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Abstract 

In elasticity, the method of forces, wherein stress parameters are considered as the primary unknowns. is known as the 

Beltrami-Michell Formulation (BMF). The existing BMF can only solve stress boundary value problems; it cannot handle the 

more prevalent displacement or mixed boundary value problems of elasticity. Therefore, this formulation. which has restricted 

application, could not become a true alternative -to the Navier's displacement method, which can solve all three types of 

boundary value problems. The restrictions in the BMFhave been alleviated by augmenting the classical formulation with a novel 

set of conditions identified as the boundary compatibility conditions. This new method, which completes the classical force 

formulation, has been termed the Completed Beltrami-Michell Formulation (CBMF). The CBMF can solve general elasticity 

problems with stress, displacement. and mixed boundary conditions in terms of stresses as the primary unknowns. The CBMF 

is derived from the stationary condition of the variational functional of the Integrated Force Method. In the CBMF, stresses for 

kinematically stable structures can be obtained without any reference to the displacements either in the field or on the boundary. 

This paper presents the CBMF and its derivation from the variational functional of the Integrated Force Method. Several 
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examples are presented to demonstrate the applicability of the completed formulation for analyzing mixed boundary value 

problems under thermomechanical loads. Selected example problems include a cylindrical shell, wherein membrane and 

bending responses are coupled, and a composite circular plate. 
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Introduction 

The method of forces, also known as the Beltrami-Michell Formulation (BMF), and its variant, the Airy's stress function 

formulation, were the preferred tools of analysis in elasticity during the 1940's and 1950·s.1·2 In fact, solutions for many 

classical elasticity problems have been obtained via the method of forces. 1-3 The method of forces, however, could not compete 

with the Navier's displacement formulation, especially in analyzing plates and shells with displacement and mixed boundary 

conditions. Thus, the application of the method of forces diminished, and the displacement formulation gained popularity. The 

demise of the method of forces was not due to any intrinsic generic deficiency of the method but to the incompleteness of the 

formulation. Because a set of boundary equations was missing, the application of the classical BMF was restricted to solving 

only problems with stress boundary conditions. In other words, the Beltrami-Michell's force formulation can be used to solve 

stress boundary value problems, but it cannot solve the more prevalent displacement and mixed boundary value problems. The 
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missing set of equations, which completes the BMF, has been identified as the boundary compatibility conditions. At this time, 

these boundary compatibility conditions have been derived only from a variational formulation. Direct derivation of boundary 

compatibility conditions is not known, and this may be the primary reason why these equations were not formulated earlier. 

Augmentation of the classical BMF with these boundary compatibility conditions resulted in a novel force method--the 

Completed Beltrami-Michell Formulation (CBMF). The CBMF bestows equal emphasis on stress equilibrium and strain 

compatibility conditions. It is as universal as the Navier's displacement formulation, solving all three classes of elasticity 

problems: stress, displacement, and mixed boundary value problems. Thus, the CBMF overcomes the deficiency of the classical 

BMF. The CBMF can provide solution to stresses without any reference to the displacements, either in the field or on the 

boundary, for kinematically stable structures. 

The primary purpose of the structural analysis is to determine the internal stress state in an elastic continuum. In the CBMF, 

stresses are obtained directly as a solution to a set of equations of this formulation. Displacements, if required, can be calculated 

from stresses using integration. In the Navier's displacement method, displacements (whether required or not) must be 

generated first; then stresses are determined indirectly through differentiation. As a result, in the displacement method, stresses 

can become inaccurate, especially when approximate techniques are used. In the CBMF, problems with thermal and initial 

strains are handled directly by the compatibility formulation, whereas in the Navier's displacement method, they have to be 

treated indirectly using the concept of equivalent loads. The development of the CBMF is further justified because all the 

solutions that have been obtained with the classical BMF have to be verified; that is, it must be determined whether the boundary 

compatibility conditions have been satisfied or nol The noncompliance of boundary compatibility conditions for a classical 

elasticity solution is indicated in Ref. 4. 

The novel boundary compatibility conditions, the key ingredient in the CBMF, were accidentally derived and then 

identified during the formulation of the variational functional5 of the Integrated Force Method (IFM) for the finite element 

discrete analysis. The IFM for the finite element analysis, which can be considered thediscretized version of the CBMF, actually 

was formulated before the CBMF. Henceforth, in this paper, the force method for analyzing boundary value problems in 

elasticity and for analyzing plates and shells is called the Completed Beltrami-Michell Formulation (CBMF). The method of 

forces for the finite element numerical analysis is still referred to as the Integrated Force Method (IFM). 

