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ABSTRACT OF THE DISSERTATION

The Accuracy of Parameter Estimation in
System Identification of Noisy Aircraft Load
Measurement

by
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Doctor of Philosophy in Electrical Engineering
University of California, Los Angeles, 1994

Professor Kung Yao, Chair

This thesis focuses on the subject of the accuracy of parameter estimation
and system identification techniques. Motivated by a complicated load measure-
ment from NASA Dryden Flight Research Center, advanced system identification
techniques are needed. The objective of the problem is to accurately predict the
load experienced by the aircraft wing structure during flight determined from a
set of calibrated load and gage response relationship. We can then model the
problem as a black box input-output system identification from which the sys-
tem parameter has to be estimated. Traditional LS techniques and the issues of
noisy data and model accuracy are addressed. A statistical bound reflecting the
change in residual is derived in order to understand the effects of the perturba-
tions on the data. Due to the intrinsic nature of the LS problem, LS solution
faces the dilemma of the trade off between model accuracy and noise sensitiv-

ity. A method of relating the two conflicting performance indices is presented,



thus allowing us to improve the noise sensitivity while at the same time confin-
ing the degradation of the model accuracy. SVD techniques for data reduction
are studied and the equivalence of the Correspondence Analysis(CA) and Total
Least Squares Criteria are proved. We also looked at nonlinear LS problems with
NASA F-111 data set as an example. Conventional methods are neither easily
applicable nor suitable for the specific load problem since the exact model of the
system is unknown. Neural Network(NN) does not require prior information on
the model of the system. This robustness motivated us to apply the NN tech-
niques on our load problem. Simulation results for the NN methods used in both
the single load and the ”warning signal” problems are both useful and encourag-
ing. The performance of the NN(for single load estimate) is better than the LS
approach, whereas no conventional approach was tried for the ” warning signals”
problem. The NN design methodology is also presented. The use of SVD, CA
and Collinearity Index methods are used to reduce the number of neurons in a

layer.
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Chapter 1

Introduction

Parameter estimation and system identification are general analytical techniques
applicable to many engineering problems. The problem can generally be viewed
as a black box system identification process from which input and output relation-
ship is identified and determined. Once the system parameters are determined, it
can be used to estimated the output when a new set of input data are presented
to the system. As in most cases such as spectral estimation in signal processing,
statistical analysis and data reduction techniques, our problem reduces to finding
the solution of the linear system of equations represented by Ax ~ B, where A is
the input matrix and B is the output matrix. The parameter r relating A and B
is then determined using linear algebraic techniques. In the past, normal equa-
tions approach is mostly used until the development of newer techniques such
as Singular Value Decomposition, QR factorization, etc. However, there are still
drawbacks in these methods which we need to understand and analyze. There
are factors affecting the accuracy of the system identification process which we

need to address and analyze. Problems that appeared in this process include the



redundancies in the data matrices, the need for subset data selection, the noise
in the data matrices, the selection of system parameters and the accuracy of the
linear model assumption. Some of these concerns are studied in [30] [9] such as
using SVD to solve the problem of data redundancies. In [3] and [9], Correspon-
dence Analysis is used in data reduction. In [7] [10] [11], the presence of noise in
both the data matrix A and output matrix B are considered using Total Least
Squares. Also, we need to address the intrinsic problem of model accuracy and
its robustness to noise.

In practical situations the input-output relationship of the black box system
cannot be accurately modeled as a linear systems. As a result linear methods
may not be adequate for these situations. Techniques such as spline approxima-
tion and nonlinear optimization are widely used in solving nonlinear least square
problems. Spline approximation is relatively simple in dealing with only one or
two dimension problem but becomes increasingly complex in multivarite prob-
lems. On the other hand, the use of nonlinear optimization techniques is not
always straightforward and simple. Often, the assumption of the type of nonlin-
ear function is required for the model. Recently, much attention is given to the
use of Neural Network approach in applications arising from different areas of
interest. From pattern recognition, function approximation, linear and nonlinear
programming to singular value decomposition, Neural Network are used instead
of more traditional methods. In some cases when model assumption is not easily
obtainable, Neural Network will be most suitable since no model assumption is
required. This advantage of NN becomes more apparent when nonlinearities is
present in the data matrix A. Linear methods are no longer adequate in these

situations, as a results nonlinear least square techniques must be used. Since



NN is based on search algorithms such as gradient descent algorithm, the com-
putation effort required for the training of the NN is generally very intensive. In
addition there is no definite criteria for selecting which type of NN to be used for
the problem, the use of NN sometimes becomes heuristic and ad-hoc in nature.
However, the ease of use, the lack of necessary model assumptions and the ability
to handle wide variety of problems makes it a relatively popular method among
various area of interest.

This thesis is motivated by a real aircraft system identification problem en-
countered at NASA Ames-Dryden Flight Research Center. The physical problem
_ deals with the wing surface of an aircraft which is constantly experiencing dif-
ferent loadings during the flight. The ability to estimate these in-flight loadings
are essential to- the understanding and design processes of the wing structure.
Strain gages are mounted on different parts of the wing which are sensitive to the
loads. In order to relate the gages’ outputs to the loadings on the wing surface,
a pre-flight calibration procedure is performed. The calibration stage is simply
a procedure to obtair the gages’ outputs when a set of known wing loads are
applied to the wing structure. In Figure 1.1, we apply a known load L on the
aircraft structure and obtain the strain gage measurements M. From these data,
we obtain a set of parameters that characterizes the structure. In Figure 1.2,
during the flight measurement stage, from the in-flight gage measurements M,
we can then estimate the in-flight loads L.

