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CHARACTERIZATION OF METAL MATRIX COMPOSITES

ABSTRACT

Experimental methods were developed, adapted and applied to the characterization
of a metal matrix composite system, namely, silicon carbide/aluminum (SCS-
2/6061 Al ), and its constituents. The silicon carbide fiber was characterized by
determining its modulus, strength and coefficient of thermal expansion. The
aluminum matrix was characterized thermomechanically up to 399° C (750° F) at
two strain rates. The unidirectional SiC/Al composite was chartacterized
mechanically under longitudinal, transverse and in-plane shear loading up to 399° C
(750° F). Isothermal and non-isothermal creep behavior was also measured. The
applicability of a proposed set of multifactor thermoviscoplastic nonlinear
constitutive relations and a computer code was investigated. Agreement between
predictions and experimental results was shown in a few cases. The elastoplastic
thermomechanical behavior of the composite was also described by a number of
new analytical models developed or adapted for the material system studied. These
models include the rule of mixtures, composite cylinder model with various
thermoelastoplastic analyses and a model based on average field theory. In most
cases satisfactory agreement was demonstrated between analytical predictions and
experimental results for the cases of stress-strain behavior and thermal deformation
behavior at different temperatures. In addition, some models yielded detailed three-

dimensional stress distributions in the constituents within the composite.
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1. INTRODUCTION

Energy producing, transportation and space systems expose materials to
high temperature environments. For example, the skin temperature of the space
shuttle reaches 1100° C (2000° F); skin temperatures of future aircraft are expected
to reach 1650° C (3000° F). In addition, precision space structures which must
have strict tolerances on dimensional control require structural materials that
possess a high specific stiffness and low coefficient of thermal expansion (CTE).

The design of structures and systems capable of operating at these elevated
temperatures and possessing exceptional stability across a wide range of
temperatures poses great challenges to materials and structures engineers. The
development of efficient systems has been hampered up to now, because the only
materials capable of withstanding these high temperatures have been ceramic
materials with their inherent limitations of brittleness, low strain to failure, low
tensile strength, and low fracture toughness. Recent and current developments in
materials science and processing technology are overcoming these limitations with
the introduction of high temperature composites, such as metal-matrix, ceramic-
matrix and carbon-carbon composites.

Advanced metal-metrix composite (MMC's) possess some unique
mechanical and physical characteristics which make them highly desirable for
specific applications. In addition to the advantages afforded by the anisotropic
characteristics common to all composite materials, they have many additional
advantages. In general, they exhibit high shear strength and shear modulus, high
transverse tensile strength, excellent stability over a wide temperature range, good
strength retention, excellent fatigue and creep properties, and high impact strength.
In addition, they offer many advantages over polymer-matrix composites, such as
higher electrical and thermal conductivities, better radiation resistance, and no

outgassing. They are easily formed and machined, easily repaired, and amenable to




typical aerospace sheet metal design and fabrication. Already, methods have been
developed for producing extra-strong lightweight metal-matrix composite
structures. Superior dimensional stability is also possible, as well as tailored
thermal expansion rates which match those of mating materials. All of this
potentially can be done at a cost comparable to that of the unreinforced metal.

Even the simplest of fillers can do remarkable things for metals. One of the
most common examples is that of 6061 aluminum alloy reinforced with 40% by
volume particulate carbide. Compared with the unreinforced metal the modulus of
elasticity increases from 10 to 21 Msi. Ultimate strength increases from 42 Ksi to
65 Ksi. Wear resistance improves significantly, and the coefficient of expansion is
about half that of aluminum alone. Increasing the fiber percentage to 50-55%
increases the modulus to 25.5 Msi. Meanwhile density remains almost exactly the
same as that of the matrix metal. Thus, properties comparable to steel are possible
in a material with the weight of aluminum. Moreover, these properties can be tailor
made to fit a design. Instead of being tied to the normal thermal-expansion rate of a
metal, for example, the amount, shape, and size of reinforcement material may be
varied to control the rate. In some instances, the lowest expansion possible is
clearly ideal. But in others, the expansion rate might be matched to that of other
materials in the design. For example, if both aluminum-matrix composites and steel
are utilized in the same design, the ideal composite may be one that matches the
expansion rate of the steel. In this way, distortion, high stress, or loose joints,
which may result from different expansion rates, can be eliminated.

A great deal of effort has been devoted in the past few years to research and
development of metal matrix composites due to their superiority over conventional
and other composite materials in advanced engineering applications. A wide variety
of metallurgical processes including diffusion-bonding, plasma spray bonding,

electroforming, liquid metal infiltration, to mention just a few, have been used for




fabrication of fiber reinforced metal matrix composites. A major problem which
arises is the compatibility between the fiber and the matrix which includes the
relevant chemical reactions taking place at the fiber-matrix interface during
manufacturing and in service conditions. Such reactions generally have a
detrimental effect on the load transfer capability between the composite constituents.

A number of studies have appeared on manufacturing and characterization
of the mechanical and physical behavior of a number of aluminum based
filamentary composites with graphite, boron and silicon carbide coated boron
(borsic) fibers. The use of boron/aluminum composites, however, at temperatures
higher than 900° C (1652° F) is seriously questioned as boron fibers react rapidly
with molten aluminum resuiting in degradation of the mechanical properties of the
composite. This hampers the use of boron fibers for high-temperature applications
or for fabrication methods, as fo example, low pressure high-temperature pressing
that might be more economically feasible. Such disacvantages have resulted in the
development of silicon carbide (SiC) fibers.

Recently, much work has been done on the development of continuous
fiber, whisker and particulate reinforced silicon carbide/aluminum metal matrix
composites. Silicon carbide (SiC) fibers have surfaces that readily bond to various
aluminum alloys and resist degradation at high temperatures. Such composites can
therefore be consolidated with more economical processes using high temperatures
and low pressures.

The characterization of the mechanical and physical behavior of SiC/Al
composites has not received much attention in the literature. Flom and Arsenault
[1] performed an experimental study of the plastic strains and the plastic zone
developed in the aluminum matrix around a short SiC cylinder during a thermal
cycle due to the different thermal expansion coefficients of the two materials. A

theoretical model was also developed to explain the plastic deformations in the




matrix. The same authors [2] also determined the strength of the interfacial bond
between SiC and 6061 aluminum for particulate composites and found it to be at
least 1690 Mpa. McDanels [3] investigated the tensile stress-strain behavior of
SiC/Al composites containing SiC whisker, nodule or particulate reinforcement.
He found that the elastic modulus of the composite is isotropic and depends only on
the volume ratio of the reinforcement, while the strength and ductility are mainly
influenced by the matrix alloy and temper condition. The mechanical properties of
the composites are better than those of the unreinforced metal. Results on the
mechanical behavior of discontinuous SiC/Al composites have also been published
by Divecha et al. [4]. The effect of strengthening of 6061 aluminum alloy by SiC
short fibers and platelets was studied by Arsenault [5]. He found that the strength
of the fiber composite is greater than that of the platelet composite and that the
strengths of both composites are higher than those predicted by continuum
mechanics theories. This is attributed to the high dislocation density of the matrix
resulting from the difference between the thermal expansion coefficients of silicon
carbide and aluminum. Tsangarakis et al. [6] investigated the mechanical properties
of several particulate and continuous fiber silicon carbide/aluminum composites and
gave results for the tensile strength, fracture toughness and fatigue crack growth
rate.

In many metal matrix composites a high thermal expansion mismatch
between the matrix and the fiber exists resulting in high thermal stresses. High
residual thermal stresses are developed in the matrix during cooling from
consolidation temperatures which may result in premature yielding even before
application of external loading. The study of the thermal expansion behavior and
the resulting thermal stresses is an important task in the characerization of the
composite.

A number of studies have been devoted to the problem of thermal expansion



behavior of MMC's. Levin [7] derived the macroscopic coefficients of thermal
expansion (CTE's) of an elastic two-phase composite with perfectly bonded
isotropic phases from the thermoelastic constants of the phases and the macroscopic
elastic moduli of the composite. Bounds on the CTE's of fiber reinforced
composites were given using bounds for the macroscopic elastic moduli of the
composite. Expressions for CTE's of fiber reinforced composites with a doubly
periodic array of circular hollow or solid fibers were derived by Van Fo Fy [8,9]
who performed a thorough stress analysis. Schapery [10] calculated upper and
lower bounds of multiphase media by employing extremum principles of
thermoelasticity. Levin's results were extended to two-phase composites with
anisotropic constituents by Rosen and Hashin [11]. They also gave bounds for the
CTE's of anisotropic composites with any number of anisotropic phases. Dvorak
and Chen [12] presented exact expressions for the CTE's of a composite consisting
of three cylindrical perfectly bonded phases having transverse isotropy and arbitrary
transverse geometry.

The above works were concerned with the micromechanical prediction of
the linear thermal expansion behavior of composites. However, when the
composite is subjected to temperatures above a critical value, plastic stresses are
developed in the matrix and the strain versus temperature curve of the composite
becomes nonlinear. A relatively limited number of investigations has dealt with the
problem of nonlinear thermal expansion behavior of composites. Hoffman [13]
studied the elastic and elastoplastic stresses in tungsten fiber reinforced 80 Ni + 20
Cr matrix composites subjected to heating or cooling in the range of 27 to 1090° C
(80 to 2000° F). Dvorak et al. [14] determined the initial yield surfaces of
boron/aluminum composites for mechanical and thermal loading using a finite
element analysis of a regular hexagonal array model. They found that small

temperature changes in the range of 10 to 38° C (50 to 100° F) can introduce plastic




strains in composites with a matrix tensile yield stress of the order of 10 ksi. These
plastic strains were proportional to the yield stress. Flom and Arsenault [1]
determined experimentally the plastic strains and the elastic-plastic boundaries
produced in the aluminum matrix around a short SiC cylinder during a thermal cycle
and developed a theoretical model for the prediction of the plastic zone. Kural and
Min [16] presented an elastoplastic theoretical model for the study of plastic
deformation in the matrix material of graphite fiber reinforced MMC's caused by
thermal cyclic loading and residual thermal stresses. Experimental results verified
the elastoplastic stresses predicted by the theory. In another paper Min and
Crossman [17] used the above theoretical model for the study of the
thepnomechanical behavior of Gr/Al composites.

In conclusion, there is an urgent need for adequate characterization of the
mechanical and physical behavior of continuous SiC/A! composites under a variety
of loading and environmental conditions. A review of the literature revealed that
relatively few experimental data on MMC's are available to compare the predictions
of the various analytical models with the actual response observed in the laboratory.
In particular, there appears to be an absence of systematic investigation of the
nonlinear response of unidirectional composites subjected to various loading and
environmental conditions. In addition, results from such characterization tests are
urgently needed as input into finite element structural analysis programs. More
specifically, data are needed for input into and verification of multifactor-dependent
nonlinear constitutive relationships developed at NASA-Lewis Research Center
[18].

The objective of the present work is to conduct a systematic experimental
study of the mechanical and thermal properties of SCS-2 continuous fiber
reinforced 6061 aluminum composite and its constituents at temperatures up to

399° C (750° F). Theoretical predictions are made by several elastoplastic




micromechanical models based on a one-dimensional rule-of-mixtures model, an
axisymmetric composite cylinder model, a successive approximation scheme with
the Prandl-Reuss plastic flow model, and an average field theory. The experimental
results are used in conjunction with a least squares analysis to determine the
unknown exponents of multifactor-dependent nonlinear constitutive relationships
developed at NASA-Lewis Research Center [18] for the composite and its

constituents.




2. GENERAL BACKGROUND
2.1 Metal Matrix Composites

As with all composite materials, metal matrix composites have a continuous
matrix phase within which is embedded a second phase that can be particulates,
whiskers, chopped or discontinuous fibers, or continuous fibers. As the name
implies, metal matrix composites have this second phase embedded in a metallic
matrix. In many structural applications the fiber properties are the most important
and the matrix may be chosen based on cost and minimum weight. There are,
however, a significant number of applications in aircraft and spacecraft design
where the matrix must possess particular properties if the composite is to perform
as desired. In addition to the desired high stiffness to weight ratio, for space
structures applications, for example, it is often necessary to have dimensional
stability which requires a coefficient of thermal expansion approaching zero. In a
significant number of cases the material is subjected to high temperatures, where
epoxy composites are quite unusable, so that either metal or, in the extreme
temperatures, ceramic matrix composites must be considered.

There is a large variety of metals available for use as the matrix. The one
chosen depends on the particular application, the use temperature, the environment,
and more importantly, the interaction of the fiber and the matrix. Interaction refers
to the wetting of the fiber by the matrix and the potential for a detrimental reaction
between the fiber and the matrix [19]. The fiber and the matrix may react
chemically, especially at elevated temperatures, degrading the ability of the fiber to
performe its function. This may also result in reaction products that further degrade
the performance of the composite. Some of the most commonly used matrix
materials include nickel superalloys, titanium alloys, aluminum alloys, magnesium,
copper and steels. Fibers used are generally grouped into five classes: refractory

metal wires, oxides, boron, silicon carbide and carbon/graphite. Typically, fibers




have high modulus, high strength and low weight, so that the stiffness and strength
of the composite are mainly due to the fiber. A more detailed discussion on
available matrices and fiber reinforcements can be found in the literature
[19,20,21,22].

A number of metallurgical processes have been used for the fabrication of
filament reinforced metal matrix composites. The techniques vary from those
employing conventional powder metallurgy and slip casting methods to techniques
such as diffusion bonding and plasma-spray bonding. However, with the method

used great care must be exercised to:

1. Preserve the fiber strength during all stages of the fabrication process.
2. Minimize fiber breakage.
3. Promote wetting and bonding between the matrix and fiber.

The choice of fabrication method used depends primarily on the mechanical
and chemical properties of the fiber and matrix, the fiber length and size, the fiber
packing, and the desired fiber configuration. Furthermore, it is necessary to know
the thermodynamics and kinetics of possible fiber matrix reactions, as well as the
fabrication and service temperatures to which the composites are subjected. A
detailed description of the various existing fabrication methods can be found in
references [19,20,21,22,23,24].

Compared to metals, metal matrix composites have the potential of: (1)
Higher specific mechanical properties like modulus/density and strength/density
ratios, (2) improved fatigue life, and (3) higher use temperature because of the
stable metallic phase. When compared to epoxy matrix composites, they have the
following potential benefits: (1) Good electrical and thermal conductivity, (2) no out-
gassing in a vacuum, (3) metallic joining concepts may be more directly usable, (4)
higher temperature utilization, (5) no moisture absorption, and (6) less degradation

of properties. In summary, it is clear that there is a definite potential for metal




matrix composites in the future. However, considerable work remains to be done

before widespread use of these materials becomes possible.

2.2 Basic Mechanics of Unidirectional Composite

The response of unidirectionally reinforced composites in various loading
environments is usually predicted by the rule of mixtures. It is the approach
generally employed to determine whether a metal matrix composite has interesting
properties initially, and as a measure of optimizing fabrication parameters or
bonding conditions [25]. By assuming an isostrain criterion, i.e., both fiber and
matrix are strained equally and uniformly, the modulus, stiffness and Poisson's
ratio of the composite can be obtained. The major assumptions of this theory are:
(1) elastic (or plastic) isotropy, (2) the displacements are continuous across the
fiber/matrix interface (no interfacial slip), (3) no chemical reaction between
constituents and (4) absence of residual stresses. Experimental data have shown
[25] that only the longitudinal modulus and major Poisson's ratio can be reliably

predicted by the rule of mixtures which takes the following form:

Ei = Ef Vi+Ep, (1-Vp (2.1)
and

Viz2= V¢ Ve+ vy, (1-Vp (2.2)
where

E; = Longitudinal Young's modulus of composite (in the fiber direction)

Ef = Young's modulus of fiber

Em = Young's modulus of matrix

Vi2= Major Poisson's ratio of the composite

vr = Poisson's ratio of fiber

10




Vi Poisson's ratio of matrix

V¢ = Fiber volume ratio

Experimental data fit these approximations well, but Hill [26] showed,
theoretically, that these predictions were really the lower bounds of the moduli and
applicable when the Poisson's ratios of the constituents were equal. The modulus

prediction can be extended to the region where the matrix has yielded by

substituting do,/de,, and v for E, and vy, in equations (2.1) and (2.2).

do
E; = Vv —mi(1 -V
1 = E¢ f+(d€m)( f)

vi2 = veVe+ v (1-Vy) 2.4)

(2.3)

where (do/dey,) is the slope of the matrix stress-strain curve at the equivalent
strain of the composite, and v is Poisson's ratio of the matrix at the same strain,
varying from the elastic value to 0.5 for an ideally plastic material.

For perfectly bonded fibers and for the case when the ultimate tensile strain
of the fiber is lower than that of the matrix, the longitudinal tensile strength of the
composite is approximated by the relation [27]:

Flt = Fgp Ve + Cfn,1 Vm (2.5)
where

Fit

Longitudinal composite tensile strength

1

Fg Longitudinal fiber tensile strength

On = Average longitudinal matrix stress when the ultimate fiber strain is
reached
Although this simple strength prediction correlates well with experimental

data, Lynch [28] emphasizes that there is no reason to expect it to be highly

accurate. Fabrication problems would be expected to decrease composite strength.
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In the case of transverse normal loading, there are so simple predictions for
the modulus and strength of a unidirectional composite. The mechanics of materials
approach predicts the following transverse modulus:

Eo¢ E;n
V¢E, + Vi Eaf (2.6)

E;, =
where

I;_:zf = transverse fiber modulus
En= En/(1-Vd)
Vm = matrix Poisson's ratio

Emn = matrix modulus

The self-consistent field model and the variational bounding method yield
complex expressions for transverse modulus in terms of other properties, such as
bulk modulus and transverse shear modulus [29,30].

The Halpin-Tsai semi-empirical relationship is a practical one, once the right

choice is made for the parameter & [31]:

E, = 1+& M Ve
™ 1-m Vi 2.7
where
n = —E2t-Em

Ex¢+&1 En
and &1 = reinforcing efficiency factor for transverse loading. The prediction above
tends to agree with experimental results for values of &; between 1 and 2. If a

reliable experimental value of E; is available for a composite, then the value of €1
can be obtained by using Eq. (2.7) and can then be used to predict E, for a wide

range of fiber volume ratios of the same composite.
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Prediction of transverse tensile strength, which is a matrix-dominated
property, is more difficult because this type of loading results in high stress and
strain concentrations in the matrix and interface/interphase. Reliable predictions are
based on elastoplastic finite element analysis and average field theory.

For in-plane shear loading the mechanics of materials approach uses a series

model under uniform stress and yields the following relation for the composite

shear modulus
1 -V Vi
Gi2 Grr Gn (2.8)
or
G126 G |
Gip = m
127 ViGp+ Vi Giat (2.9)

where G 1, and G, are the shear moduli of the fiber and matrix, respectively. As
in the case of transverse modulus, this approach tends to underestimate the in-plane
shear modulus.

The Halpin-Tsai semi-empirical relation in this case is

1+&my Ve
Gy = Gy ————
2= T e Vi - (2.10)
where
N = G2t - Gm
G2+ &2 Gm

and &; = reinforcing efficiency factor for in-plane shear

Best agreement with experimental results has been found for §2 = 1. For

&, =1, the relation (2.10) becomes

(Gi2r + Gm) + V¢ (G2t - Gm)
(G2t + Gm) - Ve(Gi2f - Gm) (2.11)

Gi2 = Gy

This expression is identical to that derived by the self-consistent field model

13



and to the lower bound of the variational approach.
Prediction of in-plane shear strength, being a matrix dominated property,

would require elastoplastic analysis as in the case of transverse strength.

2.3 Thermal Properties

Many different analyses exist for predicting the coefficients of thermal
expansion (CTE) for unidirectional composites. A brief description of some of the
more widely used current analyses will be given here. The basic assumptions that
are common to all of the analyses to be presented are: (1) the fibers are circular in
cross-section and infinitely long, (2) the displacements are continuous across the
fiber/matrix interface, and (3) the temperature is uniform and the constituent
material properties do not vary with tefnperature.

Approximate micromechanical relations for the coefficients of thermal
expansion were given by Schapery for isotropic constituents [10]. The longitudinal

coefficient for a continuous fiber composite is given by the relation:

o = Efafvf+ Em Om Vi = (Ea)l
where
Ef, Ey, = fiber and matrix moduli, respectively
o, Oy = fiber and matrix coefficients of thermal expansion, respectively

V¢, Vin = fiber and matrix volume ratios, respectively

(Ea)y = Efog Vi+Ep 0y Vi

This relation is similar to the rule of mixtures for longitudinal modulus and
gives fairly accurate results. It is identical to that obtained by the self consistent
scheme.

The relation for the transverse coefficient of thermal expansion based on

energy principles is [10]:
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oy = of Vel + Vg + 0l Vin (1 + Vi) - V12 0 (2.13)

where

Ve, Vm = Poisson's ratios of fiber and matrix, respectively

Vi2 = V¢ Vi+ vy, Vi = major Poisson's ratio of composite lamina
as obtained by the rule of mixtures

o = longitudinal CTE of lamina as obtained by eq. (2.12)
In many cases, the fibers are orthotropic, i.e., they have different properties
in the axial and transverse directions. Properties for composites with orthotropic

constituents were obtained by Hashin [32]. The relation for the transverse CTE is

o o
0l = Olgf Vf(l + V12f—") + Oom Vm (1 +Vi2m ﬂ)
Olaf Oam

_ (Eot)y
(Vi2e Ve + Viam Vi) E, (2.14)

where

o5, Olo¢ = axial and transverse CTE's of fiber, respectively

O1m, ®2m = axial and trasnverse CTE's of matrix, respectively

Vi2f, Vi2m = axial Poisson's ratios of fiber and matrix, respectively

(Ea)y = Eyr 0y Vi+ Eim O Vi (2.15)

E| = E]f Vf+E1m Vm (2.16)
In most cases the matrix can be considered isotropic and the orientation designation
of the matrix properties in egs. (2.14) through (2.16) can be dropped.

Chamberlain used a plane stress thick walled cylinder solution to derive
expressions for o and o, for the case of transversely isotropic fibers in an
isotropic matrix. A discussion of this analysis and comparisons with experimental

data were given by Rogers [33]. The derived expression for o is identical to

equation (2.12). The expression for o, takes the form

15



2 (0o - Oly) Ve

V(B -1 +vm)+(F+vf)+(§lmf)(1 viz) (F- 1+ V)

Oy = Ol +

2.17)

where F is a packing factor which accounts for fiber packing geometry, and is equal

to 0.9069 and 0.7854 for hexagonal and square packing geometries, respectively.
Chamis [34] used a simple force-balance, or strength of materials approach

to derive expressions for the thermal properties of unidirectional composites with

transversely isotropic fibers. The derived expression for o is again identical to

equation (2.12). The expression for o is

- ) VfVmElf)
0 = Ops Y V5 +(1 va)(1+ B Olm (2.18)

where E; is the longitudinal elastic modulus of the composite and is given by the
simple rule-of-mixtures formula (2.1).

Several investigators [35-37] have used finite element analyses to study the
stress fields in unidirectional composites on a micromechanics level. A special
finite element code was developed by Bowels [38] to determine the thermal and

mechanical response of unidirectional composites.
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3. NONLINEAR CONSTITUTIVE EQUATIONS FOR

MODELING THE THERMOMECHANICAL BEHAVIOR OF

METAL MATRIX COMPOSITES
3.1 Introduction

A set of thermoviscoplastic nonlinear constitutive relationships (TVP-NCR)
have been developed by Chamis and Hopkins [17] mainly for application to high-
temperature metal matrix composites. These equations consist of products of terms
with unknown exponents determined from experimental data. Each term expresses
the dependence of mechanical and therrﬁal properties of the constituent materials
and the composite itself on such quantities as, temperature, stress and time. A
micromechanical model for high temperature metal matrix composites has also been
developed by Hopkins and Chamis [39]. The model is based on a mechanics of
materials analysis of a single square array unit cell consisting of a single fiber,
surrounding interface and matrix. Based on the model, equations were extablished
to predict mechanical properties, thermal properties, and constituent microstresses
for the unidirectional fiber reinforced ply. The micromechanical equations were
combined with the TVP-NCR equation [17] to develop a computer program
(METCAN) for the analysis of fiber reinforced metal matrix composites. The
computational capability of the program is schematically shown in Fig. 3.1. The
program is integrated with finite element computer programs to determine the

response of complex high-tempera;ture metal matrix structural composites.

3.2 Equation Form and Features

The proposed [17] thermoviscoplastic nonlinear constituent relationships
(TVP-NCR) for the constituents as well as the composite itself, can be expressed in
a generic form applicable to all properties, mechanical and thermal. They relate the
dependence of material properties on such quantities as temperature, stress and

strain. These relationships are expressed in terms of dimensionless products as
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where
P = Property
T = Temperature
F = Strength Parameter
R = Reaction
N = Number of Cycles to Failure
n = Current Number of Cycles
t = Time

The subscripts signify the following:

u = Ultimate or Final Value

o = Reference State

M = Mechanical

T = Thermal

Symbols without subscripts "u" or "o" denote current values of the
variables. Letters with a dot above them designate differentiation with respect to
time. The exponents n, m, 1, k, p, q, 1, s are empirical parameters which can be
determined from available experimental data.

Each term on the right hand side of the equation above describes a
monotonic functional variation of P/P,, from some initial property value to a final or
ultimate state. For instance, the first term represents the temperature dependence,
where T, could be room temperature, T\, the melting temperature of the matrix and

T the current temperature. In a similar fashion, the second term represents the

stress dependence and the third the stress rate dependence. Equation (3.1)
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describes the material behavior in the temperature-stress-stress rate-temperature rate-
reaction-mechanical and thermal fatigue-time space. The specific shape of the

dependence of P/P, on each term is dictated by the value of the exponent and the
reference and final values of the respective quantity in the term. It is seen that P=P,

when the variable on the right hand side of the above equation becomes equal to its
reference value. In addition, P=0 when the variable in the term becomes equal to its
final value. When the reference value of each variable is well defined and

corresponds to the conditions under which the value P, is measured, the only

condition that is known for the final value is that at that value the corresponding
quantity P becomes zero if the exponent is positive. On the other hand, P becomes
infinite when the exponent is negative.

The final value of the variable may or may not have a physical meaning,
depending on the property under consideration. If it does have a physical meaning,
then the final value is well known. Otherwise, the final value should be determined
from the available experimental data. For instance, let us consider the temperature
dependence of the mechanical properties of a metal alloy. It is known that the
mechanical properties of the alloy are zero at its melting temperature (T,,,) and
therefore T,=Ty, in equation (3.1). Similarly, when the stress dependence of the
tangent modulus of the metal is considered, the quantity F in equation (3.1) can be
taken as the ultimate stress since at that point the tangent modulus becomes zero.
However, when the secant modulus is considered the ultimate stress cannot be used
for quantity F since at that stress the secant modulus does not become zero. In this
case F does not have a physical meaning and its value must be determined by fitting
eugation (3.1) to the experimental data.

As was mentioned before, the specific form of the function depends on the
exponent. By selecting various values of an exponent and by selecting the initial

and terminal values, a variety of functional dependencies can be simulated using
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equation (3.1). In order to obtain the form of dependence of P/P, on the value of a
variable, for instance temperature (T), the variation of P/P, with T/T, for T,=0° F
and various values of the exponent n is shown in Fig. 3.2. It is observed that for
positive values of n, P/P, varies between one and zero when T/T, varies in the
interval (0,1). For n<1 the curve is convex, while for n>1 it is concave with

respect to the horizontal axis. For negative values of n, P/P, is always greater than

one and tends to infinity as T/T,, tends to one.

As was previously discussed the form of the TVP-NCR expressed by
equation (3.1) implies that the value of a quantity at the ultimate value of the
variable is equal to zero or infinity depending on whether the corresponding
exponent is positive or negative. While this condition applies to a number of
mechanical or thermal properties, there are others which do not become zero or
infinite at the ultimate value of the variable. Consider, for example, the variation of
Poisson's ratio of a metalic material with stress. Its value is constant up to the yield
stress of the material and it increases with stress up to the limiting value of 0.5 at
the ultimate stress. Similarly, the secant modulus of é material does not become
zero at the ultimate stress.
| In order to use the TVP-NCR for material properties which do not satisfy
the end condition at the ultimate value of a variable, equation (3.1) should be
modified accordingly. The modified TVP-NCR which incorporates all material

properties can be put in the following form

éE={Tu-T}“[Fu-0}'“ Fy-G,/' Tu-"r}“
AP, IT,-T,) [Fu-%ol |F,-6]|T,-T,
(3.2)
[Ru-Rr{NM-nM qltNT'nT ‘[tu'js
Ru'RO NM_nMO NT-nTO ty-t

where
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Figure 3.2  Variation of Normalized Material Property P/P, versus Normalized
Variable T/T, for Different Values of the Exponent n of the
Nonlinear Constitutive Relationships.
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AP=P-P,

The features of the TVP-NCR can be summarized into three groups: (1)

physical, (2) fundamental, and (3) computational, as follows [17]:

(1)  Physical - The constitutive relationships describe dependence on
temperature, time, stress, stress rate, and complete property degradation as
the ultimate value is approached.

(2)  Fundamental - The constitutive relationships are:
¢ generic - they are applicable to all constituent material properties.

* evolutionary - they are easily extended to include additional dependence.

* isomorphic - they have the same form for all the properties.

¢ unified - they are fully coupled from the initial to the terminal material
state.

* universal - they are fully applicable to any three constituents (fiber,
matrix, interface).

* nondimensional - they are normalizable with respect to reference and
ultimate values.

3) Computational - the constitutive relationships are:

* computationally efficient - they only require simple substitution and
exponentiation.
* easily integrated into nonlinear composite mechanical and structural

analysis codes.
3.3 METCAN - The Metal Matrix Composite Analyzer [18]

Predicting the mechanical and thermal behavior and the structural response

of components fabricated from MMC requires the use of a variety of mathematical
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models. An extensive research in computational mechanics methods for predicting
the nonlinear behavior of MMC's has been undertaken at NASA-Lewis Research
Center. This research has led to the development of the METCAN (Metal Matrix
Composite Analyzer) computer code.

The integrated approach implemented in the METCAN computer code is
illustrated in Fig. 3.1. The cyclic arrangement defines the computational effort for
each load increment. Material nonlinearity is treated at the constituent (fiber,
matrix, interface) level, where the current material model describes a
time-temperature-stress dependence of a constituent's mechanical and thermal
properties at any instant in its "material history space.” Characteristic properties of
the composite, at the various levels of simulation, are approximated from the
instantaneous constituent properties by composite mechanics. These properties
then could be used, for example, to specify elemental properties for a subsequent
global structural analysis by finite element analysis. In the "decomposition”
process, global response variables are decomposed into localized response, again at
the various levels of simulation.

