
Weighted Graph Based Ordering

Techniques .for Preconditioned

Conjugate Gradient Methods

Simon S. Clift I and Wei-Pai Tang 2

The Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 212, Columbia, MD 21044, (410) 730-2656

Work reported herein was sponsored by NASA under contract NAS 2-13721 between NASA and the

Universities Space Research Association (USRA) and by the Natural Sciences and Engineering Research

Council of Canada, and by the Information Technology Research Center, which is funded by the Province
of Ontario.

The first author's current address is Dept. of Mechanical Engineering, Queen's University, Kingston,
Ontario. The second author is on sabbatical leave from University of Waterloo, Waterloo, Ontario,
Canada N2L 3G1.

https://ntrs.nasa.gov/search.jsp?R=19950012321 2020-06-16T09:17:55+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42782939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

_: :i:__ _ / : i/,i _:_'_i:!:'i_/_

Abstract

We describe the basis of a matrix ordering heuristic for improving the incom-

plete factorization used in preconditioned conjugate gradient techniques applied to

anisotropic PDE!s. Several new matrix ordering techniques, derived from well-known

algorithms in combinatorial graph theory, which attempt to implement this heuris-

tic, are described. These ordering techniques are tested against a number of matrices

arising from linear anisotropic PDE's, and compared with other matrix ordering tech-

niques. A variation of RCM is shown to generally improve the quality of incomplete
factorization preconditioners.

Keywords: Preconditioned conjugate gradient, preconditioner, matrix ordering, weighted
graph

Running Title: Weighted Graph Ordering for PCG Methods.

AMS Subject Classification: 65F10

Weighted Graph Ordering for PCG Methods

1 Introduction

Preconditioned conjugate gradient (PCG) methods have been proven to be ro-

bust and competitive techniques for the solution of matrices arising from PDE's

in a number of applications [11, 4, 17, 2, 14, 5, 20, 33, 31]. The successful appli-

cation of PCG methods depends to a great extent on the formation of a rapidly

convergent preconditioner. A number of studies have examined the effect of ma-

trix ordering on the quality of preconditioners based on incomplete factorization

[7, 8, 9, 13, 14, 26, 12]. In [7, 8, 9] evidence was presented to demonstrate how

matrix ordering can have a profound effect on the quality of preconditioners. A

heuristic was described that was shown to produce a good matrix ordering. This

study examines the use of efficient algorithms from combinatorial graph theory

which implement that matrix ordering heuristic.

By way of background, we refer the reader to [34, 8, 21] for an outline of level

based, incomplete, L/U factorization (denoted ILU(/), where l is the level of

fill retained in the preconditioner). We will be referring to matrices as weighted

graphs, where the matrix rows represent vertices, and the graph edges are encoded

in the off-diagonals, the magnitude of the off-diagonal coefficients providing the

"strength" of the connections. The reader may wish to review [27, 29, 18, 7] for

relevant information on this view of matrices.

Duff and Meurant [13] studied a large number of preconditioner orderings for

matrices arising from isotropic and anisotropic PDE's discretized on a regular

grid. Their study considered orderings based solely on the sparsity pattern of

the matrix, and concluded that Reverse Cuthill-McKee (RCM) ordering [18] was,

in general, a good choice. This ordering reduces the bandwidth of the matrix,

which tends to increase the overlap of fill and hence reduce the effect of dropped

terms in ILU factorization. Dutto [14] also considered sparsity pattern based

orderings, this time on Jacobian matrices arising from the discrete Navier-Stokes

equations on irregular grids. Her results coincided with those of Duff and Meu-

rant, indicating that RCM ordering, or the related Gibbs ordering [19] were good

choices.

Recently, D'Azevedo, Forsyth, and Tang derived the Minimum Discarded

Fill (MDF) and Minimum Update Matrix (MUM) orderings [7, 8, 9], which

are sensitive to the matrix coefficients, as well as the sparsity pattern. The

development of these orderings was prompted in part by the problem of highly

Weighted Graph Ordering for PCG Methods

anisotropic PDE's, whose discretization can lead to matrices for which the wrong

ordering will produce very unsatisfactory preconditioners. The analysis leading

to these techniques revealed that the most effective ordering for an anisotropic

matrix follows the direction of the weakest connections in the graph.

MDF ordering is capable of detecting anisotropy in a matrix graph, and ex-

ploiting it to produce exceptionally good orderings. Its one drawback is that it is

expensive to compute; the algorithm has a time complexity of roughly O(Nd3),

where N is the number of matrix rows, and d is the average number of non-zeros

in a matrix row. MUM ordering, which is an approximation of MDF, does not

detect anisotropy when the fill level 1 is small, but has been shown to produce

workable orderings even for difficult matrices. Unfortunately, it is also fairly

expensive to compute. In [4, 3] MUM was tested against the Navier-Stokes equa-

tions, and in [8, 26] both MUM and MDF were tested against problems arising

from linear PDE's with moderately extreme (1000:1) anisotropy.

The objective of this study is to implement and test the heuristic of following

weak connections in the matrix graph to produce an ordering. This is done using

algorithms which are considerably faster than MDF or MUM. The mathematical

motivation for this heuristic will be outlined in more detail in Section 2.

Ordering techniques will be outlined which are sensitive to both the matrix

sparsity patterns and matrix coefficients. These attempt to follow anisotropy

and hence improve level-based ILU factorizations. A modification to the RCM

algorithm will be considered. The orderings tested are based on the standard

graph theoretical algorithms for a minimum spanning tree (MST), and the single-

source problem (SSP), on the matrix graph. The main attraction of the MST

and SSP algorithms as anisotropy detectors is their speed: they have a time

complexity of O(Mlog(N)) or better, (where N is the number of matrix rows,

and M the number of off-diagonal non-zeros in either the upper or lower half of

the matrix). The new ordering techniques are described in detail in Section 3

A number of matrices taken from the discretization of linear PDE's will serve

as test cases. These test cases are outlined in Section 4. The numerical results

of matrix solver runs on these matrices using each ordering will be presented in

Section 5, and summarized in the final section.