Some major issues in the parameter estimation problem are noises present
in the calibratiorr and: the in-flight stages; the accuracy of the model(linear or
non-linear) used to. establish the relationship between gages and loadings; and

the number of the available gages. We shall consider some of these matter. In
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chapter 2, some known analytical techniques useful for least-squares solution
are summarized. In chapter 3, the equivalent approaches on the formulation
of the load measurement problem are considered. In chapter 4, a bound for
evaluating the effect of noise on the residual of the LS problem is derived. In
chapter 5, the statistical properties of noise in both the calibration and in-flight
stage are discussed. In this chapter the relationship bétween the noise sensitivity
and the model accuracy is presented, which leads to the development of a new
methodology for reducing the flight stage noise variance. It is also shown that
the reduction of noise variance in the flight stage depends on the amount of
deterioration of the model accuracy. In Chapter 6, the methodology of Total Least
Square (TLS) [7], technical results and studies are presented with reference to the
works by Golub in [7] [10] [11]. We will also discuss the method of Correspondence
Analysis (CA) studied by Greenacre in [9]. In the same chapter, we will show
the equivalence of TLS and CA as both methods require the minimization of the

energy of perturbation error imposed on the data matrix.



Chapter 7 introduces the nonlinear least square problems together with a
practical example by the NASA F-111 gage data. The inadequacy of the lin-
ear methods leads to the use of nonlinear least square or nonlinear regression
techniques [2]. We also provide a background of the theory and applications of
Neural Networks (NN) [20] [17] [12]. Different types of Neural Networks are also
discussed and analyzed. One of the most useful type of NN is through the use of
the Back Propagation training approach [27]. Since NN is shown to be useful in
applications such as pattern recognition, function approximation, nonlinear pro-
gramming, etc., examples and studies relating to these topics are also presented.
In Chapter 8 we propose the use of NN in nonlinear least squares and pattern
recognition approaches in solving the system identification problem represented
by the NASA F-111 gage data. Other than estimating a single load on the wing
surface, we propose the estimation of a distributed load. A distributed load es-
timate consists not only of the information of the single load estimate but also
the individual loads experienced by different part of the wing. Pattern recog-
nition is used in an effort of separating different loading conditions. Using NN,
we showed that we could identify different loading conditions during flight stage
with reasonalbly amount of accuracy. A simulated examples is also presented.
In the same chapter, we also proposed a new method to estimate the single load
estimate using NN. Since NN is capable of solving nonlinear least square prob-
lems, we could apply the techniques to the NASA F-111 data when conventional
linear methods failed. Results using NN and linear methods are discussed and
compared. In the last chapter, the performance of the NN is discussed and a

design methodogly is presented with simulation results.



Chapter 2

Least-squares Estimation

Least-squares is a general numerical method that can be used for solving a linear
system of equations such that the sum of squares of the errors is minimized.

Suppose we have a system of equation
Az >~ b, (2.1)

where A is a known m x n matrix, z is an unknown n x 1 solution vector ,and b is
a known m x 1 vector. For overdetermined system of equations, we have m > m
and for underdetermined system, we have m < n. We also assumed all the data
and solution are real-valued. The least-squares(LS) problem is equivalent to the

minimization problem of
min ||Az — b|| = || AZ - b, (2.2)

where £ is the LS solution for equation (2.1). Three well known methods (7] for

solving & are summarized below.



2.1 Normal Equation Method

By expanding (2.2), we have

l|Az — b||> = (Az - b)/(Az —b) = 2’AAz—2'Ab—-V Az +b'd
= ' AAz —22/A'b + b (2.3)

By taking the gradient of (2.3) with respect to z and set it to zero yields
2A'A2 - 2A'b=0

and
Z=(A'A)" A (2.4)

Thus the normal equation approach to the least-squares solution is given by (2.4).
This solution exists only if m > n and A is full rank. However this method does
not yield a numerically stable solution since it requires the inverse of the matrix
A’ A whose condition number is the square of that of A. Thus this method is not

useable if A is already nearly singular.

2.2 QR Factarization Method

Let A be a full rank m x n matrix that can be factored into the form of A = QR,
where Q is a m X n matrix of orthonormal column vectors, and R is a n x n upper

triangular matrix [7]. Then from (2.1), £ can be solved by the equations

QRi=b (2.5)
Ri = Q. (2.6)



Since R is a non-singular matrix, R~! exists and (2.6) can be written as
= R™'Qb. (2.7)

While the formal LS solution £ based on the QR method is given by (2.7), since R
is upper triangular, Z in pratice can be obtained by using the back substitution
method once @'b is determined. In general, the QR method approach for the

solution of Z is more stable than the normal equation approach.

2.3 Singular Value Decomposition Method

Let A be a m x n matrix of rank r < min(m,n). Then the SVD of A can be
expressed as A = UXV’, where U is a m X n matrix with orthogonal columns
(i.e.,, U'U =1); V is a n x n orthogonal matrix (i.e., VV'= V'V =1); and T is
a n x n diagonal matrix = diag[A;, ... A [, with Ay 2> X 2 - 2 A > A =

-+ = A =0 [7]. Then from (2.1), £ can be solved by
& =U'S*Vb, (2.8)

where £+ = diag[A7!, ... ,A71,0,...,0 ]. Thus the SVD solution of (2.8) is
numerically stable even when A is rank deficient. As a result, the SVD approach
toward the solution of £ in (2.8) allows effective reduced rank of the system of

equations.