The boundary compatibility conditions were reported earlier for two-dimensional elasticity problems,5 and stress analyses 

using boundary compatibility conditions were published for rectangular4 and circular plates6 in flexure for mechanical loads. 
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This paper includes the formal presentation of the CBMF and its application to analyzing circular plates and circular cylindrical 

shells subjected to both mechanical and thermal loads. Specialized equations for plates and shells are derived from the stationary 

condition oftheIFM variational functional, and several mixed boundary value problems are solved to demonstrate the capability 

of the formulation. The first problem is a circular plate made of two different materials and subjected to thermomechanicalloads. 

The solution of the plate example demonstrates the application of the CBMF to problems with displacement and interface (or 

jump) boundary conditions. Cylindrical shells are analyzed next. The shell examples demonstrate the use of the CBMF when 

membrane and bending responses are coupled. In addition, this paper serves as an initial, yet an unified and systematic, attempt 

to bring back the method of forces for analyzing general elastic continua. It is anticipated that the development of the CBMF 

for various shell structures, wherein membrane and bending responses are coupled, may become a significant avenue for 

research. 

Completed Beltrami-Michell Formulation of Elasticity 

The basic concepts of the method of forces (the CBMF being its specialization for analyzing elastic continua) can be 

initiated from the stress-strain law, which is universal to all analysis formulations. The stress-strain law that links stresses {u} 

to strains {E} through a known material matrix [G] can be written as 

{u} = [G]{e} (1) 

The stresses in Eq. (1) must satisfy the state of equilibrium. and the strains must satisfy compatibility conditions. In other 

words, the stresses in the method of forces can be determined from the stress strain law given by Eq. (1) and (I) the stress 

equilibrium equations and (IT) the strain compatibility conditions. Displacements are not essential for the determination of 

stresses. 

A finite elastic continuum consists of a field and a boundary. Stresses and strains must satisfy equilibrium equations and 

compatibility conditions both in the field and on the boundary, respectively, as 

(la) Stress equilibrium equations in the field 

(Ib) Stress equilibrium equations on the boundary (or traction conditions) 

(IIa) Strain compatibility conditions in the field 

(lib) Strain compatibility conditions on the boundary 
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In the method of forces, all equation sets (Ia, Ib, IIa, and lIb), including the compatibility conditions, are expressed in terms 

of stresses. The equation set of the classical BMF contained conditions (Ia, Ib, and ITa), but it missed the boundary compatibility 

conditions (lIb). The CBMF utilizes all four conditions (la, lb. ITa, and lIb). 

Governing Equations for the Completed Beltrami-Michell Fonnulation 

Consider the CBMF equations in the following plane stress problem. For simplicity and clarity, homogeneous kinematic 

boundary conditions are considered. and initial deformations along with body forces are neglected. The derivation of the 

equations from the IFM variational functional for nonhomogeneous boundary conditions with body forces is given in Ref. 5 

'and is not repeated here. However, a brief presentation of the IFM variational functional is provided in the appendix for quick 

reference. The equations, as obtained from the IFM functional, can be separated into five groups (la, Ib, ITa, lIb, and ill) as 

follows: 

Group Ia: Equilibrium Equations in the Field 

OCI o'rxy 
__ x +--=0 
ox oy (2a) 

cIT; OCIy ~+--=O ax ()y 
(2b) 

Group Ib: Bouncl.ary Equilibrium Equations (or Traction Conditions) 

(3a) 

(3b) 

where CIX" CIy ' and 'rxy are three components of the stress tensor; nx and ny are the direction cosines of the outward normal vector; 

and P;r and P yare prescribed boundary tractions. In the field, the equilibrium equations are functionally indeterminate 7 because 

three unknown stresses are expressed in terms of two (Group la) equations. 

Group ITa: Field Compatibility Condition 

The functional indeterminacy in the domain is alleviated through the field compatibility condition of St Venant. which 

can be written in terms of the strain components as 
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(4) 

and in terms of the stresses as 

(5) 

Equations (2), (3), and (5), in essence, represent the stress or the classical BMF in elasticity that was developed in 1900.1 

This formulation, which is incomplete, can only solve stress boundary value problems. 