Some of the basic features of METCAN with its flow chart shown in Fig.
3.3 are:

i Linear Analysis - Thermal/Mechanical Room/High Temperature Properties.

° Nonlinear Analysis - Thermal/Mechanical Monotonic Load Histories.

* Microstresses - Due to Thermal/Mechanical Loads.

o Ply Stress/Strain Influence Coefficients.

i Ply Thermo-Visco-Plastic Response.

N Stress/Strain Behavior Data for Uniaxial Loading.

° Residual Stresses Due to Processing/Curing Conditions.

* Stress Concentration Factors around a Circular Hole in an Infinite Plate.
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4. THERMOMECHANICAL CHARACTERIZATION OF
CONSTITUENT MATERIALS

4.1 Introduction

The behavior of the composite is intimately related to the properties of the
constituents, therefore, it is important to determine these properties under a variety
of loading and environmental conditions. Micromechanical analyses used for
prediction of composite properties rely on the properties of the constituents and
their interaction. In the present case it is desired to characterize as fully as possible
the stress-strain and thermal deformation behavior of the silicon carbide fiber (SCS-

2) and the aluminum matrix at various temperatures.

4.2 Characterization of SiC Fiber

The silicon carbide fiber (SCS-2) studied is produced by chemical vapor
deposition (CVD) and is used as the reinforcement in metal matrix composites.
Specifically, these fibers are used in titanium and aluminum metal matrix
composites because of their high-modulus, high strength, thermal stability, and
compatibility with the matrix materials. These fibe’rs have high strength and
modulus, but show some deterioration in tensile strength at temperatures above
800° C [40]. There are two commercial processes for making continuous silicon
carbide fibers: one is by vapor deposition over a tungsten or carbon core that
produces a large diameter fiber (100 - 150 pm), and the other is by melting and
spinning an organic polymer containing silicon atoms as a precursor fiber followed
by heating at an elevated temperature that produces a smaller diameter fiber (10-30
1m).

The SiC fiber used in this study is a continuous filament produced by
Textron in a tubular glass by CVD as shown in Fig. 4.1. The process occurs in
two steps on a carbon monofilament substrate which is resistively heated. During

the first step, pyrolytic graphite (PG) approximately 1 pum thick is deposited to
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smooth the substrate and enhance electrical conductivity. In the second step, the
PG coated substrate is exposed to form beta silicon carbide (BSiC) continuously on
the substrate. The resulting filament, like most high-strength high-modulus
reinforcements, is brittle and exhibits a distribution of strengths. The filament is
extremely sensitive to surface defects and abrasion. To overcome this problem, the
filament manufacturers have developed a protective carbon silicon coating called
SCS, which is also applied by CVD. The coating consists mostly of carbon and is
slightly enriched in silicon at the surface. The presence of the SCS surface layer
causes a twofold increase in filament strength, presumably by reducing the severity
of stress concentration at the filament surface. The fibers produced by CVD can be
categorized into three types depending on the surface composition [41]. SCS-2
fiber has a 1 um (39 pin.) carbon rich coating, which increases in silicon content as
the outer surface is approached. This fiber has been used extensively to reinforce
aluminum. SCS-6 fiber has a 3 um (118 pin.) carbon rich coating in which the
silicone content exhibits maxima at the outer surface and at 1.5 pm (59 pin.) from
the outer surface. The SCS-6 fiber is primarily used to reinforce Titanium. SCS-8
fiber was developed to give better mechanical properties than SCS-2 in aluminum
composite transverse to the fiber direction. It consists of 6 um (236 pin.) of very
fine grained SiC, a carbon rich region of about 0.5 pim (20 pin.), and a less carbon
rich region of 0.5 tm (20 pin.). Figure 4.2 is a photomicrograph and a schematic
representation of a fiber cross section showing the interior of the fiber and the
carbon monofilament substrate.

Several methods exist for measuring the elastic modulus of a fiber, three of
which are briefly reviewed here. They are the sonic modulus method, direct strain
measurement test, and the standard ASTM test [42].

The sonic test is based on measurement of the time it takes for a sonic pulse

to travel a given distance in the fiber. The modulus is given by
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Ef-'_— prZ ’ (4.1)

where,

Ef = modulus of fiber

P, = density of fiber

¢ = sonic velocity

In the direct strain measurement test, the fiber strain under loading is
measured directly with a noncontact extensometer, usually one based on a laser

system. The fiber modulus is then obtained directly as

4.2)

where o¢and & are the stress and strain in the fiber, respectively.

The method used in this study was the standard ASTM method described in
ASTM specification D3379-75 [42,43]. Silicon carbide SCS-2 fibers were
obtained from the composite manufacturer, Textron Specialty Materials Inc. They
were tested in tension under constant strain rate to determine strength, elastic
modulus and failure strain. The method is limited to fibers with an elastic modulus
greater than 21 GPa (3 x 106 psi). The filament is centerline mounted on paper with
slotted tabs (Figure 4.3) and axial alignment is accomplished without damaging the
filament. After the specimen is mounted in the test machine the paper tab is cut to
allow for filament elongation. Originally, the specimens were tested in an Instron
servohydraulic machine using a 25 1b. load cell and specially made grips.
Subsequent tests were conducted on a small frame designed for low load testing.
The test system consists of a reaction frame, a 50 Ib. load cell (Hottinger Baldwin
Measurements), LVDT (Trans-Tek, Inc.), grips and a pneumatic cylinder. The
specimen with the grips was mounted in this loading frame with one set of grips
connected to the moving piston of the pneumatic cylinder and the other set

connected to the other end of the reaction frame through the load cell.

30




Adhesive SCS-2 Fiber mgﬁ;gnc;clﬁf t;rxi-ps Paper

NN |
N

N

w=2.54cm (lin.)

-t -
L[7.6,12.7,17.8cm (3,5, 7 in.)]

d[12.7,17.8,229cm (5,7, 9 in.)]

Figure 4.3 SCS-2 Fiber Center Mounted on Paper with Sloted Tabs.
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Twelve specimens of gage lengths of 1, 1.5, 1.75, 2, and 2.25 in. were
tested. They were loaded to failure and load-displacement curves were obtained
and recorded digitally and stored on the computer. The cross-sectional area of the
fiber, A, was determined from measurements of a representative number of fiber
cross sections in highly magnified photomicrographs. The average cross sectional

area was determined as follows:

A = 2
NM? (4.3)
A = average fiber cross sectional area
ar = area of one fiber cross section in photomicrograph
N = number of fibers measured
M = photomicrograph magnification factor

The measurements showed that the SCS-2 fiber has a uniform diameter of 140 pum
(0.0055 in.) with a carbon core diameter of 34 pum (0.00134 in.). The elastic
modulus of the filament cannot be determined from the slope alone of the load-
displacement curve since the system compliance must be taken into consideration.
The system compliance is the portion that indicates elongation contributed by the
loading train and the specimen gripping system. It must be determined
experimentally for a given combination of test machine conditions, grip system and
specimen mounting and subtracted from the indicated elongation to yield true
specimen elongation in the gage length. An apparent compliance, C,, can be
determined from the initial straight line portion of the load-displacement curve.
C, = Jlg— (4.4)
where P and u are the load and cross-head displacement, respectively, associated

with the slope of the straight line portion of the load-displacement curve. The term

apparent compliance is used because cross-head travel, due to system compliance,
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is not a true measure of filament displacement. This difficulty is overcome by

assuming that the system compliance is constant. Thus

C, ==Y, ¢ =L 1c (4.5)

P P AEs

where ur and E¢ are the actual fiber displacement and modulus, respectively. By
determining values of C, for different gage length specimens, the true value of E¢
can be determined from equation (4.5). In particular, E¢ can be determined from the
slope of the best-fit straight line plot of measured values of C, as a function of gage
length (Fig. 4.4). The intercept of this straight line with the compliance axis

represents the system compliance, Cs, from which uy is determined as

us = CP (4.6)

The elastic modulus of the filament is determined from eq. (4.5) as

E = L 4.7
A(C,-Cy)

The fiber strain at failure, €, is simply
g = Umax - Us : (4.8)
L

and the tensile strength is

B, = Pmax (4.9)

A

From the load-deflection curves it is seen that the fiber behaves linearly up
to failure. The mean value of the modulus was found to be 400 GPa (58 Msi). The
tensile strength showed large scatter with a range of 3,460 - 5,310 MPa (502 - 770
ksi). A size effect trend is seen in Fig. 4.5 where the tensile strength appears to
decrease with increasing gage length. The mean value of the strengths measure was
4,000 MPa (580 ksi) with a variance of 15%. An approximate modulus was

calculated by using the rule of mixtures. The modulus of the carbon core and SiC
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sheath in the fiber are 41.4 GPa (6 Msi) and 414 GPa (60 Msi), respectively. The
volume fraction represented by the carbon core is 5.9%. The calculated modulus of

SCS-2 fiber was obtained as

Er = V. Ec + Vi Eg (4.10)
where

V. = volume fraction of carbon core

Vs = volume fraction of SiC sheath

E. = elastic modulus of carbon core

E; = elastic modulus of SiC sheath

The modulus obtained from the above equation is 392 GPa (57 Msi).

The manufacturer's values for the elastic modulus and fracture strength of
the fiber are given as 4,000 MPa (580 ksi) and 407 GPa (60 Msi), respectively.
Similar results are found in the literature. Nunes [44] in his study of the tensile
properties of several spools of silicon carbide filaments (SCS-2) gives an
experimentally measured modulus of 386.2 £ 9.66 GPa (56.0 + 1.4 Msi) for each
of the spools tested and a failure stress range of 2,993 MPa (434 ksi) to 3,290 MPa
(477 ksi). He also found that examination of the broken filaments from each of the
spools tested revealed a normal tensile failure that originated at the relatively weak
interface of the carbon monofilament substrate. Similar values for ultimate tensile
strength and tensile modulus are given by Skinner et al. [45]. The reported values
for the elastic modulus and strength of SCS-6 fiber of 4,000 GPa (58 Msi) and
3,350 MPa (485 ksi), respectively. They also found that the tensile strength
exhibits a strong size effect. The fracture appears to be flaw density limited, since
increasing the gage length increases the statistical probability of a surface flaw in the
gage length. According to Skinner et al. fracture in SiC fibers can be initiated at
surface flaws, inclusions and defects in the core-sheath interface and occasionally in

the core. In addition, he noticed that the overall failure trend of the SiC fiber
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indicates insensitivity to thermal exposure. This is substantiated by Crane and
Krukonis [46], who have shown that SiC fiber strength remains fairly uniform
below 600° C (1]112° F), above which rapid strength degradation occurred, and by
Nutt and Wawner [40] who showed that the SiC fiber strength remains fairly
uniform below 800° C.

Thermal expansion properties for SiC fibers are scarce in the literature.
Hillmer showed that thermal expansion of SCS fibers is controlled by the SiC
sheath and does not depend on the fiber coating or the carbon core [47]. He also
found that after a relatvely small initial expansion from room temperature to 450° C
(842° F), the expansion of the fiber increases linearly with temperature from 450° C
(842° F) to 1500° C (2732° F). Above 1300° C (2372° F) a hysteresis effect was
observed involving a temporary 50% reduction in expansion. No results were
obtained over the low range between room temperature and 450° C because of
inadequate resolution.

A new method was developed for measuring longitudinal thermal expansion
in the fiber [48]. A fiber specimen of length [ is freely supported at the ends on V-
grooves in a titanium silicate support plate as shown in Fig. 4.6. The fiber is
straight at room temperature, T,. When the temperature increases to T; the fiber
bends because its coefficient of thermal expansion is higher than that of the support
plate. Assuming a parabolic shape for the deformed fiber we obtain the deflection
curve, then we calculate the total length of the fiver at temperature T;, and finally we

calculate the thermal strain as follows:

g = o AT + 85/
312(1 + o, AT) 4.11)
where
o, = coefficient of thermal expansion of support (reference) titanium
silicate material
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AT = T;- T, = temperature change

8; = central deflection of fiber

If a sine function is assumed for the deformed shape of the fiber

y = & sin [—ﬂx—}
(4.12)

11 + o, AT)

the thermal strain is calculated as

_ 2 [n8; ¢ [(2n-1)NP g |
et—’\/(1+a,AT) +( l )(1+ z[ 2% n! ] 2n-1) ! (4.13)

The difference between the strains given by egs. (4.11) and (4.13) is less than 4%.

The coefficient of thermal expansion is obtained by plotting the thermal
strain versus temperature as shown in Fig. 4.7, and taking the slope of this curve.
The coefficient of thermal expansion of the SCS-2 fiber varies with temperature,
starting with a value of 0.9 x 10-6/°C (0.5 x 10-6/°F) at 24° C (75° F) and increasing
nonlinearly to 2.6 x 10-6/°C (1.4 x 10-6/°F) at temperatures between 120° C (250° F)
and 200° C (400° F).

The transverse mechanical and thermal properties of the SCS-2 fiber are not
known and cannot be measured easily, but it is assumed that they are close to the
longitudinal properties despite the presence of the carbon core. More exact values
of transverse properties can be obtained indirectly from transverse properties of the
composite.

Properties of the SCS-2 fiber measured in this program or obtained from the

literature are summarized in Table 4.1
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Table 4.1 Properties of Silicon Carbide SCS-2 Fiber

Young's Modulus, E 400 GPa (58 Msi)
Poisson's Ratio, v 0.22

Ultimate Tensile Strain, e 0.010

Tensile Strength, Fy; 4,000 MPa (580 ksi)

Coefficient of Thermal Expansion, o

At 24°C (75°F) 0.9 x 10-6/°C (0.5 x 10-6/° F)

120 - 200° C (250 - 400° F) 2.6 x 10-6/°C (1.4 x 10-6/° F)

450 - 1500° C (842 -2,732°F) 4.9 x 10-6/°C (2.7 x 10-6/° F)
Density, p 2.72g/cm3 (0.0981 1b/in3)

4.3 Characterization of 6061-T4 Aluminum

The aluminum alloy used in manufacturing the composite studied is 6061
with T6 temper. This aluminum alloy contains silicon and magnesium in
approximately equal proportions to form magnesium silicide, thus, making it
capable of heat treatment. Although this alloy is not stronger than other aluminum
alloys, it possesses good formability and corrosion resistance with intermediate
strength. During consolidation of the composite the aluminum experiences a heat
treatment process which changes its temper. It was suggested by the manufacturer
(Textron) that the aluminum matrix in the composite system has properties close to
those of 6061 with T4 temper. Aluminum of 6061-T4 type was obtained in plate
form for thermomechanical characterization. Later on, it was found that, following

the composite specimen preparation process, the matrix experiences a further heat
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treatment so that its effective in situ properties become closer to those of fully
annealed 6061 Aluminum.

Rectangular specimens of dimensions 20.32 x 1.27 x 0.16 cm. (8.0 x 0.5 x
0.062 in.) were prepared. For testing at elevated temperatures steel tabs were
bonded onto the specimen ends with a high strength-high temperature adhesive (FM-
36). The aluminum specimens were loaded in tension in an Instron testing
machine. The specimens were loaded at a crosshead rate of 0.06 in./min up to
failure. Particular care was taken in aligning the coupons in the grips. Special
grips capable of withstanding temperatures up to 540° C (1000° F) were used. The
specimens were tested inside a thermal chamber set to the desired temperature. A
water-cooling system was used to protect the loadcell from the extensive heat
generated at elevated temperatures. The experimental setup for this testing is shown
schematically in Fig. 4.8. Axial strains were monitored with strain gages and a
special high temperature extensometer (Model 632.11B-45, MTS Corp.). WK
gages (Micro Measurements Group) made of karma alloy and encapsulated in
phenolic resin were used at temperatures up to 550° F. RKO gages (J. P.
Technology) made of karma alloy and encapsulated in polyimide resin were used at
750° F. In some cases axial strains were also double-checked with another water-
cooled high temperature extensometer (2630 series, Instron) with a 1 in. gage
length and capable of operating in the temperature range of 15 - 500° C (59-930° F).
A data acquisition system (Metrabyte Corp.) was used to acquire, process and plot
the data.

Stress-strain curves for 6061-T4 aluminum at various temperatures and at a
strain rate of 0.02% per second are shown in Fig. 4.9. Figure 4.10 shows the
same stress-strain curves zoomed to the 1% strain range. At this relatively low
-strain rate it takes several minutes to fail the gpecimen. It is seen that as the

temperature increases the yield stress or the proportional limit, Gy, decreases. The
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tensile strength also decreases with increasing temperature. The ultimate strain does
not follow a consistent trend with temperature, but in general it decreases with
increasing temperature due to the reduced degree of work hardening.

Figures 4.11and 4.12 show stress-strain curves for 6061-T4 aluminum at
various temperatures obtained at a strain rate of 115% per second. The yield stress
and strength are higher at this higher strain rate. However, no consistent trend in
ultimate strain is observed with increasing strain rate.

Figures 4.13 and 4.14 show the decrease in ultimate strength and yield
stress with temperatuere for both strain rates used. The relative increase in tensile
strength at the higher strain rate is plotted versus temperature in Fig. 4.15. It is
seen that the effect of strain is small at room temperature but increases rapidly at
higher temperatures. This increase begins rather abruptly at a specific temperature
which corresponds roughly to the recrystallization temperature. In addition to
increased strain rate sensitivity, high temperature behavior above the
recrystallization point is characterized by a breakdown of low temperature
strengthening mechanisms as a result of a higher rate of self diffusion. Poor
resistance to creep and an inability of the metal to workharden are invariably
associated with high temperature behavior. Tensile properties at low strain rate
deteriorate considerably because of the transition to high temperature behavior. At
high rates of strain, under high temperature conditions, higher strength properties
are maintained, probably because plastic flow occurs more rapidly than diffusion.
Therefore, structural metals can be used safely at high temperatures under
conditions of rapid loading. The initial tengential modulus remains constant but the
secant modulus decreases at low rates and high temperatures. This decrease is due
to a small amount of plastic deformation and creep that occur during the initial phase
of the tensile test as the specimen is loaded slowly through the elastic region. This

plastic deformation decreases the slope of the stress-strain curve causing a decrease
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in modulus. Since creep is time dependent, the modulus determined at a high strain
rate is representative of true elasticity. In the case of low temperature behavior,
modulus values are unaffected because creep is negligible.

At 750° F, both at low and high strain rates, super plastic elongation is
observed. The superplasticity of aluminum 6061 is triggered at a certain strain rate
and temperature. Superplastic behavior occurs above these threshold levels. The
superplastic elongation is believed to result from grain boundary sliding. The strain
of superplastic elongation is reported to be several hundred percent.

In addition to mechanical properties, physical properties such as density and
coefficient of thermal expansion were measured. The density of the matrix
material, measured by the method described in ASTM D792-66 specification, was
2.72 g/cm3 (0.0981 1b/in.3).

The coefficient of thermal expansion, o, was obtained by measuring
thermal strain as a function of temperature. Aluminum specimens were
instrumented with EA-00 or WK-00 gages for thermal cycling up to 340° F or
500° F, respectively. At least three thermocouples per specimen were used to
monitor the temperature. Strain gages have been shown to be a practical and
adequate means of measuring thermal strain [49, 50]. However, they must be
properly compensated for the purely thermal output. One method of temperature
compensation employs an identical gage bonded to a reference material of known
thermal expansion exposed to the same temperature as the test specimen.

The true thermal strain in the material is given by

Etc = Eac - Ear + Exr (4.14)
where

&c = true thermal strain in test specimen

apparent strain in test specimen

Eac

&r = 04 AT = true thermal strain in reference specimen
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€y = apparent strain in reference specimen.
Reference materials used are usually ceramics of low and stable coefficient of
thermal expansion. In this case titanium silicate, having a coefficient of thermal
expansion of o, = 0.03 x 10-6/° C, was used. The thermal strain is plotted versus
temperature and is shown in Figure 4.16. The thermal expansion coefficient oty is
obtained from the slope of the thermal strain versus temperature curve. The thermal
deformation of 6061-T4 aluminum was also determined by using a 10 mm (0.39
in.) long and 3 mm (0.12 in.) diameter cylindrical specimen with a dilatometer.
The thermal strain curve up to 482° C (900° F) is shown in Figure 4.17. The
thermal strain curves of aluminum are linear up to 120° C (250° F). Above this
temperature the strain-temperature curves become nonlinear and the coefficient of
thermal expansion increases.

Thermomechanical properties of both SCS-2 fiber and 6061-T4 aluminum

are summarized in Table 4.2.

4.4 Creep Properties of 6061-T4 Aluminum -

Creep behavior is a very important characteristic of high temperature
composites. The important issue in creep behavior of composites is the
determination of the mechanism by which the creep hehavior is introduced by the
creeping matrix and the less creeping fibers. The general definition of creep is time
dependent strain caused by a constant applied load at constant temperature. Usually
creep is undesirable and a limiting factor in the life of parts such as blades on the
spinning rotors of turbine engines. Creep can occur at any temperature, but the
behavior can be different for different temperature ranges. There is low temperature
creep behavior and high temperature creep behavior. The boundary between these
temperature ranges depends on the homologous temperature of the material. For

our matrix material the homologous temperature is approximately 188° C (370° F).
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Table 4.2. Properties of Constituent Materials

6061-T4 Aluminum

Property SCS-2 24°C 121°C 177°C 288°C 399°C
Fiber (75°F) (250°F) (350°F) (550°F) (750°F)
Density, p, g/ cm3 (1b/in.3) 3.05 (0.110) 2.72 (0.098) 2.72 (0.098) 2.72 (0.098) 2.72 (0.098) 2.72 (0.098)

Coefficient of Thermal Expansion,

9s

o, 10-6/°C (10-6/°F) 09-49 23.2(129) 23.4(13.0)0 243 (13.5) 25.4(14.1) 2838 (16.0)
(0.5-2.7)
Young's Modulus, E,
GPa (Msi) 400 (58) 69 (10) 69 (10) 69 (10) 69 (10) 69 (10)
Poisson's Ratio, v 0.22 0.33 0.33 0.33 0.33 0.33
Yield Stress, oy, MPa (ksi) - 148 (21.5) 137 (19.8) 117 (17.0) 53(1.7) 14.5 (2.1)
Tensile Strength, F,, MPa (ksi) 4000 (580) 278 (40.3) 244 (35.4) 216 (31.3) 167 (24.2) 42 (6.1)

Ultimate Tensile Strain, €, % 1.0 25 ~20 ~20 5-8 >20




Creep is not only affected by temperature but also by stress level. Once loaded, the
material initially deforms at a very rapid rate. If the applied load is sufficiently high
an initial plastic deformation also occurs, but significant deformation ceases after
the initial application of the load and an increase in load is needed to cause further
deformation. For low temperatures, this type of behavior can continue indefinitely.
At high temperatures, the region of constantly decreasing strain rate leads to the
condition where the rate of deformation becomes independent of time and strain.
When this occurs, creep is in its second stage. This steady state creep rate depends
significantly on stress and temperature and is used frequently to characterize the
creep resistance of the material. Although considerable deformation can occur
under these steady-state conditions, eventually the strain rate begins to accelerate
with time. Creep behavior can be simply explained by the Bailey-Orowan model.
It views creep as a result of competition between recovery and work-hardening
processes. After the load is applied, fast deformation begins, but it is not
maintained as the material workhardens and becomes increasingly more resistant to
further deformation. At low temperatures recovery cannot occur which leads to
steady state in which the recovery and hardening processes balance one another.
As the temperature increases, recovery becomes easier to activate and overcomes
hardening. Thus, the transition from primary to secondary creep generally occurs
at lower strains as the temperature increases. The third stage of creep cannot be
rationalized in terms of the Bailey-Orowan model. Instead, tertiary creep is the
result of microstructural instabilities. For instance, defects in the microstructure,
such as cavities, grain boundary separation and cracks develop. This results in a
local decrease in cross sectional area that corresponds to a slightly higher stress in
the region.

Aluminum specimens were subjected to constant load in the Instron servo-

hydraulic machine operating in the load control mode. Both high temperature strain
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gages and a high temperature extensometer were used to monitor the time-varying
strain. Creep tests were conducted inside the thermal chamber at three
temperatures, 177° C (350° F), 288° C (550° F) and 399° C (750° F). Figure 4.18
shows creep curves for 6061-T4 aluminum for an applied stress equal to 85% of
the yield stress corresponding to the test temperature. At 177° C (350° F) the
material exhibits the typical low temperature creep behavior. At 288° C (550° F) all
three stages of creep are shown. At 399° C (750° F) high creep deformation is
observed with a very short second stage. From these creep curves it is apparent
that creep deformation increases sharply at higher temperatures for the same
effective load in relation to the corresponding yield stress. Figure 4.19 and 4.20
show creep rate and creep compliance curves obtained from the creep curves of Fig.

4.18.

4.5 Characterization of 6061-0 Aluminum

Although according to the manufacturer the in-situ properties of the
aluminum matrix are close to those of 6061 aluminum with T4 temper, it was
subsequently realized that all micromechanical predictions of composite properties
were in better agreement with experimental results when based on matrix properties
of fully annealed aluminum. Furthermore, during specimen preparation the curing
process for bonding the tabs to the specimen exposes the specimen to a temperature
history similar to that of the annealing process of aluminum. Other investigators,
such as Pindera and Lin [51] also assumed that the in-situ properties of the matrix
are reasonably close to those of the fully annealed state. For the reasons above, an
additional test program was conducted to characterize the 6061 aluminum in the
annealed state.

Stress-strain curves for 6061-0 aluminum at various temperatures are shown

in Fig. 4.21. Thermal strains were also measured as in the case of 6061-T4
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discussed before and plotted versus temperature in Fig. 4.22. Properties of the
annealed aluminum are summarized in Table 4.3. The yield stress and the tensile

strength of the material at room temperature are 55.2 MPa (8 ksi) and 124.1 MPa

(18 ksi), respectively.

Table 4.3 Properties of 6061-0 Aluminum
Elastic Limit Coefficient of
Stress Thermal Expansion, o

Temperature oy, MPa (ksi) 10-6/° C (10-6/° F)

24°C (715°F) 414 (6.0) 23.4 (13.0)
121°C (250° F) 393 (5.7) 23.6 (13.1)
177°C (350° F) 374 (5.4) 239 (13.3)
288° C (550° F) 33.1 (4.8) 24.8 (13.5)
399° C (750° F) 159 (2.3) -
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5. THERMOMECHANICAL CHARACTERIZATION OF SILICON
CARBIDE/ALUMINUM COMPOSITE

5.1 Specimen Geometry and Preparation

The material was obtained in the form of unidirectionally reinforced eight-
ply 30.5 x 30.5 cm (12 x 12 in.) SCS-2/6061 Al plates. These plates were
produced by using the diffusion bonding consolidation technique. Rectangular
specimens 15.24 cm ( 6 in.) long, 1.27 cm (0.5 in.) wide and 1.42 mm (0.056 in.)
thick were cut from these plates with é water-cooled thin diamond saw. The
specimen design is shown in Fig. 5.1. Longitudinal specimens were cut with the
long dimension parallel to the fibers and transverse specimens were cut
perpendicular to the fiber orientation. The test coupons were lightly sanded with
silicon carbide 340 grit sand paper and then tabbed along two opposite sides with
2.54 x 1.27 x 0.122 cm (1 x 0.5 x 0.048 in.) strips of steel. The steel tabs were
bonded onto the specimen grip sections using a high strength-high temperature
adhesive (FM-36, American Cyanamid Co.). The function of the tabs is to provide
a cushion between the rough grip surface and the specimen surface to prevent any
damage to the specimen material. The tab length was long enough to provide a
shear area large enough to transfer the load to the specimen.

The specimens were instrumented with WK gages (Micro Measurements
Group) for temperatures up to 288° C (550° F) and RKO gages (J. P. Technology)
for testing at 399° C (750° F). In addition to the strain gages, high temperature

extensometers (Instron and MTS) were used.

5.2 Physical Characterization
The density of the material was determined by the immersion method

described in ASTM specification D792-66. It was found to be 2.86 g/cm3 (0.1033
Ib/in3).

65




04

0.5 in.

Fig. 5.1 Specimen Geometries.

66




The fiber volume ratio was determined by analyzing photomicrographs of
transverse sections of the composite (Fig. 5.2). It was determined by two
methods. In the first method the total area of fiber cross sections was measured and
divided by the total area of the region covered. In the second method a number of
lines are randomly drawn on the photomicrograph. The fiber volume ratio, Vy, is
determined as the ratio of the cumulative length of the fiber intersections along the
lines to the total length of the lines drawn. The result obtained by these two
methods is

Ve = 0.44

A unidirectional specimen of the composite was subjected to thermal loading
in order to determine the thermal expansion coefficients along the longitudinal (oty)
and transverse () directions. Unidirectional 8-ply specimens of dimensions 15.2
x 12.7 ¢m (6.0 x 0.5 in.) were instrumented with EA-00 and WK-00 type gages
(Micromeasurements Group) for temperature cycling up to 177° C (350° F) and
288° C (550° F), respectively (Fig. 5.2). Three thermocouples per specimen were
used to measure temperature. A programmable press (MTP-14, Tetrahedron) was
used to control the temperature increments. The specimens were thermally cycled
between room temperature and 177° C (350° F) or 288° C (550° F), for the two
types of gages. Longitudinal and transverse strains and temperature readings were
recorded at 14° C (25° F) intervals using a BC-8SSG strain gage bridge conditioner
(KAYE Instruments) and a data logger. Strains were recorded only when all three
thermocouples on the same specimen exhibited the same temperature reading. The
true thermal strains were obtained by subtracting the pure thermal output by means
of the reference specimen method described before [49,50]. The true longitudinal
and transverse strains were then plotted versus temperature and are shown in
Figures 5.3 and 5.4. The thermal expansion coefficients o) and o, were obtained

from the slopes of the corresponding thermal strain versus temperature curves.
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Directions of the Composite by Means of Strain Gages.
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In a second type of experiment, longitudinal and transverse thermal strains
were obtained for temperatures up to 482° C (900° F) using a dilatometer. Special
cylindrical specimens 10 mm (0.39 in.) long and 3 mm (0.12 in.) in diameter were
used. For this purpose three layers of composite plate were first glued together to
produce sufficient thickness for preparation of the cylindrical specimens. The
longitudinal and transverse thermal strain curves are shown in Fig. 5.5. The results
of the two types of experiments are in agreement over the common temperature
range.

From Fig. 5.3 it is observed that the longitudinal thermal strain varies
nonlinearly with temperature, with a decreasing rate as the temperature increases.
This corresponds to a gradually decreasing longitudinal coefficient of thermal
expansion with increasing temperature. This behavior is attributed to yielding of
the aluminum matrix with decreasing amount of strain hardening. The transverse
thermal strain displays the opposite behavior increasing at a faster rate as the
temperature increases. This corresponds to a gradually increasing transverse
coefficient of thermal expansion with increasing temperature.