Chapter &

Two Equivalent Approaches to

Load Measurements

There are two fundamental operations in the load measurement problem on an
aircraft structure. In the calibration stage as shown in Fig.11, we perform a
system identification by measuring the responses of the strain gages mounted on
different locations of the structure from a series of known applied load at various
specified load points on the structure during the calibration stage on the ground.
In the flight measurement stage, by using some characterization of the system
obtained in the first stage, we can predict the actual equivalent load value and
location from the gage measurements during the flight. Various known successful
approaches and results have been reported in the past on the load measurement
problem [14] - [26]. There are two fundamental and intuitively equally justifiable
linear approaches arbitrarily denoted as Approach 1 and Approach 2, that are
applicable to the load measurement problem. In Approach 1, we model the load

value matrix L as dependent linearly on the influence coefficient value matrix M



measured by the gages. In Approach 2, we model M as dependent linearly on L.
In general these matrices are rectangular, thus it is not immediately clear that
these two approaches are equivalent. Historically, all the work in [14] [26] were
based on that of Approach 1. Now, we shall show that these two approaches are
indeed equivalent in most cases, and can be proved by the use of the SVD method
of Section 2.3. On the other hand, if we only use the more conventional and
previously used normal equation method ([14] [26] also called the linear regression
technique) of Section 2.1, then the limitation of this analytical technique can only
show the validity of Approach 1 when the number of gages n is less or equal to the
number of loads m(m < n). Through the use of the concept of "minimum energy”
solution, we can show that both approaches are equivalent. There are several
theoretical, practical, and computational consequences to these observations.

At the most basic level of understanding, of course, it is theoretically impor-
tant to know the equivalency of these two seemingly different approaches that
yield the desired result. At the practical algorithmic operational level, the inad-
missibility of having the number of gages n greater than the number of applied
loads m in the calibration stage in Approach 1 is generally not serious. However,
there are certain conditions in which we want to consider more gages than the
number of loads in the calibration stage. Conventional normal equation approach
(i.e., Approach 1) is not possible since A’A needed in the processing is singular.

When the data from the gages are quite linearly independent, then there is
no significant numerical difference between the use of the SVD technique or the
normal equation technique. However, for highly dependent data, there can be
significant advéntages for the SVD technique. Detailed numerical computations

based on practical observed gage measurements and load values are necessary to

10



verify their differences. The crucial point is that in all cases, the SVD approach
is always computationally more costly as well as numerically more stable. For
typical dimensions encountered in the load measurement problems, the additional
computational cost of the SVD approach is not of significant concern, when we
perform only few LS computations. However, when we perform the LS com-
putations repeatedly(as we shall see in Section 3.3 under the exhaustive search

method), then the higher SVD computational cost may be objectionable.

3.1 Approach 1 - Linear Dependency of Load

Values on Gage Values

Load Matrix
Let L € IR™*® be a load matrix

L= [L11L27L3]’ (31)
where
Li = Ls=15,5,...,5m, (3.2)
Lz = LB = [Bl,Bg,...,Bm]',and (33)
Ly = Lr=1T,,...,Tn (3.4)

Alternatively, the shear, moment and torque of the i-th element can be ex-
pressed as
B.' = S,'yi, i=1,...,m,and (35)

= S,'IL‘,', i=1,...,m, (36)

-

11



where (z;, ;) represents the relative position of the load vector.
Gage Matrix
Let M € IR™" be the gage matrix which is the response of the n gages to

the m loads in the calibration process, specifically let

Mlo
M = [m.l, e ,m.n] = E y (3'7)
M
where each m,;, i = 1,...,n, represents the normalized response of the i-th gages

to the m loads. Let the n x 3 dependency coeifficient matrix b consists of
b = [b.l, b.z, b.3], (38)

Then the linear relationship between the load and the gage matrix can be

expressed as

L ~ Mb (3.9)
L =~ M[b.] , b.g, b.3] or (310)
L,' >~ Mb.;‘ ,i=1,...,3. (311)

For i = 1, b, yields the dependency of L, = Lg, the shear vector to the linear
combinations of the influence coefficient vectors m,y, . .., Men of M in (3.7). Simi-
larly, b yields the dependency of L, = Lg and M and b.3 yields the dependency
of Le3 =Lt and M.

For the cases of m > n, normal equation and Approach 1

In the calibration process, the matrix M as well as L, L., and L3 are available.

If we define the pseudo-inverse of M € IR™™ as a matrix from the normal

12



equation point of view, we have
MY = (MMM, (3.12)

where m > n and all columns of M are linearly independent. Then the LS

solution b of the linear system L ~ Mb using the normal equation method is
given by

by = ML, i=1,2,3, and (3.13)

b = M*L. (3.14)

In the flight measurement stage, we observe one 1 x n dimensional gage mea-

surement vector M (corresponding to the first row vector of M in (3.7)). From
(3.9), the predicted 1 x 3 load vector L is given by

L = [8,B,T)|= Mb=MM*L = M(M'M)~'M'L (3.15)

= MM%*[L,, Luy, La). (3.16)

Then the first element of L yields the predicted shear 5, the second element
yields the predicted moment B, and the third element yields the predicted torque

T as given by
S = MM*L,, (3.17)
B = Sj=MM*L,;, and (3.18)
T = Si=MM*L,. (3.19)

From (3.19), we can solve for j and 7 as

_ MM*L,,

y = —_—— &nd
MM+Ly
A+

g = MM'Lsg (3.20)
MM+L.,

13



Thus,(3.19) and (3.20) represent the predicted equivalent net shear, bend-
ing moment location, and torque location of the applied load that yielded the
measured gage vector M using the normal equation approach.