Weighted Graph Ordering for PCG Methods

2 The Motivation

Techniques

for Weighted Graph Based

Consider the anisotropic PDE

0(0) 0(0)0x K 7x + _ _ = -q(x,y), (x,y) • (0,1) × (0,1) (1)

with a Neumann boundary condition, K = 1000, and discretized on a 30 x 30

regular grid with a five-point molecule with h = 1/30 as the grid size. The right

hand side q(x, y) was defined as

1
q(x,y) -- -1

0

if (x,y) = (0,0),
if (x,y)= (1,1),

elsewhere

The resulting linear system (which is similar to cases arising from highly anisotropic

convection-diffusion problems) was solved with the preconditioned conjugate gra-

dients method using an ILU(1) preconditioner. A zero initial guess was used, and

the matrix was solved to a reduction of 10 -12 in the 12 norm of the residual. Ta-

ble 1 shows the solution time when the matrix was ordered in two ways: natural

x-y ordering, which numbered the nodes in the x direction first, and natural y-x

ordering, which numbered the nodes in the y direction first. Theorem 1 will show

why the incomplete factorization in the x-y direction was poorer, despite both

preconditioners having the same level of fill, and number of fill entries.

If a given matrix A is symmetric, the fill entries in the factor L can be conve-

niently described through a graph model [27, 29]. Let the elimination sequence

beel,..., voand =(Vk, bethegraphof = [a!?]

_)k = {Vk+l,''',Vn} , _k-7_ ((Vi, Vj)] a!k.)_J_ 0}

where k is the step of the elimination.

It can be shown [18] that there is a nonzero entry lij if and only if there exists

a path (vi, vii,... , vim, vj) in the graph of A where

vi,..., vim • {vl,..., vj-1) .

The size of lij is related to the size of entries on this path.

4

Weighted Graph Ordering for PCG Methods

Theorem 1 Let A be an M-matrix and let (Vi, Vil,... ,Virn, Vj) be a path in the

graph A where

v,..., vim c {vl,..., vj-1} ,

then for i > j

Jail1 aili2 " " " aim j[

> :: ' =
Proof: See [25] and [8].

For the anisotropic problem 1, the resulting matrix is a symmetric M-matrix.

All edges aligned along the x-axis have values O(K/K + 1), and edges aligned

along the y-axis have values O(1/K). If the natural x-y row order is used, then

all new fill entries will be oriented more in the x direction (see Figure 1). From

the lower bound in Theorem 1, the fill entries in the matrix will have a slow decay

rate. Conversely, if the natural y-x ordering is used, the fill entries will have a

more rapid decay rate. Thus the value of the fill using the y-x ordering will have

less of a bearing on the quality of the preconditioner as the level of fill increases

than the fill using the x-y ordering.

In this study MDF ordering [7] and MUM ordering [8, 9] will be used as exam-

ples of effective, matrix coefficient sensitive orderings. Both orderings attempt

to minimize the amount of fill discarded by the incomplete factorization process.

MDF uses a more accurate, and more expensive measure for the discarded fill,

and is, as noted in the introduction, capable of detecting anisotropy. The reader

is referred to the papers cited for the details about MDF and MUM, and earlier

comparative studies using these algorithms.

Reverse Cuthill-McKee ordering [18] will be used as a generally effective [13,

14] matrix coefficient insensitive ordering which is quick to compute. Because we

will be making a modification to this algorithm to render it coefficient sensitive,

we briefly outline the algorithm in Figure 2.

3 Weighted Graph Algorithms

As noted above, the following techniques are all matrix coefficient sensitive, and

based on well established algorithms. The following algorithms seek out the weak

connections in the matrix graph, and attempt to produce an ordering consistent

with the heuristic that follows from Theorem 1.

Weighted Graph Ordering for PCG Methods

All of the techniques described below operate on the graph _ of the symmetric

matrix A, where each node in the graph corresponds to a diagonal entry in the

matrix. Weights are assigned to the edges between two nodes i and j by the

absolute value of the matrix off-diagonal [A_j [.

A detailed description of minimum spanning tree and single source prob-

lem algorithms may be found in [32], and many data structures textbooks. All

of the ordering algorithms described below have an overall time complexity of

O(M log N) or better.

3.1 Modified RCM

RCM, as it stands in Figure 2, can miss the anisotropy of a problem and produce

a poor ordering (see Section 5, also [4]). Step 3b of the algorithm as given was

modified so that un-numbered neighbors of a node were sorted by the weight of

their connection strengths whenever their degree was equal. Since the ordering is

reversed in the final stage, it was not clear whether an ascending, or descending

connection strength order was appropriate, so both were tried. We will denote

the modified RCM with degree tie breaking in ascending order as RCMA, and in

descending order as RCMD.

3.2 Minimum Spanning Tree with Three Versions

Three ordering methods based on the minimum spanning tree (MST) of the

matrix graph were tested. The MST on the matrix graph creates an acyclic

subgraph using the smallest possible edge weights, and hence will select edges

that connect nodes weakly. Consistent with the heuristic outlined in Section 2,

these weak connections will be followed to attempt to produce a good ordering.

Figure 3 outlines the MST-based algorithms. The first two steps are the same

for all three variations. To construct the MST, we used Kruskal's algorithm [32].

It was selected for its simplicity; faster, O(M log log N) algorithms are available

(where M is the number of graph edges).