For both longitudinal and transverse thermal strains a "hysteresis loop" is
observed when the specimen is thermally unloaded down to room temperature. The
hysteresis loop is more pronounced for the longitudinal thermal strain. This
behavior may be explained, qualitatvely, by the following series of events. During
the initial heat up from room temperature both fiber and matrix expand linearly. At
higher temperatures the matrix yields under compression, the expansion becomes
strongly influenced by the fiber, and the composite coefficient of thermal expansion
decreases. The matrix continues to yield up to the maximum temperature of the
cycle. On cool down from the maximum temperature the fiber and the matrix are
unloaded linearly elastically until the matrix yields under tension. As the matrix

yields the expansion is primarily influenced again by the fiber response. On the
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other hand, the transverse thermal expansion is mainly controlled by the matrix
behavior, resulting in a smaller hysteresis loop. The reduced hysteresis in the
transverse direction is due to the fact that it is influenced by the product of
Poisson's ratio and the change in longitudinal coefficient of thermal expansion.
Furthermore, it was found that when the same cycle of thermal loading and

unloading was repeated several times the same loop was reproduced.

5.3 Mechanical Characterization
Standard characterization tests were conducted on the unidirectional lamina

to determine the following properties at various temperatures:

¢ Longitudinal Modulus, E;
* Transverse Modulus, E,
* Major Poisson's Ratio, vi2
* Minor Poisson's Ratio, v
* Longitudinal Tensile Strength, Fy;
¢ Ultimate Longitudinal Tensile Strain, euy;
* Transverse Tensile Strength, Fy, |
¢ Ultimate Transverse Tensile Strain, €Uy

The minor Poisson's Ratio can be determined by

1
Va1 = V12Eé% -D

A high temperature testing facility was used for thermomechanical
characterization of the SiC/Al metal matrix composite. The testing facility consists
of an Instron 1331 Servo-hydraulic Testing System with a 22,480 1b tension
compression load cell, Instron 8500 Controller, a 20 gpm capacity hydraulic pump
and an ATS (Applied Test Systems, Model 3620) split box type oven with a view-
port and temperature range of -155 to 425° C (-250° to 800° F) controlled by ATS

series 2010 controller.
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A standard test procedure, which includes specimen preparation, testing,
and data reduction was followed for each test to promote reproducibility. Particular
care was taken in aligning the upper and lower grips. The alignment was checked
by loading an aluminum specimen in the elastic region. The specimen was
equipped with single strain gages. The alignment was considered acceptable when
the values of the three strains were within 2.5% of the average strain.

ATS high temperature grips were used with water cooled rods (Series 4043,
ATS) which were mounted on the load cell through a double knife- edge alignment
coupling (Series 4021, ATS). The double knife - edge alignment coupling was
implemented in the assembly to minimize specimen bending moment caused by
misalignment due to eccentric pull rods. The water cooled rod was installed to
protect the load cell from heat conduction directly from the grips. In addition, the
load cell was covered with insulating material and shielded with an insulating
square plate wrapped with aluminum foil to cut down heat convection and radiation
from the oven. Two large fans were also installed on top of the oven to blow away
the heat and cool the loadcell. Figure 4.8 shows a schematic diagram of the
elevated temperature tensile test system.

The strain gage output is conditioned through a Wheastone bridge
conditioner (BC-8SG, KAYE Instruments Inc.) amplified and then recorded by a
data acquisition system (Metrabyte Corp.). Axial strains are also double checked
by a water cooled high temperature e);tensometer (2630 Series, Instron) with a 1 in.
gage length and operating temperature range of 15° C to 500° C (59° F to 930° F).
The acquired data were transferred to a microcomputer and stored on a floppy disk.
For the high temperature tests, temperature induced effects were nulled out by
adjusting the output of the bridge conditioner or putting a dummy gage on an
identical but unloaded reference specimen placed inside the environmental chamber

and subtracting the temperature effect by connecting the dummy gage to an adjacent
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arm of the Wheastone bridge. In the case of the extensometer, the thermal effect

was nulled out by balancing the 8500 Controller (Instron) strain output at the test

temperature. When the specimen was heated to the test temperature, it was loaded
to failure and outputs were recorded by the data acquisition system as the net

induced mechanical strain. The temperature of the specimen was sensed by a K-

type thermocouple (Chromel - Alumel) attached to the specimen surface with high

temperature ceramic adhesive or Kapton tape. The cement and Kapton tape provide
some shielding of the thermocouple from the heat. All specimens were held at the
test temperature for 15 minutes to assure a uniform temperature throughout the
specimen then pulled at the desired rate. The tensile tests were carried out in the

Instron at a constant stroke rate of 0.06 in./min up to specimen failure.

Experiments were carried out at room temperature, 288° C (550° F) and 399° C

(750° F). The high temperature tests were conducted in the ATS oven which was

controlled to within 0.6° C (1° F).

The testing procedure was as follows:

1. Measure the width and thickness of the flat specimen at several points and
average them.

2. Place the specimen in the grips of the testing machine and carefully align
specimen and grips using spacers.

3. For elastic modulus determinations attach the extensometer or strain gage
leads to the strain recording equipment. Make a preliminary check of
settings and adjust the amplification scale.

4. Check the control settings and cross head speed on the Instron 8500
Controller panel.

5. Heat the oven to the desired temperature and keep that temperature stable for

uniformity.
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6. Start applying load and continue up to specimen failure and record the load
and strain.

Typical stress-strain curves for the unidirectional reinforced composite
tested parallel (0°) and perpendicular 90°) to the direction of the reinforcement are
shown in Figures 5.6 to 5.9. There are several interesting features of these stress-
| strain curves which deserve special consideration.

When the 0° curve is carefully examined, three distinct regions are noted
(Fig. 5.10). On initial application of the tensile load, both matrix and fiber respond
completely elastically (Stage I). Eventually, the yield strength of the matrix is
exceeded and the matrix begins to flow plastically (Stage II). In this stage the
matrix contributes little to the elastic modulus. The slope of the stress-strain curve
in this region is referred to as the system's secondary modulus and was measured
to be 83% of the initial modulus. The system experiences permanent deformation
because of matrix flow and breakage of severely weakened filaments. This second
stage continues until fiber breakage is encountered, whereupon the slope of the
stress-strain curve is again observed to decrease (Stage III), eventually resulting in
composite failure. Because of the extreme brittleness of the fibers in the composite,
the extent of Stage III is limited. In cases where the yield strain of the matrix
exceeds the failure strain of the fiber, Stage II-type behavior will not be observed.
The transition from Stage I to Stage II depends on the yield strain of the metal
matrix and the magnitude of residual consolidation stresses. The three stages of
strain response to increasing tensile loading can be termed as "elastic-elastic" (Stage
1), "elastic-plastic” (Stage IT) and "plastic-plastic” (Stage III), respectively [52].

Figures 5.6 and 5.7 show stress-strain curves for the SiC/Al composite at
room temperature, 24° C (75° F), and at 288° C (550° F). Both curves exhibit a
linear elastic portion that extends up to strains € = 0.12 percent and 0.07 percent,

for temperatures of 24° C and 288° C, respectively. Note that the stress-strain

76




250 =<
o
1= —&2 €1
-1500 Y
200
—_ i
oot
Q /
{
~ 150 4000
o 1 E
- !}
2 00
@ 100+ )
= t
-
0 1-50¢

Extensometer

50 - - -~ Strain Gages
0 ) T T T I T 1 !
0.0 0.2 0.4 0.6 0.8 1.0

Strain, &, (%)
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curves up to failure deviate little from linearity which is attributed to the fact that
most of the applied load is carried by the fibers due to their much higher elastic
modulus. The deviation from linearity is more pronounced at 288° C. The stress
vs. transverse strain curve at 24° C and 288° C (Figures 5.6 and 5.7) are almost
linear up to fracture. Figures 5.11 to 5.13 show scanning electron
photomicrographs of the tensile fracture surface of unidirectional SCS-2/6061
aluminum composite specimens. Extensive fiber/matrix interface debonding is
observed in the photographs. In addition, a large amount of fiber pullout is
apparent, indicated by the number of empty fiber sites, since the pulled-out fibers
did not remain intact after failure. A variety of fiber damage is observed, including
fiber splitting, fiber shattering and pulled-out cores.

At room temperature the rule-of-mixtures prediction of 1531 MPa (222 ksi)
for the composite tensile strength is very close to the experimentally obtained one of
1524 MPa (221 ksi). Furthermore, at 288° C (550° F) the predicted strength of the
composite is 1463 MPa (212 ksi) and the experimental one 1241 MPa (180 ksi). It
is seen that the observed composite strength at 288° C is lower than the rule-of-
mixtures prediction. However, the direct application of filament tensile strength is
often misleading [53], particularly at elevated temperatures where the chemical
reactivity of the filament with the atmosphere or the metal matrix introduces an
additional complexity.

The transverse properties of SiC/Al composite, tensile modulus, strength,
and ductility, are all lower than longitudinal properties. The lower modulus and
strength are in part due to the fact that the isostrain criterion no longer applies. That
is the matrix is free to flow nearly independently of the fibers. Under these
conditions it becomes more difficult to predict composite stiffness and strength. If
the fibers are well bonded to the matrix and free of defects, the transverse strength

should approach or exceed the strength of the bulk matrix alloy. Unfortunately,
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Fig. 5.11 ' Scanning Electron Photomicrograph of the Tensile Fracture Surface
of [0g] SCS-2/6061 Aluminum Composite Specimen Showing
Debonding at Fiber/Matrix Interfaces.
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' Fig. 5.12  Scanning Electron Photomicrograph of the Tensile Fracture Surface
of [0g] SCS-2/6061 Aluminum Composite Specimen Showing Fiber
Pullout.
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Fig. 5.13 Scanning Electron Photomicrograph of the Tensile Fracture Surface
of [0g] SCS-2/6061 Aluminum Composite Specimen Showing Fiber
Damage. ’
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these strength levels are not usually attained in SiC/Al composites at room
temperature. The explanation for low transverse strength of SiC/Al composite
seems to be related to the transverse strength of the fiber and partial debonding. If
the fibers split and debond under transverse tensile loading at a low stress level, the
load carrying cross section would be sharply reduced and stress concentrations
would be introduced which would account for the observed low composite strength
and ductility. Examination of the transverse tensile fracture surface establishes the
degrading influence of fiber splitting and debonding. For a weak matrix, transverse
failure is controlled by matrix strength and failure takes place predominantly
through the matrix. If the matrix is solution treated and aged so that it can introduce
higher loads into the fibers, transverse failure can be controlled by filament splitting
and fracture occurs through fibers as in the case of SiC/Al composite. Also, the
relative area of split filaments on the fracture surface is found to be larger than the
Vr of the composite, which indicates that the fibers offer the least resistance to crack
propagation and control of composite failure. Also, fiber splitting has been
observed only at, or in the immediate vicinity of, the composite fracture surface.
These observations reflect the susceptibility of aluminum alloy to severe stress
concentrations associated with split SiC filaments and their probable low transverse
strength. Also, the strength reduction can be attributed to structural imperfections
or initial filament quality or consolidation technique.

The effect of temperature was further studied by conducting tests at 399° C
(750° F). Longitudinal and transverse stress-strain curves at three test temperatures
are shown in Figs. 5.14 and 5.15.

In-plane shear properties were obtained by means of the 10° off-axis test
[50]. In-plane shear stress-strain curves at three different temperatures are shown
in Fig. 5.16. The initial shear modulus is 34.5 MPa (5 Msi) or 33% higher than the

shear modulus of 6061-T4 aluminum. The measured shear strength was
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approximately 51% lower than that of the matrix material. The fracture surface is
parallel to the fiber, that is at 10° with the direction of loading. It indicates that the
failure is dominated by debonding of the fiber under shear loading. This interfacial
debonding reduces the shear loading cross section in the matrix, thus propagating
the matrix crack to failure. If the fibers were perfectly bonded to the matrix without
any defects, the shear strength of the composite would be close to the shear strength
of the matrix assuming that the fiber has a higher shear strength than the matrix.
The residual stress in the composite also plays a role in shear strength reduction.

Figure 5.17 shows the variation with test temperature of the longitudinal
tensile strength of SiC/Al composite and aluminum for comparison purposes. It is
seen that the composite retains its longitudinl strength exceptionally well up to
399° C (750° F). At higher temperatures the composite tensile strength is still much
higher than that of the aluminum alloy. The observed composite strengths at high
temperature are lower than the rule of mixtures prediction. This is due to the
influence of residual stresses. Probably the strength reduction of the SiC fiber with
temperature is the other cause, although this is not clear. As mentioned previously,
the direct application of fiber tensile data to composite strength prediction is
oftentimes quite misleading, particularly at high temperatures where the chemical
reactivity of the fiber with the atmosphere or metal matrix introduces an additional
complexity.

The temperature dependence of the transverse strength is shown in Fig.
5.18. The transverse strength drops more severely than the longitudinal strength
with temperature because of the large reduction in strength of the matrix with
temperature. Examination of the transverse tensile fracture surface of the specimen
tested at 750° F shows less fiber splitting and debonding and more failure in the
matrix, because at high temperatures the matrix becomes relatively weaker than at

room temperature so that the transverse failure of the composite at high temperature
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is more matrix deominated. At room temperature the transverse strength is only
about 30% of that of the matrix but at 750° F it is very close to that of the matrix.

Figure 5.19 shows the change of in-plane shear strength with temperature.
The in-plane shear strength drops very much with temperature somewhat similarly
as the transverse strength because both of them are matrix dominated properties.

Not much change in the longitudinal modulus is observed. The initial
modulus seems to remain stable with a little drop at 399° C (750° F), but the
secondary modulus increased slightly at 288° C (550° F) which is probably
associated with relief of residual stresses, both in the matrix and fiber, but this
behavior is not clearly understood.

The transverse modulus drops gradually with temperature. Figure 5.20
shows the change of transverse modulus with test temperature. For perfect
bonding of fiber and matrix the transverse modulus is expected to remain
unchanged. But because of the temperature rise and the few hours of exposure to
high temperature, the interfacial zone is extended by chemical reaction between fiber
and matrix degrading the properties of the interface. This causes the drop in
transverse modulus.

Figure 5.21 shows the shear modulus change with temperature. The initial
shear modulus of the composite remains almost unchanged with temperature. The
shear modulus of the fiber is unknown but from the above result it seems that the
shear modulus of the fiber changes very little with temperature.

Table 5.1 summarizes the measured mechanical properties of SiC/Al

composite at three different temperatures.
5.4 Creep Behavior

Creep tests on unidirectional SiC/Al composite were conducted in a similar

manner as in the case of 6061-T4 aluminum described earlier. For the composite
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Table 5.1 Mechanical Properties of Unidirectional SiC/Al Composite at Different Temperatures

Temperature, T, °C (° F)

Property 24 (75) 288 (550) 399 (750)
Fiber Volume Ratio, V¢ 0.44 0.44 0.44
Density, p, g/cm3 (1b/in3) 2.86 (0.103) 2.86 (0.103) 2.86 (0.103)
Longitudinal Modulus, E;, GPa (Msi) 207  (30) 207  (30) 207 (30)
Transverse Modulus, E;, GPa (Msi) 110  (16.0) | 76.6 (11.1) 73.1  (10.6)
In-Plane Shear Modulus, G},, GPa (Msi) 345 (5.0 345 (5.0 345 (5.0
Major Poisson's Ratio, Vi, 0.28 0.29 0.32
Longitudinal Tensile Strength, Fy;, MPa (ksi) 1,622 (235) 1,208 (175) 1,187 (172)
Transverse Tensile Strength, Fy, MPa (ksi) 80.0 (11.6) 524 (7.6) 242 (3.5)
In-Plane Shear Strength, Fg, MPa (ksi) 814 (11.8) 36.6 (5.3) 145 (2.1)
Ultimate Longitudinal Tensile Strain, guy, 0.0096 0.0066 0.0063
Ultimate Transverse Tensile Strain, guy, 0.0011 0.0038 0.0101
Ultimate In-Plane Shear Strain, yug 0.0280 0.0201 0.060
Longitudinal Thermal Expansion Coefficient,

o, 10-6/°C (10-6/°F) 5.9 (3.3) - -

Transverse Thermal Expansion Coefficient,
o, 10-6/°C (10-6/°F)

16.0 (8.9)




the major factor influencing its creep behavior is the internal geometry. For
unidirectional reinforcement with continuous fibers, the creep rate is minimum in
the fiber direction and maximum at an angle to the fiber. The reason is that
longitudinal creep of the composite is effectively inhibited by the fibers due to the
extremely high elastic modulus and negligible creep properties of the fiber.
However, transverse creep is significant even at an applied stress level below that
necessary to cause creep in the unreinforced aluminum. Because creep rate is
dependent on stress, the strain and strain rate in the vicinity of a fiber will be high
due to stress concentration. This will increase the number and size of
microstructural faults, which in turn further decrease the local cross sectional area
and increase the strain rate. Additionally, microstructural defects as well as other
heterogeneities, can act as a site for necking.

Creep tests were conducted under transverse and in-plane shear loading.
No creep tests were conducted in the longitudinal (fiber) direction because very little
creep is expected in that direction as discussed before. Figure 5.22 shows the creep
curves and Figure 5.23 shows the creep rate curves of the composite in the
transverse direction. The transverse creep compliance of the composite is shown in
Figure 5.24. The shear creep curves and corresponding strain rate curves are
shown in Figs. 5.25 and 5.26. The shear creep compliance of the composite is
shown in Fig. 5.27.

The prediction of composite creep behavior on the basis of creep properties
of the constituents is being investigated by several investigators. However, the
problem is difficult because of the nonuniform stress fields involved under

transverse loading and shear.

5.5 Non-Isothermal Creep Behavior

Many composites in service are exposed to fluctuating or varying
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thermomechanical loading. It has been reported that composites creep and exhibit
dimensional changes under very low stress levels when exposed to thermal cyclic
conditions. Thus, it is very important to study how thermal cycling affects creep
behavior in service. Such a study should take into consideration the local stresses
and strains produced by thermal expansion mismatch between the constituents, on a
microscopic level and between variously oriented plies on a macroscopic level.

Unidirectional SiC/Al specimens were tested under transverse and in-plane
shear creep under thermal cyclic conditions. A small furnace was designed and
built for the pufpose in order to accelerate the thermal cycling. Temperature was
measured by thermocouples welded to the specimen and heavily insulated with
ceramic cement. A thin aluminum foil was used to cover the insulation and cut
down the radiant heat that affects correct measurement of specimen temperature.
The shielding of the thermocouples was found to be very important for correct
measurement of specimen temperature when not embedded in the specimen.
Thermal cycling was achieved by a system consisting of a controller with timers
and relays. Specifically, the furnace operates until a preset high temperature is
reached. At this point, the furnace switches off, and the specimen is cooled by
forced air convection until the specimen temperature reaches a preset low
temperature. Then, the timer resets, and the furnace is switched on again. Thus,
the upper temperature of the cycle and the cycle period are controlled directly.
Multilayer adhesive films were used to bond tabs to the specimens to cut down heat
conduction from the specimen to the grips. This helped a great deal to reduce
temperature gradients in the specimen. |

A limited number of tests was conducted to study the effect of thermal
cycling on creep strain in a transversely loaded composite for various applied stress
levels. A thermal cycling range of 177 - 232° C (350 - 450° F) and a frequency of

approximately 14 cycles per hour were selected. The creep strain for a specimen
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loaded transversely under a constant stress of 17.2 MPa (2.5 ksi) and cycled over
the temperature range above is shown in Fig. 5.28. The isothermal creep strain
under the same load but at 232° C (450° F) is shown in Fig. 5.29. The upper
envelopes of both records are compared in Fig. 5.30 where it is clearly shown that
thermal cycling increases creep deformation significantly. Similar results were
obtained for an increased stress level of 34.5 MPa (5.0 ksi) as shown in Figs. 5.31
and 5.32. All results for transverse creep are combined in Fig. 5.33 along with
isothermal creep results at 399° C (550° F). It is seen that the creep strain obtained
under thermal cycling betwen 177 and 232° C (350 and 450° F) is still higher than
the isothermal creep obtained under the same stress at 399° C (550° F).

Similar creep tests wre conducted under in-plane shear using the 10° off-axis
specimen. Figure 5.34 shows that the creep strain under cyclothermal conditions is
larger than that under isothermal conditions as in the case of transverse loading.
However, the difference between the two types of creep under shear loading is not
as dramatic as under transverse loading. This could be attributed to the higher
stress concentration around the fiber and the higher local stresses under transverse

loading .
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Isothermal and Thermal Cycling Conditions
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6. APPLICATION OF THERMOVISCOPLASTIC NONLINEAR
CONSTITUTIVE RELATIONSHIPS (TVP-NCR) AND
METCAN COMPUTER CODE

The obtained experimental results (Sections 4 and 5) were used to determine
the unknown exponents of the thermoviscoplastic nonlinear constitutive
relationships (TVP-NCR) discussed in Section 3. In the present work only the
temperature and stress dependence of the mechanical or thermal properties of the
composite and its constituent matrix are considered. Therefore, the TVP-NCR
expressed by equation (3.1) is reduced to only two terms on the right hand side as

follows:

e Al el
P, LT,-T,| LFy-0, (6.1)

where
= current property of interest

corresponding property at reference conditions

-~ v
°
il

c
|

= ultimate temperature

= current temperature

T
To = reference temperature at which P, is determined
F

= fracture stress determined at T,

O, = reference stress at which P, is determined

G = current stress

At least squares method was used for the determination of the unknown
exponents of equation (6.1) from the experimental data. From equation (6.1) we

obtain

gl ol
Q log[PoJ nlog[Tu_To mlogF_Go 0 (6.2)
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Consider the variation of property P with stress, ¢, for a number of

temperatures, T. If N values of P are selected from these curves the least squares

method requires that for a best fit

N
Z sz = minimum
j=1

The necessary conditions for the existence of this minimum are

N
Y q%-o
j=1 an
N
2 Q Ky
j=1 am
Equations (6.4) yield

where
ool
Ej = log ;:gﬂ

(6.3)

(6.4a)

(6.4b)

(6.5a)

(6.5b)

(6.6)

(6.7)

(6.8)

A repeating subscript in equations (6.5) does not imply summation of the respective

terms over the values of the subscript. Equations (6.5) were incorporated into a

computer program and were used for the determination of the values of exponents

m and n for property P from the experimentally obtained data.

Using the previously developed procedure the coefficients m and n for a

number of mechanical and thermal properties of the SiC/Al composite and 6061-T4
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aluminum were determined. The properties investigated were

(a) For Aluminum 6061-T4

E = Modulus of Elasticity

vV = Poisson's Ratio

a = Coefficient of Thermal Expansion
Oy, = Ultimate Stress

(b) For SiC/Al metal matrix composite

Ei, E; = Longitudinal and transverse Young's moduli, respectively

oy, o2 = Longitudinal and transverse coefficients of thermal
expansion

Values of the exponents m and n for the aluminum and the composite are
given in Tables 6.1 and 6.2 for three different selected values of T,. The first
selected ultimate temperature of 593° C (1100° F) was taken to be the melting

temperature of the aluminum matrix in the composite. The other two values of Ty,

equal to 1093° C (2000° F) and 1649° C (3000° F) Were chosen to check the
sensitivity of the exponent values to the selection of ultimate temperature. In the
case of the SCS-2 fiber all properties were assumed to be independent of
temperature and stress, therefore, the coefficients m and n were taken equal to zero.

Another method that can be used for determination of the unknown
exponents is the graphical method. In equation (6.1), for example, if T =T,, only
properties at the reference temperature are considered and thus the temperature
dependent term becomes unity. Then, the unknown exponent m is obtained as the
slope of the log (P/P,) versus log (F - 6) (F - 6,) curve. A similar procedure is
used for determination of exponent n.

The material properties under investigation can be expressed as follows:
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Table 6.1 Values of the Exponents n and m of the TVP-NCR for Aluminum 6061-T4

Material Property, P Temperature, T n m
oC oF
Tangent Modulus, E; 503 1100 1.3046 3.1034
Coefficient of Thermal
Expansion, 593 1100 -0.2212
1093 2000 -0.5256
1649 3000 -0.8522
Poisson's Ratio, V 593 1100 -0.5045 -0.2251
1093 2000 -1.0530 -0.2233
1649 3000 -1.6583 -0.2227
Ultimate Stress, Oy 593 1100 0.8252
1093 2000 1.8110
1649 3000 2.8857
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Table 6.2 Values of the Exponents n and m of the TVP-NCR for SiC/Al Composite

Material Property, P Temperature, T n m
oC °F

Longitudinal Tangent

Modulus, Eq¢ 593 1100 -0.1226 0.0717
1093 2000 -0.2693 0.0717
1649 3000 -0.4306 0.0717

Transverse Tangent

Modulus, Eg¢ 593 1100 0.4636 0.3792
1093 2000 0.9761 0.3910
1649 3000 1.2770 0.4120

Longitudinal Coefficient of

Thermal Expansion, o 593 1100 0.9718
1093 2000 2.3094
1649 3000 3.7441

Transverse Coefficient of

Thermal Expansion, o 593 1100 -0.2827
1093 2000 -0.6718
1649 3000 -1.0892
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Ty- TP

e

° 1Ty~ To (6.11)

Tu-T]“

Gy=

e [Tu-To (6.12)

Equations (6.9 and (6.10 represent the temperature and stress dependence of the
material modulus and Poisson's ratio while equations (6.11) and (6.12) represent
only the temperature dependence of the coefficient of thermal expansion and
ultimate stress.

The stress-strain curves of the SiC/Al composite and Aluminum 6061-T4
were obtained from the determined exponents (n, m) of the tangent modulus as
follows:

do = E;de

Tu-T]“[Fu-O']m de
Ty- To) Fu-Go

1 — Tu‘Tn 1
j L do=r [ BeT] j - —

FI'™-(F-o)™ _E, (Tu-T)“s
I-m (F - Go)™ \Ty - Ty

do:Eol

e (F-oo)" (Tu - To)n (F"m -(F- c)""‘)
E, \T,-T 1-m

(6.13)
By using equations (6.9) through (6.13) along with the calculated values of

the exponents n and m (Tables 6.1 and 6.2) the material properties under

investigation were obtained and compared with the experimentally measured ones

in the following figures:

119




a. For unidirectional SiC/Al composite

) Longitudinal stress-strain curves for temperatures of 24° C (75° F)

and 288° C (550° F) are shown in Figures 6.1 and 6.2, respectively.
(2) Transverse stress-strain curves for temperatures of 24° C (75° F)
and 288° C (550° F) are shown in Figure 6.3.

(3) Longitudinal and transverse coefficients of thermal expansion as a
function of temperature are shown in Figures 6.4 and 6.5.

b. For aluminum 6061-T4

D Stress-strain curves for temperatures of 24° C (75° F), 121° C
(250° F), 149° C (300° F), 177° C (350° F) and 232° C (450° F) are
shown in Figures 6.6 through 6.10.

(2)  Coefficient of thermal expansion versus temperature curve is shown
in Figure 6.11.

3 Ultimate stress versus temperature curve is shown in Fig. 6.12.

From the above figures the following observations can be made:

(1) The exponents m and n take positive or negative values depending
on the material property under investigation. No general rule assigning positive or
negative values can be stated.

) Predictions of the thermomechanical behavior of composite and
aluminum matrix by the TVP-NCR is generally good for most properties.
Deviations, however, between experimental and predicted results appear in cases
where the form of the experimental curve deviates from the generic form of the
TVP-NCR expressed in terms of powers of dimensionless products.

(3)  The exponent n for the coefficients of thermal expansion of the
composite was found to be very sensitive to the selected value of the ultimate

temperature, Ty. On the other hand, the exponent m for the mechanical properties

was not affected by the selection of Ty,.
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Fig. 6.1 Stress-Strain Curves for [0g] SCS-2/6061 Aluminum Composite
Specimen Under Uniaxial Tensile Loading at 24 °C (75 °F) as
Obtained Experimentally and Predicted by the TVP-NCR.
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Fig. 6.3 Transverse Stress-Strain Curves for SCS-2/6061 Aluminum Composite
Specimen Under Uniaxial Tensile Loading at 240 C (75° F) and
2880 C (5500 F) as Obtained Experimentally and Predicted by
the TVP-NCR.
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Longitudinal Coefficient of Thermal Expansion (¢(}) versus
Temperature Curves for SCS-2/6061 Aluminum Composite
Specimen as Obtained Experimentally and Predicted by the TVP-
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Fig. 6.6 Stress-Strain Curves for Aluminum 6061-T4 Specimen Under
' Uniaxial Tensile Loading at 24 °C (75 °F) as Obtained
Experimentally and Predicted by the TVP-NCR.
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Fig. 6.7 Stress-Strain Curves for Aluminum 6061-T4 Specimen Under
Uniaxial Tensile Loading at 121 °C (250 °F) as Obtained
Experimentally and Predicted by the TYP-NCR.
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Stress-Strain Curves for Aluminum 6061-T4 Specimen Under
Uniaxial Tensile Loading at 149 °C (300 °F) as Obtained
Experimentally and Predicted by the TVP-NCR.
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Stress-Strain Curves for Aluminum 6061-T4 Specimen Under
Uniaxial Tensile Loading at 177 °C (350 °F) as Obtained
Experimentally and Predicted by the TVP-NCR.
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Specimen as Obtained Experimentally and Predicted by the TVP-

NCR.
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4) For material properties whose variation with a variable does not
comply with the end conditions dictated by the TVP-NCR (the end value of a
quantity should be zero or infinite) poor agreement between experimental and
predicted results is obtained.

The modified TVP-NCR proposed in Section 3 were used to study two
material properties (secant modulus and Poisson's ratio) which do not satisfy the
end conditions of TVP-NCR developed by Chamis [17] at the ultimate value of a

variable. The modified TVP-NCR used in the present analysis are of the following

form:

AE____[TU-T]"[F - c}"‘

AP, LT,-T,l LF -G, (6.14)
where,

AP=P-P,

AP, =P, - Py

The stress-strain curves for the SiC/Al [0g] and [90g] composite and
Poisson's ratio versus stress curves for Aluminum 6061-T4 at two temperatures

were obtained from the following equations

£ = o
_ Ty,-TPP[F-gm
(Eo E“)[TU-TO] [F-co] *+Eu (6.15)
—_ _ Tu'len F-lem
v=(vo 0'5)[Tu-'r0 [F-co +0.5 (6.16)

By using equations (6.15) and (6.16) along with the recalculated values of
the exponents n and m (Table 6.3) the material properties under investigation were
obtained and are compared with the experimentally measured ones in Figures 6.13
through 6.17. It is seen from these figures that the predictions for the SiC/Al
composite from the modified TVP-NCR are in very good agreement with the

experimental results. In addition, it was found that the predictions from the
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Table 6.3 Values of the Exponents n and m of the Modified TVP-NCR for SiC/Al
Composite and Aluminum 6061-T4.

