IFM variational functional 
resulted in all previously known equations, along with two 
new equations: the field compatibility condition given in 
equation (22) and the boundary compatibility condition given 
in equation (23). The field compatibility condition comple­
ments the equation of equilibrium given in equation (21) to 
obtain a sufficient number of field differential equations to 
determine the unknown moments. The traction boundary 
conditions, when augmented by the boundary compatibility 
condition, provide enough equations to calculate the integra­
tion constants resulting from the solution of the field differ­
ential equations. This enables the moments to be calculated 
without any reference to displacements. Without the bound­
ary compatibility condition, the mixed BVP cannot be 
solved. Although the field compatibility condition given in 
equation (22) can be derived by manipulating the strain­
displacement relations, the boundary compatibility condition 
can be deduced only from the stationary condition of the IFM 
variational functional. The appropriate extension of the 
boundary compatibility condition resulted in the transition 
Uump) condition given in equation (2Sc). This condition 
enables the solution of composite plates without any refer­
ences to displacements. Without equation (2Sc), the solution 
is not possible in terms of moments, regardless of the type of 
the BVP being analyzed. 

Radially Symmetrical Bending of 
Circular Cylindrical Shells 

In the literature, the bending of circular cylindrical shells 
has been extensively studied by using the displacement 
method, and details of the displacement formulations for 
cylindrical shells can be found in standard textbooks (refs. 16 
and 17). The force method, however, has not been developed 
to analyze the bending of cylindrical shells because the equa­
tions of equilibrium are functionally indeterminate. The 
establishment of boundary compatibility conditions made it 
possible to solve these problems with the force method. In 
the following section, the CBMF is extended to analyze the 
bending of circular cylindrical shells in which the membrane 
and bending responses are coupled. The stationary condition 
of the IFM functional yields all the equations required for 
solving the problem solely in terms of the internal forces and 
moments. 

Stress Function for the Bending of Cylindrical Shells 

The IFM functional formulation requires that the stress 
function be defined. This stress function for cylindrical shells 
is defined by following a procedure similar to that presented 
for the bending of circular plates. The corresponding func­
tional ns is 

where .Q denotes the domain of the mid surface of the shell, a 
is the radius of the midsurface, P is the stress function, Mx is 
the bending moment, NqI is the tangential force, 1Cx is the cur­
vature, and Ecp is the tangential strain. The stationary condi­
tion of the functional ns with respect to the strain EqI and the 
curvature 1Cx defines the stress function as 

Variational Formulation of the Integrated Force 
Method for Cylindrical Shells 

(46a) 

(46b) 

The energy terms A, B, and W of the IFM functional for 
the cylindrical shells are 

B = P _x - a -- -.!!!... d.Q f [ M d
2
P N ] 

D K dx 2 Eh 
(47) 

where w is the radial displacement, q is the distributed load, h 
is the thickness of the shell, and K = Eh3/I2(l - v 2) is the 
flexural rigidity. The variation of the functional n; has the 
following form: 
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[ ]

Xb 
Nrp dP a dNrp 

+2a7r a-o-----oP 
Eh dx Eh dx 

Xa 

(48) 

Its stationary condition yields all the equations of the CBMF. 
The coefficient of Ow represents the field equilibrium equa­
tion of Group Ia: 

(49) 

The stress function given by equations (46) identically sat­
isfies the homogeneous form of the field equation of equilib­
rium given in equation (49). If distributed loadings are 
present, the expression for the force Nrp must be augmented 
as 

(50) 

The coefficient of oP represents the field compatibility con­
dition of Group IIa: 

(51) 

The contour terms associated with the variations of the dis­
placements 11' represent the static boundary conditions: 

dM IXb 
__ x Ow =0 

dx x 
a 

(52) 

and the terms associated with the variations of the stress 
function P represent novel boundary compatihility 
conditions: 
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(53a) 

(53b) 

The boundary conditions given in equations (52) and (53) 
are specialized for various support conditions. 