Group lIb: Boundruy Compatibility Condition 

'Three stresses on the boundary are expressed in terms of two traction equations, Eqs. (3a) and (3b) , thus, there is one degree 

of functional indeterminacy. The field compatibility condition given in Eq. (5) alleviated functional indeterminacy in the field. 

However, because St Venant did not formulate the compatibility on the boundary, the stresses there remained indeterminate. 

The functional indeterminacy on the boundary, which made the Beltrami-Michell stress formulation incomplete, was alleviated 

by PatnailCi with the formulation of the boundary compatibility condition. This boundary condition, When expressed in terms 

of stresses for isotropic material, has the following form 

(6) 

The set of three equations consisting of the traction conditions given in Eqs. (3) and the boundary compatibility condition 

given in Eq. (6) ensures stress functional determinacy on the boundary because three unknown stresses are expressed in terms 

of three equations. 

Equations (2), (3), (5), and (6) represent the CBMF, which ensures the functional determinacy of the stresses both in the 

field and on the boundary of an elastic continuum. The CBMF can solve a general elastic continuum with stress, displacement, 

or mixed boundary conditions. 

Group III: Continuity Conditions (or DiSl>lacement Boundary Conditions) 

The stationary condition of the IFM functional, given by Eq. (48) in the appendix, also yields two displacement boundary 

conditions, and for the homogeneous case, 
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u=u=O (a) v=v=O (b) (7) 

where u and V are prescribed boundary displacements. In the CBMF, the displacement boundary conditions do not appear 

explicitly in the stress calculations, provided the structure is kinematically stable. The displacements, if required, can be 

calculated from stresses by integration using the kinematic boundary conditions.4,6,8,9 

Completed Beltrami-Michell Formulation Solution Strategy for Composite Continuum 

The CBMF solution strategy for a composite elastic continuum with fields of .a1 and .a2, and stress, displacement, and 

boundaries of rs' ru' and rt, respectively (Fig. 1), are briefly described. 

Step 1: Satisfy the field equilibrium and field compatibility conditions given by Eqs. (2) and (4), for both domains .al and 

~. (In the displacement formulation, the Navier's equations3 have to be satisfied.) 

Step 2: Satisfy the traction boundary conditions given in Eqs. (3) and boundary compatibility condition given in Eq. (6) 

on contours Ts and ru' respectively. (In the displacement formulation, equivalent traction conditions written in terms of 

displacements and displacement boundary conditions on contours Ts and ru' respectively, have to be satisfied.) 

Step ill: On the interface boundary, rfo three conditions have to be satisfied: 

two residual equilibrium equations, 

and one residual compatibility condition, 

glCa)-gi(a) = 0 

gIIlCa)-gfCa) = 0 

(8a) 

(8b) 

(9) 

The functionsg(a) and'R(a) were definedinEqs. (3) and (6), and the superscripts I and IT denote the domains .al and~, 

respectively. (In the displacement method at the interface boundary, two displacement and two traction continuity conditions 

have to be satisfied.) 

Step 4: Once the solution for stresses has been obtained, displacements, if required, can be calculated by integration. The 

evaluation of integration constants requires the kinematic boundary conditions. In the Navier's formulation, the displacements 

must be calculated whether they are required or not Stresses are then calculated using the differentiation and the stress-strain 

law. 
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The composite structure can be solved by the CBMF or by the Navier's displacement method. The problem, however, 

cannot be solved by the classical BMF because of the lack of boundary compatibility conditions for the boundary ru and for 

the interface contour r,. 

Pro.perties of Compatibility Conditions 

Two properties of compatibility conditions for the case of a plane stress problem are given in this section. 

(1) The field compatibility condition, written in terms of displacement variables, u and v, becomes a trivial constraint, such 

as an identity [f(u,v)-f(u,v)] = 0, where f represents the field compatibility condition given by Eq. (4). The boundary 

compatibility condition given by Eq. (6), however, does not become a trivial equation when written in terms of displacements. 

In terms of displacements, the boundary compatloility condition given by Eq. (6) becomes 

[;Pv _!(i;2u + ;PV)]n +[o2u _!(o2v + o2U)]n =0 
oXdy 2 ib:2 oXdy x oXdy 2 dy2 axdy Y 

(10) 

The nontrivial property of the boundary compatibility condition contradicts the popular belief that all compatibility 

conditions are automatically satisfied in the displacement method. 