Material Property, P Temperature, Ty n m
' °C OF
SiC/Al Composite
Longitudinal Secant
Modulus, Ejg 593 1100 -0.9555 1.4698
1093 2000 -2.0992 1.4698
1649 3000 -3.5668 1.4698
Transverse Secant
Modulus, Epg 593 1100 -0.1685 0.4829
, 1093 2000 -0.4487 0.4892
' 1649 3000 -0.7487 0.4907
Aluminum 6061-T4
Poisson's Ratio, v 593 1100 3.1123 2.6180
1093 2000 6.5084 2.6061
1649 3000 10.2562 2.6024
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Fig. 6.13 Stress-Strain Curves for [0g] SCS-2/6061 Aluminum Composite
Specimen Under Uniaxial Tensile Loading at 24 °C (75 °F) as
Obtained Experimentally and Predicted by the Modified TVP-NCR.
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Fig. 6.14 Stress-Strain Curves for {0g] SCS-2/6061 Aluminum Composite
Specimen Under Uniaxial Tensile Loading at 288 °C (550 °F) as
Obtained Experimentally and Predicted by the Modified TVP-NCR.
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Fig. 6.15 Stress-Strain Curves for [90g] SCS-2/6061 Aluminum Composite
Specimen Under Uniaxial Tensile Loading at 24 °C (75 °F) as |
Obtained Experimentally and Predicted by the Modified TVP-NCR.
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Fig. 6.16 Poisson's Ratio versus Stress Curves for Aluminum 6061-T4
Specimen at 121 9C (250 °F) as Obtained Experimentally and

Predicted by the Modified TVP-NCR.
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Fig. 6.17 poisson's Ratio versus Stress Curves for Aluminum 6061-T4
Specimen at 177 °C (350 °F) as Obtained Experimentally and
Predicted by the Modified TVP-NCR.
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modified TVP-NCR were independent of the chosen value for ultimate temperature
(Tw).

The computer code (METCAN) developed at NASA Lewis Research Center
[18] to perform nonlinear analyses of fiber reinforced metal matrix composites was
used for the prediction of the thermomechanical behavior of the SiC/Al composite
under investigation. The METCAN code incorporates the TVP-NCR given by
equation (6.1) Together with various levels of composite mechanics models [39]
for the analysis of behavior of metal matrix composite materials and structures.
Introducing the previously found values of the exponents n and m for the aluminum
matrix into METCAN the longitudinal and transverse stress-strain curves of the
unidirectional SiC/Al composite were predicted. The corresponding exponents n
and m for the fiber were taken as zero in METCAN since the SiC fiber remains
elastic up to failure and its thermomechanical behavior is independent of
temperature. Results are shown in Figures 6.18 and 6.19 for temperatures 24° C
(75° F) and 288° C (550° F), respectively. The experimental results are seen to be
in good agreement with the theoretical predictions from METCAN.

Residual stresses are generated during cool-down from the fabrication
temperature as a result of the large difference in thermal expansion coefficients of
the silicon carbide fiber and aluminum matrix. These differences in expansion
coefficient can result in compressive longitudinal and radial residual stresses in the
filaments and corresponding tensile stresses in the matrix. The METCAN code
was implemented to predict these stresses and to determine their influence on the
behavior of the composite under subsequent loading. Results were obtained for
two consolidation temperatures, 260° C (500° F) and 538 ° C (1000° F). Table 6.4
gives the axial residual stresses in the fiber and matrix as predicted by METCAN
when the composite is cooled down to room temperature from these two fabrication

temperatures.
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Fig. 6.18 Stress-Strain Curves for [0g] SCS-2/6061 Aluminum Composite

Specimen Under Uniaxial Tensile Loading at 24 °C (75 °F) as
Obtained Experimentally and Predicted by METCAN.
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Specimen Under Uniaxial Tensile Loading at 288 °C (550 °F) as
Obtained Experimentally and Predicted by METCAN.
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Table 6.4 Axial Residual Stresses in SCS-2 Fiber and Aluminum 6061-T4 Matrix
as Predicted by METCAN Computer Code

Fabrication Fiber Matrix
Temperature, T¢ - OTyf Gzm

L & F MPa ksi MPa ksi
260 500 105.24 15.26 82.76 12.00
538 1000 134.55 19.51 105.72 15.33

The influence of these residual stresses on the composite behavior is as
follows. Since the filaments are initially loaded compressively, the composite
failure strain in tension is higher than would be predicted if residual stresses were
ignored. As the composite is loaded in tension, the filaments are initially unloaded
from compression and subsequently loaded in tension. Therefore, the filament
strain-to-failure is increased. In addition, since the filament tensile failure strain
determines composite failure strain and consequently the tensile strength of the
composite, this increased strain-to-failure will result in higher composite tensile
strength. Furthermore, the initial load carrying capacity of the matrix is higher as a
result of prior strain hardening. The strain hardening matrix can make a larger
contribution to composite strength. These effects are shown schematically in Fig.
6.20 [54].

In Fig. 6.21 the experimentally obtained stress-strain curves of a
unidirectional SiC/Al [0g] composite tested in tension at 24° C (75° F) are shown
along with the predicted stress-strain curves from METCAN. The first predicted
stress-strain curve was obtained by loading the composite without considering any

previous processing history. Therefore, no residual stresses were taken into
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Fig. 6.21 Stress-Strain Curves for [0g] SCS-2/6061 Aluminum Composite Specimen
Under Uniaxial Tensile Loading at 24 °C (75 OF) as Obtained Experimentally
and Predicted by METCAN. METCAN Predictions were Made by (1)
Considering No Processing History and by Accounting for Cool-Down
from Fabrication Temperature of (2) 260 °C (500 OF) and (3) 538 °C

(1000 °F), respectively.
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account in this case. For the prediction of the second and third curves, the
composite was first cooled to room temperature from fabrication temperatures of
260° C (500° F) and 538° C (1000° F) and subsequently loaded in tension to failure.
It is observed in Figure 6.21 that when consolidation stresses are taken into account
the predicted composite behavior exhibited no plastic deformation during
subsequent loading in tension. In addition, better prediction of the composite actual
behavior under tensile loading was obtained when no residual stresses were
considered in METCAN. This prediction coupled with the aforementioned
observation leads to the conclusion that matrix relaxation must take place in the
actual composite system.

At higher temperatures the influence of residual stresses and matrix
constrains are much less pronounced than at room temperature. It is seen in Figure
6.22 that both predictions (with and without residual stresses) by METCAN are in
very good agreement because METCAN accounts for the relief of the fabrication-
induced residual stresses when the composite is heated to its testing temperature of

288° C (550° F).
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6.22 Stress-Strain Curves for [0g] SCS-2/6061 Aluminum Composite Specimen
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7. THERMAL STRESS ANALYSIS OF SiC/Al COMPOSITE
7.1 Introduction

In the metal-matrix composite, the ceramic reinforcement and the metal
matrix usually have large mismatch of thermal expansion coefficients in one or
more directions. A change of temperature results in thermal constraint stresses
which contribute significantly to the stress state of the constituents. For example,
high residual thermal stresses are developed in the matrix during cooling from
consolidation temperatures which may result in premature yielding even before
application of external loading. The study of the thermal expansion behavior and
the resulting thermal stresses is an important step in the characterization of the
composite. |

A number of studies have been devoted to the problem of thermal expansion
behavior of MMC's. Levin [7] derived the macroscopic coefficients of thermal
expansion (CTE's) of an elastic two-phase composite with perfectly bonded
isotropic phases from the thermoelastic constants of the phases and the macroscopic
elastic moduli of the composite. Bounds on the CTE's of fiber reinforced
composites were given using bounds for the macroscopic elastic moduli of the
composite. Expressions for CTE's of fiber reinforced composites with doubly
periodic array of circular hollow or solid fibers were derived by Van Fo Fy [8,9]
who performed a thorough stress analysis. Schapery [10] calculated upper and
lower bounds of muitiphase media by employing extremum principles of
thermoelasticity. Levin's results were extended to two-phase composites with
anisotropic constituents by Rosen and Hashin [11]. They also gave bounds for the
CTE's of anisotropic composites with any number of anisotropic phases. Dvorak
and Chen [12] presented exact expressions for the CTE's of a composite consisting
of three cylindrical perfectly bonded phases having transverse isotropy and

arbitrary transverse geometry.
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The above works were concerned with the micromechanical prediction of
the linear thermal expansion behavior of composites. However, when the
composite is subjected to temperatures above a critical value, plastic stresses are
developed in the matrix and the strain versus temperature curve of the composite
becomes nonlinear. A relatively limited number of investigations has dealt with the
problem of nonlinear thermal expansion behavior of composites. Hoffman [13]
studied the elastic and elastoplastic stresses in tungsten fiber reinforced 80 Ni + 20
Cr matrix composites subjected to heating or cooling in the range of 27 to 1090° C
(80 to 2000° F). Dvorak et al. [14] determined the initial yield surfaces of
boron/aluminum composites for mechanical and thermal loading using a finite
element analysis of a regular hexagonal array model. They found that small
temperature changes in the range of 10 to 38° C (50 to 100° F) can introduce plastic
strains in composites with a matrix tensile yield stress of the order of 10 ksi.
These plastic strains were proportional to the yield stress. Flom and Arsenault [1]
determined experimentally the plastic strains and the elastic-plastic boundaries
produced in the aluminum matrix around a short SiC cylinder during a thermal
cycle and developed a theoretical model for the prediction of the plastic zone. Kural
and Min [15] presented an elastoplastic theoretical model for the study of plastic
deformation in the matrix material of graphite fiber reinforced metal matrix
composites caused by thermal cyclic loading and residual thermal stresses.
Experimental results verified the elastoplastic stresses predicted by the theory. In
another paper Min and Crossman [16] used the above theoretical model for the
study of the thermomechanical behavior of Gr/Al composites. Gdoutos et al. [55]
developed two elastoplastic micromechanical models for thermal stress analysis,
one based on a one-dimensional rule of mixtures and the other on a composite

cylinder. An elastoplastic analysis was also conducted by Chun et al. [56] based
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On a successive approximation scheme with a Prandt]l-Reuss plastic flow model and

the von Mises criterion.

7.2 Rule of Mixtures Model (ROM) [55]

A one-dimensional rule-of-mixtures (ROM) model was used for the
prediction of the thermal expansion behavior of the composite based on the
constituent properties. Emphasis was placed on the prediction of the nonlinear part
of the longitudinal and transverse strain-temperature curves.

The silicon carbide fiber is assumed to be isotropic and linear elastic up to

failure. Its stress-strain-temperature behavior is given by

8f=%+afAT (7.1)
f . . . .
where &¢ and o are the axial strain and stress, E¢ the modulus of elasticity, o the
CTE and AT the temperature change. It is assumed that O 1S constant.
The aluminum matrix has a yield point much lower than the fracture stress

of the fiber and exhibits a pronounced plastic deformation prior to fracture. Its

thermomechanical behavior is described by the Ramberg-Osgood equation:

em=9"l+amAT
m

E Om < o'my (7.28)

Fm = I_EII [om + Bllgm)"-1] Omy| + o AT Om > Gmy (7.2b)
where £, and o, are the strain and stress, E, the modulus of elasticity, Omy the
proportionality limit of aluminum, B and n material parameters and o, the
coefficient of thermal expansion. The quantities Gy, B, n and oy, are functions of
temperature.

From the isostrain hypothesis and the equilibrium equation along the fiber
direction the longitudinal stresses in the fiber, o¢f, and the matrix, O¢n, for linear

elastic behavior are given by
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(am - (Xf) EfEn Vm AT
En Vin + Ee Vi (7.3)

of

(0t - Of) EfE, VEAT
Em Vm + Ef Vf (7-4)

Om

where V¢ and V;, are the volume fractions of the fiber and matrix, respectively.
The temperature at which the matrix starts to deform plastically is
determined from the relation
G = Omy (7.5)

For higher temperature changes the matrix yields and the stress Gy, in the

matrix is determined from the following equation

(B omy ot +|1+(Z) {2 on+llotm - ) EnaT-Bom] =0, o

The stress in the fiber is given by

Of=-Om (%?) 1.7)

Having determined the stresses in the matrix and the fiber the longitudinal
strain of the composite is determined from either equation (7.2a) or (7.2b). The
transverse strain of the composite is calculated by

€ =&f Vi+ €m Vi (7.8)

where the transverse strains in the fiber, &g, and the matrix, &, are given by

=_ Vvt
& = Eq or+ o AT (7.92)
Em = - 2 Gy + Ol AT
tm E, o™ m (7.9b)

where v¢ and v, are Poisson's ratios of the fiber and matrix, respectively. While v¢
is constant, v, increases in the nonlinear range from its elastic value up to the
limiting value of 0.5 for an incompressible material. In the transition region vy, is

determined as follows [57]:
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V= 0.5 - (0.5 - v ) Es (7.10)
E
where v’ is the elastic value of Poisson's ratio and E and E are the elastic and

secant moduli, respectively.

7.3 Composite Cylinder Model (CCM) [55]

In the two-material composite cylinder model (CCM), the representative
volume element for the micro-mechanical analysis of low fiber volume composites
consists of an inner solid cylinder, simulating the fiber, and an outer hollow
cylinder, representing the matrix (Fig. 7.1). A fiber-reinforced composite is
arbitrarily characterized as low fiber volume if the fiber volume ratio is less than 65
percent. It is assumed that the two components are perfectly bonded at the
interface. The CCM has been proposed by Hill [58], Hashin and Rosen [59] and
Whitney and Riley [60]. The model has been used for the study of the elastoplastic
behavior of two- and three-material composite cylinders by Hecker et al. [61,62].
In the present study the CCM is used for the study of the thermal expansion
behavior of a SiC/Al composite. The cases of elastic and elastoplastic deformation
of the matrix cylinder are considered separately. The inner cylinder always remains
linearly elastic.

When both components of the composite cylinder are linearly elastic, the
following equations for the radial displacement u, the radial and circumferential
stresses G and G, and the axial stress G, are obtained from the thermoelastic

solution [61].

u=Ar+58
r
cr=K[A-(1-2v))%+vez-(1+v)aATJ

r
ce=K[A+(1-2v))g—+vez-(l+v)ocATJ (7.11)
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Fig. 7.1 A Single Fiber Surrounded by its Matrix Shell.
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6, =K[2VA+(1-V) ) &- (1 + V) QAT]

In these equations r is the radial distance from the center of the cylinder, €, is the
axial strain, A and B are constants to be determined from the boundary conditions
of the problem and K is the bulk modulus.

The boundary conditions of the problem imply continuity of the radial
displacement u and the radial stress o, along the boundary of the two materials.
Furthermore, they should be finite at r = 0. Finally, on the outer surface the radial
stress O, is assumed to be zero.

For a temperature change AT, the constants Aj, Bj(j = 1,2 refer to the inner
and outer cylinder, respectively) and the axial strain g, are determined from the

following matrix equation:

Ri -Ry -R{ 0 A

Kl - K2 ( 1 - 2\)9 KZR% K]Vl - K2V2 A2

0 ¢ {1-2v) KoR? KaV2 B2

2V1K1R% 2V2K2(R%'R:12) 0 Ki(1-v) R%+ Ka(1 -Vz)( R% - RzJ €
0 '

Ki(l+v) oy - Koll+vd oo
AT

(1+V:) o K»

Ki(1+v) oq R +Ks(1+v) ocg(R% R%)

(7.12)
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with By = 0. R; and R, denote the radii of the inner and outer cylinders,
respectively.

After determination of A;, Bj and &,, the stresses and radial displacement in the
two materials are calculated by equations (7.11).

The elasticity solution Qf the problem is used in conjunction with the von Mises
yield criterion for the determination of the critical temperature at which the most
stressed elements of the matrix along the fiber-matrix interface enter into the plastic
domain of deformation. This temperature is determined from equation

where G is given by

Oeff = ‘715—[(01 -6)2 + (0 - 0g) 2 +(0g - 6,) 2] 12 (7.14)

The stress Gy, the proportional limit of aluminum, is a function of temperature.

When the temperature is increased beyond a critical value, plastic zones in
the form of concentric cylindrical layers starting from the fiber-matrix interface are
developed in the aluminum cylinder. The deformation in the aluminum becomes
inhomogeneous and an elastic-plastic analysis is required for the determination of
the stress components and the extent of the elastic-plastic boundary.

The deformation theory of plasticity is used in conjunction with the von-
Mises yield criterion and the isotropic hardening rule for the solution of the elastic-

plastic problem. The fundamental assumption made is that the effective stress-

strain curve O = f (d€eg) for an element in a triaxial state of stress coincides with

the stress-strain curve in uniaxial tension. The effective strain is defined as

dewer = — L [(de, - de,)2 + (de, - deg) 2 + (deg - dey) 2] 12 (7.15)
eff 1[2_(1+Vm)[( z r) ( T 9) ( (¢] z)]
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where the value of Poisson's ratio vy, is determined from equation (7.10).
The stress-strain relations take the form

de, = El— [do; - v(do; + dog)]

t

de, = El—[dG, - V(dog + do,)] (7.16)

deg = Eil[dce - V(do, + doy)]
where de,, dg and deg are the total, elastic plus plastic, strain increments and do,
do; and dog are the stress increments. E, is the tangent modulus of the uniaxial
stress-strain curve of the material in tension after the proportional limit . In the
elastic region E, is equal to the modulus of elasticity. For a work-hardening
material beyond the proportional limit, E, decreases gradually as plastic deformation
advances.

Equations (7.16) along with the equations of equilibrium and compatibility
are used for the solution of the elastic-plastic problem. It is thus evident that the
deformation theory of plasticity is actually a nonlinear elasticity theory with
changing values of modulus of elasticity and Poisson's ratio depending on the
amount of plastic deformation. This observation led to the following solution of
the elastic-plastic problem of the composite cylinder: The aluminum ring was
divided into N concentric layers with each layer having different elastic modulus
and Poisson's ratio. An elasticity analysis of an N+1 material composite cylinder
was then performed following an analogous procedure as in the case of the two-
material cylinder. This solution served as a subroutine to a computer program
written for the elastoplastic solution of the problem [63]. Having determined the
critical temperature at which the first layer at the fiber-matrix interface yields, the
temperature is increased in small steps. For each step,.the tangent modulus and

Poisson's ratio of each layer are determined from the value of the equivalent strain
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in conjunction with the uniaxial stress-strain curve of the material in tension. For
each layer, stresses and strains are determined at a representative point at the middle
of its thickness. An iterative analysis was performed for each temperature step until
convergence was achieved. For each temperature, the values of tangent modulus
and Poisson's ratio for each layer were updated according to the value of the
equivalent strain. In this way the complete history of stress and strain along the
radius of the composite cylinder was determined as the temperature was increased
incrementally. The flow chart for the computational procedure used is shown in

Fig. 7.2.

7.4 Results and Discussion (ROM and CCM)
The analyses made use of the constituent properties described in Section 3.
The post yield stress-strain curve of aluminum was represented by a

polynomial of the form

c= i C,e"
n=0
where the coefficients C, are temperature-dependent. They were determined at
various temperatures and then a least squares regression analyéis was performed to
obtain the functions C,= C,(T).

Both the ROM and CCM micromechanical models discussed before were
used. For the two-material composite cylinder model, the outer radius R, was
taken equal to 1.51 R which corresponds to a fiber volume ratio of 0.44. For the
elastoplastic analysis the matrix cylinder was divided into eight layers each of
thickness equal to 0.064 R;. The critical temperature at which the aluminum matrix
starts to deform plastically was first determined by the two micromechanical
models. It was found that (AT)., = 74°C and 66°C (165°F and 150°F) for the ROM

and CCM models, respectively.
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Fig. 7.2 Flow Chart of the Composite Cylinder Thermal Loading Program.
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In the CCM an incremental stress-strain analysis based on the deformation
theory of plasticity as described previously was performed. The temperature was
increased in steps of 13.89°C (25° F) and the complete three-dimensional stress
distribution at the midpoint of the thickness of each layer of the aluminum ring was
determined.

Predictions of the longitudinal and transverse thermal strain of the
composite by the ROM and the CCM are shown in Fig. 7.3 by circles and
asterisks, respectively, together with the experimental results. The variation of the
two CTE's o) and o, with temperature as it was determined experimentally and
predicted by the two models is shown in Fig. 7.4. From Figs.7.3 and 7.4 it is
observed that the theoretical predictions are in good agreement with the
experimental results for both the longitudinal and transverse strains. Furthermore, it
can be seen that the predictions based on the CCM are closer to experimental results
than those of the ROM. This result is attributed to the fact that, in the CCM, the
complete three-dimensional stress distribution is considered, while in the ROM, the
effect of transverse stresses is omitted and only the longitudinal stresses are
accounted for.

Figure 7.5 shows the variation of the axial, ¢,, radial, o,, and
circumferential, Gg, stresses along half the radius of the CCM for AT = 79°C
(175°F). All three stress components are constant in the fiber, while they vary
along the thickness of the ring. The axial stress is tensile in the fiber and
compressive in the matrix with increasing magnitude from the fiber/matrix interface
to the outer radius of the composite cylinder. The radial stress is tensile in both the
fiber and matrix, while the circumferential stress is tensile in the fiber and
compressive in the matrix. In the fiber it is equal to the radial stress, while in the
matrix it takes its maximum value at the fiber/matrix interface. Note that high

transverse stresses of the same order of magnitude as the axial stress are developed
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in the matrix and the fiber. These stresses are ignored in the ROM model. The
variation of the o;, 6y and G, stresses along the thickness of the aluminum matrix
for various temperatures is shown in Figs. 7.6 to 7.8. In Fig. 7.8 the variation of
o, stress is shown in a piecewise form, as it was determined in the eight layers of
the matrix along which it is constant. Observe from Figs. 7.6 to 7.8 that all
stresses increase with temperature but with a decreasing rate. The variation with
temperature of the stress components G, in the fiber and the matrix (0, and G,p)
according to the CCM and the ROM models and the stress ©f= Ogr in the fiber
according to the CCM is shown in Fig. 7.9. Note that the stresses approach a
plateau as the temperature approaches 370°C (700°F). The axial stress predicted by
the two models differs by approximately 15 percent at high temperatures. Finally,
Fig. 7.10 shows the variation of the effective strain gefr along the thickness of the
matrix for different temperatures. This strain decreases from the fiber/matrix i
interface toward the outer radius of the composite cylinder and increases with
temperature.

The main results of the present investigation may be summarized as
follows:

1. Above a critical temperature of 66°C (150°F) the longitudinal and
transverse thermal strains become nonlinear resulting in decreasing longitudinal and
increasing transverse CTE's with temperature.

2. The beginning of nonlinearity of the strain-temperature curves coincides
with the development of plastic deformation in the aluminum matrix.

3. Elastic-plastic micromechanical analyses based on the rule of mixtures
and the composite cylinder model were developed. In the analysis the changing
material properties of the aluminum matrix, including the stress-strain curve and the

; ’ CTE, were taken into consideration.

4. The complete three-dimensional stress distribution in both the fiber and
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the matrix was determined from the micromechanical analysis.

5. High triaxial stresses above the critical temperature resulting in plastic
deformation of the matrix were developed. Plastic stresses are higher at the
fiber/matrix interface and decrease away from it.

6. The transverse radial and circumferential stresses in the fiber and the
matrix predicted by the CCM are of the same order of magnitude as the axial
stresses and should not be ignored. These stresses are responsible for the
development of excessive plastic yielding in the matrix. The ROM model does not
take into account the transverse stresses.

7. The axial and transverse stresses developed in the fiber and matrix
increase with temperature and approach limiting values.

8. Theoretical predictions by both models and the experimental results for
the longitudinal CTE were in satisfactory agreement. However, for the transverse
CTE the predictions of the CCM are much closer to the experimental values than
those of the ROM model. Deviations between the predictions of the ROM model

and experimental results are large at higher temperatures.

7.5 Thermo-elastoplastic Analysis Model [56]

A thermo-elastoplastic analytical model was developed for prediction of the
three-dimensional state of residual stress in the SiC/Al composite. The full
development and description of the analytical model is included in Appendix A.
The analysis was based on the coaxial cylinder model with perfect interfacial
bonding. It was assumed that the fiber is linear elastic and temperature-independent
and the matrix is elastoplastic following the power law strain hardening model.
The residual stress-free temperature was assumed to be 288° C (550° F), i.e., 0.6
of the absolute melting temperature of aluminum, because above this temperature

stress relaxation relieves the residual stress buildup.
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Figure 7.11 shows the distribution of thermal residual stresses in the fiber
and matrix at various temperatures. All residual stress components in the fiber are
constant with radial distance and compressive. In the matrix, the radial stress is
compressive whereas the circumferential and axial stresses are tensile. Matrix
plastic flow reduces the residual stress buildup significantly. Figure 7.12 shows
the variation with temperature of the longitudinal and transverse thermal strains

compared with experimental measurements.
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8. THERMOMECHANICAL ANALYSIS OF SiC/Al COMPOSITE
8.1 Introduction

Metal matrix composites reinforced with continuous elastic fibers may
experience a pronounced degree of inelastic deformation when subjected to
thermomechanical loading. This inelastic behavior is indicative of the overall
nonlinear stress-strain or strain-temperature response of the composite. The state of
stress in the matrix is no longer homogeneous and it depends on the history of
deformation and the strain rate. A number of different micromechanical approaches
which give not only the overall behavior of the composite but also the detailed
stress state in the constituent materials have been proposed.

Shaffer [64, 65] developed a simple strength of materials analysis to predict
the longitudinal and transverse stress-strain curves of a unidirectional composite
containing elastic fibers in a nonlinear matrix material. Hill [66] studied the average
moduli of fiber composites in which the matrix exhibits elastoplastic behavior. The
finite element method has been applied extensively to analyze micromechanical
models of fibrous composites exhibiting elastoplastic deformation. Lin et al. [67]
performed an elastic-plastic analysis using finite elements in conjunction with the
Prandtl-Reuss incremental plasticity equation to analyze filamentary composites
subjected to longitudinal loading. Adams [68] studied the response to transverse
loading of a unidirectional composite with nonlinear matrix using a finite element
program. A nonlinear finite element analysis of a composite under shear and
transverse loading based on triangular elements and regularly-spaced inclusion
arrays has been performed by Foye [36]. Finite element studies for the
investigation of the behavior of unidirectional composites with matrix material
exhibiting inelastic behavior have been conducted by Adams and Miller [69]. A
three-dimensional finite element code for thé elastoplastic analysis of fiber-

reinforced composite materials and structures has been developed by Bahei-El-Din
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et al. [70]. This code uses a continuum material mode] for elastic-plastic analysis
developed by Bahei-El-Din and Dvorak [71, 72]. A finite element analysis of a
regular hexagonal array model was used by Dvorak et al. [14] for the construction
of initial yield surfaces of boron/aluminum composites subjected to arbitrary
combinations of applied stress and temperature.

A class of micromechanical models for the study of elastoplastic fibrous,
particulate and hybrid composite systems based on a hexagonal array geometry
have been presented by Dvorak and Teply [73]. Upper and lower bounds of the
instantaneous stiffnesses of the composite were obtained. A two-material
composite cylinder model has been proposed by Hill [74], Hashin and Rosen [59]
and Whitney and Riley [60] for micromechanical analysis. The model was used for
the study of the elastoplastic behavior of two- and three-material composite
cylinders by Hecker et al. [61,62]. A mechanics of materials elastoplastic model
for the investigation of the thermomechanical behavior of metal matrix composites
has been proposed by Min and Crossman [16]. The matrix was considered as an
elastic-perfectly plastic material. A continuum model for the prediction of the
overall behavior of filamentary composites with elastoplastic constituents has been
proposed by Aboudi [75,76]. The model is based on the assumption that the
continuous fibers are arranged in a doubly periodic array and employs the unified
theory of Bodner and Partom for the description of the inelastic behavior of the
matrix. Explicit constitutive relations between the average stresses and elastic and
inelastic strains were given. This model was also used by Pindera et al [77,78] for
the prediction of the elastoplastic response of boron/aluminum and
graphite/aluminum composites under combined loading. A review of several
elastoplastic models for fibrous composites was given by Bahei-El-Din and Dvorak
[79]. Sun and co-workers [80,81] presented zlm orthotropic plasticity model to

describe the elastoplastic behavior of metal matrix composites. The model is
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derived from a plastic potential function of the stress components which has a
quadratic form. Gdoutos et al. [82] used an elastoplastic analysis of the composite
cylinder model (CCM) described before to determine the mechanical behavior of the
SiC/Al composite at different temperatures. Chun et al. [83,84] conducted two
different thermoelastoplastic analyses, one based on an approximation scheme with

the Prandtl-Reuss plastic flow model and the von Mises criterion and the other

based on an average field theory.

8.2 Composite Cylinder Model [82]

The description and assumptions of the CCM were given before (Section
7.3). The application of this model to the study of mechanical behavior of the
SiC/Al composite is described in detail in Appendix B. An elastoplastic
micromechanical analysis of the model was performed in which the fiber was
assumed to be linear elastic and the matrix elastoplastic with work hardening. The
analysis was based on the deformation theory of plasticity in conjunction with the
voh Mises yield criterion.

Figures 8.1 and 8.2 show how the predicted longitudinal stress-strain
curves at 24° C (75° F) and 288° C (550° F) are in good agreement with the
experimental ones. The analysis also yielded the complete three-dimensional stress
distributions in the composite. Typical stress distributions in the fiber and matrix
for a given applied strain of €, = 0.175% at room temperature are shown in Fig.
8.3. Similar stress distributions were calculated for various levels of applied strain
up to €, = 0.833%. It is seen that in addition to longitudinal stresses transverse
stresses in both the fiber and matrix were developed as a result of the difference in
Poisson's ratios of the two materials. The transverse stresses, although much

smaller than the longitudinal stresses, contributed to the plastic deformation of the

matrix.
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Fig. 8.2 Longitudinal Tensile Stress-Strain Curves of SiC/Al Composite at T = 288°C (550°F)
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The main results of the CCM analysis may be summarized as follows:

1. Slight nonlinearity in the stress-strain behavior of SiC/Al appears
beyond a critical value of applied strain. This is attributed to the fact that most of
the applied load is taken by the fibers due to their much higher elastic modulus.
The deviation from linearity is more pronounced at higher temperatures.

2. The beginning of nonlinearity in the stress-strain curves coincides
with the development of plastic deformation in the aluminum matrix.

3. The transverse stresses developed due to the difference in Poisson's
ratios of the fiber and matrix are small for linear elastic behavior, but they increase
as plastic deformation is advanced. However, the transverse stresses are an order
of magnitude smaller than the axial stresses. These stresses are ignored in the
micromechanical analysis based on the rule of mixtures.