For the cases of m < n, normal equation and Approach 1

For this case, we have an underdetermined linear system. Since m < n, we
can solve the linear system Mb = L exactly. However, a unique LS solution
doesn’t exist for the normal equation method. Therefore a "minimum energy”
solution can be chosen for this case.

Let f(b) be an energy function to be minimized with a constraint that M b=1L,

we can use Lagranian multiplier method such that

m

Se(bar) = Yubek + D Xj(mjeber — Lak) (3.21)

Jj=1

= b’.kb.k + A,[Mb.k - L.k] = b’.kb.k + [b’.kM’ bl L’.k]A, (322)

where k=1,2,3 ,A = [\;,..., M\n] is the vector of the lagranian multiplier. Now

setting the gradient to 0 yields

ka(b.k) = 2bex + MA=0 (323)
and
~ 1 '
b = —§M A (3.24)
A= 2(MM') 'Ly, k=1,2,3 (3.25)

As a result, the solution can be expressed in matrix form as

b=M(MM")'L=M*"L. (3.26)

14



SVD Method for Approach 1

Now consider the use of the SVD technique via Approach 1. Consider an
alternate form of the SVD of the matrix M with rank p < min(m,n) as given by

M =UySuVly, (3.27)

where

Uym € IR™*? is a matrix with orthogonal columns,

Vu € IR™™P is a matrix with orthogonal columns, and

Yy € IRP*P is a diagonal matrix with positive singular values (S.V.) denoted
byor>002...20,>0.

Let the pseudo-inverse of the matrix M € IR™™ be denoted by M*+, and

from the SVD point of view we can express
M** = VyShUl,, (3.28)

where T}, is a n x m diagonal matrix with the inverse positive singular values
denoted by 1/0y < 1/05 < ... < 1/0, > 0. Thus by using (3.28) in (3.9) , the
LS solution for b satisfying (3.9) via SVD is

b= M+L. (3.29)

We note, (3.29) corresponds to (3.14) and (3.26) in the calibration stage of the
previously considered normal equation technique.

Then in the flight measurement stage, we have

L=Mb=MM*L (3.30)

It is most interesting to note, that the predicted load vector in (3.30) based on

the SVD technique has the same form as the predicted load vector in (3.16) based

15



on the normal equation technique. Indeed when m > n (i.e., the number of loads
is greater or equal to the number of gages) and when the gage measurements are
quite linearly independent, the pseudo-inverse given by M** in (3.29) is equal to
the pseudo-inverse given by M* in (3.9). Thus, in those cases, either the conven-
tional normal equation or the SVD methods will yield the same predicted load
values. Of course, when the measurement values are quite linearly dependent,
then the SVD approach will be better from the numerical stability point of view.
As mentioned earlier, when n > m, the normal equation method is not applicable
for Approach 1 since M¥ in (3.12) is not defined. Through the use of the concept
of "minimum energy” solution, we showed that normal equation approach can
be used for cases when n > m. In addition, the results of (3.28)-(3.30) under the

SVD method for Approach 1 are valid in all cases including n > m.
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3.2 Approach 2 - Linear Dependency of Gage
Values on Load Values

From a physical cause and effect point of view, it is reasonable to assume that

the response of the first gage to the m loads is given by

mn s1 S 51Z1 C11
Moy = = C12
Mmi Sm  Sm¥Ym SmIm 13

= [L.l, L.Q, L.g]Cl = LCl. (331)

In (3.31), we are describing the gage measurement as a linear combination of the
form

my; = Sic11 + Si¥iCi2 + SiZiC13, (3.32)

which depends linearly on the shear, bending moment, and torque. In general,

for all n gages, we have
M = [m,1,...,Me) ~ Licy,...,cn) = LC, (3.33)
where the 3 x n dependency matrix C is denoted by
C=lc,...,Cn)

In the calibration process, M and L are available as before. In the flight measure-

ment process, we have an observed M given by (3.33) as

M=1LcC. (3.34)
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For the cases of m < n, normal equation and Approach 2

Let the psudo-inverse of L be denoted by

I { (L'L)-'L' form >3 (3.35)
L(LLY™! form <3.
By using (3.35) in (3.33), the LS solution satisfying (3.33) is
C=LtM=(L'L)'L'M. (3.36)
In the flight stage, we have
M=LC=LL*M. (3.37)

Since m < n, (MM')~! exists and we can multiply both sides of equation (3.37)
by M’ and obtain

MM' = LLY (MM (3.38)
MM MM = LL* (3.39)
MM (MM 'L = LL*L (3.40)
L
13)(3
L = M(MMYM'L. (3.41)
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For the case m > n, normal equation and Approach 2

Using the "minimum energy” solution of (LL*)' for the underdetermined

system we have in the flight stage from equation (3.36) and (3.37)

M = LC (3.42)
M = (LLY)M (3.43)
M = M'(LL*Y (3.44)
(LLYY = MM'M)'M’ (3.45)
LLY = M{(MM)™'M (3.46)
L = M(M'M)'M'L, (3.47)

where Lt L = I3x3.

SVD method for Approach 2

Now, consider solving for C in (3.33) by using the pseudo-inverse of L based

on the SVD representation of L. Specifically, consider the SVD of L as given by
L=U,Z.LV], (3.48)

where
U € R™™ is an orthonormal matrix,
vV, € IR**3 is an orthonormal matrix, and
¥, € IR™ 3 is a matrix of the form diag(oL1,012,0L;)-

In particular; we note

LiE, = I (3.49)
By using (3.48) in (3.34), we have
M = LV, ZiUI M. (3.50)
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Now, M can be expressed in its SVD form of

M =UyEuViy. (3.51)
Then (3.50) can be written as
M = LV, SiU, UyEmViy. (3.52)
Lt

For the cases of m < n, SVD and Approach 2

For m < n, &, € R™ ™, Uy € R™™, and Viy € R™™. Then VyVy, =

Imxm and UyUpyy = Uy Uy = I;mxm since Uy is orthonormal.