In the first variation on the algorithm, a root node is selected on the tree, and

a depth-first search performed. The nodes are numbered in the order in which

they are encountered in the tree, always choosing the weakest connections first at

branching points. The depth-first search will thus tend to follow lines of weakly

connected nodes, producing an ordering that follows the anisotropy in the desired

:/ :i:,_̧> ?_i̧ ,

Weighted Graph Ordering for PCG Methods 7

direction, and which keeps nodes grouped locally in a reasonably natural fashion.

This ordering will be denoted MSTD.

The second variation on the algorithm is a pre-processing step done before

the MST is constructed to break ties in the depth-first search stage of MSTD.

A small (<< off-diagonals) value is multiplied by the original node number, and

(symmetrically) added to the row above (i.e. also to the column below) the

diagonal entry corresponding to that node. This forces a slight bias in the matrix

so that when the MST algorithm must decide between edges that were previously

equally weighted, an edge will be selected that reflects the original ordering. A

depth-first search is then performed on the tree. We will see that tie-breaking

by natural ordering proves useful in situations of mixed anisotropy and isotropy.

This variation of MST ordering will be denoted MST T.

The final variation on MST-based ordering computes the distance from the

given root node to every node on the MST. The nodes are then sorted in order of

this distance. This effectively produces level sets, much as with RCM [18], only

biased in the desired direction of the anisotropy by the removal of strong edge

connections. The Cuthill-McKee (CM) ordering (which RCM reverses) produces

level sets that might also be thought of as nodes grouped by contours on the

graph. This variation distorts the contours, using the MST as a measure of

distance in the graph. This variation will be denoted MSTc.

3.3 Single Source Problem with Contouring

MSTc ordering uses an inexact measure of distance from a given root node to

the rest of the graph. The solution to the single source problem on a weighted

graph produces the exact minimum weighted distance from a root node to all

nodes in the graph. For anisotropic problems, nodes with weak connections to

the root will appear "closer" to it than those with strong connections. With the

single source problem solved, this ordering, as with MSTc, sorts the nodes in

order of distance from the root, again producing distorted level sets, or contour

sets which follow the weakly connected direction of the anisotropy. This ordering

will be denoted SSP.

This ordering may also be seen as a Breadth-First Search traversal of the

graph, using the weighted distance from the root node to determine the depth of

each search level.

The reader will note that given a graph with all equal weights, this will pro-

Weighted Graph Ordering for PCG Methods

duce roughly Cuthill-McKee ordering, the difference being that SSP ordering

does not order based on node degree within a level set. SSP ordering is, by the

contour set analogy, a "skewed" variation on CM ordering. This in turn suggests

that, as with RCM, reversing the SSP ordering might be beneficial. Thus we will

also consider Reversed SSP, or RSSP ordering.

4 Test Problems

o-_ K_-x +

in two dimensions, and

o(

All of the ordering methods mentioned were tested against fourteen problems,

eleven on a regular grid and three on simplicial grids. Each test case is different in

some aspect of dimension, isotropy or anisotropy, direction of anisotropy, varying

coefficients, and grid type. The problems are all based on the PDE

0 (K
_, _ov] = -q(x,v), (x,v) e (0,1) × (0,1) (2)

+ _ _ _] + -5;2_ Oz] = -q(x,v,z), (3)

(x,v,z) e (0,1) × (0,1) × (0,1)

in three dimensions. The usual five- or seven-point finite difference discretization

was used on the regular grid problems, with an harmonic average used to deal

with cases where the coefficients (K,, K v or K,) were discontinuous [1]. Despite

the fact that a number of the problems produced only positive semi-definite

matrices, the PCG method still converged.

For the various regular grid problems the same number of points were used in

each of the x, and y, (and z in three dimensions) directions. We define a discrete

(x_,yj, zk) coordinate system for a grid with node spacing h = 1/(Nedge -- 1),

where Wedg e is the number of nodes along the edge of the unit square or cube, so
that

xi=(i-1)h, yj=(j-1)h, zk=(k-1)h, 1 <i,j,k<Nedge.

This will be used in the definition of the regular grid problems. The term

qd(xl, yj, zk) denotes the discretized right hand side, and is zero unless other-

wise noted. The unit square or cube region will be denoted R, with boundary

5R, as required.

Weighted Graph Ordering for PCG Methods

The three problems on irregular grids are too complicated to fully describe

here. The reader is referred to [16] for a more detailed definition of the RE-

FINE2D and FE2D problems, and [22] for the FE3D problem.

We surmised, based on the results of MDF(0) ordering (see Figures 5 through

7), that grouping regions of similar permitivity on regular grid problems was

the correct thing to do. The magnitude of matrix row off-diagonals, not merely

their difference, might be useful to ensure that those differently weighted blocks

were ordered together. For the irregular grid problems, where the weighting

of the edges varies gradually, such a particular approach to grouping was not

evident. Preliminary testing revealed that regular grid matrices were indeed

more effectively ordered if they were not scaled, hence preserving the magnitude

information for blocks on the grid. The matrices from irregular grid problems

were more quickly solved if they were first symmetrically scaled so that their

diagonal entries were equal to one. Thus all the following testing will be done on

the unscaled regular grid, and scaled irregular grid matrices.

4.1 Problem 1. LAP5D

This first problem is the two dimensional Laplace's equation on the unit square

with Neumann boundary conditions and five point sources, discretized on a reg-

ular 30 x 30 grid. It is similar to that used in [13, 8].

4.2 Problem 2. BIG1DIR

This problem is similar to that presented as Equation 1 earlier in the paper. A

single, fairly strong anisotropy defines the problem.