4. The radial stresses in the matrix are compressive, while the
circumferential stresses are tensile. This results in an increase of the equivalent
stress and the accelerated plastic distortion of the matrix when compared with the
case when the transverse stresses are ignored.

5. Very good agreement between the experimental results and the

predictions of the composite cylinder model was achieved.

8.3 Thermo-elastoplastic Analysis Model - Successive
Approximation Scheme [83]

A thermo-elastoplastic analytical model was developed for prediction of the
three-dimensional state of stress in the fiber and matrix of the SiC/Al composite
under longitudinal tensile loading. The full development and application of the
model is included in Appendix C. The same approach described in Section 7.5 was
followed.

Stress distributions in the fiber and matrix were obtained for various levels

of applied stress and at various temperatures. Figure 8.4 shows such stress
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distributions for various levels of applied longitudinal stress from G, = 275 MPa to
0, = 1654.8 MPa. The radial and circumferential stresses are approximately an
order of magnitude lower than the axial stress. The stresses in the matrix show
large variations while the stresses in the fiber are uniform.

Figure 8.5 shows how the predicted stress-strain curves under longitudinal
loading at 24° C (75° F) and 288° C (550° F) agree well with the experimental ones.

The successive approximation method was found to be a useful tool in
solving problems where the boundary conditions are not explicitly prescribed. The
best advantage of this approach is that the strain and stress fields are computed for
any given load without incrementing the load. However, the method should be
refined by considering additional effects such as residual stresses and creep,

particularly for studying the composite behavior in the transverse direction.

8.4 Thermo-elastoplastic Analysis - Average Field Theory Model
[84]

The thermo-elastoplastic behavior of a unidirectional SiC/Al composite was
studied with a micromechanical model based on the average field theory proposed
by Mori and Tanaka [85]. The full development and application of the model is
included in Appendix D.

The effective strain response of the composite under thermomnechanical
loading was obtained by an average field theory. The fiber is assumed to be elastic
and temperature independent and the matrix is assumed to be a thermoelastoplastic
material that is fitted into a series of power law strain hardening models. The
thermoelastoplastic analysis was carried out by introducing the concept of secant
properties to the average field theory.

Under transverse tensile loading the secant properties of the matrix and the
average stresses in the matrix and fiber at room temperature were obtained as a

function of applied stress. It is noticed that the larger portion of the load is
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transferred to the fibers due to their high stiffness. Figure 8.6 shows predicted and
experimental stress-strain curves under transverse tensile loading at three different
temperatures. At room temperature the agreement between predicted and
experimental results is good. At higher temperatures the agreement is generally
good, but some deviations occur in the transition regions between elastic and fully
plastic behavior. This can be attributed to inelastic deformation other than plastic
flow (creep), higher heterogeneous local deformation of matrix and degradation of
interfacial properties with temperature.

The predicted stress-strain curves under longitudinal tensile loading at
different temperatures are also compared with the experimental ones (Figs. 8.7 -
8.9). Favorable agreement is observed at all three temperatures, because, under
longitudinal loading, the behavior of the composite is dominated by the fibers and
any complex behavior of the matrix has a small influence.

The model was found to be a useful tool for predicting thermomechanical
behavior of unidirectional metal matrix composites. However, the model should be
improved by considering additional inelastic effects such as creep, particularly for

transverse loading above the homologous temperature of the matrix.
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9. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE WORK

Experimental methods were developed, adapted and applied to the
characterization of a metal matrix composite system and its constituents. The
material investigated was unidirectional silicon carbide/aluminum (SCS-2/6061 Al ).

The silicon carbide fiber (SCS-2) was characterized by determining its
modulus, strength and coefficient of thermal expansion. A new method was
developed for the latter determination. The aluminum matrix was characterized in
two forms, the T4 and the fully annealed conditions. Stress-strain curves were
obtained at several temperatures between 24° C (75° F) and 399 ° C (750° F) and at
two strain rates, 0.02% and 115% per second. Thermal expansion behavior was
measured up to 482° C (900° F). Creep behavior was also measured at three
different temperatures.

The unidirectional composite obtained in the form of 8-ply 1.422 mm (0.56
in.) thick plates was characterized physically and thermomechanically at three
temperatures 24° C (75° F), 288° C (550° F) and 399° C (750° F). Stress-strain
curves to failure were obtained under longitudinal, transverse and in-plane shear
loading at the three temperatures above. The longitudinal tensile strength decreases
moderately with temperature whereas the transverse tensile and in-plane shear
strengths decrease sharply with increasing temperature. The longitudinal and in-
plane shear moduli do not change with temperature whereas the transverse modulus
shows a gradual reduction. Creep rates increase sharply near and above 288° C
(550° F) under isothermal conditions. Thermal cycling increases creep rates much
above the corresponding rates under isothermal conditions at the upper limit of the
thermal cycling.

The applicability of a proposed set of multifactor thermoviscoplastic
nonlinear constitutive relationships (TVP-NCR) and a computer code (METCAN)

was investigated. A procedure was developed for determining the unknown




exponents in the TVP-NCR equations by fitting them to experimental data. In the
present work only the temperature and stress dependence of the mechanical and
thermal properties of the composite and its constituent matrix were considered.
Predictions of the thermomechanical behavior of the composite and aluminum
matrix by the TVP-NCR was generally good for most properties. A modification
of the TVP-NCR was proposed in the present work to accommodate for material
properties whose variation with a variable does not comply with the end conditions
dictated by the TVP-NCR. Theoretical predictions from the modified TVP-NCR
were found to be in good agreement with the experimental results. Deviations,
however, between experimental and predicted results appeared in cases where the
form of the experimental curve deviates from the generic form of the TVP-NCR.

The computer code (METCAN) developed at NASA Lewis Research Center
[18] to perform nonlinear analysis of fiber reinforced composites was used for the
prediction of the thermomechanical behavior of the SiC/Al composite under
investigation. Introducing the previously determined values of the exponents for
the aluminum matrix into METCAN, the longitudinal and transverse stress-strain
curves of the unidirectional composite were predicted at two temperatures. The
experimental results were found to be in good agreement with the theoretical
predictions from METCAN . Furthermore, the METCAN code was used to predict
the magnitude of the residual stresses and strains generated in the composite and its
constituent materials during cool-down from the fabrication temperature. These
residual stresses were high enough to cause strain hardening of the matrix during
cool-down. The composite residual strains as predicted by METCAN and the two-
material composite cylinder were found to be in very good agreement.

Thermal deformations and stresses were studied in the
silicon-carbide/aluminum filamentary cornpositelat temperatures up to 370° C (700°

F). An elastoplastic micromechanical analysis based on a one-dimensional rule-of-
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mixtures model and a two material composite cylinder model was performed. It
was established that beyond a critical temperature of 66° C (150° F) thermal strains
become nonlinear with decreasing longitudinal and increasing transverse thermal
expansion coefficients. This behavior was attributed to the plastic stresses in the
aluminum matrix above the critical temperature. An elastoplastic analysis of both
micromechanical models was performed to determine the stress distributions in both
the fiber and matrix of the composite. A thermo-elastoplastic analysis was also
conducted based on a successive approximation scheme with a Prandtl-Reuss
plastic flow model. Theoretical predictions by all models and the experimental
results for the coefficients of thermal expansion were in satisfactory agreement.

The behavior of the unidirectional SiC/Al composite under
thermomeqhanical loading was also analyzed by three different approaches, the
composite cylinder model, the thermo-elastoplastic analysis with the successive
approximation scheme, and a similar analysis based on the average field theory.
The first two models gave results for the longitudinal stress-strain behavior of the
composite which were in good agreement with experiment plus the
three-dimensional state of stress in the matrix and fiber. However, these two
models are not applicable to the case of transverse loading. The third model, based
on the average field theory did not yield detailed stress distributions in the matrix
and fiber, however, predicted stress-strain behavior under longitudinal and
transverse loading at different temperatures. The agreement with experimental
results was very good for the case of longitudinal loading and reasonable for the
case of transverse loading.

The following recommendations are made for future work.
(1) Investigate other MMC systems, especially those with better potential for

high-temperature applications. Atten.tion should be directed towards

develdping MMC systems that are more easily processable, more readily
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3)

“4)

)

(6)

(7

(8

®

available in various forms and less expensive.
Investigate further time and temperature effects by conducting creep tests at

different temperatures and at different stress amplitudes.

Perform thermomechanical cyclic testing of the selected MMC systems and

investigate failure mechanisms.

Investigate the accelerated creep phenomenon under thermal cycling and
develop analysis for its description and prediction. The subject of
nonisothermal creep in general is very important and deserves deeper

investigation.

Extend characterization and analyses to crossply and multi-directional

lamiinates.

Investigate the effects of flexural, torsional and combined loading on the

behavior of MMC's.

Investigate dynamic effects, such as high-rate properties, impact response

and wave propagation characteristics.

Develop nondestructive evaluation methods for detection
characterization of flaws and damage in MMC's resulting from a variety of

loading conditions.

Evaluate METCAN for different materials, loading and environmental
conditions. There is evidence that much better agreement between
experimental results and METCAN can be obtained if the proper in-situ
matrix properties are used. In the case of aluminum, properties in the fully
annealed state would give a much better agreement with experiments. This

should be verified.

191

and



REFERENCES

1.

10.

11.

12.

13.

14,

Flom, Y. and Arsenault, R. J., "Deformation in Al-SiC Composites Due to
Thermal Stresses,” Mat. Sci. Engng., Vol. 75, 1985, pp. 151-167.

Flom, Y. and Arsenault, R. J., "Interfacial Bond Strength in an Aluminum
Alloy 6061-SiC Composite," Mat. Sci. Engng., Vol. 77, 1986, pp. 191-
197.

McDanels, D. L., "Analysis of Stress-Strain, Fracture, and Ductility
Behavior of Aluminum Matrix Composites Containing Discontinuous
Silicon Carbide Reinforcement,” Metal. Trans., Vol. 16A, 1985, pp. 1105-
1115.

Divecha, A. P., Fishman, S. G. and Karmarkar, S.D., "Silicon Carbide
Reinforced Aluminum. A Formable Composite," J. Metals, Vol. 9, 1981,
pp. 12-17.

Arsenault, R. J., "The Strengthening of Aluminum Alloy 6061 by Fiber and
Platelet Silicon Carbide," Mat Sci. Engng., Vol. 64, 1984, pp. 171-181.

Tsangarakis, N., Andrews, B.O. and Cavallaro, C., "Mechanical
Properties of Some Silicon Carbide Reinforced Aluminum Composites," J.
Comp. Mat., Vol. 21, 1987, pp. 481-492.

Levin, V. M.,,"On the Coefficients of Thermal Expansion of
Heterogeneous Materials," (in Russian) Mekhanika T verdogo Tela, Vol. 2,
1967, pp. 88-94.

Van Fo Fy, G. A, "Elastic Constants and Thermal Expansion of Certain
Bodies with Inhomogeneous Regular Structure," Sovier Physics, Doklady,
Vol. 11, 1966, p. 176.

Van Fo Fy, G. A., "Basic Relations of the Theory of Oriented Glass-
Reinforced Plastics with Hollow Fibers," (in Russian), Mekhanika
Tverdogo Tela, Vol. 2, 1966, p. 763.

Schapery, R. A., "Thermal Expansion Coefficients of Composite Materials
Based on Energy Principles," J. Comp. Mat., Vol. 2, 1968, pp. 380-404.

Rosen, B. W. and Hashin, Z., "Effective Thermal Expansion Coefficients
and Specific Heats of Composite Materials," Int. J. Engng. Sci., Vol. 8,
1970, pp. 157-173.

Dvorak, G. J. and Chen, T., "Thermal Expansion of Three-Phase
Composite Materials," J. Appl. Mech., Vol. 56, 1989, pp. 418-422.

Hoffman, C. A., "Effects of Thermal Loading on Fiber-Reinforced
Composites with Constituents of Differing Thermal Expansivities," J.
Engng. Mat. Tech., Vol. 95, 1973, pp. 55-62.

Dvorak, G. I., Rao, M. S. M. and Tarn, J. Q., "Yielding in Unidirectional

Composites under External Load and Temperature Changes," J. Comp.
Mat., Vol. 7, 1973, pp. 194-216. '

192




15.

16.

17.

18.

19.

20.

21.
22.

23.
24.

25.

26.
27,
28.

29.

Kural, M. H. and Min, B. K., "The Effects of Matrix Plasticity on the
Thermal Deformation of Continuous Fiber Graphite/Metal Composites,” J.
Comp. Mat., Vol. 18, 1984, pp. 519-535.

Min., B. K. and Crossman, F. W., "History-Dependent Thermomechanical
Properties of Graphite/Aluminum Unidirectional Composites," Composite
Materials: Testing and Design (Sixth Conference), ASTM STP 787, edited
by 1. M. Daniel, American Society for Testing and Materials, Philadelphia,
1982, pp. 371-392. -

Chamis, C. C. and Hopkins, D. A., "Thermoviscoplastic Nonlinear
Constitutive Relationships for Structural Analysis of High-Temperature
Metal Matrix Composites," in Testing Technology of Metal Matrix
Composites, ASTM STP 964, edited by DiGiovanni, P. R. and Adsit, N.
R., American Society for Testing and Materials, Philadelphia, 1988, pp.
177-196.

Hopkins, D. A. and Pappu, L. M., "METCAN-The Metal Matrix
Composite Analyzer,” NASA-Lewis Research Center, 1988.

Palazotto, A. N., Ruh, R. and Watt, G., "Introduction to Metal Matrix
Composites in Aerospace Application," Journal of Aerospace Engineering,
Vol. 1, No. 1, January 1988, pp. 3-17.

Strong, A. B., "Fundamentals of Composite Manufacturing: Materials,
Methods, and Applications,” SME, 1989,

Schwartz, M. M., "Composite Materials Handbook," McGraw-Hill, 1984.

Vinson, J. J. and Chou, T.-W., "Composite Materials and Their Use in
Structures,” John Wiley & Sons, 1975.

McConnell, V. P., "Metal-Matrix Composites: Materials in Transition-Part
L" Advanced Composites, May/June 1990, pp. 29-38.

Hunt, M., "Aluminum Composites Come of Age," Materials Engineering,
January 1989, pp. 37-40.

Lynch, C. T., Kershaw, J. P. and Collins, B. R., "Mechanical Properties
of Metal-Matrix Composites," CRC Crit. Rev. Solid State Sci., Vol. 1,
Issue 4, November 1970, pp. 481-573.

Hill, R., "Elastic Properties of Reinforced Solids: Some Theoretical
Principles," J. Mech. Phys. Solids, Vol. 11, 1963, pp. 357-372.

Daniel, I. M. and Ishai, O.,Engineering Mechanics of Composite Materials,
Oxford University Press, New York, 1994, pp. 85-90.

Lynch, C. T. and Kershaw, J. P., "Metal Matrix Composites," CRC Press,
1972, p. 135.

Hashin, Z., "Analysis of Composite Materials-A Survey," J. Applied
Mechanics, Vol. 50, 1983, pp. 481-505. -

193




30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Hashin Z. and Rosen, B. W., "The Elastic Moduli of Fiber-Reinforced
Materials," J. Appl. Mechanics, Vol. 21, 1964, pp. 233-242.

Halpin, J. C. and Tsai, 8. W., "Effects of Environmental Factors on
Composite Materials," Air Force Technical Report AFML-TR-67-423,
Wright Aeronautical Labs, Dayton, OH, 1967.

Hashin, "Analysis of Composites with Anisotropic Constituents," J. Appl.
Mech., Vol. 46, 1979, pp. 543-550.

Rogers, K. F., Phillips, L. N., Kingston-Lee, D. M., Yates, B., Overy,
M. I, Sargent, J. P. and McCalla, B. A., "The Thermal Expansion of
Carbon Fibre-Reinforced Plastics, Part I - The Influence of Fibre Type and
Orientation," Journal of Material Science, Vol. 12, 1977, pp. 718-734.

Chamis, C. C., "Simplified Composite Micromechanics Equations for
Hygral, Thermal and Mechanical Properties," SAMPE Quarterly, Vol. 15,
April 1984, pp. 14-23.

Adams, D. F., "Combined Loading Micromechanical Analysis of a
Unidirectional Composite," Composites, Vol. 15, July 1984, pp. 181-192.

Foye, R. L., "Theoretical Post-Yielding Behavior of Composite Laminates.
Part I - Inelastic Micromechanics," J. Comp. Mat.., Vol. 7, 1973, pp. 178-
193.

Caruso, J. J. and Chamis, C. C., "Assessment of Amplified Composite
Micromechanics Using Three-Dimensional-Finite Elements Analysis,"
Journal Composites Technology and Research, Vol. 8, Fall 1986, pp. 77-
83.

Bowles, D. E., "Finite Element Composite Analysis Program (FECAP) for
a Microcomputer," NASA TM-100670, JULY 1088.

Hopkins, D. A. and Chamis, C. C., "A Unique Set of Micromechanics
Equations for High-Temperature Metal Matrix Composites," in Testing
Technology of Metal Matrix Composites, ASTM STP 964, edited by
DiGiovanni, P. R. and Adsit, N. R., American Society for Testing and
Materials, Philadelphia, 1988, pp. 159-176.

Nutt, S. and F. E. Wawner, "Silicon Carbide Filament: Microstructure,” J.
Maz. Scie., Vol 20, 1985, pp- 1953-60.

DiCarlo, J. A., "Creep of CVD Silicon Carbide Fibers," J. Mat. Scie., Vol.
21, 1986, pp. 217-24.

ASTM D3379-75, American Society for Testing Materials, Philadelphia,
U.S.A.

Whitney, J. M., Daniel, I. M. and Pipes, R. B., "Experimental Mechanics

of Fiber Reinforced Composite Materials,” Revised Edition, Prentice-Hall,
New Jersey, 1984. '

194




44, Nunes, J., "Tensile Behavior of Silicon Carbide Filaments and Silicon
Carbide Fiber-Reinforced 6061 Aluminum," in Failure Mechanisms in High
Performance Materials, edited by Early, J. G., Shives, T. R. and Smith, J.
H., Cambridge University Press, 1985, pp. 138-146.

45. Skinner, A., Koczak, M. J. and Lawley, A., "Tensile Properties of
SiC/Aluminum Filamentary Composites: Thermal Degradation Effects,"
Powder Metallurgy International, Vol. 14, No. 3, 1982, pp. 144-147.

46. Crane, R. L. and Krukonis, V. J., Ceramic Bulletin, Vol. 54, 1975, pp.
184-188.

47.  Hilmmer, N. J., "Thermal Expansion of Chemically Vapor Deposited
Silicon Carbide Fibers," Symposium on High Temperature Composites,
Proceedings of the American Society for Composites, Dayton, OH, June
13-15, 1989, pp. 206-213.

48.  Tsai, C.-L. and Daniel, I. M., "Method for Thermo-Mechanical
Characterization of Single Fibers," Composites Scie. and Tech., Vol. 50,
1994, pp. 7-12.

49, Daniel, I.M., Liber, T. and Chamis, C.C., "Measurement of Residual
Strains in Boron/Epoxy and Glass/Epoxy Laminates," Composite
Reliability, ASTM STP 580, Amer. Soc. for Testing and Materials,
Philadelphia, 1975, pp. 340-51.

50. Daniel, I. M. and Ishai, O., Engineering Mechanics of Composite
Materials, Oxford University Press, New York, 1994, pp.309-11; pp. 323-
4.

51. Pindera, M. J. and Lin, M. W., "Micromechanical Analysis of the
Elastoplastic Response of Metal Matrix Composites," J. Pressure Vessel
Technology, Vol. 111, 1989, pp. 183-90.

52. Fedor, R. J. and Ebert, L. J., "A Study of the Effects of Prestrain on the
Tensile Properties of Filamentary Composites," Journal of Engineering
Materials and Technology, Trans. ASME, April 1973, pp. 69-75.

53.  Lynch, C. T. and Kershaw, J. P., "Metal Matrix Composites” CRC Press,
1972, p. 107.

54.  1Ibid, p. 85.

55. Gdoutos, E. E., Karalekas, D. and Daniel, I. M., "Thermal Stress Analysis
of a Silicon Carbide/Aluminum Composite," Exper. Mechanics, Vol. 31,
No. 3, 1991, pp. 202-08.

56. Chun, H.-J., Daniel, .M. and Wooh, S.-C., "Residual Thermal Stresses in
a Filamentary SiC/Al Composite," to be submitted for publication.

- 57. Nadai, A., "Theory of Flow and Fracture of Solids,” McGraw-Hill, 2nd
Edition, 1950, p. 387.

195



58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

- T2.

Hill, R., "Theory of Mechanical Properties of Fibre-Strengthened Materials:
I. Elastic Behavior, II. Inelastic Behavior," J. Mech. Phys. Solids, Vol.
12, 1964, pp. 199-218.

Hashin, Z. and Rosen, B.W., "The Elastic Moduli of Fiber-Reinforced
Materials," J. Appl. Mech., Vol. 31, 1964, pp. 223-232.

Whitney, J. M. and Riley, M. B., "Elastic Properties of Fiber Reinforced
Composite Materials,” AIAA J., Vol. 4, 1966, pp. 1537-1542,

Hecker, S. S., Hamilton, C. H. and Ebert, L. ], "Elastoplastic Analysis of
Residual Stresses and Axial Loading in Composite Cylinders," J. Mater.,
Vol. 5, 1970, pp. 868-900.

Hamilton, C. H., Hecker, S. S. and Ebert, L. J., "Mechanical Behavior of
Uniaxially Loaded Multilayered Cylindrical Composites," J. Basic Engng.,
Trans. ASME, Ser. D, Vol. 93, 1971, pp- 661-670.

Karalekas, D., Gdoutos, E. E. and Daniel, I. M., "Micromechanical
Analysis of Nonlinear Thermal Deformation of Filamentary Metal Matrix
Composites," Computational Mechanics, Vol. 9, 1991, pp. 17-26.

Shaffer, B.W., "Stress-Strain Relations of Reinforced Plastics Parallel and
Normal to Their Internal Filaments," AIAA, J., Vol. 2, 1964, pp. 348-352.

Shaffer, B. W., "Elastic-Plastic Stress Distribution Within Reinforced
Plastics Loaded Normal to its Internal Filaments," AIAA J., Vol. 6, 1968,
pp. 2316-2324.

Hill, R., "Theory of Mechanical Properties of Fibre-Strengthened Materials:
II. Inelastic Behavior," J. Mech. Phys. Sol., Vol. 12, 1964, pp. 213-218.

Lin, T. H., Salinas, D. and Ito, Y. M., "Elastic-Plastic Analysis of
Unidirectional Composites," J. Comp. Mat., Vol. 6, 1972, pp. 48-60.

Adams, D. F., "Inelastic Analysis of a Unidirectional Composite Subjected
to Transverse Normal Loading," J. Comp. Mat., Vol. 4, 1970, pp. 310-
328.

Adams, D. F. and Miller, A. K., "Hygrothermal Microstresses in a
Unidirectional Composite Exhibiting Inelastic Material Behavior," J. Comp.
Mat., Vol. 11, 1977, pp. 285-299.

Bahei-El-Din, Y. A., Dvorak, G. J. and Utku, S., "Finite Element Analysis
of Elastic-Plastic Fibrous Composite Structures," Comp. and Struct., Vol.
13, 1981, pp. 321-330.

Bahei-El-Din, Y. A. and Dvorak, G. J., “Plasticity of Composite
Laminates,” Proc. Research Workshop on Mechanics of Composite
Materials, edited by G. J. Dvorak, Duke University, 1978, pp. 32-54.

Bahei-El-Din, Y. A. and Dvorak, . I., "Plastic Yielding at a Circular Hole

in a Laminated FP-Al Plate," Modern Developments in Composite Materials
and Structures, edited by J. R. Vinson, 1979, pp. 123-147.

196



73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

Dvorak, G. J. and Teply, J. L., "Periodic Hexagonal Array Models for
Plasticity Analysis of Composite Materials," in Plasticity Today .
Modelling, Methods and Applications, edited by A.-Sawczuk and G.
Bianchi, Elsevier Appl. Sci. Publ., 1985, pp. 623-642.

Hill, R., "Theory of Mechanical Properties of Fibre-Strengthened Materials:
I, Elastic Behavior," J. Mech. Phys. Solids, Vol. 12, 1964, pp. 199-212.

Aboudi, J. "Elastoplasticity Theory for Composite Materials," Sol. Mech.
Arch., Vol. 11, 1986, pp. 141-183.

Aboudi, J., "Closed Form Constitutive Equations for Metal Matrix
Composites," Int. J. Engng. Sci., Vol. 25. 1987, pp. 1229-1240.

Pindera, M-J. and Lin, M. W., "Micromechanical Analysis of the
Elastoplastic Response of Metal Matrix Composites," J. Pressure Vessel
Tech., Vol. 111, 1989, pp. 183-190.

Pindera, M.-J., Herakovich, C. T., Becker, W. and Aboudi, J., "Nonlinear
Response of Unidirectional Boron/Aluminum," J. Comp. Mat., Vol. 24,
1990’ pp' 2"21.

Bahei-El-Din, Y. A. and Dvorak, G. J., "A Review of Plasticity Theory of
Fibrous Composite Materials," in Metal Matrix Composites: Testing,
Analysis, and Failure Modes, ASTM STP 1032, edited by W. S. Johnson,
American Society for Testing and Materials, 1989, pp. 103-129.

Rizzi, S. A., Leewood, A. R., Doyle, J. F. and Sun, C. T., "Elastic-Plastic
Analysis of Boron/Aluminum Composite Under Constrained Plasticity
Conditions," J. Comp. Mat., Vol. 21, 1987, pp. 734-749.

Sun, C. T., "Modeling Continuous Fiber Metal Matrix Composite as an
Orthotropic Elastic-Plastic Material," in Metal Matrix Composites: Testing,
Analysis and Failure Modes, ASTM STP 1032, edited by W. S. Johnson,
American Society for Testing and Materials, 1989, pp. 148-160.

Gdoutos, E. E., Karalekas, D. and Daniel, I. M., "Micromechanical
Analysis of Filamentary Metal Matrix Composites under Longitudinal
Loading," J. Comp. Tech. and Research, Vol. 13, No. 3, 1991, pp. 168-
74.

Chun, H. J,, Wooh, S. C. and Daniel, I. M., "Thermoelastoplastic
Analysis of Filamentary Metal Matrix Composites," submitted to J. of
Applied Mechanics, 1994.

Chun, H. J., Daniel, I. M. and Wooh, S. C., "Unidirectional SiC/Al
Composite Behavior under Thermomechanical Loading," to be submitted.

Mori, T. and Tanaka, K., "Average Stresses in Matrix and Average Energy

of Materials with Misfitting Inclusions," Acta Metallurgica, Vol. 21, pp.
571-74.

197






APPENDIX A






Residual Thermal Stresses in a Filamentary SiC/Al Composite

Heoung-Jae Chun, Research Assistant
Isaac M. Daniel, professor

Shi-Chang Wooh, Research Assistant Professor

Robert R. McCormick School of Engineering and Applied Science
Nothwestern University,

Evanston, Illinois 60208

A-1




| Abstract

Residual stresses introduced by the cooling process were investigated. The large
mismatch of the coefficients of thermal expansion (CTE) between the SCS-2 fiber and
6061 aluminum matrix tends to produce high residual stresses so that plastic flow of the
matrix is inevitable during cool down.

The elastoplastic behavior of a metal matrix composite material was studied. The
analysis is based on the successive approximation scheme with the Prandtl-Reuss plastic
flow model and von Mises criterion. The three-dimensional state of residual stress was
computed. It was found from the study that the plastic flow of the matrix relieves the
residual stresses in both fiber and matrix. In addition, the lon.gitudinal stress-strain curve
at room temperati:re under uniaxial tension and the thermal strain-temperature relationship

of the composite were predicted and compared with experimental results.

Introduction

Application of metal matrix composites (MMC’s) are in demand for the use of
many structural components in intermédiate to high temperature ranges. The MMC’s
have higher fracture toughness and ductility than ceramic matrix composites (CMC’s)
among the high temperature materials. The MMC’s have additional advantages including
high strength, elastic modulus, toughness, impact resistance, resistivity to temperature

change or thermal shock and surface durability, low sensitivity to surface flaws, and high

electrical and thermal conductivity.
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When a MMC is cooled down from the high fabrication temperature to room
temperature, high residual stresses may develop due to the mismatch of the coefficients of
thermal expansion between fiber and matrix. The residual stresses are also dependent on
the fiber and matrix properties and the matrix plasticity behavior which are all functions of
temperature. It is reasonable that the matrix may experience plastic flow since the relief of
residual stresses in the composite at room temperature is not possible other than through
plastic flow. This may cause initial yielding of the matrix prior to any application of
loading. Thus, it is desirable to study the composite behavior by considering the plastic
flow and residual stresses.

Residual stresses were investizated by many authors. For example, Haener and
Ashbaugh (1967), Uemura ¢t al. (1979) and Arsenault and Taya (1987) studied the case
of elastic constituents, while Hill (1964), Piggott (1966), Hecker et al. (1970), Gayda and
Ebert (1979) and Vedula er al. (1988) considered plastic flow in determining residual
stresses.

According to Vedula ef al. (1988) the matrix experiences three stages during cool
down. Stage I is at high temperature where the stress relaxation is dominant. Residual
stresses in the matrix are negligibly small in this stage. The temperature range or the
lower bound of this stage dependents on the cooling rate. For slow cooling, aluminum
remains in stage I for temperatures down to 200°C (392°F). Stage Il occurs at an
intermediate temperature where the stress relaxation is no longer significant and elastic
stresses build up in the constituents. Stage III is at the lower temperature where plastic

flow of matrix begins. In this paper, the lower bound temperature of stage II used is
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288°C (550°F) that is 0.6 of absolute melting remperature and slightly above the
homologous temperature.

In this study, a continuous fiber composite is modeled by two concentric cylinders
representing the elastic fiber and elastoplastic matrix respectively. The effects of residual
stresses and plastic flow on thermomechanical behavior were studied by applying a
successive approximation method since the exact solution is not available. The buildup of
triaxial stresses in the cooling process is observed. A more realistic prediction of
thermomechanical behavior is obtained by considering plastic deformation of the matrix

along with residual stresses.

Theoretical Background

The representative volume element used in the analysis is a coaxial cylindrical
model (CCM). 1t has been used in micromechanical studies of the axisymmetry problems
by Ishikawa er al. (1978), Tesan (1980), Mikata and Taya (1985), Warwick and Clyne,
(1991) and Hsueh and Becher (1988). The model was used for the study of elastoplastic
analysis under thermomechanical loading by the successive approximation method by
Chun er al. (1994). The same analysis was used in this paper to study the residual stresses
and their effects. Figure | illustrates the continuous fiber model of MMC used in the
| analysis.