Then equation (3.52) becomes

M(VyxhUs,) = LL* (3.53)
LLYL = M(VyZiUy) L (3.54)
o ———
13)(3 M++
L = MM*L. (3.55)

Since equation (3.55) in Approach 2 is the same as that of Approach 1, we showed
that the two approaches is equivalent in this case.

For the cases of m > n, SVD and Approach 2

For m > n we look at the expression of
M=LC.
The SVD solution € = UcEcV/ of the above LS problem is
| C=L*M.

AN

Since C € R3**"™ and CC* = I343, we can write

cCt = LtMC+ (3.56)
Inxa
G+t = ML (3.57)
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For the in-flight stage we have

M=LC (3.58)
e T A
M g =LCC* (3.59)
Mt++L Iaxa
L=MM*L. (3.60)

Since equation (3.60) in Approach 2 is the same as that of Approach 1, hence we

showed that the two approaches yield the same solution via SVD.

3.3 Limits on the Number of Strain Gages

Due to limitations of in-flight telemetry channels, the number of gages available
for the measurement of loads are less than that during the Calibration Stage.
Thus we need to find the best possible combination of smaller number of gages
for load estimation. Two heuristic approaches have been used to eliminate gages

in such a way that the resulting increase in estimation error is not very significant

[26].
T Value Method
For each gage, a T value is calculated as
T; = bi/e, (3.61)

where Bi is the i-th element of b and ¢; is the standard deviation error associated
with b; [23]. Then the gage with the smallest T value is eliminated. Repeat the

process until the desired number of gages is left.
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Figure 3.1: Residuals vs. number of gages used

MT Value Method

Again, for each gage, a MT value is computed as

1 iBi

MT, = b (3.62)
Yi€i

where p; is the mean absolute response of i-th gage, A; is the correlation coeflicient

from i-th gage to all load conditions, and ; is the correlation coefficient from i-th

gage to all other gages. The elimination procedure based on the MT value is the

same as that based on the T value.

Exhaustive Search Method

This method minimizes the residual by exhaustively computing all the combi-
nations of the desired number of gages. The combination which results in the

lowest residual will be chosen as the best gage combination for load estimation.
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A simulation using NASA HWTSS data is carried out to compare the dif-
ference in performance for different subset selection methods. In fig. 3.1, we
observed that although MT and T value methods are heuristic in nature, it pro-
vides a more accurate solution than the solution yielded by the ”worst gage”
choice. Indeed, these methods perform quite close to that of the "best gage”
choice method. Since the choice of which gages to be eliminated depends on the
integrity of the gage data, the reduced gage choice set can be very sensitive to
noisy data. Thus a more robust procedure is preferred when data matrix are
corrupted with noise. Other methods that use collinearity index in trying to

eliminate redundant gages are also studied in works by [30].
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Chapter 4

A Bound for Noise Perturbed

Systems

The performance of the estimation using least squares solution depends on the
accuracy of the underlying model and the integrity of the data. This chapter
will illustrate how a corrupted data matrix affects the accuracy of the model as
reflected by the change in the residual of the LS problem. The effect of noise on
the measurement matrix M will be shown by deriving a bound for the increase
in residual as a function of the noise. The following preliminary materials are

necessary for the derivation of the bound [7].

4.1 Distance Between Subspaces

Consider an over determined system where m > n. In specific we let A € IR™?
and B € IR™*? be two given matrices. Let the domain of A and B be IR?, then
let F € IR™ and G € IR™ denote the ranges of A and B respectively. Then we
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can define

cosf, = max max u'v=uiv k=1,..,p 4.1
k 'uE.F'UEg kVk) ( )
lJul|2 = [[v]|2 =1
Wy, =1 =0,i=1,...,k—1,

where 1, and vo are null vectors (i.e., for k = 1, the constraints w'up = v'vo =0
vanish). Then the set i,k =1,...,q satisfies 0 < 91 <6 <...< 0, Lm/2
Furthermore, u;, v; and 6; are called the principal vectors and the principal angles
of the subspace pair of F,§ [7]. In particular, 6, is the maximum angle between
two basis vectors in subspace F and G . Furthermore, the distance between F

and G reduces to

|QrQF — QeQgll = /1 — cos? 8, = sin by, (4.2)

where the columns of Q5 and Qg are the orthonormal bases for 7 and G respec-

tively. It can be shown [7] that

0089k=0k(Q’}-Qg),k= 1,...,p. (43)

where 0x(Q'=Qg) is the kth largest singular value of the matrix Q=Qg.