Parameters: 2 Dimensions, Regular Grid, Neumann BC's

N_dg_ = 30

(K_,Ky) = (1000,1)

Source terms qd(xi, yj) defined as in LAP5D.

4.3 Problem 3. VDVORST

Tested in [26], this problem from [10] also exhibits fairly extreme anisotropy over

the entire region, but with variations in the coefficient strengths.

Weighted Graph Ordering for PCG Methods 10

Parameters: 2 Dimensions, Regular Grid, Dirichlet BC's

Wedg e = 41

(100,0.01) in (0.25,0.75) × (0.25,0.75)(K_, Ky) = (1,0.0001) elsewhere

q(x,y) = _ 100 in (1/4,3/4) x (1/4,3/4)

(0 elsewhere

U = 0 on 5R

4.4 Problem 4. STONE

Stone's third problem [30] presents a large isotropic region, with inset isotropic

and anisotropic blocks of different orientations and magnitudes. See [30, 8] for

the exact specification of this problem, which is two dimensional, and on a 31 × 31

regular grid.

4.5 Problem 5. ANISO

The region in this problem is completely anisotropic, but with four distinct re-

gions in two directions. The ratio of K, to Ky was 100:1 in each region. It is

defined on a two dimensional, 30 x 30 regular grid. For exact specifications, see

[8].

4.6 Problem 6. LAPTD

This problem is the three dimensional Laplace's equation on the unit cube with

• Neumann boundary conditions and five point sources, discretized on a 30 x 30 x 30 "

regular grid.

4.7 Problem 7 &: 8. BIG1DIR3E and BIG1DIR3F

These two problems have uniform coefficients that give them strong directions of

anisotropy. Two directions were used hoping to differentiate between the methods

that are incapable of detecting anisotropy.

Parameters: 3 Dimensions, Regular Grid, Neumann BC's

Wedge -- 30

Weighted Graph Ordering for PCG Methods 11

(K_,G, Kz) = / (100,1,1000) for BIG1DIR3E

[(1000, 100, 1) for BIG1DIR3F

Source terms qd(xi, yj, zk) defined as in LAP7D.

4.8 Problem 9. STONE3D

This is a three dimensional version of the 2D STONE problem. It was formed

by projecting the blocks defined by STONE into three dimensions using the 2D

pattern for the z ranges.

Parameters: 3 Dimensions, Regular Grid, Neumann BC's

Nedg e = 31

(1,100,100)

(K_, G, Kz) _- (100, 1, 1)
(o,o,o)
(1,1,1)

qd(4,4,4)=1, qa(4,28,28)=0.5, qd(24,5,5)=0.6

qd(15, 16, 16) = --1.83, qd(28, 28, 28) = --0.27

for(x_,yj, zk) 15<i<31, 1<j<17, 1<k<17

for(xi, yj, zk) 6<i<13, 6_<j<:13, 6_<k_<13

for(x_,yj, zk) 13<i<20, 22<j<29, 22<k<29

(xi, Yi, zk) elsewhere

4.9 Problem 10 g¢ 11. ANISO3E and ANISO3F

These are three dimensional versions of the ANISO problem. Six blocks are

defined so that abutting regions have different strong directions of anisotropy.

Again, two variations are defined, ANISO3E showing only one distinct direction

in each block.

Parameters: 3 Dimensions, Regular Grid, Neumann BC's

Wedge = 30

(K.,G, gz) =

(100, 1, K,,)

(Kv, 1,100)

(100, K., 1)

in (0,1/2) x (0,1/2) x (0,1/2)

and (1/2,1) x (1/2,1) x (0,1/2)

in (1/2,1) x (0,1/2) x (1/2,1)

and (0,1/2) x (1/2,1) x (1/2,1)

elsewhere

Weighted Graph Ordering for PCG Methods 12

100 for ANISO3EKv = 1000 for ANISO3F

Source terms qd(xi, yj, Zk) defined as in LAP7D.

4.10 Problem 12. REFINE2D

A finite element method using linear triangular basis functions was used to dis-

cretize this problem. In this example, Ii'_ and Ky are constant. Grid refinement

was applied, and the final triangulation was such that the resulting matrix was

an M-matrix.

4.11 Problem 13. FE2D

A finite element method using linear triangular basis functions was also used for

this problem. However, Kx and K_ varied by four orders of magnitude. The grid

was defined by constructing a distorted quadrilateral grid, and then triangulating

in an obvious manner. A Delaunay-type edge swap was used to produce an M-

matrix.

4.12 Problem 14. FE3D

This problem is a three-dimensional version of FE2D. A finite element discretiza-

tion was used, with linear basis functions defined on tetrahedra. The coefficients

(K_, Ky, Kz) vary eight orders of magnitude (this model was derived from actual

field data from a groundwater flow experiment). The nodes were defined on a

25 x 13 x 10 grid (3250 nodes) of distorted hexahedra, which were then divided

into tetrahedra. The resulting matrix was not an M-matrix, and the average node

connectivity was fifteen. In general it is not possible, for a given node placement,

to obtain an M-matrix in three-dimensions if linear tetrahedral elements are used

[23].

5 Numerical Results

The numerical experiments were run on a Sun 4/670 server (nominally rated at

4 MFLOPS) using double precision arithmetic. The convergence criterion

II,-kll__<tolllr°ll=, tol = 10 -12

Weighted Graph Ordering for PCG Methods

was used, where r k was the residual vector after the k th iteration of conjugate

gradient acceleration. In all cases the initial guess was chosen to be the zero

vector.