The following assumptions were made during derivation of the model. The
constituent materials are isotropic and the bonding between fiber and matrix is perfect.

Fibers are linearly elastic up to failure and the matrix is elastoplastic. There is no



temperature gradient in the material and the axial plane remains always plane. The fiber
volume fraction is reasonably low.
For an axisymmetric problem, the force equilibrium equation in the radial direction

and the compatibility conditions give

do, L9, =0

=0 1
ar r )
ey FTE (2)
ar ro

Furthermore, the elastoplastic stress-strain relationships are formulated by considering

additional plastic strains (&, €5, €7), L.e,,

6, = Gy 0 Ve, /)4 v(e, 20+ V(e ~e1)~(v +1asT] G

00 = T Tl ey~ vle, =)+ v(e D)= (v + DAAT] (3b)

E

o, =m[(l— Ve, —el)rvie, —e)+v(e, —£)) = (v +1)abT] (B.c)

where E is the elastic modulus, v Poisson’s ratio and « the coefficient of thermal

expansion. From egs. (1), (2) and (3), the following differential equation is obtained

d’e, L 3de, _(1-2v) de? N (1-2v)(e! - &) L+ d(aAT)

2 _ : - (4)
dr rodr  (1-vy dr (I-v)r (M-vy dr

For the case of uniform temperature distribution, this differential equation is solved in the

form

-2 ¢, (1-2) (1-2v) (el —£D)
=T\ reldr - ———— | r(e? —€))dr + i
’ (1"— v)r-I T )--I ‘ 2(1-v)j y (5.2)
—“g'l,—'{'(.j,
28
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the radial strain is obtained from eqs. (2) and (5.a) as

(1-2v) , ~2v) (I- V) Py g
£, = -1 g - l—v)r j Pdr +2 _[ r(ef —eh)dr .
+(]_2V)I(g* ~€) g, C L+ C,
2(1-v) 2r )
and the displacement
_(-2v) 020 1,1 ) —_v)r CELY
(1 oy J- J)(a &8 )ddr + J. -
——(—~+C,/
2r )

is obtained from the strain-displacement relationship. Note that the solutions have the

same form to those of the elastic case if the plastic strains become zero.

Elastic and Elastoplastc Solutions

Elastic and elastoplastic solutions are obtained from the previously derived
elastoplastic relations. The elastic solution is used for the fiber while the elastoplastic
solution is applied to the matrix. The prescribed boundary conditions for the elastoplastic
problems are not given in explicit form so that it is difficult to obtain the exact solutions.
’However, approximate solutions were found numérically by introducing the successive
,approximation scheme, that was used to solve various similar problems by many
investigators; Mendelson and Spero (1962), Davis (1963), and Tuba (1965).

There are altogether six unknowns: two constants C; and C,, in the elastic

solution, two constants C,_. C

(VM 2m

and the plastic strains & and & fin the elastoplastic




solution. These unknowns are determined by satisfying the following six boundary
conditions:

1. The axial strains in the fiber and matrix are equal and constant:

£y =€, =€, (7

where subscripts /'and m denote fiber and matrix, respectively.

38

. There exits no singularity in the displacement field at the center of the cylinder,

C,=0 (8)

(OS]

. Displacements are continuous at the boundary between fiber and matrix:
uf(a) = “m(a) (9)
4. Radial stresses are continuous at the boundary between fiber and matrix:

os(a)=0o,(a) (10)

5. The radial stress vanishes at r = b:

O-I'ﬂl(b):O (11)
6. Force equilibrium in the fiber direction yields
o.br
oy rdr+) o, rdr= - (12)

0 a s

where o, is the applied stress.

Nonlinear stress-strain behavior of the matrix is expressed by the power-law strain
hardening formula for the theoretical prediction as an input for constituent properties.
Figure 2 shows the model, in which the stress-strain curve of a station is expressed as:

oc=0,+kL € (13)

m® p




where £, and #, are material constants, and o, the elastic limit stress or the yield stress.

If the station is unloaded before yielding, the unloading path traces the loading
path. On the other hand, if the station is unloaded after yielding, the path follows the line
parallel to that of the elastic region as shown in Fig. 2. During unloading, if there is no
reversal yielding, the reversal stresses are purely elastic. But if reversal yielding occurs,
then the successive approximation method is used to calculate reversal elastoplastic
stresses. The Bauschinger effect may be considered since it is not required that yield
stresses in tension and compression be the same. However, the Bauschinger effect is
neglected in this paper.

The step-by-step procedure of the successive approximation scheme is the
following:

1. Assign number of equidistant stations (N) along the radial direction from the

center of the cylinder as illustrated in Fig. 1.

188}

- Assume that £”and &) are zero at every station, as a first approximation.

C

o

¢

2m

. Determine four unknowns

1 and ¢. from the boundary conditions.

W

4. Compute strains for fiber and matrix and obtain the corresponding stresses.

5. Calculate effective stresses in the matrix (&) at each station from
G, =473,9, (14)

where SU is the deviatoric stress tensor of the matrix.

6. For all stations at which the effective stress exceeds the elastic limit, calculate

the effective total strain in the matrix from

A-8




£, =+Tee (15)
J

where ¢, is the deviatoric strain tensor of the matrix.

7. The effective plastic strain €’ is calculated from the stress-strain curves and

the following relationships:

2(1 + VIII )5-17'

16
3 EIII ( )

—=p _ = _
6"" - gm

8. Obtain the next approximate plastic strains from the plastic flow rule expressed

in terms of strains:

Use these computed plastic strains in the second approximation for the
yielded stations and zero for the remaining stations.

9. Repeat from step 3 until the strains at all stations converge.

Experimental Procedure

To implement the predictive model above, it is necessary to know the
thermomechanical properties of the constituent materials and the fiber volume ratio of the
composite. The fiber (SCS-2) has an average diameter of 140 ym (0.00551 in.) and its
“measured elastic modulus is 400 GPa (58 Msi). The fiber behaves elasticly up to failure
and is assumed isotropic and temperature independent. The thermal expansion of the fiber
shows significant nonlinearity in the range between room temperature and 449°C (340°F),

but it is linear up to 1299°C (2370°F), as discussed by Hillmer (1989). The CTE of SCS-




2 measured by Tsai and Daniel (1994) was used in this study. The stress-strain curves of
Al 6061-0O (annealed state) are obtained for various temperatures. The thermal expansion
of the matrix was also measured. The experimental results show that the matrix behaves
thermoelastoplastically. The measured constituent properties are shown in Table 1.

The material investigated is an eight-ply unidirectional silicon carbide/aluminum
(SiC/Al) composite (SCS-2/6061Al, Textron Specialty Materials). The composite was
fabricated by the diffusion bonding consolidation process.

The as-obtained 1.42mm (0.056in.) thick composite plate was cut into 12.7mm
(0.51n.) wide 152.4mm (6.0in.) long coupons and tabbed with high strength adhesive for
use at elevated temperatures. Two types of adl;esive were used for different temperature
ranges. For the temperature range between 24°C (75°F) and 288°C (550°F), a polyimide
adhesive film (FM36, American Cyanamid) was used; while an aluminum filled
condensation type polyimide adhesive film (FM680, American Cyanamid) was used for the
temperature range of 283°C (550°F) to 399°C (750°F). Both types are supported by a
glass cloth carrier for better shear and peel-off strengths. These adhesives provide
sufficiently high strength for testing if the bonded tabs are sufficiently long (38.1mm,
1.5in.).

High temperature tests were conducted in a thermal chamber. For strain
~ measurement, the specimens were instrumented with commercially available strain gages
for high temperature applications (WK-gages from Micro Measurements and RKO-gages
from J. P. Technology). The strain readings from the gages were compensated for

temperature by using a dummy gage technique and were verified by measuring the axial
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strain with a water-cooled clip-on extensometer. The specimen surface temperature was
monitored by a K-type thermocouple bonded on the surface with ceramic adhesive. The
temperature signal was also used as a feedback to the temperature controller.

The thermal strains of the composite were measured with strain gages.
Unidirectional specimens were instrumented with WK-00 (Micro Measurements) gages
f<;r measuring longitudinal and transverse thermal strains. At least three thermocouples
were attached to the specimen to monitor temperature. A programmable hot press (MTP-
14, Tetahedron) was used for controlling temperature change step by step. The specimens
were heated up to 260°C (500°F) with the gages at increments of 14°C (25°F) with half
hour dwell interyals to stabilize the temperatureland expansivity of the specimen. A strain
gage bridge conditioner (BC-8S5G, KAYE Instruments) and data logger (Digistrip,
KAYE) were used to record time, temperature and strain.

The obtained apparent strains were corrected to obtain true thermal strains.
Similar gages were attached to a titanium silicate reference specimen that has a known
stable coetfticient of thermal expansion of 0.0306x107° /° C (0.017x107° /° F). The
reference specimen was included in the test together with the test specimens. The true
thermal strain &, was obtained by correcting the apparent strain &, by the reference strains
as follows

£ =¢,-(6,-¢,) (18)

where &, is the measured gage output from the reference specimen and &, is the known

thermal expansion of titanium silicate.
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Results and Discussion

The equivalent ratio of outer to inner cylinder radius is determined by measuring
the fiber volume ratio of the composite by photomicrographic examination. The measured
fiber volume ratio was 0.44 so that the equivalent ratio of outer to inner cylinder radius is
1.51.

The stress-strain curves of 6061-O aluminum at different temperatures are fitted
into a power law strain hardening model from eq. (13). The temperature dependent
parameters, £, n, and o, are tabulated in Table 2. As seen from Fig. 3, the mechanical
properties of 6061-O aluminum decrease with increasing temperature. Above 288°C
(550°F), the yield stress, ultimate strength and fhe effect of strain-hardening of the matrix
decrease significantly so that the stress-strain behavior becomes close to that of an elastic
perfectly-plastic solid.

The theoretical model described here was applied to study the residual stress
buildup in SiC/Al composites In the analysis, 26 stations were assigned along the radial
direction in the composite cylinder model as seen in Fig. 1. The residual stress-free
temperature is assumed to be 288°C (550°F), that is 0.6 of absolute melting temperature
of aluminum. Above this temperature stress relaxation plays a large role and only low
residual stresses are expected to be built up. The assumption of this residual stress-free
-temperature is not considered a very significant factor once the matrix has yielded under
cooling. Further increase in differential thermal strains is taken up by plastic flow in the
matrix with small increase in residual stresses. The important factor that is likely to affect

residual stresses is.the yield stress of the matrix when the residual stresses are generated
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during cool down. The residual stress buildup in the composite and the behavior under
mechanical and thermal loading were also studied. The calculation of residual stresses in
the composite due to cool down from the residual stress-free temperature was carried out
with the elastoplastic formulation and a successive approximation method.

Figures 4 and 5 show the residual stresses of the composite as a function of the
radial distance normalized by the fiber radius without and with consideration of plastic
flow of the matrix. Note that all components of’ residual stresses in the fiber are
compressive and constant. The radial and tangential stresses in the fiber are equal. The
residual radial stress is compressive and the tangential and axial stresses are tensile in the
matrix. By comparing Figs. 4 and 5, one can 6bserve that the plastic flow in the matrix
greatly influences the residual stresses in both matrix and tiber. The stresses computed by
considering the plastic flow in the matrix are an order of magnitude less than the ones
without consideration of plastic flow. It is also noted that the residual stresses in the axial
and tangential direction decrease relatively more toward the interface than the outer
cylinder of matrix when plastic flow is considered.

Figure 6 shows the residual stress components at different temperatures. Residual
stresses increase in absolute terms with cooling. Figure 7 shows the computed stresses in
the fiber and matrix at the interface plotted as a function of temperature. The stresses at
.the interface increase linearly in absolute terms in the initial stage of cooling. However,
the rate of increase slowed down below a certain temperature when the matrix yields. The

residual stresses may further increase due to the increase of yield stress and strain
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hardening rate of the matrix with decreasing temperature. The plastic flow of the matrix
starts at the interface and moves outward in the matrix cylinder.

The axial and transverse strains of the composite were computed under axial
loading without or with consideration of residual stresses. The stress-strain curves show
the change of slope due to matrix yielding but the change is relatively small. The
predicted stress-strain curves were not sensitive to residual stresses because the behavior
of the composite under longitudinal loading is dominated by the fiber properties so that
yielding of matrix does not contribute much. The predicted stress-strain curves of the
composite for both cases at room temperature show favorable agreement with
experimental measurements as shown Fig. 8.

Figure 9 shows the longitudinal and transverse thermal strains as a function of
temperature. It shows that the residual stresses tend to delay yielding of the matrix. The
predicted results show a better agreement with experimental results when the residual
stresses are considered in the analysis. The thermal strain curves show nonlinear behavior.
Near room temperature, both fiber and matrix expand linearly as the temperature
increases. At the critical temperature of initial yielding the fiber properties influence more
the longitudinal strains than the matrix properties. On the other hand, the transverse
strains are more influenced by the matrix properties. This is shown in the figure where the
slope of the transverse strain versus temperature curve increases while that of the
longitudinal strain decreases in the temperature range above the yield point. These

predictions are in good agreement with experimental results.
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Summary and Conclusions

The state of residual stresses induced in the composite by the cool down from the
fabrication temperature were calculated. The large ditference in CTE’s between the fiber
and matrix causes high residual stresses but the matrix may experience plastic flow
reducing the residual stresses in the composite. An attempt was made to predict the
residual stresses in the composite by considering the plastic flow of the matrix.

A thermoelastoplastic analysis was developed and applied to the prediction of the
residual stresses in a metal matrix composite The model was based on the coaxial
cylindrical model with the perfect bonding at the fiber-matrix interface. It was assumed
that the fiber is elastic and the matrix is elas‘toplastic following the power law strain
hardening model.

The residual stress-free temperature was assumed to be 0.6 of the absolute melting
temperature, because above this temperature the stress relaxation relieves the residual
stress buildup. Below this residual stress-free temperature the elastic residual stress
buildup starts followed shortly thereafter by plastic flow of the matrix. The triaxial state
of residual stress was then computed. Residual stresses in all directions in the fiber are
constant and compressive. The radial residual stress is compressive while the tangential
and axial residual stresses are tensile in the matrix. It is observed that the plastic flow of

the matrix reduces significantly the amount of residual stress buildup.

The stress-strain behévior under axial loading is not affected by the presence of
residual stresses while the thermal strain-temperature curves show a better agreement with

the experimental results when the effect of residual stresses is considered. The stress-
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strain curves and thermal strain-temperature curves of the composite from the elastoplastic

analysis are in good agreement with experimental results
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Figure Captions

Fig.
Fig.
Fig.

Fig.

Fig.

o

Coaxial cylindrical composite model.

Schematic stress-strain curves of power law strain hardening models..

Tensile stress-strain curves of 6061-0 aluminum at various temperatures.
Thermal residual stresses distribution in the fiber and matrix at room temperature
as a function of normalized radial distance without considering plastic flow in the
matrix.

Thermal residual stresses distribution in the tiber and matrix at room temperature
as a function of normalized radial distance with considering plastic flow in the
matrix.

Thermal residual stress distributions in the fiber and matrix as a function of
normalized radius due to cool down from residual stress free temperature.

(a) radial, (b) tangential, (c) axial stresses.

Radial, tangential and axial residual stresses in the matrix at r=a and in the fiber as
a function of temperature.

Stress-strain curves of unidirectional SiC/Al composite at room temperature.
Longitudinal and transverse thermals strains versus temperature curves of

unidirectional SiC/Al composite.
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Table 1 Properties of aluminum 6061-0O and SCS-2 fiber at room temperature

Property 6061-O Aluminum SCS-2 Fiber
Elastic modulus, £, GPa (Msi) 69.0 (10) 399.9 (58)
Poisson's ratio, v 0.33 0.22
Yield stress, , MPa (ksi) 55.2(8) ---
Tensile strength, , MPa (ksi) 124.1 (18) 3461 - 5309
(502 - 770)

Coefficient of thermal expansion, «. u&/°C

(el ’F)
24 (75) ; 23.4(13) 2.25(1.25)
121 (250) 23.6(13.1) 2.34(1.30)
177 (350) 23.9(13.3) 2.81(1.56)
288 (550) 24.8(13.5) ---
450-1300 (842-2372) --- 4.86(2.70)
Table 2 Values of material dependent parameters
Modulus Elastic limit Material Material
Temperature stress constant constant
L, GPa (Msi)  o,.MPa (ksi) k (x107%) 1 (x107%)
24°C (75°F) 68.6 (10) 41.4(6) 510 453
121°C (250°F) 63.8 (9.25) 393 (5.7) 450 455 -
177°C (350°F) 60.7 (8.8) 37.4 (5.39) 380 45.6
288°C (550°F) 55.2(8) 33.1(48) 6.62 45.8
399°C (750°F) - 48.3(7) 159(23) 6.12 46.0
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Table 3 Properties of SiC/Al composite at room temperature

Property SiC/Al Composite
Longitudinal modulus, £,, GPa (Msi) 206.9 (30.0)
Major Poisson's ratio, v, ‘ 0.27
Longitudinal tensile strength, F,, MPa (kst) 1620.0 (235.0)
Longitudinal coefficient of thermal expansion, «,, ue/°C (ue/ °F) 5.94 (3.3)
Transverse coefticient of thermal expansion, «,, pe/°C (ue/ °F) 16.0 (8.9)
Fiber volume ratio, F, 044
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MICROMECHANICAL ANALYSIS OF FILAMENTARY METAL MATRIX COMPOSITES

ABSTRACT

A two-material composite cylinder model (CCM) was considered for the study of the
mechanical behavior at different temperatures of a fiber reinforced silicon carbide/aluminum
(SiC/Al') composite. An elastoplastic analysis of the model was performed in which the fiber was
assumed to be linear elastic and the matrix elastoplastic with work-hardening. The analysis was
based on the deformation theory of plasticity in conjunction with the von-Mises yield criterion.
Experimental stress-strain curves of a SiC/A! composite were obtained at 24°C (75°F) and 288°C
(550°F). The complete three-dimensional stress distribution in the composite using the CCM was
determined. It was found that in addition to longitudinal stresses, transverse stresses in both the
fiber and the méMx were developed as a result of the different Poisson's ratios of the two
materials. The transverse stresses, although much smaller than the longitudinal stresses,
contributed to the plastic deformation of the matrix. The experimental stress-strain curves were
favorably compared with the theoretical predictions.
KEYWORDS: Metal-Matrix Composites; Micromechanics; Silicon Carbide/Aluminum; Elasto-

plastic Analysis; High-temperature behavior.

INTRODUCTION

Metal matrix composites reinforced with continuous elastic fibers may experience a
pronounced degree of inelastic deformation when subjected to thermomechanical loading. This
inelastic behavior is indicative of the overall nonlinear stress-strain or strain-temperature response
of the composite. The state of stress in the matrix is no longer homogeneous and it depends on the
history of deformation and the strain rate. A number of different micromechanical models which
give not only the overall behavior of the composite but also the detailed stress state in the
constituent materials have been proposed.

These models for the study of linear and nonlinear behavior of fibrous composites in which

the matrix exhibits elastoplastic deformation were based on mechanics of materials analysis [1-3],
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bounding methods of plasticity [4,5] and finite elements [6-13]. Further studies on modeling the
thermomechanical response of metal matrix composites are listed in references [14-20]. A two-
material composite cylinder model has been proposed in [21-23] for micromechanical ahalysis.
This model was used in the study of the elastoplastic behavior of two and three-material composite
cylinders in [24,25].

In the present paper an elastoplastic analysis of the composite cylinder model based on the
deformation theory of plasticity in conjunction with the von-Mises yield criterion was performed.
Complete three-dimensional stress distributions in the cylinder were obtained. The model was
successfully used for the prediction of the longitudinal stress-strain behavior of a SiC/Al
composite at two temperatures.

THE COMPOSITE CYLINDER MODEL

The representative volume element in the two-material composite cylinder model (CCM)
consists of an inner cylinder simulating the fiber and a shell included between the inner and outer
radii of the cylinder simulating the matrix (Fig. 1). This representation is characteristic of low fiber
volume composites in which the fiber volume ratio is usually taken arbitrarily less than 65 percent.
For high fiber volume composites the inner cylinder simulates the matrix and the shell the fiber.
The composite material used in this study, silicon carbide/aluminum, has a relatively low fiber
volume ratio.

The fiber (SiC) is considered linear elastic up to fracture, while the aluminum matrix
exhibits elastoplastic behavior and its thermomechanical properties are temperature-dependent. The
CCM is first analyzed for the case when both components remain linear elastic and then when the
matrix shell is deformed elastoplastically.

Elastic Behavior
| For linear elastic behavior of both materials of the composite cylinder the non-zero
displacement and stress fields for axisymmetric mechanical deformation are given by the following

equations [16]

u=Ar+B | (1a)
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o,:K[A-(1-2v)£+'vel]

(1b)
09=K[A+(1-2v)r%+vez] (1c)
o, =K[2VA +(1-Vv) &,] (1d)

In the above equations u is the radial displacement, o, Og and O, the radial, circumferential
and axial stresses, r the radial distance from the center of the cylinder, €, the axial strain and A and
B constants to be determined from the boundary conditions of the problem. The bulk modulus K
is given by

- E
K‘(1+v)(1-2v) ()

where E is the modulus of elasticity and v Poisson's ratio.

Since the inner cylinder and the shell are perfectly bonded, continuity of the radial
displacement u and the radial stress O at the interface between the two components is implied.
Furthermore, u should be finite at r = 0 and O is zero at the outer boundary of the cylinder.

For an applied constant strain €, across the composite cylinder cross section the constants

Aj, B (j = 1,2) are determined from the solution of the following matrix equation

: R Ry Y 0
K, K, (1-2v2) Kz R [[Az|=|-Kivi + Kpvy | &,
0 1 -(1-2vy)RE B2 V2 (3a)
B; =0 ‘ (3b)

where the subscripts 1 and 2 refer to the inner (fiber) and outer (matrix) components and R;and -
R; are the inner and outer radii of the composite cylinder. 3

After détermining the constants A j» Bj G = 1,2) the stresses oy, O and dz and the
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displacement u are computed from equations (1). From equation (1d) it is observed that the axial

stresses G, and O, are constant along the axis of the composite cylinder. The average axial stress

o on the cylinder is determined by

5= 02l R? + 6,R2 - R%)
R} )

The critical strain (€;) for which the most stressed elements of the matrix along the fiber-
matrix interface start to yield is determined by
Oeff = Omy ] &)

where the effective stress G is given by

_1 12
Oeft _’ﬁ[(cz - o +(0; - ogf + (g - 3 (6)

Equation (5) expresses the von-Mises criterion for initial yielding. The yield stress Gmy of

the aluminum is a function of temperature.

Elastoplastic Behavior

When the applied axial strain g, is increased beyond its critical value (g;)¢r plastic
deformation occurs in the aluminum phase. It takes the form of concentric cylindrical layers
starting from the fiber-matrix interface and spreads progressively towards the outer radius as € is
increased. The deformation in the aluminum becomes inhomogeneous and an elastic-plastic
analysis is required for the determination of the stress field and the elastic-plastic boundary.

The deformation theory of plasticity in conjunction with the von-Mises yield criterion and
the isotropic hardening rule are employed. The results obtained by this theory coincide with those
of the flow theory for proportional loading, while for non-proportional monotonic loading without
unloading reasonably accurate predictions are obtained..[26] The basic assumption made in the
elastoplastic analysis is that the effective stress-strain relation O = f(degf) for a triaxial state of

stress coincides with the stress-strain curve in uniaxial tension. The effective strain is defined by
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deg = ——(l-lm[(dﬁz - dEr)z +(de, - d?-e)z + (deg - de, ) ]1/2

2 )
The value of Poisson's ratio v beyond the yield point can be determined by
v=05-(0.5-V) % ®)

where E and E; are the elastic and secant moduli of the material in tension and V' the Poisson's
ratio in the elastic region. .

The incremental stress-strain relations in the deformation theory of plasticity take the form

=1 .

de, = B [do, - v (do; + doy)] (9a)
- ‘1 -

de, = E [do, - v(dog + do,)] (9b)
=1 -

deg E, [dog - v (do, + do,)] (9¢)

where de,, de; and deg are the total, elastic plus plastic, strain increments and do,, do, and dog are
the stress increments. E; represents the tangent modulus (E = do/de) of the uniaxial stress-strain
curve of the material in tension.

Equations (9) are used in conjunction with the equations of equilibrium and compatibility.
The deformation theory of plasticity is actually a nonlinear elasticity theory with changing values of
modulus of elasticity and Poissori's ratio depending on the amount of plastic deformation. Thus,
for the solution of the elastic-plastic problem the aluminum shell was divided into a number (N) of
concentric layers, each layer having a different modulus and Poisson's ratio. The following
procedure was followed:
1. An elasticity solution of the (N+1) material compbsite cylinder was obtained following a

procedure analogous to that used in the previous case of the two-material composite

f
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cylinder. This solution served as a subroutine to a computer program written for the
elastoplastic solution of the problem.

The applied critical strain (€,)¢; for which the first layer at the fiber-matrix interface yields
was determined, using the stress solution obtained by the subroutine in conjunction with
equation (5). .

A strain increment A€ above the critical strain (g,)r was applied. The effective total
(cumulative) strain is. given by ¢ N = gN-1 4 qg  where N denotes the number of the loading
step, and n the iteration number. dg, is the first effective strain increment.

The tangent modulus was determined for each layer from the value of the equivalent strain
obtained from the uniaxial stress-strain curve of the material and Poisson's ratio v from
equation (8).

Stress and strain increments doj; and de;; (using equations (9)) were determined for all
cylinders with the new values of modulus and Poisson's ratio, as determined in step 4.

The new effective strain increment de,; was determined from equation (7).

Strain increments d€,,; and dg, were compared. If (de,.i-de,)/de, > & for all cylinders (8
is a predetermined cutoff value), the program returned to step 3 with the value depyg
substituting the value de,. The entire process from step 3 to step 6 was repeated. If
(dep+1-den)/de, < 8 for all cylinders, then, the correct states of stress and strain for the load
increment used are given by those obtained with the values of d&,. The program was then

returned to step 3 and the entire procedure was repeated.

" Using this procedure the complete history of stress and strain along the radius of the

composite cylinder was determined as the strain was increased incrementally.

EXPERIMENTAL RESULTS

The composite material consisted of a 6061-T6 aluminum matrix reinforced with 140 pm

(5.6 x 10-3 in.) diamétcf silicon carbide fibers (SCS-2, Textron Specialty Material, Inc.). The
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fiber volume ratio was measured as 0.44. The material was produced by a diffusion bonding
consolidation, during which the temper of the aluminum is changed to one approaching T-4
temper. For this reason 6061-T4 aluminum was obtained and tested to determine its mechanical
and thermal respdnse.

The composite material was obtained in the form of unidirectional 8-ply plates, 0.178 mm
(7 x 103 in.) thick. Specimens 15.2 cm (6 in.) long and 1.27 cm (0.5 in.) wide with the long
dimension parallel to the fibers were machined with a water-cooled diamond saw. Aluminum tabs
were bonded to the specimen ends with a high strength adhesive. The tab length was long enough
(5.1 em. (2 in.)) to provide an area which is large enough to transfer the load to the specimen
through shear. Great care was exercised in cutting the specimens so that the fibers do not
experience any significant damage and the tabs were precisely aligned on the specimens.

Tensile tests were carried out in a servo-hydraulic Instron testing machine. The specimens
were loaded at a crosshead rate of 0.06 in/min. up to failure. Particular care was taken in aligning
the coupons in the grips. Tests at ambient and elevated temperatures were performed. Special
grips were used for testing at elevated temperatures. A water-cooling system was installed to
lower the grip temperature. Special high-temperature strain gages (Micromeasurements gage type
WK-06-125 TM-350) were used to record the strains along the axial (€;) and transverse (€5)
directions. Axial strains were also monitored with an extensometer of 1 in. gage length (0.1 in.
range). The application of the extensometer as a second means of measuring strain was considered
essential because the strain obtained from the gage output could then be double-checked. A data
acquisition system (Metrabyte Corp.) was used to acquire, process and plot data in reportable
fonr;.

Figures 2 and 3 show longitudinal stress-strain curves for the SiC/A!/ composite at 24 °C
(75°F) and 288 °C (550°F). Both curves exhibit a linear elastic portion that extends up to strains €
= 0.12 percent and 0.07 percent, for temperatures 24°C and 288°C, respectively. Note that the
stress-strain curves up to failure deviate little from linearity which is attributed to the fact that most

of the applied load is carried by the fibers due to their mﬁch higher elastic modulus. The deviation




from linearity is more pronounced at 288°C. Tﬁe stress vs. transverse strain curve for 24°C and
288°C (Figures 2 and 3) are almost linear up to fracture.

For the micromechanical prediction of the stress-strain behavior of the composite the stress-
strain curves of the aluminum matrix at 24°C and 288°C are needed. Prismatic 6061-T4 aluminum
specimens of dimensions 20.32 cm (8.0 in.) long, 1.27 cm (0.5 in.) wide and 0.16 cm (0.062 in.)
thick were prepared. For testing at elevated temperatures steel tabs were bonded onto the specimen
ends with a high strength adhesive (FM-36). The stress-strain curves of 6061-T4 aluminum at
various temperatures ranging from 24°C to 288°C are shown in Fig. 4. Only the portion of the
curves up to 1 percent strain is shown. As temperature increases the stress at which the curves
deviate from linearity decreases. Values of the proportional limit of aluminum at 24°C and 288°C
are shown in Table 1. The modulus of elasticity for all stress-strain curves at various temperatures
is the same and equal to 69 GPa (10 Msi). In the nonlinear portion of the curves the stresses

corresponding to the same strain decrease with increasin g temperature.