4.2 A Bound for the Noise Perturbed Resid-
ual

Let [ui, ..., up) be a set of orthonormal basis vectors in IR™ that spans the subspace

M of the strain gage measurements under the Calibration Stage and [vy,--.,up|
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be a set of orthonormal basis vectors in IR™ that spans the subspace M of the

gage measurement with noise. Specifically, the noise E is defined by
M=M+E. (4.4)

Furthermore, we denote Qu = [u1,- - -,%p) and Qg = [v1,.-.,vp]. Then QyQy
is a projection operator onto M and Q Q' is a projection operator onto M.
Under ideal (noise-free) condition, the ideal LS solution b associated with the

measurement matrix M and the calibration load L, is obtained from
min ||Mb — Loas||* = ||Mb — Leas| . (4.5)
Then L can be defined by
L=Mb=QuQy L (4.6)

Similarly, under noisy condition, the LS solution b associated with the noisy

measurement matrix M and the calibration load L is obtained from
min ||Mb — Leas||* = [|Mb — Leas||* (4.7)
Similarly, L can be defined by
L= MQ,QyLeas- (4.8)
Thus the difference between L and L becomes
L-L=Qu@u - Qumn) Lo (49)
and its norm squared is bounded by

1L = LII? = 1Qu @y — Qu Q@) Loasl* < [|Leas|[* sin® by, (4.10)
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where |[(QuQy — @u@i)I)* = sinf, =1 — og(Q'MQM) from (4.2).
For simplicity, denote

0o (QuQm) = op * .
Also denote the noise-free and noisy residuals by

€ = Lcab - i and

€ = Legp—L.

Then (4.9) becomes

L~L=Leas— L)~ (Lea = L) = €= &= (QQy — QuQ@'iz) Leat-

By applying Triangle Inequality, we obtain
|[€l|* < [1&l}* + || Leab]|* sin® 6,

or

[IEll® = [1&l1* < || Loasll® sin® 8p = || Leas|*(1 — 0%°).

Thus (4.15) yields a bound on the noise perturbed residual.

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

The bound in (4.15) can further be expressed in a more useful form if g,* can

be expressed in terms of the perturbed matrix M and the noise matrix E. As a

result, the remaining section will be dedicated to this objective.

Suppose the matrix M and M have QR factorizations as
M =QuRum

and

(4.16)

(4.17)



From (4.7) we have M = M + E, after applying QR factorization to M and

M, we obtain

QuRw = QuRum+E (4.18)

Qu = QuRumRy +ERg
= Qu +QuRuRz (I - RuRy) + ERy.
If we denote
E, =QuRuRy (I - Ry Ry}) + ERy, (4.19)

then (4.19) becomes

Qu = Qu+E (4.20)

QuQu = QuQum+E) = QuQm+QuEr=1+QuEr

Furthermore if we denote

E, =QE, (4.21)

then (4.21) can be expressed as
QuQu =1+ E,. (4.22)
From properties of the theory of perturbed singular value(p.284 of [7]), we have
lox(D + F) — ox(D)| < 01(F) = ||F|l2, fork=1,...,p. (4.23)

Combining (4.21) and (4.23), we have

oa(@u@ir) — 0D = lop(l + Ez) — op(D)| < 01(Eo) = | Exll. (4:24)
lop(@u@ir) — 1] < IIE]
=1l < |IE]
(1—0p#) < |Ball, forop<1

vV

Op* 1—||E;]|, foropx< 1.
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From (4.21), we have

E; = QuQuRuRy (I - RuRy)+QuERy (4.25)
= RumRy (I - RuRy)+QuERy
= RuR; -1+QuERy.

Taking the norm squared of E, and invoking Triangular Inequality, we obtain

B2l = ||RuRy — I+ QuERZIP (4.26)
< ||IRuRGFIP+1+1QuERZI?

= ||RuRyI1* +1+|[ER5|".
If we apply QR factorization to M and M in (4.19), we obtain

M = M-E (4.27)
QuRu = QuRy-F
QuRMRy = QuRuRy — ERg
IRMBHI? = 1QuQm — QuERH|?
< 1Qu@uml?® + |ERg|* < 1+ ||[ERg|I?

since ||QYl = ||Qull =1 and [|Q4Qull* < [1QuII71Qu1” = 1.

Now Rjz is an upper triangular matrix, by defining 4 we have

p o= (RGP (4.28)
= ||diag(1/ry,...,1/rp)lI? (4.29)
_ 2
= iﬂffpl/r" (4.30)

where 7; for i = 1, ..., p are the diagonal element of the matrix R.
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Then combining (4.27) and (4.28), we have

|E2)? < 1+ ||ERZ|?+1+||ERG P (4.31)

21+ ||IER5 ")
< 201+ ullEIP). (4.32)

(4.33)

In summary, we have the following results

el = 1lel? < [|Leasll*(1 = 0p%°) (4.34)
opx > 1—||E||, foropx<1 (4.35)

|E2ll < y/2(0 + wllE]]?). (4.36)
(4.37)

As a result, the bound can be expressed as

€l = 1€l < [l Zeasll{1 = [1 = /21 + | EIB)]*}- (4.38)

Thus, we have derived a bound for the change in residual due to the error matrix
E. 1t is interesting to see that the bound depends on the value of u (which
is the largest value of the diagonal elements of matrix Ry found from the QR
factorization of the noisy data matrix M) and the largest singular value of the
noise matrix E.

Now since || ® || < || ® ||F, equation (4.38) can be expressed as

llEll? = 11el> < [1Leasl P{1 = [1 = /201 + Wl BB} (4.39)

Thus we have related the norm of the noisy M residual € to the norm of the
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noiseless M residual € and the norm of the matrix error E. This bound pro-
vides an analytical relation between the norm of the noiseless and noisy residu-
als(corresponding to M) thereby allowing us to estimate the norm of the noise in
the data matrix when the other two terms in (4.39) are determined or estimated.
Although it is only an analytical bound whereas the actual behavior of the system
is not accurately determined, it allows us to have an understanding of how these

quantities are related.
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Chapter 5