Free contour.-On a free contour, both moments and their 
derivatives must vanish because 11' =1= 0 and dwldx =1= O. This 
case results in the static boundary conditions: 

(54) 

Simply supported contour.-For a simply supported con­
tour, the transverse displacement 11' is equal to zero. The 
derivative dMxldx, therefore, is not zero on such a contour. 
The satisfaction of the boundary compatibility condition of 
equation (53a) for this case results in 

N =0 rp (55a) 

The rotation of the cross section is not prevented on a sim­
ply supported boundary. The condition &1wldr =1= 0 results in 

(55b) 

Clamped contour.-For the clamped contour, both dis­
placements and rotations are zero, resulting in a nonvanishing 
moment and its derivative. For this case, both compatibility 
conditions must be satisfied, which results in 

N =0 rp (56) 

The field equations given in equations (49) and (51), with 
appropriate boundary conditions, represent a sufficient num­
ber of equations to solve the shell bending problem in terms 
of stress variables. Equations (54) represent the boundary 
equilibrium equations of Group lb. Though these equations 
are written here for a case with no prescribed contour loads, 
they can be easily extended to incorporate prescribed contour 
tractions and moments. The variation of contour terms also 
yields the displacement boundary conditions of Group III. 
Because the displacement boundary conditions are sub­
stituted by the boundary compatibility conditions of equa­
tions (56), these derivations are not elaborated here. 
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Augmented Stress Function Formulation for 
Cylindrical Shells 

The CBMF for the bending of cylindrical shells is fonnu­
lated in tenns of two unknown internal forces. The problem 
also can be fonnulated in tenns of the stress function, which 
results in a single differential equation. When augmented 
with the boundary compatibility condition, the classical stress 
function fonnulation can solve shell bending problems with 
general boundary conditions. The CBMF derived from the 
stationary condition of the rFM functional is cast as an aug­
mented stress function fonnulation with the elimination of 
the internal forces Mx and Nq> in favor of the stress function 
'P. Written in tenns of the stress function, the field compat­
ibility condition becomes a fourth-order differential equation, 

(57) 

where /3 = 3(1 - V-)/(ah)2. The constants of integration are 
detennined from various support conditions as 

Free contour.-

'P =0 

Simply supported contour.-

Clamped contour.-

d'P =0 
dx 

(58) 

(59) 

(60) 

Two appropriate sets of boundary equations out of the 
three sets given in equations (58) to (60) are sufficient to 
uniquely detennine four integration constants in the solution 
of equation (57). 

Analysis of Thermal Effects 

Next, the augmented stress function formulation is 
extended to analyze thennal effects. We assume that the inner 
and the outer surface of the shell are unevenly heated, result­
ing in a temperature difference L1t. The initial curvature Kil) 
due to the temperature difference .1t is calculated as 
Kit) = (1 + v)a/L1t/h, and the initial strain e~+) is equal to zero. 

The total curvature is now written as 

(61) 

Equation (61) is introduced into the expression for the IFM 
functional given in equation (48) to derive the modified field 
compatibility condition as 

(62) 

The boundary compatibility conditions are not changed 
because the thermal strain d~) = O. Combining equations 
(46a) and (50) with the modified boundary compatibility con­
dition given in equation (62) yields the differential equation 
for the bending of the cylindrical shell due to the thermal 
effects: 

d4'P 4 Eh L1t 
-+4/3 'P=--(l+v)a -
dx4 a2 / h 

(63) 

Substituting q = 0 in equations (58) to (60) yields the bound­
ary conditions for thennal effects. 

Completed Beltrami-Michell Formulation Versus 
Augmented Stress Function Formulation 

As seen from equations (49), (51), and (57), the CBMF is 
represented by two coupled, second-order differential equa­
tions in terms of the internal forces Mx and Nq>. The aug­
mented stress function formulation, however, is given as a 
single differential equation of the fourth order. A sufficient 
number of boundary conditions are available to calculate 
integration constants for both formulations. As seen from 
equations (54) to (56), the boundary conditions for the 
CBMF are given in tenns of internal forces and their first­
order derivatives. However, for the augmented stress function 
formulations, the boundary conditions given in equations 
(58) to (60) are expressed in tenns of the stress function and 
its derivatives up to the third order. The augmented stress 
function fonnulation may be regarded as a solution technique 
for the CBMF. The two procedures are equivalent because 
they are derived with the same set of assumptions. The 
augmented stress function formulation, at first glance, 
appears to be more applicable for an analytical solution of the 
problem because it involves only one variable. However, 
reducing the number of variables involved results in a higher 
order governing differential equation. Thus, the solution 
method should be chosen according to the problem under 
consideration. 
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The CBMF, however, is more appropriate for an approxi­
mate solution of the problem using numerical techniques, 
particularly the finite element method. Because lower order 
governing equations are used, fewer constraints are imposed 
on the interpolation functions used to approximate the 
response variables. Moreover, in the CBMF, the internal 
forces are obtained as the primary result of the analysis, 
whereas in the augmented stress function formulation, they 
have to be calculated indirectly from the stress function val­
ues. Because the internal forces are expressed in terms of 
derivatives of stress functions, these calculations may intro­
duce additional errors in the results. 