(2) The field compatibility condition can be derived by eliminating the displacement components from the strain 

displacement relations. This logic as yet cannot be extended to derive the boundary compatibility condition. At present, the 

boundary compatibility conditions can be generated only from the JFM variational functional. This is, perhaps, a primary reason 

why the boundary compatibility conditions could not be formulated earlier. 

Applications of the Completed Beltrami-Michell Formulation 

In this section, the CBMF is applied to the stress analysis of circular plates and circular cylindrical shells. Governing 

equations for both cases are derived from the stationary condition of the IFM functional. Several ~xample problems are 
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(a) Field equation of equilibrium: 

d2 dM 
-(rM )--q> +rq=O 
dr2 r dr 

(11) 

(b) Field compatibility condition: 

r.!!...(M -vM )+(I+V)(M -M )+Kr at (d!J.t)=O 
dr rp, rp' h dr 

(12) 

In Eqs. (11) and (12), M, and Mtp are the radial and tangential moment, respectively; r is the radial coordinate; q is the 

intensity of the distributed load; h is the plate thickness; K, a material constant, is defined as (Eh3/12)(1 -v2) , vis the Poisson's 

ratio; at is the thennal :coefficient of the material; and At is the temperature difference between the upper and the lower surface 

of the plate. 

(c) Boundary conditions are specialized for various support conditions as follows: 

Simply supported contour: 

M,=O (13) 

Clamped contour: 

(14) 

Note that the condition given in Eq. (13) represents the static boundary condition, whereas Eq. (14) represents the novel 

boundary compatibility condition. 

For the analysis of composite domains, transition Gump) conditions on interfaces between regions made of different 

materials have to be established. These equilibrium and compatibility conditions at the interface follow: 

(ISa) 

d ( I) I d ( II) IT - rM - M = - rM - M dr ' rp dr r rp 
(I5b) 

I (I I I) I !J.t 1 (II II II) II!J.t KI Mrp -v M, +at 11= KII Mrp -v M, +ar hll (ISc) 

In Eqs. (15), superscripts I and II denote two regions of the composite plate made of different materials. The boundary 

compatibility condition given by Eq. (14) and the residual boundary compatibility condition at the interface given by Eq. (1Sc) 
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represent new equations for analyzing circular plates. These equations (which were missing from the classical BMF and are 

unique to the CBMF) make possible the solution of composite plates in terms of stress parameters only. 

In the CBMF, the thermal effects are accounted for on the right side of the compatibility conditions given by Eq. (12) and 

(14), whereas mechanical loads appear on the right side of the equilibrium equation given by Eq. (11). The Navier's 

displacement method does not include the compatibility conditions in explicit terms, which is the rightful abode for thermal 

effects. The Navier' s formulation, however, accounts for the thermal effects in the equilibrium equations through the concept 

of work. equivalent loads, which may introduce numerical errors when approximate solution techniques are used.. 

Example: Analysis of a Composite Circular Plate Subjected to Mechanical and Thermal Loads 

The CBMP solution procedure is presented through the analysis of a composite plate (Fig. 2). The plate consists of two 

segments: an inner plate (4) with radius a, material properties Ei and Vi, and thickness hj; and an outer annular plate (.Qo) with 

inner radius a, outer radius b, material properties Eo and vo' and thickness ho. The inner plate (4) is subjected to a uniformly 

distributed mechanical load of intensity q, and the outer plate (.00 ) is exposed to uneven heating with the temperature difference 

at. The plate is clamped at the outer contour, given by r = b. This example illustrates the CBMF solution process for (a) using 

the boundary compatibility condition at a clamped contour, (b) analyzing composite domains by means of transition conditions, 

and (c) analyzing thermomechanical loads. 

Equations (11) and (12) are solved to obtain general expressions for the moments M, and Mq> for the regions .Qi and .Qo' 

respectively: 

(16a) 

(16b) 

(17a) 

o ) B2 1 ( ) 1 ( ) 1 Mrp(r =-Z+-C2 l+vo logr--C2 I- vo +-D2 r 2 4 2 
(17b) 
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where Bl , Cl , D l , B2, C2, and D2 are integration constants. 