A note concerning CPU times is in order. The mechanism provided in Sun

FORTRAN for computing CPU times tends to be out as much as 10% between

runs of the same test, and provides an accuracy of only 0.01 of a CPU second. The

reader should keep this margin of error in mind while interpreting the following

results. All results are for CPU time required only for the program execution,

and are reported in seconds. -

13

5.1 Ordering Time

Table 2 lists the time required to perform the various orderings for a few of the

problems. The time to perform RCM ordering is given, and the other ordering

times are scaled by that value for each problem. On average, performing RCM

ordering accounted for between 2 and 4% of the overall solution time. The time

required for MDF varies considerably depending on the fill level requested for the

calculation, so MDF for level 1 fill is given.

Note from these results that the graph based orderings take roughly 1 to 4

times longer to produce than RCM, which is considerably less than the 10 to 21

times longer for MUM, and 28 to 191 times longer for MDF. Note that RCMA and

RCMD take, on average, the same amount of time to compute, so the numbers

for RCMD are not shown.

5.2 Solution Time

One test run was made for each of the ordering methods, on each of the fourteen

test matrices, for preconditioners using ILU(0), ILU(1) and ILU(2). Of particular

interest in analyzing the results are the number of iterations required to solve

the problem to the desired tolerance, the amount of fill produced in the ILU

factorization, and the total time required for the iterative solve. Since the last

measurement is a function of the first two, only the iterative solve times will be

presented in detail.

Natural (default node order) ordering, was generally worse than RCM in 2D,

and on irregular grids, producing marginally better solution times on 3D regular

grids. Results with MUM were mixed, however, MUM generally does best on

Weighted Graph Ordering for PCG Methods 14

problems with large comput7 tional molecules [8, 9], and the problems posed here

have relatively small molecules. MDF proved again to be a good ordering in most

cases.

The weighted graph based orderings performed best at ILU(1). Table 3 shows

the time required for the all the iterations required to solve the linear system,

using each of the ordering methods, at this level of fill. Because RCM is popular,

and often viewed as the best matrix coefficient insensitive ordering [13, 14], we

have scaled all the solution times by the value for RCM ordering for that matrix,

giving only the solution time for RCM ordering in CPU seconds. At ILU(0),

weighted graph methods generally performed as well as RCM on regular grid

problems, and significantly worse on irregular grids. At ILU(2), the MST and

SSP based orderings fared somewhat poorly.

At ILU(1), the MST based algorithms ran significantly faster than RCM

in all two-dimensional, regular grid cases where the regions were completely

anisotropic. Tie breaking (MST_) was required to produce good results in the

two 3D problems where one direction of anisotropy was dominant. Tie break-

ing also was required to produce adequate results for STONE, which had mixed

anisotropic and isotropic regions, but the result was still slower than RCM.

Table 3 shows that SSP and RSSP ordering produced significant improvements

over RCM only when the region was anisotropic in a single direction. Unlike

the MST algorithms, the SSP orderings could not follow the sharp changes in

anisotropic direction of the ANISO problem (see next subsection).

The RCMA ordering showed favourable results. At worst it caused a 30%

slower solution over RCM, and that in only one case at ILU(1). It generally

produced solutions taking 47% to 108% the time of basic RCM, and did better

on irregular grids, and regions that were all anisotropic in a single direction.

Comparing the BIG1DIR3E and BIG1DIR3F problems, RCMA produced a solu-

tion in the same time for both, whereas basic RCM failed to follow the direction

of anisotropy of the latter case, and produced a poor ordering. At ILU(0), and

ILU(2), RCMA was never worse than 12% slower than RCM, and slightly faster in

almost half the cases. RCMD fared somewhat poorly, and was never significantly

faster than RCMA, hence its timing results are not shown.

We note in passing that, in the preliminary testing for this study, different

root node placements were tried for the MST and SSP orderings. This was shown

to have little effect on the solution time.

Weighted Graph Ordering for PCG Methods

5.3 Drop Tolerance Preconditioning

Also noteworthy is the application of these algorithms to drop tolerance precon-

ditioning [6], where matrix fill is discarded based on its magnitude. With drop

tolerance, a good ordering will speed computation by causing the magnitude of

the fill to decay more quickly, leading to fewer fill entries and faster preconditioner

matrix multiplies.

Tests were performed dropping preconditioner fill entries laijl < c IRowMaxi

where I RowMaxi I is the maximum magnitude entry in row i, and _ is the

drop tolerance parameter. Solutions with _ = 0.01 produced good results for

well conditioned problems, and c = 0.001 was required for more difficults ones.

MSTc ordering, and SSP ordering produced the best results at these levels,

reducing solution time (compared to RCM) by an average of 26%. Weighted

RCM orderings generally did not outperform plain RCM.

Drop tolerance methods can be defined in many different ways (our matrix

solver package defines eight), thus it is a little more difficult to analyze the

outcome of the tests. The exact number of fill entries is not determined by the

graph of the problem, adding another level of complexity to the analysis. Previous

experience [6] has show that the parameters tend to be problem dependant and

the results hard to generalize. Thus we feel that a detailed presentation of these

results is not justified.

15

5.4 Some Ordering Pictures

Using MATLAB [24], a number of pictures of graph orderings are given in Figures

5, 6 and 7. In this visualization technique, nodes numbered first appear as darker

squares, and the nodes numbered last appear as the lightest squares.

Figure 5 shows the orderings produced by MDF(0), MSTD, and SSP on the

VDVORST problem. Notice how MDF(0) picks up the interior region of differing

coefficients. The other orderings pick up only on the single direction of weak

connections, producing essentially the same pictures.

Figure 6 shows the MDF(0), MSTD, and SSP orderings on the ANISO prob-

lem. Note the similarity between the MDF(0) and MST orderings, both detected

and followed the changes in the direction of anisotropy. Note the SSP order-

ing tended to order the middle and work outward, missing the basic anisotropy.