Examples 

Two examples are presented to illustrate CBMF analysis of 
circular cylindrical shells. A simply supported short, cylindri­
cal shell and a composite shell composed of two long, cylin­
drical shells subjected to combined thermal and mechanical 
loadings are analyzed. Because the CBMF was used to 
analyze the composite circular plate, the shell examples are 
solved with the augmented stress function formulation. 

Analysis of a Short Circular Cylindrical Shell.-Figure 4 
shows a simply supported cylindrical shell of length L, radius 
a, and thickness h. The shelI is made of a homogeneous and 
isotropic material with elastic modulus E and Poisson's ratio 
v. The analysis is performed for two cases: (\) a uniformly 
distributed load of intensity q and (2) uneven heating with a 
temperature difference of At. The origin of the coordinate 
system is located at the centroid of the shell (fig. 4). The 
material and the geometric parameters of the shell are such 
that the product f3L < 5; hence, it must be analyzed as a short 
shell. Equations (57) and (63), which describe the response of 
the shell for the mechanical and thermal loadings, respec­
tively, have a similar form. The solution for both cases can be 
written as 

P(x) = C1 cosh f3x cos f3x + C2 cosh f3x sin f3x 

+ C3 sinh f3x cos f3x + C4 sinh f3x sin f3x + pep) (64) 

where Cj, C2, C3, and C4 are the integration constants and 
.p.p) is a particular integral of equation (57) or (63). 

Solution for a uniformly distributed load: For a uniform 
load, equation (57) is homogeneous, and particular integral 
1JiP) = O. Because the shell is simply supported, the boundary 
conditions given in equations (59) are used for both contours. 
The expressions for the stress function P and its second 
derivative are introduced into expressions for boundary con­
ditions to obtain the system of four equations in terms of four 
constants {C}T = {CI C2 C3 C4}: 
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Figure 4.-Short, circular cylindrical shell. 

[G]{C} = {Q} (65) 

where {Q} T = _(q/2f32){ 00 1 I} is the right side vector and 
[G) is the system matrix defined as 

(66) 

with gl = cosh A cos It, g2 = cosh It sin It, g3 = sinh It cos It, 
g4 = sinh It sin A, and It = f3L12. The solution of the system 
given in equation (65) yields the constants of integration as 

(67) 

where D = gr + gl. The expressions for the moment and nor­
mal force are 
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M x(x) = -q- (g4 cosh f3x cos f3x 
2f32D 

- g, sinh f3x sin 13 x) 

NlfI(x) = ~ [&l(g4 -sinh f3x sin f3x) 

+ g,(g, - cosh f3x cosf3x~ 

(68) 

The displacement w, if required, may be calculated from the 
stress-strain relations as 

2 
w(x) = -~[g4(g4 -sinh f3x sin f3x) 

DEh 

+g, (g, - cosh f3x cos f3x)] (69) 

Solution/or a themzalload: Next, the shell is analyzed for 
unevenly heated inner and the outer surfaces with a tempera­
ture difference of .1t. The particular integral for this case is 
given as 

'1'<1') = -K(I + v)a,.1t I h (70) 

the constants of integration of thermal loads are obtained as 

(71) 

and the expressions for the internal forces due to thermal 
loading have the following form: 

'1'(1') 
Mx(x) = -D[g, (g, - cosh f3x cos f3x) 

+ &l (K4 - sinh f3x cos f3.t)] 

(72) 

- g, sinh f3x sin f3x} 

The displacement IV, if required, can be calculated as 

132 '1'(1') 
w(x) = -2 a C'?4 cosh f3x cos f3x - g, sinh f3x sin f3x) 

EDh 

(73) 