The thermal load does not appear in the homogeneous solution given by Eqs. (17 a) and (17b) because ~ (aLit) = o. These 
dr 

six constants are calculated from the following six conditions: one boundary compatibility condition given in Eq. (14) at the 

outer contour (r = b), three transition conditions given in Eqs. (15) at the interface (r = a), and (3) two implicit conditions at 

the origin (r = 0). The implicit conditions require that the moments Mr and Mil' have the finite values at the origin. The solution 

is obtained for a specific composite plate with the inner plate (ni) made of aluminum and the outer plate (no) made of steel. 

Numerical values for the material parameters in the domains n; and no' respectively, are taken as Ei = 10.6 x 106psi, Vi == 0.33, 

a[1) = 12.6 x 106/oF, Eo = 30.0 x 106 psi, Vo = 0.30, and alo) = 6.3 x 1O-6/0F. The radii are a = 6 in. and b == 12 in., and the 

thicknesses are hi = 0.2 in. and ho = 0.15 in.; the magnitude of the distributed load is q = 100 Ibfm.2; and the temperature 

difference is !J.t = 50 OF. After the integration constants are determined, the final solution for Mr and M I{J is for the domain ni 

(OSrSa) 

and for the domain no (a $ r $ b) 

M;(r) = 844.05 - 20.8lr2 

M~(r) = 844.05 -12.44r2 

M~(r) = 2046.63- (5203.06/ r2)-1170log r 

M; (r) = 2676.63 + (5203.06/ r2) -1170 log r 

(18a) 

(18b) 

(19a) 

(19b) 

The displacements, if required, can be obtained by integrating the moment-curvative relations and by using displacement 

continuity conditions to evaluate constants of integration. Displacements for the domains .q and .q" respectively, are given as 

Wier) = 3.1209 - 0.0356? + O.1757xlO-3r4 (20a) 

weer) = 5.3614 - 0.1344? - 0.7296 log r+ 0.04417? log r (20b) 

The solution for M,., Mil" and w (Eqs. (18) to (20», respectively, has been verified from the corresponding solution with 

the Navier's displacement method of analysis. 

Integrated Force Method Variational Fonnulation for Cylindrical Shells 

In this section, through an example of a circular cylindrical shell subjected to thermo mechanical loads, the CBMF is 

extended to analyzing shell structures wherein membrane and bending responses are coupled. In CBMF, Mx and force NIP are 
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the force unknowns for this problem. The variational functional for the problem is defined. and all equations of the CBMF, 

including the novel boundary compatibility conditions, for the cylindrical shell are obtained from its stationary condition. The 

IFM functional for the problem has the following form: 

ne =A+B-W :s (21) 

where the strain energy A, the complementary energy B, and the work of extemalload Ware given as 

(22a) 

(22b) 

W= fnqwdn (22c) 

where w is the radial displacement; K = (Eh3/12)(1- y2) is the rigidity; to is the temperature at the midsurface of the shell; M 

is the temperature difference between the inner and outer surfaces; and 'P is the stress function. The stress function is defined 

through a procedure similar to that given by Washizu, 1 0 as 

(23a) 

(23b) 

The variation n~ has the following form: 

- _I ----+(l+v)a --aa __ 0 dQo'l' J [M a d
2

Nrp At d
2

t ] 

n K Eh dx2 t h t dx2 

, ( dW) dM JIb [ (N ) d'I' (1 dN dt) JIb +2a M 0 -- + __ I Ciw +2alr a ~+a t o--a --CP-+lX -1L o'P 
I dx dx Eh t 0 dx Eh dx t dx 

Xa Ia 

(24) 
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The stationary condition of the variational functional with respect to the displacement w and the stress function '1' yields 

all the equations of the CBMF as follows: 

(a) Field equation of equilibrium: . , 

(25) 

(b) Field compatibility condition: 

(26) 

Contour terms in Eq. (24) yield boundary conditions. These are specialized for various support conditions as follows. 

Free Contour 

d 
On a free contour, W * 0 and dx W * 0, hence both the moment and its derivative must vanish: 

(27a) 

(27b) 

Simply Suworted Contour 

The rotation of the cross section is not prevented on a simply supported boundary. The condition 8(dwldr) * 0 results in 

Mx=O (28a) 

Because w * 0, the derivative ! (M x) = d'l' I dx is not zero on a simply supported boundary, resulting in 

(28b) 

Equation (28b) represents a boundary compatibility condition for a simply supported boundary for the cylindrical shell. 