(Note that the two anomalously ordered blocks were caused by an unavoidable

Weighted Graph Ordering for PCG Methods 16

tie-breaking problem inherent in the binary heap used to compute the Single

Source Problem.)

Figure 7 shows the MDF(0), MSTD, and MSTDT orderings on the STONE

problem. While MDF identifies and orders the various blocks in the test, the MST

routines fail to identify them clearly. Thus we see a weakness in the MST routines

when isotropic and anisotropic regions exist in the same problem. However, if the

subregions of anisotropy are known in advance, MST ordering could potentially

be applied to those individual subregions, then the results linked to produce a

final ordering. MDF(0) is essentially doing this for the STONE problem.

6 Summary

We have presented and tested seven new matrix ordering techniques which are

sensitive to the coefficients, as well as the sparsity pattern, of matrices. These

techniques attempt to implement the heuristic, based on Theorem 1, that or-

dering along lines of weakly connected nodes results in an improved incomplete

factorization for PCG methods.

MDF ordering again proved to be very good, however, it is expensive to com-

pute. It would be the most useful if a large number of similar matrix problems

were to be solved which could efficiently exploit a single MDF ordering compu-
tation.

Methods based on the minimum spanning tree and single source problem

only showed significant advantage over RCM on two-dimensional regions that

were entirely anisotropic, with one level of fill in the preconditioner. The single

source problem based techniques were unable to follow changes in the direction

of anisotropy, and hence were only advantageous when no changes in direction

were present.

The modified RCM technique RCMA proved to be generally better than RCM,

and rarely significantly worse. RCMA performed consistently well on irregular

grids, and for all levels of fill. We conclude that RCMA is, in general, a good

choice over plain RCM.

A number of questions surrounding good matrix ordering for ILU precondi-

tioners remain to be solved. Good results have been obtained for systems of

equations using block ordering [15, 4], but more work needs to be done in this

area. Also, investigations into ordering based on eigenvalue computations, called

Weighted Graph Ordering for PCG Methods 17

spectral ordering (and closely related to [28]), are being undertaken.

References

[1] G. A. Behie and P. A. Forsyth. Comparison of fast iterative methods for

symmetric systems. IMA Journal of Numerical Analysis, 3:41-63, 1983.

[2] M. Buffat. Simulation of two- and three-dimensional internal subsonic flows

using a finite-element method. International Journal for Numerical Methods
in Fluids, 12:683-704, 1991.

[3] P. Chin, E. F. D'Azevedo, P. A. Forsyth, and W.-P. Tang. Preconditioned

conjugate gradient methods for the incompressible Navier-Stokes equations.

International Journal for Numerical Methods in Fluids, 15:273-295, 1992.

[4] Simon S. Clift and Peter A. Forsyth. Linear and non-linear methods for

the incompressible Navier-Stokes equations. Technical Report CS-93-02,

University of Waterloo, Waterloo, Ontario, January 1993. Submitted to Int.
J. Num. Methods in Fluids.

[5] O. DaM and S. O. Wille. An ILU preconditioner with coupled node fill-in

for iterative solution of the mixed finite element formulation of the 2d and

3d Navier-Stokes equations. International Journal for Numerical Methods

in Fluids, 15:525-544, 1992.

[6] E. F. D'Azevedo, P. A. Forsyth, and W.-P. Tang. Drop tolerance precondi-

tioning for incompressible viscous flow. Intern. J. Computer Math., 44:301-
312, 1992.

[7] E. F. D'Azevedo, P. A. Forsyth, and W. P. Tang. Ordering methods for pre-

conditioned conjugate gradient methods applied to unstructured grid prob-

lems. SIAM J. Matrix Anal. Appl., 13(3):944-961, July 1992.

[8] E. F. D'Azevedo, P. A. Forsyth, and W.-P. Tang. Towards a cost-effective

ILU preconditioner with high level fill. BIT, 32:442-463, 1992.

[9] E. F. D'Azevedo, P. A. Forsyth, and W.-P. Tang. Two variants of minimum

discarded fill ordering. In R. Beauwens and P. de Groen, editors, Proc.

IMACS Intern. Symp. on Iterative Methods in Linear Algebra, pages 603-
612. North-Holland, 1992.

[10] H. Van der Vorst. The convergence behaviour of preconditioned CG and

CG-S. In O. Axelsson and L. Kolotilina, editors, Preconditioned Conjugate

Gradient Methods, Lecture Notes in Mathematics No. 1547, pages 126-136.

Springer Verlag, 1990.

[11] John K. Dickinson and Peter A. Forsyth. Preconditioned conjugate gradient

methods for three dimensional linear elasticity. Technical Report CS-93-13,

Department of Computer Science, University of Waterloo, February 1993.

Weighted Graph Ordering for PCG Methods 18

[12] Shun Doi. A Gustafsson-type modification for parallel ordered incomplete

factorizations. Technical report, C&C Information Technology Research

Labs, NEC Corp.,, 1991.

[13] I. S. Duff and G. A. Meurant. The effect of ordering on preconditioned conju-

gate gradients. BIT: Nordisk Tijdskrift for Informationbehandling, 29:635-

657, 1989.

[14] Laura C. Dutto. The effect of ordering on preconditioned GMRES algorithm,

for solving the compressible Navier-Stokes equations. Research report, Uni-

versit_ de Montreal, CRM, February 1992. to appear in International Journal

for Numerical Methods in Engineering.

[15] Q. Fan, P. A. Forsyth, and W.-P. Tang. Performance issues for iterative

solvers in semiconductor device simulation. Technical report, University of

Waterloo, 1993. In preparation.

[16] P. A. Forsyth. A control volume finite element approach to NAPL ground-

water contamination. SIAM J. Sci. Stat. Comput., 12(5):1029-1057, 1991.