Analysis of a Long Composite Shell.-In this section, we 
apply the augmented stress function formulation to a com­
posite cylindrical shell subjected to both mechanical and ther­
mal loadings. This example is presented to (I) demonstrate 
the CBMF procedure for different types of boundary condi­
tions, (2) develop the solution for long cylindrical shells, and 
(3) demonstrate the ability of CBMF to solve problems that 
involve composite cylindrical shells. Figure 5 shows a cylin­
drical shell of radius a and length 2L. It is composed of two 
regions with different material and geometrical properties. 
Region I, bounded by contours I-I and 2-2, has material 
parameters E, and VI and thickness hI; and region II, 
bounded by contours 2-2 anp 3-3, has material and geomet­
ric properties E2, V2, and h2. The shell is clamped along con­
tour 1-\ and simply supported along the contour 3-3. Both 
regions are subjected to a uniformly distributed load of inten­
sity q. Region I also is subjected to the temperature change 
.1t. The material and geometric parameters for both regions 
are such that the products f3,L ;;:: 5 and /3zL ~ 5. This allows 
both regions to be treated as long shells, where the edge 
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Figure 5.-Long. composite circular cylindrical shell. 
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effects introduced by the discontinuities in the material prop­
erties and the loading conditions along contour 2-2 have neg­
ligible effects at lines 1-1 and 3-3. This assumption also 
makes the effects of the supports negligible along contours 
1-1 and 3-3 at the line of contact 2-2. 

The expression for the stress function 'l'(x) for the case of 
a long cylindrical shell is deduced from equation (64) by set­
ting integration constants corresponding to the term e{Jx to be 
equal to zero. This stress function is written as 

where C I and C2 are integration constants and lfP is the 
particular integral. Introducing equation (74) into equa­
tions (46a) and (50) yields the internal forces: 

Nrp(x) = -2af32e -f1x( -C2 cos f3x + C1 sin f3x) (75) 

d 2'l' 
-a--P--aq 

dx 2 

The response of the shell consists of three parts: (1) the 
response due to constraints imposed on contour 1-1, (2) the 
response due to the discontinuity of the material properties 
and loadings along contour 2-2, and (3) the response due to 
constraints along contour 3-3. Because a long shell is 
assumed, these responses can be treated separately. The total 
response at any point of the shell can be obtained by super­
posing the individual responses. 

Response of the shell due to the edge effects along contour 
1-1: First, the expressions for the moment Mx and the force 
Nrp are derived for the edge effects on contour 1-1. The coor­
dinate system is defined such that the axis XI is placed along 
the axi s of the she Jl, with the origi n in the plane 
defined by contour 1-1. The stress function 'l'is given as 

(76) 

where 'l'/,I, the particular integral due to thermal effects, is 
calculated as 'l'JM = KI (1 + VI )aILltlh l . The integration con­
stants C I and C2 are calculated by imposing the appropriate 
boundary conditions. For the clamped contour 1-1, both of 
the boundary compatibility conditions given in equa­
tions (60) need to be satisfied, which gives 

(77) 
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The solution for the internal forces due to the edge effects 
along contour 1-1 may be written as 

M (x )=_-Le-f3jxj(cosf3 x -sinf3 x )+'l'(.11) (7Sa) 
x I 2f3f 1 1 I I P 

Using equation (7Sb) yields the following expression for 
the displacement w: 

Response of the shell due to the discontinuities along con­
tour 2-2: The expressions for the stress functions 'l'1 and 'l'2, 
defined for regions I and II, respectively, may be written as 

'l' (x ) = e -f3 j X2 (A cos 13 x + B sin 13 x ) + 'l'(.1I») 1 2 I 1 2 I I 2 P 

(SO) 

'l'2 (x3 ) = e -{J2
x

, (A2 cos 132 x3 + B2 sin 132 x3 ) 

where the coordinate axes X2 and X3 are defined separately for 
each region (fig. 5). Four constants of integration are calcu­
lated by imposing transition conditions along contour 2-2. 
They consist of two force equilibrium conditions, 

'l'2 (0) - 'l'2 (0) - 'l'~,1t) = 0 (SIa) 

dP dlJ', 
_I (0)+_2 (0)=0 
dX2 dX3 

(SIb) 

and two boundary compatibility conditions, 

(Sic) 

(SId) 
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The transition conditions given in equations (81) yield 

The solution of equations (82) yields the four integration 
constants as 

AI = ~ [ 'P~!.ll f3i{ -2kf3lf32 - kf3f - k2 f3i) 

+1(1- k Xkf3i - f3r)] 

A2 = ~ ['P~!.t) f3f{f3r + kf3i + 2kf3lf32) 

+ 1 (I - k )( kf3i - f3f )] 
(83) 

BI = ~ [ 'P~!.llkf3i{f3f - kf3i) 