Oamped Contour 

For the clamped contour, both displacements and rotations are equal to zero, and on such a boundary two compatibility 

conditions must be satisfied. The boundary compatibility conditions, which are the coefficient of &J'l'dx and d'l'in the contour 

forms in Eq. (24), follow: 

(29a) 

1 dNtp dto ---+a-=O 
Eh dx t dx 

(29b) 
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Transition conditions, used to analyze composite shells, are derived similarly as those for circular plates. They consist of 

two residual equilibrium conditions 

M(l) _ ~II) = 0 
.x ;: (30a) 

(30b) 

and two residual boundary compatibility conditions given as 

(30c) 

(30d) 

The field equations given in Eqs. (25) and (26), together with appropriate boundary conditions represent the number of 

equations sufficient to solve the shell bending problem for stresses Mx and N 9" The boundary comp~bility conditions given 

in Eqs. (29) are derived for the first time. Two boundary compatibility conditions given in Eqs. (29) have to be imposed on a 

clamped boundary, and one compatibility condition given in Eq. (28b) must be satisfied on a simply supported boundary. Note 

that without the boundary compatibility conditions the solution (M;: and N q) for the shell bending problems cannot be obtained 

for problems with either the displacement boundary conditions given in Eqs. (28) or the mixed boundary conditions given in 

Eqs. (29). The transition conditions given in Eqs. (30c) and (30d) enable the solution of composite shells by the CBMF. 

The field equations given by Eqs. (25) and (26) may be uncoupled to obtain the following alternative systems: 

(31a) 

(31b) 

or 

(32a) 
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Ka d
2 

NqJ [ ..1t d
2
t 1 M =---+Ka (l+v)--a--O 

:c Eh dx2 t h dx 2 (32b) 

where tr = 3 (l-v-)/a2hl. Note that both Eqs. (31a) and (32a) are fourth-order equations, and either one can be selected for 

solution. Here, the moment equation (31a) is selected, and its general solution bas the following form: 

Mx = C1 cosh f3x + C2 sinh f3x + C3 cos f3x + C4 sin f3x + 'l'~q) + '1'~.dt) (33) 

where C 1, C2, C3' and C4 are the constants of integration, and '1'/ q) and 'l'p (t./) are particular integrals for distributed loads and 

temperature, respectively. The constants of integration are obtained by imposing appropriate boundary conditions. Once Mx 

is known, N f/J can be calculated by back substitution from Eq. (31 b). The solutions for two examples are provided to illustrate 

the CBMF solution process. The first example is a short cylindrical shell subjected to thermomechanicalloads. The second 

example is a composite shell with clamped and simply supported boundary conditions. 

Example 1: Analysis of a Short Cylindrical Shell 

A simply supported cylindrical shell made of isotropic material with length L and radius a is shown in Fig. 3. The origin 

of the coordinate system is located at the centroid of the shell. The analysis is performed for two cases: (1) a uniformly distributed 

load and (2) uneven heating with !::J such that to = O. The material and the geometric parameters of the shell are such that the 

product f3L <: 5; hence, it must be analyzed as a short shell. The general solution for each case is obtained by substituting the 

particular integrals into the general solution given by Eq. (33) and then by imposing the boundary conditions for simply 

supported contours at x = ±li2 to evaluate the constants. 

Solution for the Mechanical Load 

For this case, 'l'p (q) = 0 and 'l'p (ilt) = O. The solutions obtained for Mx and N f/J after solving for the integration constants 

in Eq. (33) using simply supported boundary conditions at x = ±li2 have the following form: 

Mx(x) = (q/2f32 D)(g2 cosh f3x cos f3x - gl sinh f3x sin f3x) 

NqJ(x) = (qaj D)[g2(g2 - sinh f3x sin fJx) + gl (gl - cosh f3x cos fJx~ 

(34a) 

(34b) 

whereD = g[+gj ,g}=cosh A cos A..g2 = sinh A sin A; and A = fJU2.Ifrequired, the displacement w may be calculated using 

the stress-strain relations as 
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w(x) = (_qa2 /DEh)[g2 (g2 - sinh f3x sin {3x)+ gl (gl - cosh f3x cos .ax)] (35) 

Solution for the Thennal Load 

For this case, particular integrals 'I'p(q) = 0 and 'I'p(&)= - K(1 + v)arMlh, and the final expressions for the internal forces 

take the following form: 