[17] P. A. Forsyth and B. Y. Shao. Numerical simulation of gas venting for NAPL

site remediation. Adv. Water Resources, 14(6), 1991.

[18] A. George and J. W. H. Liu. Computer Solutions of large sparse positive-

definite systems,. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[19] N. E. Gibbs, W. G. Poole Jr., and P. K. Stockmeyer. An algorithm for

reducing the bandwidth and profile of a sparse matrix. SIAM J. Numer.

Analysis, 13:236-250, 1976.

[20] D. Howard, W. M. Connolley, and J. S. Rollett. Unsymmetric conjugate
gradient methods and sparse direct methods in finite element flow simula-

tion. International Journal for Numerical Methods in Fluids, 10:925-945,
1990.

[21] H. P. Langtangen. Conjugate gradient methods and ILU preconditioning

of non-symmetric matrix systems with arbitrary sparsity patterns. Interna-

tional Journal for Numerical Methods in Fluids, 9:213-233, 1989.

[22] F. W. Letniowski and P. A. Forsyth. A control volume finite element

method for three-dimensional NAPL groundwater contamination. Inter-

national Journal for Numerical Methods in Fluids, 13:955-970, 1991.

[23] Frank W. Letniowski. Three-dimensional Delaunay triangulations for finite

element approximations to a second-order diffusion operator. SIAM J. Sci.

Star. Comput., 13(3):765-770, May 1992.

[24] The Math Works Inc., Cochituate Place, 24 Prime Park Way, Natick, Mass.

MATLAB 4.0 Users Manual, 1992.

Weighted Graph Ordering for PCG Methods 19

[25] J. A. Meijerink and H. A. Van der Vorst. An iterative solution method for

linear systems of which the coefficient matrix is a M-matrix. Mathematics

of Computation, 31:148-162, 1977.

[26] Yvan Notay. Ordering methods for approximate factorization precondition-

ing. Technical report, Service de M_trologie NucMaire, Universit_ Libre de

Bruxelles, January 1993.

[27] S. V. Parter. The use of linear graphs in gaussian elimination. SIAM Review,
3:364-369, 1961.

[28] Alex Pothen, Horst D. Simon, and Lie Wang. Spectral nested dissection.

Technical Report 92-01, Computer Science Dept., Pennsylvania State Uni-

versity, January 1992.

[29] D. Rose. A graph-theoretic study of the numerical solution of sparse positive

definite systems of linear equations. In R. C. Read, editor, Graph Theory

and Computing, pages 183-217. Academic Press, 1972.

[30] H. L. Stone. Iterative solution of implicit approximations of multidimen-

sional partial differential equations. SIAM J. Namer. Analysis, 5:530-558,
1968.

[31] J. Strigberger, G. Baruzzi, and W. Habashi. Some special purpose precondi-

tioners for conjugate gradient- like methods applied to CFD. International

Journal for Numerical Methods in Fluids, 16:581-596, 1993.

[32] Robert E. Tarjan. Data structures and network algorithms. Society for

Industrial and Applied Mathematics, Philadelphia, PA, 1983.

[33] C. Vuik. Solution of the discretized incompressible Navier-Stokes equations

with the GMRES method. International Journal for Numerical Methods in

Fluids, 16:507-523, 1993.

[34] J. R. Wallis. Incomplete gaussian elimination as a preconditioning for gen-

eralized conjugate gradient acceleration. In Proceedings of the 1983 SPE

Symposium on Reservoir Simulation in San Francisco, 1983. SPE 12265.

Weighted Graph Ordering for PCG Methods 2O

Figure 1: Orientation of new fill in x-y and y-x natural orderings.
dotted lines.

I I I I

0--0--0_0-
I "::::::.:"f":---:::1...........I

(D--@--@hO--

x-y ordering

New fill is indicated by

I I

Q--O-
I\ I

Q _,.-_--O-

@ ',!..O-

(_wOn

y-x ordering

Figure 2: The Reverse Cuthill-McKee (RCM) ordering algorithm

1. DETERMINE A STARTING PSEUDO-PERIPHERAL NODE _ OF GRAPH _.

2. NUMBER 7_ FIRST IN THE ORDERING.

. FOR i = 1... (NUMBER OF NODES) DO (FOLLOWING NODE ORDERING)

3A. U : { ALL UN-NUMBERED NEIGHBORS OF NODE i}

38. NUMBER ELEMENTS OF U IN ORDER OF NODE DEGREE

ENDDO

4. REVERSE THE ORDERING DETERMINED IN STAGE 3.

Table 1: Solution time for an anisotropic problem with two orderings.

Solution

Ordering Time (s) Iterations

Natural x-y 1.13 35

Natural y-x 0.43 7

Weighted Graph Ordering for PCG Methods 21

o

2.

Figure 3: The Minimum Spanning Tree based ordering algorithms

CONSTRUCT THE MINIMUM WEIGHT SPANNING TREE _/- OF _.

SELECT A ROOT NODE _ OF GRAPH _.

Variant 1: MSTD

3. PERFORM A DEPTH-FIRST SEARCH (PRE-ORDER TRAVERSAL) OF _/"

STARTING FROM _2,,. AT EACH BRANCH SELECT THE MINIMUM

WEIGHT EDGE FIRST.

4. NUMBER THE NODES IN THE ORDER THEY WERE ENCOUNTERED IN STEP 3.

Variant 2: MSTDw

3. USING THE ORIGINAL ORDERING, ADD SOME FACTOR £ TIMES THE NODE

NUMBER TO THE WEIGHTS OF EDGES CONNECTING NODE i WITH NODE j WHERE

i < j IN THE ORIGINAL ORDER. (£ (<_ THE OFF DIAGONAL WEIGHTS).