+ 2~1 (I - k)( 2kf3i + kf3,f3i + f3r)] 

B_1 [m(!.llf32(f32 kf32) 2 -15 Tp I ,- 2 

- 2~2 (l-k)(2f3f + f3ff32 +kf3i )] 

where 15 = 2kf3l/32(f3T + Iii> + (f3T + kM.)2 and k = (E,hl)! 
(E2h2)' The integration constants given in equations (83) are 
introduced into equations (80) to obtain expressions for stress 
function 'Pfor both regions. The expressions for the moment 
Mx and the force Nrp are obtained next by substituting equa­
tions (80) into equations (46a) and (50). The displacement w 
can then be calculated similarly as in the previous cases. 

Response of the shell due to the support conditions on con­
tour 3-3: For this case, a procedure similar to that presented 
for the edge effects along contour I-I is followed. The coor­
dinate axis X4 is defined as shown in figure 5, contour 3-3 is 
simply supported, and the conditions given in equation (60) 
are applied to obtain the constants of integration: 

c =~ 
2 213; 

(84) 

The expressions for the internal forces are written as 

(85) 

and the displacement w is calculated as 

(86) 

Recapitulation 

Similar to that for circular plates, the stationary condition 
of the IFM variational functional yields all the equations 
required to solve the shell bending problem in terms of stress 
variables. These equations include the field compatibility 
condition given in equation (51) and the boundary compat­
ibility conditions given in equations (56), which were derived 
for the first time here. Without the boundary compatibility 
conditions, it is not possible to solve the shell bending prob­
lem in terms of stress parameters only for the mixed BVP. 
The transition conditions given in equations (81 c) and (8Id) 
make it possible to solve composite shells without any refer­
ence to displacements. Again, without equations (81 c) and 
(81 d), such a solution is not possible regardless of the type of 
boundary conditions. 
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Concluding Remarks 

The Completed Beltrami-Michell Formulation (CBMF) 
has been established for analyzing circular plates and cylin­
drical shells subjected to thermal and mechanical loads and 
described by boundary value problems with stress, displace­
ment, and mixed boundary conditions. The CBMF alleviates 
the limitations of the classical BeItrami-MicheII's Formula­
tion, which could analyze first or stress boundary value prob­
lems only. It can be considered as an alternative to Navier's 
formulation of elasticity. All the equations of the Beltrami­
Michell Formulation were derived from the stationary condi­
tion of the IFM variational functional that was originally 
developed for problems in two-dimensional elasticity. The 
definitions of stress functions, along with the boundary com­
patibility conditions, also have been established. Transition 
conditions on the contours between the zones made of differ­
ent materials have been established for composite plates and 
shells. For thermal analysis, the original IFM functional has 
been expanded to include the effects of initial strains. Its sta­
tionary condition modified the field and boundary equations. 
Finally, several mixed boundary value problems have been 
solved with these formulations to demonstrate the capability 
of the CBMF to solve mixed boundary value problems solely 
in terms of stress variables. 

Lewis Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio, August 26, 1994 

Appendix-Symhols 

A potential energy in the IFM functional 

a radius of the shell 

B complementary energy in the IFM functional 

E modulus of elasticity 

truss member forces 

f field compatibility condition 

[G] material matrix 

h plate or shell thickness 

K plate or shell flexural rigidity 

L length of shell 
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q 

CR(a) 

plate bending moments 

shell bending moment 

shell tangential force 

directional cosines 

components of surface tractions 

intensity of the distributed load 

radial coordinates 

boundary compatibility condition in terms of 
stresses 

gl(a),~.h(a) surface tractions in terms of stresses 

u,v,w 

ii,v 

w 

X,}, 

f3 

r 

.1t 

displacement components 

prescribed displacements 

potential of external loads in the IFM functional 

displacement fields on regions I and II, respec­
tively 

Cartesian coordinates 

coordinates of shell contours 

coefficient of thermal expansion 

cylindrical shell parameter 

boundary of an clastic domain 

temperature difference between inner and outer 
surfaces 

strain tensor components for plane stress 

shell tangential strain 

/(p /(cp plate curvatures 

v 

shell curvature 

Poisson's ratio 

IFM variational functional for plane stress, 
plates and shells, respectively 

ax, a y , Txy components of the stress tensor 
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t1> Airy's stress function for plane stress 

X particular integral for external loading 

tp shell stress function 

tp(P) particular integral for stress function 

.Q domain of the midsurface of the shell 
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