M.r(x) = (- 'I'~.dt) /D)[gl(g1 -cosh f3x cos f3x) + g2(g2 - sinh,8x cos {3x)] 

Ncp(x) = 2,82('I'~.dt) /D )(g2 cosh f3x cos ,8x - gl sinh f3x sin ,8x) 

If required, w can be calculated as 

w(x) = -2(af32'I'~M) /EDh)(g2 cosh {3x cos f3x - gl sinh.ax sin f3x) 

(36a) 

(36b) 

(37) 

The solution for this simple problem required a boundary compatibility condition (Eq. (28b», even for a simply supported 

boundary, and hence the example could not have been solved by classical BMF. 

Example 2: Analysis of a Long Composite Shell 

A composite cylindrical shell of radius a and length '2L is shown in Fig. 4. This shell is composed of two regions with 

different material and geometrical properties. Region I, bounded by contours 1-1 and 2-2, has material parameters Eland VI' 
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is clamped along contour 1-1, and simply supported along the contour 3-3. Both regions are subjected to a uniformly distributed 
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involves four integration constants (CI to C4 in Eq. (33»; hence, there are a total of eight unknowns for the composite shell. 

The eight cons~ts of integration are evaluated from the following eight conditions: two boundary compatibility conditions 

for the clamped boundary 1-1 (see Fig_ 4) given in Eqs. (29), two boundary conditions for the simple supported boundary 

3-3 given in Eqs. (28), and four transition conditions at the interface 2-2 given in Eqs. (30). 

For simplicity, the long shell condition (the products of f3IL and J32L) is assumed for both components. Consequently, the 

response for the composite shell can be obtained by superposing effects from the three boundaries: that is, from the simply 

supported boundary, fixed boundary, and interface boundary as shown in Fig. 4. 
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Res.pqnse From the Fixed BoundaIy (Contour 1-1) 

The local coordinate system is defIned such that the axis Xl is placed along the axis of the shell, with the origin in the plane 

defined by contour 1-1 (see Fig. 4). The solution process is similar to that presented for the short shell, given as 

Using Eq. (38b), the expression for the displacement is obtained as 

w(xI ) = (_qa 2 IEI;)[ (e -Plxl (cos f3lxI + sin f3lxl) -1] 

Response From the Interface (Contour 2-2) 

The expressions for Mx. N cp' and w, defmed for regions I and II, respectively, are obtained as 

M(l)(x )=e-f3lx2 (A cos 13 X +B sin 13 x )+'l'(.1t) 
x 2 I 12 I 12 p 

N~)(X2) =2f3fe-PIX2 (-~ cos f3lx2 +AI sin f3lx2) 

w(l) = (-lfaEh)2f3fe -f3h (-~ cos f3lx2 + Al sin f31x2) 

~II)(X3) =e -fJ2xJ (Az cos f32x3 + B2 sin f32x3) 

N~n)(X3) =2f3~e-f32x3 (-B2 cos f32x3 +Az sin f32x3) 

w(II) = (-1/aEh)2f3~e -f32xJ (-B2 cos f32x3 + A2 sin f32x3) 

(38a) 

(38b) 

(39) 

(40a) 

(4Gb) 

(40c) 

(41a) 

(41b) 

(4lc) 

where AI. BI , A2, and B2 are the constants of integration, andx2 andx3 are defined separately for each region (Fig. 4). Four 

constants of integration are calculated by imposing four transition conditions given in Eqs. (30) along the interface contour 

2-2. The four transition conditions yield the following four equations to compute four constants of integration: 

(42a) 

(42b) 

-2 f3~ ~ +2 13; B2 =_q __ -.!L 
~I; E2hz E2hz Ell; 

(42c) 

f3f (Al+BI)+ f3i (Az+Bz}=O 
Ell; E2hz 

(42d) 

The solution of Eqs. (42) yields the four integration constants: 
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(43a) 

(43b) 

(43c) 

(43d) 

duced into Eqs. (40) and (41) to obtain Mx and N rp for both regions I and 11 Then, displacement w, which can be calculated 

following the procedure given earlier, has the following form: 

Response From Simply Sup,ported Conditions (Contour 3-3) 

For this case, a procedure similar to that presented for the clamped edge effects along contour 1-1 is followed. The 

coordinate axis x4 is defined as shown in Fig. 4. Contour 3-3 is simply supported. and the conditions given inEqs. (28) are applied 

to obtain the expressions for the internal forces: 

and w is calculated as 

MAx4 ) = (q/2/ii)e -fJ2:r4 . sin fJ2x4 

N rp (X4) = qa( e -fJ2:r. cos .B2x4 -1) 

(44a) 

(44b) 

(45) 

As mentioned earlier, solution for any point is obtained by superposition of the expansions given by Eqs. (38) to (45). 