THEORETICAL PREDICTIONS

Prediction of the stress-strain behavior of the composite by the composite cylinder model
necessitates the values of the various material parameters entering into the previously described
micromechanical equations. The fiber (SiC) remains almost linear elastic up to fracture. Its
mechanical parameters are independent of temperature and they are given in Table 2. Unlike the
fiber, aluminum exhibits pronounced plastic deformation and its thermomechanical parameters are
temperature dependent. The post yield stress-strain curve of aluminum was represented by a fifth-

order polynomial of the form

5
= 2 C,en
n=1

The coefficients C;, are temperature dependent. They were determined from the stress-
strain curves of aluminum in uniaxial tension at different temperatures. Values of C, for

temperatures of 24°C and 288°C (75° and 550°F) are given in Table 1.
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For a fiber volume ratio of the SiC/A! composite studied in this investigation (0.44) the
outer radius R of the composite cylinder model (CCM) is equal to 1.51 Ry, where R is the inner
radius. In order to perform an elastoplastic analysis of the composite cylinder the matrix shell was
divided into eight layers each of thickness 0.064 R;. The critical value of the applied average
uniaxial strain (g,).; for which the aluminum matrix starts to deform plastically was first determined
from equation (5). It was found to be (Ez)er = 0.125 percent for T = 24°C and (g,), = 0.060
percent for T = 288°C. These strains arc very close to the critical ones at which aluminum deviates
from linearity. For applied strains €, below these values the stress-strain curve of the composite is
linear and the triaxial stress field developed in the fiber and matrix is directly proportional to €,.
The stresses in the ﬁber are

C,f = 364.3 €, GPa (52.8 ¢, Msi)

Of = 69f =-2.7 £, GPa (-0.386 €, Msi)
and the stresses in the matrix at r = R, are

O = 70.4 €, GPa (10.2 g, Msi)

Om = - 2.7 £, GPa (- 0.386 £, Msi)

Ogm = 6.8 ¢, GPa (0.989 &, Msi)
Note that the transverse stresses are an order of magnitude lower than the axial stresses. It is also
worthwhile to observe that the axial stresses in the fiber and the matrix are very close to those
predicted by the rule of mixtures which yields the values o0,¢ = 359 GPa (52 €, Msi) and Ozm = 69
GPa (10 €, Msi), respectively. For linear elastic behavior the longitudinal elastic modulus and
major' Poisson's ratio take the values of 199.8 GPa (28.96 Msi) and 0.276 which are very close to
the values of 199.6 GPa (28.92 Msi) and 0.282 predicted by the rule of mixtures. The
experimental values for the elastic modulus and Poisson's ratio are 176 GPa (25.5 Msi) and 0.29,
respectively.

When the appliéd strain €, is increased beyond its critical value (€,), plastic deformation

takes place in the aluminum matrix. An incremental elastdplastic stress/strain analysis as described

!
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before was performed. The strain €, was increased at intervals of 0.05 percent and the three-
dimensional stress distributions at the midsurface of each layer of the aluminum shell was
determined. The predicted longitudinal stress-strain curves of the composite at temperatures of
24°C and 288°C are shown in Figs. 2. and 3, respectively. They agree well with the experimental
results.

According to the elastoplastic analysis of the composite cylinder based on the deformation
theory of plasticity, each layer of the aluminum shell is considered as an elastic material with
varying modulus of elasticity, E,{‘, and Poisson's ratio, v, depending on the amount of plastic
deformation. The variation of E, and vy, across the thickness of the aluminum shell (1.00 <r/R;
< 1.51) is shown in Figs. 5 and 6 for various values of the applied strain €, at T = 288 °C (550°F).
Observe that E, decreases from its elastic value of 69 GPa (10 Msi) while vy, increases from its
elastic value of 0.33 up to the limiting value of 0.50 as €, increases. The variation of both Ep, and
Vi along the radius of the shell is small with E ;, increasing and vy, decreasing from the fiber/matrix
interface to the outer radius of the composite cylinder. The variation of Ep, and vy, at the
midsurface of the aluminum shell with the applied strain €, is shown in Fig.7 for T = 24 °C.

Figure 8 shows the variation of the axial, ¢z, radial, oy, and circumferential, Gy, stresses
along half the diameter of the composite cylinder for €, = 0.175 percent and T =24°C. All three
stress components are constant in the fiber, while the stresses vary along the thickness of the shell.
A slight variation of the axial stress 6, with increasing values from the fiber/matrix interface to the
outer radius of the composite cylinder is observed. Note that the radial stress is compressive in
both the fiber and matrix, while the circumferential stress is compressive in the fiber and tensile in
the r;latrix. Both radial and circumferential stresses have equal values in the fiber, while a large
~ variation of these stresses is observed in the matrix. The transverse stresses are ignored in the
micromechanical analysis of the composite based on the rule of mixtures. The variation of the
stresses O;, Op and O along the thickness of the aluminum matrix for various values of the applied
strain &, is shown in Figs. 9 to 11 for T = 24°C (75°F). In Fig. 11 the variation of stress o is

shown in a stepwise form, as it was determined at the midsurface of each of the eight layers of the

1
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matrix. Note from Figs. 9 to 11 that all stresses increase with applied strain €, and that the rate of
increase decreases as the strain is increased.
CONCLUSIONS

A study of the stress-strain behavior of a SiC/Al filamentary composite was performed.
Experimental longitudinal stress-strain curves at temperatures 24°C (75°F) and 288°C (550°F) were
obtained. An elastoplastic micromechanical analysis based on the composite cylinder model was
performed and yielded complete three-dimensional stress distributions in both the fiber and the -
matrix. The main results of the present study may be summarized as follows:

1. Slight nonlinearity in the stress-strain behavior of SiC/A/ appears beyond a critical
value of applied strain. This is attributed to the fact that most of the applied load is taken by the
fiber due to their much higher elastic modulus. The deviation from linearity is more pronounced at
higher temperatures.

2. The beginning of nonlinearity in the stress-strain curves coincides with the
development of plastic déformation in the aluminum matrix.

3. The transverse stresses developed due to the difference in Poisson's ratios of the
fiber and matrix are small for linear elastic behavior, but they increase as plastic deformation is
advanced. However, the transverse stresses are an order of magnitude smaller than the axial
stresses. These stresses are ignored in the micromechanical analysis based on the rule of mixtures.

4. The radial stresses in the matrix are compressive, whiic the circumferential stresses
are tensile. This results in an increase of the equivalent stress and the accelerated plastic distortion
of the matrix when compared with the case when the transverse stresses are ignored.

s, Very good agreement between the experimental results and the predictions of the
composite cylinder model was achieved.
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Table 1. Values of the quantities Opy and Cj (3=0,1,2,3,4,5) of aluminum Al 6061-T4 at T=24 °C (75 °F) and 288 °C (550 °F)

T Omy Co C1 ) C3 C4 Cs
OC [OF |MPa|Ksi| MPa| Ksi | 102MPa |102Ksi | 104MPa [104Ksi | 100MPa| 100 Ksi 10-8 MPa [ 108 Ksi | 10-10 MPa {10-10 Ksi
24 |75 | 86.2[12.5{-44.8 |-6.5 | 1490.3 | 216.1 | -4479.3 | -649.5 6932.4 | 1005.2 | -5318.6 | -771.2| 1601.4 | 232.2
288 550| 41.4| 6.0 | 13.1 |-1.9 8359 | 121.2 | -1621.4 | -235.1 13593 | 197.1 | -306.9 | -44.5 -91.7 | -13.3




Table 2. Mechanical properties of silicon carbide SCS-2 fiber at room temperature

Material E v Oy (o
GPa Msi - MPa Ksi %
SCS-2 365 53 0.22 3195 463 0.87
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FIGURE CAPTIONS
Fig. 1 Composite Cylinder Model.

Fig. 2 Longitudinal Tensile Stress-Strain Curves of SiC/AI Composite at T = 24°C (75°F)
Obtained Experimentally and Predicted by the Composite Cylinder Model (g; and €, are
longitudinal and transverse strains in composite, respectively).

Fig. 3 Longitudinal Tensile Stress-Strain Curves of SiC/Al Composite at T = 288°C (550°F)
Obtained Experimentally and Predicted by the Composite Cylinder Model (g, and &; are
longitudinal and transverse strains in composite, respectively).

Fig. 4 Tensile Stress-Strain Curves of 6061-T4 Aluminum Up to 1 Percent Strain at Different
Temperatures.

Fig. 5 Variation of Tangent Modulus ‘Along the Thickness of the Aluminum Matrix Shell in the
CCM for Different Values of the Applied Strain €, at T = 288°C (550°F).

Fig. 6 Variation of Poisson's Ratio Along the Thickness of the Aluminum Matrix Shell in the
CCM for Different Values of the Applied Strain €, at T = 288°C (550°F).

Fig. 7 Variation of Tangent Modulus and Poisson's Ratio at the Midsurface of the Aluminum
Matrix Shell of the Composite Cylinder Versus the Applied Strain €, at T = 24°C (75°F).

Fig. 8 Variation of Axial (0,), Radial (o,) and Circumferential (Gg) Stresses Along Half the
Fiber/Matrix Cross Section for an Applied Strain €, = 0.175 percent and T = 24° (75°F).

Fig. 9 Variation of the Radial Stress O;, Along the Thickness of Aluminum Matrix Shell in the
CCM for Different Values of the Applied Strain €; at T = 24°C (75°F).

Fig.10 Variation of the Circumferential Stress Ggr, Along the Thickness of the Aluminum Matrix
Shell in the CCM for Different Values of the Applied Strain €, at T = 24°C (75°F).

Fig.11 Variation of the Axial Stress O,m Along the Thickness of the Aluminum Matrix Shell in the
CCM for Different Values of the Applied Strain &, at T = 24°C (75°F).
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Abstract

The elastoplastic behavior ofa metal matrix composite material was analyzed
based on a successive approximation 'sc.heme with the Prandtl-Reuss plastic flow model
and von Mises criterion. Results obtained were applied to a unidirectional silicon
carbide/aluminum composite. The three-dimensional state of internal stress was computed
for mechanical and thermal loading conditions. In addition, the stress-strain curves under
uniaxial tension at different temperatures and the thermal strain-temperature relation of the
composite were predicted and compared with experimental results. The method is
particularly useful in the case when the boundary conditions are not explicitly prescribed
and it haé the advantage that the strains and stresses are computed for any given loading

conditions without step-incrementing the load.

1 Introduction

Composite materials are ever finding many structural applications because of their
superior performance to conventional metal counterparts. Due to the simple and cost-
effective fabrication process, polymer based composites are most widely used. However,
these materials, in general, are not adequate for the use in structures operating at an
elevated temperature. On the other hand, ceramic matrix composites (CMC) and metal
matrix composites (MMC) are more suitable for such applications. The maximum
operating temperature range of the CMC’s are generally much higher than that of the
MMC’s, but the CMC’s fail in a brittle fashion so that these materials usually have lower

fracture toughness. By contrast, the MMC’s are used over intermediate temperature
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ranges and have advantages such as high strength, high stiffness, high toughness, high
impact resistance, high resistivity to témperature change or thermal shock, high surface
durability, low sensitivity to surface flaws, and high electrical and thermal conductivity.

Unidirectional composites subjected to thermomechanical loading have been
investigated by many authors, for example, Ishikawa et al. (1978), Unemura ef al. (1979),
Iesan (1980), Mikata and Taya (1985), and Warwick and Clyne (1991), by considering a -
coaxial cylinder model. These models assume elastic constituents, particularly on elastic
matrix. In the case of MMC, the matrix undergoes plastic flow and is sensitive to the
environmental temperature. Thus, it is desirable to study the composite behavior taking
into consideration the elastoplastic properties.

In the case of longitudinal tension, the composite behavior is dominated by the
properties of the fiber. In addition to the axial stresses, transverse stresses are also
developed. These radial and tangential stresses, although small in magnitude, contribute
to the plastic deformation of the matrix and should not be overlooked.

Dimensional stability over a broad temperature range is one of the important
factors that should be taken into consideration. Due to the coefficient of thermal
expansion (CTE) mismatch between fiber and matrix, thermal stresses are introduced
when the material experiences a temperature change. Also, when the composite is
consolidated from the fabrication temperature, thermal residual stresses develop. When
such sfresses are sufficiently high, the matrix yields and affects the composite behavior.
Thus, the study of the thermal behavior is an important aspect in understanding composite

behavior. Hsueh and Becher (1988) made an attempt to predict the coefficient of thermal
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expansion of a ceramic composite using the coaxial cylinder model. Their result agrees
well with other predictions such as tHose by Schapery (1968), Takao and Taya (1985,
1987), Rosen (1970), and Hoffman (1973). In this study, the method was extended for an
elastoplastic matrix in the model.

A continuous fiber composite was modeled by two concentric cylinders

representing the elastic fiber and elastoplastic matrix. The proposed model not only -

predicts the overall behavior of the composite but also gives detailed stress and strain

distributions in the constituent materials under thermomechanical loading.

2 Materials

The material investigated was an eight-ply unidirectional silicon carbide/aluminum
(SiC/Al) composite. The specimens were obtained from the manufacturer (Textron
Specialty Materials) in composite plate form and characterized by standard tensile tests
(See Whitney es a/l. (1985)). Tables | and 2 show the measured elastic properties of the
composite and the constituents, respectively.

Coatinuous SiC filament (SCS-2) was produced by chemical vapor deposition
(CVD) around a carbon monofilament core, according to the manufacturer. The
measured average diameter of the fiber is 140 m (0.00551 in.). To the authors'
knowledge, there is no available method for direct measurement of the in-situ matrix
properﬁes. The properties of 6061-0 aluminum (annealed state) were used in the analysis
for various reasons including agreement with experimental results as will be discussed

later,




' The composite was fabricated by the manufacturer by a diffusion bonding

consolidation process. The producibility of SiC reinforced metals is attributed to the SiC
fiber characteristics, because the SiC fibers are well bonded to metals and are resistant to
strength degradation during the elevated temperature process. Such characteristics of the
SiC fiber and the light weight of aluminum made the SiC/Al composite a widely used

material.

3 Theoretical Background

Figure 1 illustrates the continuous fiber model of the MMC used in the analysis.
The inner cylinder (fiber) of radius a is surrounded by the outer cylinder (matrix) of outer
radius 5. The following assumptions were made in the development of the model:

1. The constituent materials are isotropic.

2. Bonding between fiber and matrix is perfect.

3. The fiber is linearly elastic up to failure and the matrix is elastoplastic.

4. There is no temperature gradient in the material. In other words, the

temperature distribution is uniform for the entire material.

5. Residual stresses are ignored.

6. The fiber volume ratio is reasonably [ow.

For an axisymmetric problem, the displacements in the radial, tangential, and axial

directions are respectively assumed to be of the form:
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. u, =u(r)
u, =0 : (1)
u, = w(z)

and the linear elastic strain-displacement relations are:

ch
E =— 2.a
.= 2.)
u
Egy = — (2.b)
,
gz: = éj_ll (2C)
£, =8y, =6,=0 (2.d)
The equilibrium conditions are expressed as
49, ,9.7% _ (3.a)
dr r
do,
=0 3.b
d6 G0
do
L=0 3¢
e (3.¢)
and the compatibility conditions yield the following relationship:
98, ST g (4)
dr r
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3.1 Elastic Solution
The thermoelastic stress-strain relations are thus obtained as

E

o, =m[(l? v)E, + v(gy+¢&,)—(v+1DadT]

E

m[(l -v)eg, +v(g, +&,)—(v+1)aAT] (5)

Og4 =

E.
=—— (1~ + + —(v+1DaAT
where E is the elastic modulus, v Poisson's ratio and « the coefficient of thermal

expansion. From egs. (2) through (5), the following differential equations are obtained.

d’u ldu u (1+v)d(aAT)

— — S — 6~
& a7 (-v) ar (6.2)
d*w
=0 6.b
dz? (6.5)

For the case of uniform temperature distribution, eq. (6.a) becomes homogeneous because

d(aT) _ )
dr
Thus the following general solutions are obtained:
u= 4 + A,r (8.a)
r
w=D +D,z (8.b)

and the strain field is obtained from the strain-displacement relations as




€ =-—+4,
. r~
A
&'gzr—21+A2 9
82 =1)2

where 4, 4,, D, and D, are constants which are determined from the boundary -

conditions.

3.2 Elastoplastic Solution
The elastoplastic stress-strain relationships are formulated by considering

additional plastic strains (&7, &, £7)in eqs. (5).

= T Tl Ve 620 Ve, =68) vis, -62)~(v+ DadT] (108

ag=(1_2Vf(v+l)[<1—v)(eg—e:)+v(s,—e:’)+v<s,—sf)—(vﬂ)aAT] (10.6)

= Iy T - Ve e+ Ve, =a0) ey )~ (v 4 DasT]  (10)

Applying similar procedures as in the elastic analysis, the following differential equation is

obtained

d’e, +zdeg _(A=-2v)de! (1-2v)(ef-&}) (1+v) d(aAT) (a1
dr* rodr  (1-v)y dr (1-v)r? d-vy ar

In the case of uniform temperature distribution, the solution for the tangential strain takes

the form
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' (1—2v) . v) o (—2v) (ef —5”)
£y = - _[ 2(1 J‘(e‘ 89)dl’+ J 7

G
21

(12.a)

2+C

the radial strain is obtained from egs. (4) and (12.a) as

G2, oy -2 e
e £, = a-v g, 1z I 2(1 Ir(a £4 )t

(1-2v) (s,—.s:> ¢
+2(1—v)j ;o artyrtG

(12.b)

and the displacement

(l—2v)rJ‘(5,” _€:)d1
2(1-v) r

(1—?v)j . (1—21/)-[ He?

—& ) )dr +
13

-—£+ C,r "
2r

is obtained from the strain-displacement relationship. Note that the solutions reduce to

those of the elastic case when the plastic strains become zero.

4 Boundary Conditions
The previously obtained elastic and elastoplastic solutions are applied to the fiber

and matrix, respectively. There are altogether six unknowns: two constants 4, and 4, in
the elastic solution, two constants C,. C, and the plastic strains &’ and &} in the

elastoplastic solution. These unknowns are determined by satisfying the following six
boundary conditions:

1. The axial strains in the fiber and matrix equal and constant:

g:f = g:m = gz = DZ (14)

where subscripts /'and m denote fiber and matrix, respectively.
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' 2. There exists no singularity in the displacement field at the center of the cylinder,
i.e,:
4=0 (15)
This leads to a simpler form of the elastic displacement field
u, = Ayr (16)
Er = Eg = A, (17)
3. Displacements are continuous at the fiber and matrix interface:
u(a)=u,(a) (18)

and from egs. (8.a) and (13) it follows that

G (l—2v ) (1-2v_) fa ;o
= _ —— T m/ - b/
¥ 2a at; = -V )a'f 2(1-v,)a fo r(e] —eg)dr 19)
19
- . —g?
2(1-v,) "o
4. Radial stresses are continuous at the fiber and matrix interface:
0, (a)= 0,(a) | (20)
Substituting eqs. (14) and (17) into eq. (10.a) and egs. (12) into eq. (10.a),
equation (20) is rewritten in the form
EfA2 Emcl EmCZ
(I-2v, Xv,+1) 2(v,+1)a’ A-2v, )(v, +1)
v, E, v, E.
[(1—2vf)(v +1) (d-2v, v, +l)]
(v, +DE,a,AT _(utDE a, AT 2
(- 2v/.)(v/.+l) (1-2v, (v, +1) )
) 1-2 -
- ( v"') J- gldr + ———m— a '") J r(sf —&))dr

02w )+ (v,

La= 2V)J‘ a(s/ —85)
2(1—v

2(1-v,)a*

C-10




5. The radial stress vanishes at - = b:

G, (b)=0
or
2
wc——w%‘ + v €,
25
2v",> -2y, )
= De, A r - -
(1 zvm)J. (8 _g())
2(1— vV,
6. Force equilibrium in the fiber direction yields
bZ
J1 o rdr +] o, ldr = T
0 ) a 2
or
vEAL | vE,0-a)G
(=2v, )(v,+1) (I-2v,Xv,+])
(-v)Ea Lo v)E (bz—azﬁ
€,
2(1 2v (v, +1) 2(1-2v, (v, +1)
_ob’ | E@ATE | E,a AT -a)
T2 2(1-2v,) 2(1-2v,)
2 - a
+ Em {_ Vm(l v ) J- (8 80 _aZJ. (
(I-2v )v,+1)  2(1- 0

(1 i; N2 - v”’)J‘ r(el + ey dr}

where o, is the apphed stress.
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———dr]

(22)

(23)

(24)
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5 Successive Approximation Method

The prescribed boundary conditions are not expressed in explicit form so that it is
difficult to obtain exact solutions. However, approximate solutions were found
numerically by introducing the successive approximation scheme that was used to solve
various similar problems by many investigators; Mendelson and Spero (1962), Davis
(1963), and Tuba (1965).

Since the matrix behaves in a highly nonlinear fashion, it is often necessary to
express the stress-strain curve in empirical equational form for the theoretical prediction of
composite behavior. Figure 2 illustrates two simple forms of broadly used curve fittings:

linear and power law strain hardening models, in which the stress-strain curve is fitted as:

PE .
2 linear law
o={r g% ¢ 1 ) (26)
Oy +KE, &" (power law)

where £, 1, and f are material constants, and o, the elastic limit or the yield stress. It was
found from experience that the power law strain hardening model ﬁts aluminum
reasonably well.

Following is the step-by-step procedure of the method used in computing the
effective plastic strain distribution.

1. Assign number of equidistant stations (N) along the radial direction from the

center of the cylinder as illustrated in Fig. |.
2. Assume that ¢7and & are zero at every station, as a first approximation,
3. Determine four unknowns 4,, C,, C, and ¢, from egs. (19), (21), (23),

and (25). Perform integration numerically by using simple trapezoidal or
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Simpson's rule.

. Compute strains for fiber and matrix from egs. (9) and (12), and obtain the
corresponding stresses from eqs. (5) and (10).

. Calculate equivalent stresses in the matrix (o,,) at each station from eq.
(A13) in the Appendix.

. For all stations at which the equivalent stress exceeds the elastic limit, calculate

the equivalent total strain in the matrix from eq. (A10):

- 1

En = —3-\/2[(6}". - gem)z +(8Hm - €zn,)2 + ({;‘zm - E,m)z] (27)

. Plot the experimentally obtained stress-strain curve of the matrix and fit it into
an appropriate strain hardening model to it, e.g., the power law model.
P

Determine the constants & and 7 and compute the equivalent plastic strain &

from the relationship:

- — 2(+v,)o
2 =, _2(+v,)o, (28)
3E,
. Obtain the next approximate plastic strains from eq. (A12) as:

EI’

gr", = T'"(28”" - g&m - g'm)
3¢, .
EP

85 = _—-m_(zgﬁm - 8""! - g:"l) (29)
3¢g,
=P

85 = i’ (2€zm - grm - ng)
3¢

m

Use these values as the second approximation for the stations where yielding has

occurred and use zero for the remaining stations.
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) 9. Repeat the steps above until the strains at all stations converge.

6 Experimental Procedure

The experimental characterization of the material in this study consists of (1)
mechanical characterization of the composite at ambient temperature, (2) characterization
of the fiber, (3) thermomechapical characterization of the matrix at various temperatures, |
and (4) measuring the stress-strain behavior of the unidirectional composite at
corresponding temperatures. The detailed procedure is described below.

The mechanical characterization procedures are described in Whitney et al. (1985).
These test methods were used for preliminary characterization of the material and the
measured properties are shown in Table 1.

The fiber was characterized by measuring its elastic modulus and tensile strength
following the ASTM D3379-75 standard procedure. A special miniature tensile testing
device was designed and used to provide good control and accuracy of measurements
(See Daniel ef al. (1989,1993), Luo et al. (1994)). After a careful centeﬂline alignment of
a single filament on the special slotted tabs, the specimen was loaded up to failure. During
testing, the load and displacement were continuously monitored from the load cell and the
LVDT, respectively. The filament cross-sectional area was determined from the highly
magnified photomicrographs. The apparent compliance obtained directly from the load-
displacément curve should be corrected to obtain the true compliance by repeating tests
for various gage lengths from 25.4 mm (1.0 in.) to 61.0 mm (2.4 in.) from the slope of the

apparent compliance curve plotted against the gage length.
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Since it is extremely difficult to measure the in-situ properties of the matrix, it was
only possible to measure them from the bulk form material. Selection of the heat
treatment state that correspond to the condition of the matrix was a problem because the
matrix properties, particularly those of metal matrix composites, are significantly changed
by the temperature history during the manufacturing process. The properties of the as-
fabricated aluminum matrix are similar to those of the near O temper (annealed state)
characteristics, according to Pindera and Lin (1989). Furthermore, the specimen, during
the curing process of bonding of the tabs at an elevated temperature, experiences a
temperature history similar to that of the annealing process of aluminum. It is believed
that property changes due to the repeated heat treatment is negligible. Assuming that the
in-situ properties of the matrix are reasonably close to those of the fully annealed state, the
6061 aluminum, heat treated by the standard annealing procedure (See Alloy Digest), was
characterized at various operating temperatures.

The as-obtained 1.42mm (0.056in.) thick composite plate was cut into 12.7mm
(0.5in.) wide 152.4mm (6.0in.) long coupons and tabbed with high strength adhesive for
testing at elevated temperatures. Two types of adhesive were used for different
temperature ranges. For the temperature range between 24°C (75°F) and 288°C
(550°F), a polyimide adhesive film (FM36, American Cyanamid) was used; while an
aluminum filled condensation type polyimide adhesive film (FM680) was used for the
tempefature range of 288°C (550°F) to 399°C (750°F). Both types are supported by a

glass cloth carrier for better shear and peel-off strengths. These adhesives provide
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sufficiently high strength for testing provided the bonded tabs are sufficiently long
(38.1mm(1.5in.)).

The high temperature tests were conducted in a thermal chamber. For strain
measurement, the specimens were instrumented with commercially available strain gages
for high temperature applications (WK-gages from Micro Measurements and RKO-gages
from J. P. Technology). Th.e strain readings from the gages were compensated for ,
temperature by using a dummy gage technique and weré verified by measuring the axial
strain by means of a water-cooled clip-on extensometer. The specimen surface
temperature was monitored with K-type thermocouple bonded on the surface with ceramic
adhesive. To minimize the error due to convection heat loss, the thermocouple was
shielded with Kapton tape. The temperature signal was also used as a feedback to the
temperature controller. Tests were conducted at the temperatures of 24°C (75°F), 121°C

(250°F), 177°C (350°F), 288°C (550°F), and 399°C (750°F).

7 Results and Discussion

Constituent materials were thermomechanically characterized and shown in Table
2. Figure 3 shows the measured apparent compliances obtained from the SCS-2 single
fiber testing as a function of gage length. The true compliance of the fiber is determined
from the slope of the curve. In addition, the coefficient of thermal expansion (CTE)
measured by Tsai and Daniel (1994) was used in this study. The stress-strain curves of
6061-0 aluminum obtained at various temperatures are shown in Fig. 4. As the

temperature increases, the elastic limit stress decreases significantly and the stress-strain
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behavior becomes close to that of an ¢lastic perfectly-plastic solid. These curves are fitted
by the power law strain hardening model of eq. (26). The temperature dependent
parameters, &, n, and o, from this fit are tabulated in Table 3.

It was shown from the thermal-strain curve that the CTE of 6061 aluminum is
linear up to approximately 93.3°C(200°F) and exhibits slight nonlinearity above that
temperature. On the other hand, the CTE of the fiber shows significant nonlinearity in the .
range between room temperature and 449°C (840°F), but it is linear beyond that up to
1299°C (2370°F), as discussed by Hillmer (1989).

The fiber volume ratio meaéured from photomicrographic examination was 0.44.
The equivalent ratio of the outer to inner cylinder diameters is 1.51 in this case, as

determined from the relationship:

= (30)

The composite behavior was studied by considering the mechanical and thermal
loading conditions. From the measured constituent properties, the elastoplastic problem
was solved by the successive approximation method with 26 stations assigned along the
radial direction. Under longitudinal tensile loading, the state of stresses in the composite
is triaxial. Figures 5(a), 5(b), and 5(c) show respectively the radial, tangential, and axial
stresses in the fiber and matrix as a function of r/a, that is the radial distance normalized
by the fiber radius. As shown in the figures, several different levels of applied stress were
chosen up to failure in incréments of 275.8 MPa (40 ksi). It is noted that the radial
stresses are compressive everywhere while the tangential stresses are compressive in the

fiber and tensile in the matrix.
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. Substitution of eqs. (14)and (17) into eq. (5) vields a condition that the stresses in

the fiber, O, T4 and o are independent of the radius . In other words, the stresses in

the fiber are uniform. Furthermore, the radial stress component is equal to the tangential
stress component. On the other hand, the radial and tangential stresses in the matrix
decrease in absolute terms gradually from the fiber-matrix boundary as r increases. These
stresses are an order of magnitude smaller than the axial stress but they contribute to the -
plastic deformation of the matrix. The condition of very high axial stress in the fiber
compare to the other stresses implies that the axial deformation of the composite is
dominated by the fiber properties.

Because of the plastic deformation of the matrix starting at a certain stress level,
the rate of change in the local stresses decreases with respect to the applied stress above
the critical yield stress. For example, the radial, tangential and axial stresses at » = a are
plotted as a function of applied stress as shown in Fig. 6. The initial portion of the curve is
linear at stresses below yielding and then it approaches a plateau as the applied stress
increases above the yield point. Also shown in the figure are the stresses in the fiber.
Although the fiber properties are purely elastic, the actual stresses in the fiber are
influenced by the matrix and show a pattern similar to that of the matrix. However, the
axial stress in the fiber is high and not sensitive to the matrix deformation.

The effective strains are computed for prediction of the stress-strain curve of the
compo.site. Figures 7(a), 7(b), and 7(c) show typical stress-strain curves at 24°C (75°F)
and 288°C (550“F), respectively. The axial and transverse strains compare favorably

experimental measurements.
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, The case of thermal loading case was also studied in addition to mechanical
loading. The effects of residual stresses in the composite were neglected in this study
although it is important to understand-them for computing the actual stresses at a given
temperature. However, it is interesting to study the thermal behavior by computing
thermal stress distribution due to a temperature change.

Thermal stress components at various temperatures were computed and shown in
Fig. 8. The thermal properties of the matrix at any given temperature can be obtained by
linear interpolation of the measured data. Unlike the mechanical loading counterpart,
these stresses do not change monotonically with the change in temperature. For example,
as shown in Fig.8(a), the stress in the fiber at 177°C (350°F) is higher than that at 65.6"C
(150°F) but lower than the one at 121°C (250°F). Figure 9 shows the computed stresses
in the fiber and matrix plotted versus temperature. Note that the stresses increase linearly
in the initial range of the heating process in the neighborhood of room temperature. The
rate of increase slows down above the matrix yielding temperature and then the stresses
decrease at higher temperatures. This phenomenon occurs because the internal stresses
are affected by two competing factors: Thermal expansion keeps increasing as the
temperature rises, while the matrix properties degrade at high temperature. As a result,
the stresses increase at lower temperature where the thermal expansion predominates the
process. On the other hand, the stresses drop at elevated temperatures where the matrix

properties are significantly degraded. This phenomenon should be noted in designing

structures for use at high temperatures.
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: Figure 10 shows the longitgdinal and transverse thermal expansions of the
composite as a function of temperature. Near room temperature, both fiber and matrix
expand linearly with temperature. At a critical temperature where matrix yielding begins,
the properties of the fiber contribute more to the longitudinal strains than the matrix. On
the other hand, the transverse strains are more influenced by the matrix properties. This is
shown in the figure where th-e slope of the transverse strain increases while that of the '
longitudinal strain decreases in the temperature range above the vyield point. The
experimental measurements do not exactly coincide with the prediction. It is believed that
this slight deviation is a result of the neglect of residual stresses and of the relatively high

fiber volume ratio of the model.