4. PERFORM A DEPTH-FIRST SEARCH (PRE-ORDER TRAVERSAL) OF _/-

STARTING FROM _. AT EACH BRANCH SELECT THE MINIMUM

WEIGHT EDGE FIRST.

5. NUMBER THE NODES IN THE ORDER THEY WERE ENCOUNTERED IN STEP 4.

Variant 3: MSTc

3. COMPUTE THE (WEIGHTED) DISTANCE FROM 7_ TO EACH NODE OF _-.

4. ORDER THE NODES STARTING WITH _ THEN IN ORDER OF SHORTEST

TO LONGEST DISTANCE FROM 7"_ ALONG "T.

Figure 4: The Single-Source Problem based ordering algorithm

1. SELECT A ROOT NODE T_ OF GRAPH _.

2. COMPUTE THE SINGLE-SOURCE PROBLEM FROM _ FOR THE ENTIRE

GRAPH _. THIS ASSOCIATES THE MINIMUM WEIGHTED DISTANCE

FROM 7"_ TO EACH NODE IN THE GRAPH _.

4. ORDER THE NODES STARTING WITH T_ THEN IN ORDER OF SHORTEST

TO LONGEST DISTANCE FROM _ ON _.

Weighted Graph Ordering for PCG Methods 22

Table 2: Time Required to Perform Ordering

Problem

LAPD5

ANISO

LAPD7

STONE3D

FE2D

FE3D

Ordering Method

(CPU s Scaled by RCM
RCM

0.03

0.03

1.85

2.13

0.09

0.53

MSTD MST_ MSTc SSP RSSP RCMA RCMD

1.7 3.3 3.0 1.3 2.0 2.0 1.7

2.0 4.0 3.7 2.0 2.0 2.3 2.7

2.2 2.6 2.7 1.5 1.6 1.5 1.4

2.2 3.3 3.1 1.5 1.6 1.4 1.4

3.3 3.2 3.9 1.6 1.6 1.2 1.1

2.8 3.1 2.9 1.0 1.0 1.0 1.0

MDF

32.7

31.0

70.4

69.5

27.8

191.3

MUM

21.3

15.7

10.5

9.8

10.7

12.1

Table 3: Time Required to Perform All PCG Solver Iterations (at ILU(1))

Problem

LAPD5

BIG1DIR

VDVORST

STONE

ANISO

LAPD7

BIG1DIR3E

BIGIDIR3F

ANISO3E

ANISO3F

STONE3D

REFINE2D

FE2D

FE3D

Ordering Method

(CPU s) Scaled by RCM
RCM

0.71

0.73

0.76

0.77

0.71

62.81

131.95

231.29

90.40

104.54

114.47

1.54

1.48

7.63

MSTD MST_ MSTc SSP RSSP RCMA

1.01 1.01 1.00 1.08 1.06 0.99

0.92 0.45 0.51 0.47 0.44 0.47

0.54 0.57 0.62 0.53 0.55 0.59

1.86 1.17 2.23 1.29 1.26 1.03

0.66 0.68 1.24 1.66 1.20 1.08

0.90 1.05 1.10 1.07 1.05 1.07

2.06 0.89 0.90 0.88 0.86 0.97

1.20 0.58 0.58 0.57 0.61 0.55

0.97 1.03 1.15 1.16 1.09 0.98

1.32 1.29 1.49 1.67 1.41 1.30

1.00 1.16 1.27 1.02 1.05 1.06

2.39 2.64 2.58 2.01 1.45 0.97

3.32 2.63 2.70 2.24 1.82 0.94

1.15 1.23 1.01 0.92 0.72 0.77

Nat MDF MUM

Note: This table lists the time to complete all PCG iterations required to solve the problem

to tol -- 10 -12, where tol is the 12 norm of the linear solution residual. RCM times are given

in CPU seconds. Other ordering times are scaled by the time required to solve the problem

using RCM ordering.

1.06 0.92 1.07

1.07 0.41 0.97

1.01 0.33 1.01

1.04 0.84 1.21

1.10 0.80 1.42

0.92 0.89 1.01

0.97 0.84 1.64

0.87 0.49 0.85

0.93 0.80 0.91

0.83 0.81 1.30

0.92 0.74 0.87

3.42 1.04 1.29

1.95 0.89 1.47

1.09 0.88 0.73

• 5:¸ _:' • •,•,_ "15,!i•:::•: ,i:i:(

Weighted Graph Ordering for PCG Methods 23

Figure 5: The VDVORST problem ordered with MDF(0), MSTD and SSP. Node ordering is
from darkest to lightest.

,II _..:.._,,

:::::::::::::::::::::::::::::::::::::

_0 ::

i_iiiiiiiiii!i_iiiiiiiiiii!!ii!i__iiiiiii!

iiii[iii!_iii!i!iiiiiiiil;;:iii:i:i:i:i:i:i:i:;:;:i:_

¢ ..::i:ii!iiiiiiiii

::::::::::::::::::::::

.........:_i!::!::iiiiiii

==========================

:::::::::::::::::::::

.,"i-_-:!!_i!!i!!!::i::iiiiiii::

=======================

Figure 6: The ANISO problem ordered with MDF(0), MSTD and SSP. Node ordering is
from darkest to lightest.

iii::i_i._;.v.v.v.:..::.v...'.'._--_....,:.,.-_:....... _-_ -,_:::::::::::::::::::::::::::::::: ._ - ._:_
:.:.:.:.: ::::.':::.':::_: _ _ _ . ,

================================

Figure 7: The STONE problem ordered with MDF(0), MSTD, and MST w orderings. Node

ordering is from darkest to lightest.