Noise Sensitivity Analysis for
the Flight Stage Load

Estimation

5.1 Effects of Errors on Load Prediction in Cal-
ibration and Flight Stage

During the calibration process, the gage measurement observed can be repre-

sented as a matrix of

M.= M.+ E,, (5.1)

where M, € IR™*" is the true gage measurements and E, € IR™*" is a matrix
with its elements as the error associated with the gage measurement. In order

to estimate the flight load, the estimation parameter derived from the noisy
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calibration matrix M. can be written as
b=b+bg=(M.+ E)*Lc, (5.2)

where b € IR" is the noiseless estimation parameter, bg is the estimation param-
eter error and Lc € IR™ is the calibration load vector. During the flight stage,

the observed noisy output gage measurement can be expressed as a matrix of
M,= M, + E,, (5.3)

where E, € IR" is a matrix with its elements as the error associated with the
output gage measurement defined as M, € IR".
Thus the final noisy estimated load taking into consideration of the calibration

and flight stage can be expressed as
M,)b= (M, + E,) (b + bE). (5.4)

The resulting estimated load can also be expressed as

b~
o
l

(M, + E.)'(5 + bg) = M’b + M.bg + E,b + ELbE

= Lo+ Mbg+ Eb+ Epge

>

= L, + €oc; (5.5)

where I:o is the noiseless load estimate and is the estimate that we wish to obtain.
Similarly eoc is the corrupting error term which reduces the accuracy of the load
estimate. ‘

If we examine the variance of epc, we could gain some insight orr how to

reduce the effect of this noise on the L. The variance of eoc can be expressed as

var{eoc} = var{M'bg + E.b+ Ebg}. (5.6)
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If we assume that the output error E, and bg are uncorrelated, which is reasonable

since input and output noise are usually uncorrelated, then
var{E.bg} = 0. (5.7)
As a result, (5.6) can be written as
var{eoc} = var{M'bg} + var{E.b}. (5.8)

(5.6) indicated that if we want to minimize the var{eoc}, we can minimize
the first and second term in (5.8) independently. In other words, we could reduce
the combined effects by independently reducing the noise variance during the

calibration and flight stage.

5.2 Properties of Flight Stage Noise and Load
Estimate Error

In the last section, we have shown that the overall noise variance can be reduced
by independently reducing the noise in the calibration and flight stage. For
simplicity, we now assume the noise in the calibration is zero( i.e. E. = 0). Then
we will study the effects of noise on the load estimation accuracy during the flight
stage. As mentioned before, the calibration load L. and the gage measurement

M are related by the system of linear equations,
L.~ M_b. (5.9)

The estimating parameter b = M7 L. will then be used to predict the amount

of load during the flight stage. The flight stage noise, which can be modeled
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as an additive noise E, = [e},...,e,] as in (5.3) on the gage readings M, =
[mu,...,my], is generally present in the measurement system . As a result, the

noisy flight stage load estimate L, can be expressed as

Lo=Mb= (M, +E)b=L,+e¢, (5.10)

where L, is the noiseless load estimate and ¢, = EOI; is the excessive load estimate
error due to the noise F,.

In order to study the corrupting effects of the load estimate error ¢,, we need
to examine some of its statistical properties.

If we assume that the mean of the flight stage noise E, is zero, the expected

value of ¢, can be expressed as
E{e,} = E{E'b} = 0. (5.11)
Then the variance of ¢, is

Var{e,} = E{(e, — B{&})’} = E{c}} = E{(E}b)*}
= E{VE,Eb} =VE{E,E.}b=VTggh, (5.12)
€11 ... €j€n
where g = E{E,E)} =FE

€n€l ... €nén

It is often desirable to reduce the variance of ¢, since a small variance suggests
that the corrupting effect of noise on the load estimate will be less severe in the
flight stage. However the variance of ¢, depends only on the amount of noise in
the flight stage and the estimator b obtained from the calibration process, it is

impossible to reduce the variance of ¢, without making changes on the vector
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b. Nevertheless, the accuracy of the predicted load will also be affected when
changes are made on b. In other words, the reduction of the noise sensitivity of
the estimate is at the expense of the model accuracy. Therefore, it is important
to optimize the amount of tradeoff between noise sensitivity and model accuracy
when noise sensitivity reduction is absolutely necessary. The following sections

will examine two possible solutions to this problem.

5.3 The Sensitivity Measure for Noise Perturbed

Systems

Since the variance of ¢, is an indicator for the intensity of the noise, it can be
interpreted as an intensity index of noise sensitivity. If white gaussian noise is a
reasonable assumption(i.e var{e,} = #'bo2 = ||b||202 ), the sensitivity index can

be defined as

030 712
Se, = p = ||b||*, (5.13)

where o2 is the variance of the flight stage noise E, and o2 is the variance of €.

€o

5.4 The Trade-off between Model Accuracy and
Noise Sensitivity

In order to examine the effects of the reduction in noise sensitivity on the model

accuracy, we need to look at the noisy load estimate from (5.10) such as

L= M, b= (M, + E)b= Lo+ ¢ (5.14)

37



5.5 Single Coeifficient Noise Sensitivity Reduc-
tion(SCNR)

In theory, we would like to have a small valued noise sensitivity index. As a result,
the reduction of S, = ||§||? in (5.13) requires that the value of the norm of the
estimator vector b = [by,...,ba]' to be reduced. It can be achieved by changing
the values of one or more elements of the vector b. The SCNR method discussed
in this section only changes one element of b; such that the new estimator vector

becomes
bscnr = [b1y. -, cbi, - .., b, (5.15)

where ¢; < 1. Then the decrease of the noise sensitivity AS can be defined as
AS = ||B])? - ||bsenrl|]? = 1 = )b > 0. (5.16)