8 Summary and Conclusions

An elastoplastic analysis was developed and applied to the prediction of the
thermomechanical behavior of a metal matrix composite based on the coaxial cylindrical
model with perfect bonding at the fiber-matrix interface. It was assumed that the fiber is
elastic and the matrix elastoplastic following a power law strain hardening model.

Stress distributions in the fiber and matrix due to mechanical and thermal loading
conditions were obtained for various stress levels and temperatures. In the case of
longitudinal tension, the radial and tangential stresses are approximately an order of
magnitude lower than the axial stress. The stresses in the matrix show large variations

while the stresses in the fiber are uniform.
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. In the case of thermal loading, the strain-temperature relationship shows
nonlinearity due to matrix yielding and plastic flow. In the last stage of thermal loading,
the internal stresses decrease because of the coupling of thermal expansion and matrix
softening effects.

The successive approximation method was found to be a useful tool in solving
problems where the boundary‘conditions are not explicitly prescribed. The best advantage
of this approach is that the strain and stress fields are computed for any given loads
without incrementing the load. However, the method should be refined by considering
additional effects such as residual stresses and creep, particularly for studying the

composite behavior in the transverse direction
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' ~ Appendix

Prandtl-Reuss Relations in t‘erms of Plastic Strain and Total Strain

The Prandtl-Reuss equations express the relationship between the plastic strain
increment to the stresses. These relation can. be modified using a set of similar equations
expressed in strains. These tqtal deformation plasticity relationships are more convenient
to use in conjunction with the successive approximation scheme.  The general
relationships are derived as follows.

The total strain is expressed as a sum of elastic and plastic components

£, =€; +5;’ (Al)
where g, is the total strain, é‘u the elastic strain, and &, the plastic strain.

Subtracting the mean strain from the diagonal components yields

1 . 1
€y _Egkk 5,',' =& —Egkké’ij + 55 ‘ (A2)

Defining the total deviatoric strain tensor e,. and elastic deviatoric strain tensor e,

equation (A2) becomes
e, =e; +&f (A3)
Prandtl-Reuss flow relation gives the relationship

& = AS, (A4)

where 1 is nonnegative constants and S, the deviatoric stress tensor expressed as

=0, - % 0.0, (AS)

i 7 i
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From the Hook's law and Prandtl-Reuss relationship, the elastic deviatoric tensor is

expressed as

e; = -Z-ESU. (A6)

or
L&)
e.g = — A7
2G4 (A7)
where (G is the shear modulus.
Substituting eq. (A7) into (A3) gives
1 14

e, = 1+ZG/1 €, (A8)
From eq. (A8)

2 2 1Y

-geueu 25(1-}-@) EUP&‘UP (A9)

' By defining an equivalent modified total strain

2

€= Eeueu‘ (A10)
equation (A9) becomes
€ 1
—_—=]+— (Al 1)
er 2GA
and from eq. (A8)
= & Al2
8'.]. =€ ( )
g

F=.=5 5 (A13)
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Figure Captions

Fig. 1 Coaxial cylindrical composite model.

Fig. 2 Schematic stress-strain curves (;f linear and power law strain hardening models.

Fig. 3 Apparent compliance of SCS-2 fiber as a function of gage length.

Fig. 4 Tensile stress-strain curves of 6061-0 aluminum at various temperatures.

Fig. 5 Stress distribution in the fiber and matrix as a function of radial distance for
longitudinal mechanical loadin: (a) radial, (b) tangential, (c) axial stresses.

Fig. 6 Radial, tangential and axial stresses in the matrix at #=a and radial and
tangential stresses in the fiber as a function of applied stress.

Fig. 7 Stress-strain curves 6f [0 ] unidirectional SiC/Al composite at various
temperatures. (a) 24°C (75°F) and (b) 288°C (550°F).

Fig. 8 Stress distribution in the fiber and matrix as a function of radius for various
temperature changes: (a) radial, (b) tangential, (c) axial stresses.

Fig. 9 Radial, tangential and axial stresses in the matrix at #=a in the fiber as a

' function of temperature.
Fig. 10 Longitudinal and transverse thermal strain-temperature curves of unidirectional

SiC/Al composite.




Table 1 Properties of SiC/Al composite at room temperature

Property

SiC/Al Composite

Longitudinal modulus, £,, GPa (Msi)
Major Poisson's ratio, v,

Longitudinal tensile strength, F,, MPa (ksi)

206.9 (30.0)
0.27

1620.0 (235.0)

Longitudinal coefficient of thermal expansion, «,, ue/°C (ue/°F) 5.94 (3.3)
Transverse coefficient of thermal expansion, a,, ue/°C (us/°F) 16.0 (8.9)
Fiber volume ratio, V; 0.44
Table 2 Properties of aluminum 6061-O and SCS-2 fiber at room temperature
Property 6061-0 Aluminum SCS-2 Fiber
Elastic modulus, £, GPa (Msi) 69.0 (10) 399.9 (58)
Poisson's ratio, v 0.33 0.22
Yield stress, o, MPa (ksi) 55.2 (8) —-
Tensile strength, F,, MPa (ksi) 1241 (18) 3461- 5309
(502 - 770)
Coefficient of thermal expansion, «, ue/°C
(el °F)
24°C (75°F) 23.4(13.0) 2.25(1.25)
121°C (250°F) 23.6(13.1) 2.34(1.30)
177°C (350°F) 23.9(13.3) 2.81(1.56)
288°C (550°F) 24.8(13.5)
450-1300°C (842-2372°F) - 4.86(2.70)
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Table 3 Values of material dependent parameters

Modulus Elastic limit Material Material

Temperature stress constant constant

E, GPa (Msi) o, MPa (ksi) k (x107°) n (x107%)
24°C (75°F) 68.6 (10) 41.4 (6) 510 453

121°C (250°F) 63.8 (9.25) 39.3(5.7) 450 455

177°C (350°F) 60.7 (8.8) 37.4 (5.35) 380 45.6
288°C (550°F) 55.2(8) 33.1(4.8) 6.62 45.8
399°C (750°F) 48.3 (7) 15.9(2.3) 6.12 46.0
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Abstract

The thermoelastoplastic behavior of unidirectional SiC/Al composite was studied
with a micromechanical model based on the average field theory. The continuous elastic
fibers are assumed consistently scattered in the thermoelastoplastic matrix in the model,
The thermoelastoplastic analysis of the composite is achieved by introducing the concept
of secant properties of the matrix. The average stresses of the matrix, fiber and the
effective strain of the composite are expressed as functions of the secant modulus of the
matrix. The stress-strain curves under transverse and longitudinal tensile loading at
different temperatures and the thermal strain-temperature curves of the composite were

predicted and compared satisfactorily with experimental results.

Introduction

Metal matrix composites (MMC’s) are in demand even though their fabrication
process is more complex and less cost effective than that of polymer based composites
because of their superior performance in operating environments involving high
temperature and moisture. They also posses other merits such as high toughness, impact
resistance, resistivity to temperature change or thermal shock, surface durability, low
sensitivity to surface flaws, and high electrical and thermal conductivity.  The
unidirectional composite is the easiest to manufacture and has the best properties in the
fiber direction. However, its transverse strength is much lower than that of unreinforced
matrix. This makes it difficult to use the material inlLlnidirectional form and is important

to understand its behavior especially under transverse loading.
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A micromechanical model was adopted to predict thermoelastoplastic behavior of
composite materials. In the past, most investigations were focused on the elastic behavior
of the composite and only a limited number of studies was carried out on elastoplastic
behavior due to its complicated nature. In the case of MMC, the matrix undergoes a
plastic flow and is sensitive to the environmental temperature. Thus, it is imperative to
study the MMC behavior using the thermoelastoplastic solution.

A number of investigations of different micromechanics were carried out. For a
low fiber volume ratio Eshelby’s method (1957) was used successfully to predict average
behavior of the composite. For intermediate fiber volume ratio the coaxial cylinder model
(CCM) was introduced by Ishikawa et al. (1978), Unemura ef al. (1979), Iesan (1980),
Mikata and Taya (1985), and Warwick and Clyne (1991), by assuming elastic constituents,
particularly elastic matrix. The model was extended to include elastoplastic behavior of
the matrix by Hecker ez al. (1970), Gayda and Ebert (1979), and Chun ef al. (1994). But
the applications of CCM are restricted to the axisymmetric problems. To overcome this
restriction, attention was paid to a model which is based on Eshelby’s solution with Mori
and Tanaka’s (1973) average field theory incorporating Eshelby’s equivalence principle.
This model is not only applicable to non axisymmetric loading conditions but also gives
reasonable results for larger fiber volume ratios (See Lin ef al, 1992). This method has
been used by Taya and Chou (1981), Taya and Mura (1981), Takao and Taya (1987),
Benveniste(1987), Tandon and Weng (1988), and Lin et al. (1992).

The theory proposed by Tandon and Weng (1988) was extended to the
thermoelastoplastic analysis of a unidirectional composite in this paper. In the analysis,

the thermoelastoplastic behavior of the composite is described by introducing the concept
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of secant moduli to the Mori and Tanaka’s method (1973). This method simplifies the
thermoelastoplastic analysis without recourse to the plastic strain components from the

plastic flow rule. The theoretical predictions were compared with experimental results.

Theoretical background

The representative volume of the composite consists of a number of long fibers in
a matrix block. The fibers and matrix are assumed fully bonded. The model provides the
following constutive relations for the effective response of a unidirectional elastoplastic
composite referred to a Cartesian coordinate system (x,, Xx,, X;) where x; is aligned with
the fiber direction as shown in Fig. 1.

The fiber behaves elasticly up to failure and the matrix behaves
thermoelastoplasticly. The fiber volume ratio is denoted by /. The secant moduli of the

matrix and fiber are denoted as C, and C,, respectively.

According to Mori and Tanaka (1973), the average disturbed strain field exists
only inside the fiber in the representative volume if the shape of the representative volume
and fiber are taken similar because the average disturbed strain field due to the existence
of the fiber vanishes outside the inhomogenity. This method has an advantage because no
boundary condition is needed to determine overall behavior of the system. External
tractions or external displacements can be assigned to the boundary of the system which
yield the same result. In this paper, the analysis was carried out when the external traction
is applied to the boundary of the representative volume. This method is based on analysis
of two systems, one is a reference model of a pure mz‘urix under the same external load as
the second system that contains the fibers.
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The external traction applied to the boundary produces a uniform stress o, and
strain ¢, if the body does not contain any reinforcement. They are related by
o,=C,¢&, (1)
where C,, is the secant modulus of the matrix at the applied stress o,. The average stress-
strain relationship of the matrix in the composite is quite different from equation (1). It is
expressed as
oc,=0,+0,=C (6,+&) (2)
where &, and £ are matrix disturbance stress and disturbance strain, respectively, due to
the presence of reinforcement. The stress-strain relation of the fiber is also different from
that of the surrounding matrix. With the help of Eshelby's equivalent inclusion principle
the stress in the fibers is expressed as follows
o,=0,+0,=C,(¢,+& +¢'~¢)=C,(e,+& +&' —€ ~ e") (3)

where ¢, is the thermal strain introduced due to the mismatch in thermal expansion

coefficients between the matrix and fiber, Ef and ¢’ are disturbance stress and strain

fields due to the presence of the fiber and thermal strain, ¢ is a fictitious eigenstrain (See
Mura, 1982) which is introduced to relate the present problem to the equivalent inclusion
problem. The thermal strain (&,) is expressed as

&, = (@, —a,)ATS,  (ij=1,2.3) @)

wherea,, and «, are the thermal expansion coefficients of the matrix and fiber,

respectively and A7 is the temperature change. According to Eshelby the relationship

. . . ' . . * .
among the disturbance strain (&), thermal strain (&,) and eigenstrain (¢ ) is expressed as
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e'=8(e,+¢") (5)
where S is Eshelby's secant tensor of the fiber expressed in terms of dimensions of the
fiber and secant Poisson’s ratio of the matrix. The equilibrium condition in terms of
average stress gives

o,=fo,+(1-/f)o, (6)

where f is the fiber volume ratio. Equation (2), (3) and (6) give

G, = (f{ D g, (7)
From eqs. (2), (3) and (7) the disturbance strain of the matrix is obtained as
£=Clo,—e,+f(I-S)e, +&") (8)
where / is the idéntity tensor.
From eqs. (3) and (8) the eigenstrain is expressed as
& =J7(C = CCoy +(1- £)(S - De ) ©)
where
J=(/-DC,U=-8)+CAf(S-1)-S} (10)
The average stress in the matrix is calculéted fromeq. (2) as
o,=0,=fC (S- I)J"(Cf -C ) o,
~fC (S =-D{ —f)J“'(C/- -C S -D+1}e, (1)
~The average stress in the fibers is calculated from eq. (3) as
o,=0,+(-f)C (S~ I)J"(C/. -C (o,
(12)

+(1 ~f)C,,,(S—[){(l—f)J"(Cj. -CXS-D)+1}e,

The stress-strain relation for the composite is obtained from following relationship
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E-& =fe,+(1-f)e, (13)
where
£y ={fa,+ (- a,ATs, (i, j=1,2.3) (14)
From eq. (13), the effective strain of the composite due to the mechanical and thermal
loading 1s given as
g£={C + fI7HC, -C)C o, + f(1- ) (C,-C )S-De, +&,  (15)

Equation (15) is used to predict the thermoelastoplastic behavior of the composite.

Elastoplastic An:llysis

The thermoelstoplastic behavior of the composite is carried out by introducing the
concept of secant properties to the Mori-Tanaka method. The theﬁnoelastoplastic
analysis is separated into the elastic and plastic parts. At this point it is more convenient
to treat the yield condition and plastic analysis with the concept of equivalent stress and
strain. This concept enables to reduce the complex three-dimensioﬁal stress-strain
relations to a single relationship.

The composite behaves elasticly until the equivalent average stress of the matrix
from eq. (11) exceeds the yield stress of the matrix.

o <o, (16)

- where the equivalent average stress is defined as

2

; Suuj AS'mu ( I 7)

o =

Here S . is the deviatoric stress tensor of the matrix. The secant moduli of the fiber and

miy

matrix and the Eshelby’s secant tensors all coincide with the elastic values. The composite,
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starts to behave plasticly when the equivalent average stress in the matrix exceeds the yield
stress.
& >0, (18)
The elastoplastic stress-strain behavior of the matrix is expressed as a power law
strain hardening model for the theoretical prediction of composite behavior as an input for
constituent properties. The stress-strain curve of the matrix is expressed as

o =0, +kE & (19)

m® p

where 4, and », are material constants, o, is the elastic limit stress or yield stress and g, is

the equivalent plastic strain of the matrix defined as

3
R 2
8}1 - o) glllpljglll[llj ("‘O)

where ¢, . are the plastic strains of the matrix. The corresponding secant modulus (See

mpij
Fig. 2) for a given equivalent plastic strain is express as

E {o, +kE &
E 5 m{ Y m p} (21)

mo n
oy +kE,e,"+E,¢,

Where £ is the elastic modulus of the matrix. The corresponding secant Poisson's ratio

increases in the nonlinear range from its elastic value to the limiting value of 0.5 for an
incompressible material. It can be expressed in terms of the secant modulus (see Nadai,

1950) as

where v, is the elastic Poisson's ratio of the matrix.
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When the matrix yields for a given thermomechanical loading, the combined
incremental-search method and bisection method is used to find the corresponding
equivalent plastic strain. Then, the secant properties of the matrix are computed from eqs.
(21) and (22) to calculate the corresponding effective strain of the composite. Following
is the step by step procedure of the method used in computing the equivalent plastic strain
under thermomechanical loading following the matrix yielding.

1. An equivalent plastic strain is first assumed then the corresponding secant

Modulus and Poisson's ratio of the matrix are computed from eqs. (21)

and (22).-

3]

. From eqs. (11) and (17) the equivalent average stress of the matrix under the

thermomechanical loading is obtained from the secant properties.

(98]

. If the equivalent average stress of the matrix from the above procedure is
matched with the result from equation (19) then the solution is obtained. If not,

" then, the above procedure is repeated until the solution is found.

4. Known secant properties of the matrix are used to calculate the effective strain

of the composite from eq. (15) under thermomechanical loading.

Experimental Procedure

The composite material studied in this paper is SiC/Al composite. This composite
material consists of 6061 aluminum matrix reinforced with 140 #m (0.00551 in.) diameter
SCS-2 fiber (Textron Specialty Materials, Inc.). The fiber volume ratio measured from
photomicrographic examination was 0.44. The composite material was made by diffuision

bonding consolidation. The specimens, cut from 1.42mm (0.056in.) thick unidirectional
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eight-ply composite plate, were 12.7mm (0.5in.) wide 152.4mm (6.0in.) long and were
tabbed with 38.1mm (1.5in.) steel tabs with high strength adhesive for use at elevated
temperatures. Two types of adhesives were used tor different temperature ranges. For
the temperature range between 24°C (75°F) to 288"C (550°F), a polyimide adhesive film
(FM36, American Cyanamid) was used; while an aluminum filled condensation type
polyimide adhesive film (FM680, American Cyanamid) was used for the temperature
range of 288°C (550°F) to 399°C (750°F). Both types are supported by a glass cloth
carrier for better shear and peel strengths.

Elevated temperature tests were conducted in an Instron 1331 servo-hydraulic
testing system equipped with a thermal chamber. The specimens were instrumented with
commercially available strain gages for high temperature applications (WK-gages from
Micro Measurements and RKO-gages from J. P. Technology). The strain readings from
the gages were compensated for temperature by using a dummy gage technique and were
verified by measuring the axial strain by a high temperature water-cooled clip-on
extensometer.  The specimen surface temperature was monitored by a K-type
thermocouple bonded on the surface with ceramic adhesive. The temperature signal was
also used as a feedback to the temperature controller. All tests of the composite were
repeated at three temperatures, 24°C (75°F), 288"C (550”F), and 399°C (750°F).

For micromechanical prediction of thermomechanical behavior of the composite,
the thermomechanical properties of matrix were needed. Selection of the heat treatment
state that corresponds to the in-situ properties of the matrix was a problem because the
matrix properties, particularly those of metal matrix c.omposites, are significantly changed

by the temperature history during the manufacturing process. Furthermore, the specimen,
t
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during curing of the adhesive at an elevated temperature, experiences a temperature
history similar to that of the annealing process of aluminum. It is believed that the
property change due to the repeated heat treatment is negligible. It is assumed that the in-
situ properties of the matrix are reasonably close to those of the fully annealed material
(See Pindera and Lin, 1989). Prismatic 20.32 c¢cm (8.0 in.) long, 1.27 cm (0.5 in.) wide,
and 0.16 cm (0.062 in) thick aluminum specimens were prepared. Elevated temperature
tests were conducted on 6061-O aluminum. Stress-strain curves of 6061-O aluminum up
to 5% strain at various temperatures ranging from 24°C (75°F) to 399°C (750°F) are
shown Fig. 3. The fiber was characterized by measuring its elastic modulus and tensile
strength following the ASTM D3379-75 standard procedure. The elastic modulus
measured is 400 GPa (58 Msi). The fiber behaves elasticly up to failure and is assumed
isotropic and temperature independent.

The thermal strains of composite and 6061-O aluminum were measured by strain
gages. The specimens were instrumented with WK-00 (Micro Measurements) gages for
measuring longitudinal or transverse thermal strains of the composite and 6061 aluminum.
At least three thermocouples were attached to the specimen to monitor temperature. A
programmable hot press (MTP-14, Tetrahedron) was used for controlling temperature
change step by step. The specimens were heated up to 288°C (550°F) with the gages at
increments of 14°C (25°F) at half hour intervals to stabilize the temperature and
expansivity of the specimen. A strain gage bridge conditioner BC-8SSG (KAYE
Instruments) and data logger (Digistrip, KAYE) were used to record time, temperature
and strain. The obtaiﬁed apparent strains were corrected to give true thermal strains.

Similar gages are attached to a reference titanium silicate specimen that has a known

D-11



stable coefficient of thermal expansion of 0.0306x10™ /" C (0.017x10™/° F). The
reference specimen is included in the test chamber together with the test specimens. The

true thermal strain ¢ ,, is obtained by correcting the apparent strain &_ by the reference

e
strains as follows (See, Daniel and Ishai, 1994)

glrue = E“ - (Er - Elr) (23)
where ¢, is the measured gage output from the reference specimen and ¢, is the known

thermal expansion of titanium silicate. Figure 4 shows the thermal strain - temperature

curve of 6061 aluminum.

Results and Discussion

Constituent materials were thermomechanically characterized and the propeniés at
room temperature are shown in Tables | and 2. The coefficient of thermal expansion
(CTE) of SCS-2 in the table is adopted from the measurement of Tsai and Daniel (1994).
The stress-strain curves of 6061-O aluminum at various temperatures are shown in Fig. 3.
These curves are fitted into a power law strain hardening model which is expressed in eq.
19. The corresponding temperature dependent parameters &, » and o, are given in Table
3. The elastoplastic analysis was performed using the constituent properties given in the
tables.

The composite behavior was studied under mechanical and thermal loading
conditions. According to the elastoplastic analysis based on this model the matrix is
considered as an elastic material with varying secant modulus and secant Poisson’s ratio
depending on the amount of plastic deformation. The variations of secant modulus and

Poisson’s ratio of the matrix under the transverse tensile loading at room temperature are
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shown in Fig. 5. It can be noticed that the secant modulus of the matrix decreases trom its
elastic value of 68.6 Gpa (10 Msi), while the secant Poisson’s ratio increases from its
elastic value of 0.33 toward the limiting value of 0.50. The stresses in the constituents and
effective strain of the fiber are influenced by the change of these matrix secant properties.
Under transverse tensile loading the triaxial state of average stresses in the fiber
and matrix are calculated from the model. Figure 6 shows the average stresses in the fiber
and matrix as a function of applied stress. It is noted that all the average stresses in the

matrix and fiber stress o, are tensile while fiber stresses o, and o ,; are compressive.

The maximum stresses in the matrix and fiber were along the loading axis. The stresses
vary linearly with appiied stress before yielding of the matrix. The model shows that the
average stresses other than o ,, increase in rate after yielding. As shown in the figure, the
fiber behaves purely elasticly but the average stresses in the fiber are influenced by the
plastic flow of the matrix and show a similar behavior. Note also that the larger portion of
load is transmitted to the fiber because of its higher stiffness. Although, the stresses along
the x, and x, axes are an order of magnitude lower than that along the loading axis (x,),
they contribute to the plastic deformation of the matrix.

The effective strains were computed for transverse tensile loading to obtain stress-
strain curves at three different temperatures. Figure 7 shows the comparison between the
_predicted and experimental stress-strain curves at 24°C (75°F), 288°C (550°F), and
399°C (750°F). It shows that the predicted stress-strain curve at room temperature
matches favorably the experimental one. However, the other two predicted stress-strain
curves at higher temperatures show some deviatiop from the experiments in the early

stages of yielding. There are three major possible reasons for this deviation. The first is

D-13




creep. The two high temperature tests were conducted at a rather slow stroke rate at well
above the homologous temperature. The low temperature strengthening mechanism no
longer holds in this case and creep deformation under tensile loading is inevitable. The
composite experiences three different modes of deformation at high temperature: elastic,
plastic, and creep. The creep activity is affected by its prior mechanical deformation.
Usually, plastic and creep behavior of the composite are modeled separately, although
many creep theories obviously were generalized from plasticity. But within certain stress
and temperature ranges when both plastic and creep activities are of comparable
significance, both types of strains must be considered simultaneously to fully assess the
extent of inelastic deformation. To be physically consistent such a consideration requires
inclusion of creep effect in the model. The second possible reason is the-inability of the
model to incorporate the high heterogeneous local deformation field in the ductile matrix
and to account for the local stress field in the initial elastic state and during the subsequent
plastic deformation. In the average field model the complicated local yielding in the
matrix cannot be taken into consideration so that the prediction tends to significantly
underestimate the extent of plastic flow in the case of transverse loading. The third
possible reason is the interfacial effect since high transfer of load from matrix to fiber is
observed. The degradation of interfacial properties also affects the transverse behavior of
. the composite. These phenomena are expected to be more pronounced at high
temperatures.

The effective strains of the composite were also computed for longitudinal loading
and were compared with the experiments. Figures 8(a), 8(b) and 8(c) show stress-strain

curves under longitudinal loading. The stress-strain curves under transverse loading were
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also shown in the figures for comparison purposes. The predictions show better match
with the experiments because the behavior of the composite is dominated by the fiber and
the complex inelastic behavior of the matrix at high temperature plays a smaller role under
longitudinal loading.

The longitudinal and transverse thermal expansion of the composite was also
computed. The temperature effect on the matrix is fully considered. The material
properties of the matrix at a given temperature were obtained by linear interpolation
between known properties at a few temperatures. Figure 9 shows the thermal expansions
of the composite as functions of temperature. As seen in the figure, both thermal strains
show nonlinear behavior after the temperature reaches a critical temperature This
characteristic can be explained qualitatively by following events. As the temperature
increases from room temperature, both fiber and matrix tends to expand linearly. At a
certain critical temperature the matrix starts to yield due to the thermal internal stresses
caused by the difference in expansion between fiber and matrix. The thermal strain in the
axial direction is more influenced by the fiber and in the transverse direction more by the
matrix because less constraint is imposed between fiber and matrix due to the plastic flow
of matrix. This leads to reduction of thermal expansion in the longitudinal direction and

increase in the transverse direction.

Summary and Conclusions
The effective strain response of a unidirectional composite under
thermomechanical loading was obtained by an average field theory. The fiber is elastic

and temperature independent and the matrix is thermoelastoplastic that is fitted into series

t
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of power law strain hardening model. The thermoelastoplastic analysis was carried out by
introducing the concept of secant properties to the average field theory.

Under transverse tensile loading the secant properties of the matrix and the
average stresses in the matrix and fiber at room temperature were obtained as a function
of applied stress. It is noticed that the larger portion of the load is transferred to the fibers
due to their higher stiffness. The experimental stress-strain curve of the composite at
room temperature shows good agreement with prediction under transverse tensile loading.
However, the experiments show deviations from predictions at higher temperatures due to
inelastic deformations other than plastic flow (creep), higher heterogeneous local
deformation of the matrix and degradation for interfacial properties with temperature.

The experimental stress-strain curves of longitudinal tensile loading at different
temperatures are also compared with predictions. Favorable agreements are observed at
all three temperatures. Because, under longitudinal loading, the behavior of the composite
is dominated by the fibers and only a small influence of the complex behavior of the matrix
exists.

The experimental longitudinal and transverse thermal strain-temperature curves
were also compared with predictions. They show nonlinearity due to matrix yielding and
plastic flow.  The comparison between predictions and experiments shows good
agreement.

The model was found to be a useful tool for predicting thermomechanical behavior
of unidirectional metal matrix composites. However, the model should be improved by
considering additional inelastic effects, such as creep,.particularly in the transverse loading
above the homologous temperature of the matrix.
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Figure Captions

Fig. 1 Unidirectional average field composite model subjected to tensile transverse

Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

loading.

Schematic stress-strain curve of power law strain hardening model with
corresponding secant modulus.

Tensile stress-strain curves of 6061-O aluminum at various temperatures.
Thermal strain-temperature curve of 6061-O aluminum.

Variation of secant modulus and secant Poisson’s ratio of aluminum matrix as
functions of applied stress subject to transverse loading.

Average stresses in the fiber and matrix as functions of applied stress subject to
transverse loading.

Stress—stfain curves of [908] composite subject to transverse loading at various
temperatures.

Stress-strain curves of [03] composite subject to longitudinal loading compare
with those of [903] composite subject to transverse loading at various
temperatures: (a) 24°C (75°F), (b) 288°C (550°F) and (c) 399°C (750°F).
Longitudinal and transverse thermal strain-temperature curves of unidirectional

SiC/Al composite.
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Table 1 Properties of 6061-0O aluminum and SCS-2 fiber at room temperature
Property 6061-0O Aluminum SCS-2 Fiber
Elastic modulus, £, GPa (Msi) 69.0 (10) 399.9 (58)
Poisson's ratio, v 0.33 0.22
Yield stress, o,, MPa (ksi) 55.2 (8) -
Tensile strength, /. MPa (ksi) 124.1 (18) 3461- 5309
(502 - 770)
Table 2 Coefticients of thermal expansion of 6061-O aluminum and SCS-2 fiber

Temperature, 7. °C ("F)

Coeflicient of thermal expansion, «, ue/°C (ue/°F)

24 (75)
121 (250)
177 (350)
288 (550)

450-1300 (842-2372)

23.4(13.0) 2.25(1.25)
23.6(13.1) 2.34(1.30)
23.9(13.3) 2.81(1.56)
24.8(13.5)
4.86(2.70)
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Table 3 Material dependent parameters of matrix

Modulus Elastic limit Material Material
Temperature stress constant constant
E, GPa (Msi)  o,, MPa (ksi) k(x107) n(x107)
24°C (75°F) 68.6 (10) 41.4 (6) 510 453
121°C (250°F) 63.8(9.25) . 393(57) 450 455
177°C (350°F) 60.7 (8.8) 37.4 (5.35) 380 45.6
288°C (550°F) | 55.2¢(8) 33.1(4.8) 6.62 458
399°C (750"F) 48.3 (7) 159 (2.3) 6.12 46.0
|
Table 4 Properties of SiC/Al composite at room temperature
Property SiC/.AJ Composite
Longitudinal modulus, £,, GPa (Msi) 206.9 (30.0)
Transverse modulus, £,, GPa (Msi) 113.8 (16.5)
Major Poisson's ratio, v, 0.27
Longitudinal tensile strength, F,, MPa (ksi) 1620.0 (235.0)
Longitudinal coefficient of thermal expansion, a,, puel°C 5.94 (3.3)
(el °F)
Transverse coeflicient of thermal expansion, «,. ue/°C (ue/ °F) 16.0 (8.9)
Fiber volume ratio, ', 0.44
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Appendix

The secant moduli tensor of fiber (C,)and matrix (C,) are expressed by 6x6

matrix forms.

r - ~ 7
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Eshelby’s secant tensor (3) is expressed as

-Sn|| *Sn'z: “Sll33
Soon Szzzz S2233 0
. Sun S i
S =
SlZlZ
0 S:svz
L S313|J
where
A ¥ (5 - 4 V":’)
51111 = ‘32222 = N
8(1-v,)
S3333 =0
v (4v, -1
Snzz = O T s
8(1-v,)
Y
Sz = Sy = 21-v?)

v v
‘SSSII - ‘83322 =0

. _B-4v)
2=

Sy =853 =

B —

The thermal strains (&,,&,) have the following form

V= . .
&={€0 Ems €135, 0,0, 0}

and

E={&n € £33, 0,0,0}
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