Analysis of the composite shell with simply supported, clamped, and interface boundaries can be obtained using CBMF. The 

problem. however, cannot be solved using classical BMF because of the following missing boundary compatibility conditions: 

Eqs. (29a) and (29b) for the clamped edge, Eq. (28b) for the simply supported boundary, and Eqs. (30e) and (3Od) for the 

interface boundary. 

Conclusions 

The completed Beltrami-Michell Formulation (CBMF), wherein stresses are considered as the primary variables. is 

obtained by augmenting the classical Beltrami-Michell Formulation (BMF) with novel boundary compatibility conditions. The 
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CBMF, which can analyze stress, displacement. and mixed boundary value problems in elasticity, alleviates the limitations of 

the classical formulation, which could analyze only stress boundary value problems. All equations of the CBMF for analyzing 

circular plates and cylindrical shells subjected to both mechanical and thermal loads have been derived from the stationary 

condition of the IFM variational functional. Transition conditions required for analyzing composite plates and shells made of 

different materials have been established. The CBMF bas been used to solve several stress, displacement, and mixed boundary 

value problems in elasticity. In CBMF, displacements, if required, can be calculated from stresses by back substitutions. The 

CBMF is a true alternative to the Navier's displacement formulation. 
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Apj>eDdix-Variational Formulation for CBMF 

This appendix briefly describes the derivations of the CBMF governing equations for problems of two-dimensional 

elasticity and bending of circular plates. 

Govemin~ watiQns for TwO=dirnensional Elasticity 

The variational functional of the IFM for a two-dimensional domain !l bounded by the contour Tbas the following form 

where 

TIPS =A+B- W 
P 

The variation of the functional with respect to u, v, and tP is given as 

+- r -(a -va )+-(a -va )-2(1+V)-.!L d!lO<P 
h [ ;;2;;2 ;P-r ] 
E h2 ax2 Y x ay2 x y axay 
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In Eqs. (47) and (48), r t and r 2 are portions of the boundary, where traction and kinematic boundary conditions, 

respectively, are imposed; Bx and By are components of body forces; an overbar denotes prescribed quantities; and If) is the 

Airy's stress function. The stationary condition of the variational functional yields the governing equations of the CBMF given 

in Eqs. (2), (3), (5), and (6). 

Govemin~ Equations for Bending of Circular Plates 

For a circular plate subjected to distributed loads q and the temperature change !!J, 

(49a) 

(49b) 

(49c) 

where r a and rb are the radial coordinates of the plate. 

The variation of the IFM functional with respect to variables w and '1' can be written as 

oITe = 21r{_rrb[ d: (rMr)- dMfP + rq] draw 
p JTd dr dr 

(50) 

The stationary condition of the functional yields the CBMF equations for a circular plate given in Eqs. (11) to (14). 
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ment of mixed boundary value problems of elasticity. Therefore, this formulation, which has restricted application, could not become a 
true alternative to the Navier's displacement method, which can solve all three types of boundary value problems. The restrictions in 
the BMF have been alleviated by augmenting the classical formulation with a novel set of conditions identified as the boundary 
compatibility conditions. This new method, which completes the classical force formulation, has been termed the Completed Beltrami-
Michell Formulation (CBMF). The CBMF can solve general elasticity problems with stress, displacement, and mixed boundary 
conditions in terms of stresses as the primary unknowns. The CBMF is derived from the stationary condition of the variational 
functional of the Integrated Force Method. In the CBMF, stresses for kinematically stable structures can be obtained without any 
reference to the displacements either in the field or on the boundary. This paper presents the CBMF and its derivation from the 
variational functional of the Integrated Force Method. Several examples are presented to demonstrate the applicability of the completed 
formulation for analyzing mixed boundary value problems under thermomechanicalloads. Selected example problems include a 
cylindrical shell, wherein membrane and bending responses are coupled. and a composite circular plate. 
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