Now, we define the noiseless new load estimate(when the output stage noise

E,=0) as
ﬁo,SCN}'I = M(’,SSCNR =myb, +... +mich +... + by, (5.17)
and the new load estimate obtained from the noisy measurement m, as
Loscnr = Mlbsonr = by + ... + fucihs + ... + fnb,. (5.18)

The change in load prediction accuracy AA with respect to the noiseless load

estimate L, can then be expressed as
AA= L, - Losenn= (1 — c)bim,. (5.19)
Combining (5.16) and (5.19), we have

AA = (b — /B2 — AS)m,
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and
AA

mi

0y AA 4 by
AS =B - (— - b)) = AAQ2— - . 5.20

P- (o - b= AAR - 0) (5:20)
From (5.20), if we fix the change in model accuracy AA, the decrease in the noise-
sensitivity AS can be maximized by scaling the i-th gage prediction vector b to-

c:bi such that 8,2 - (%:% — b;)? in (5.20) is the largest among gages i = 1,...,n-
The maximum AS for a fixed AA = §A attained can then be expressed as

- AA -
ASscnr = max {b? - (—H- - b,-)z} . (5.21)
AA=6A

Figure 5.2 below shows a plot of the normalized ASgcyr versus AA for the

NASA Wing data, where the definitions of
ASscNr

AﬁSCNR = -—”W- and (522)
A
AA = —. 5.23
A i (5.23)

It indicates the amount of improvement in noise sensitivity ASscvr at a given

level of accuracy deteriorating AA.

5.5.1 Sub-optimal Single Coefficient Noise Reduction for

practical applications

The SCNR described in the previous section requires the knowledge of m; i
order to maximize AS with respect to all gages. However, only m; = m; + ¢ is
observable at the flight stage, the exact value of m; is not known. As a resuls,

we can only use 77 in maximizing AS, such that (5.22) becomes
A AA -
ASscnr = gg?gi; AS = max b? - (——- - b,')z. (5.24)

0<i<n m;

AA=6A
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Figure 5.2: ASscnr vs. AA for NASA Data
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Since Th; = m; + €, = My = M, — €4, (5.25) becomes

ASSCNR = max AS = max 8? - ( = a4 - 3,')2. (525)

0<i<n O<i<n m; — €

AA =6A

A possible sub-optimal method can be used by restricting the amount of noise ¢;

to the ro,, criteria. The max-min criteria can then be expressed as

max|[ min  {AS|ro.,criteria}]. (5.26)

0<i<n '—T0e, <€0i <TTeq
The above equation (5.26) can be interpreted as the maximum of the minimum

of the AS under the ro.. criteria. By setting ¢; = ro.., the max-min condition

in (5.26) becomes

AA

— = A2 N\ = A. 2
ASscNr-so = quax AS = 0oion b (ﬁ;,,- — 70, )
. AA 7
- 2_ (- bi 2_ 5.2
b‘l (Th’ x —Taeo ) ( 7)

Thus we have proposed a sub-optimal method for the SCNR procedure(SCNR-
SO), which will not perform as good as the theoretical SCNR method. However,
the analysis of SCNR and the subsequent SCNR-SO methods gives us an under-
standing of how the model accuracy and the noise sensitivity are related. It also
provides an analytical bound for the region of operation in which SCNR-SO will

perform better the original method.

5.5.2 Performance Analysis of the SCNR procedure

In order to have a better understanding of the characteristic of the new proce-
dure, it is necessary to compare the performance of the proposed procedure and

the original method of load prediction. As stated before, the presence of normal
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Figure 5.3: Probabilty Distribution for load estimate L,

gaussian noise at the flight stage is assumed. One way of comparing their per-
formance is by evaluating the probability that the noisy estimate L, lies within
a specific range for the original and the new SCNR method. Using general sta-
tistical methods for establishing confidence interval in normally distributed noise
model, we can use the interval of £ro,. (For example, a 99.73 % confidence inter-
val corresponds to r=3) Figure 5.3 shows the areas for evaluating the probabilities

for the two methods.



Now, the probability that the noisy estimate L, lies within the range using
the original method is

. ~ -~ A 1 Lo+"aeo xz
P{original} = P{L, —roe, < Lo < Lo+ 10,} = 2_/ exp(_-z_)dz,

m I:a—ra'eo

(5.28)
where o, is the standard deviation of the flight stage load error ¢, in (5.10) and r
is an integer depending on the level of confidence. Similarly, the probability that

the new SCNR method noisy estimate Zo,scw r lies within the same range is

a ~ a 1 ro* 2
P{SCNR} = P{L,—ra., < Loscnr < Lo +10¢,} = %/ ’ exp(—%)dx,
(5.29)
where
—ro., — AA
¥ = ————
O¢,,SCNR
] ol ___AA (5.30)
llbscnrll  |lbscnrlloe,
and |
ro.,, — AA
Tok = — >
O¢,,SCNR
_ bl i AA . (5.31)
”bSCNR” IleCNRHUco

Then if the condition P{SCNR} > P{original} in (5.28) and (5.29) is satisfied,
the probability that the SCNR noisy estimate lies within the specified range is
higher than that of the original method. In these cases, the new method is much
superior than the old method. In other words, the noisy estimate is more likely to
be confined in the specified range when using the new method. Figure 5.4 below,
which is generated from NASA data, indicates that the SCNR method performs

better in a significantly large region of operation and especially when large flight
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stage noise variance o, is present. From (5.27) and (5.28), the probability for

the SCNR-sub-optimal method can be written as

where

and

1 fras rt
P{SCNR - 50} = o / " exp(~ ),
ol AA
1,2 =F—= - —=
l |bsc'NR—30| | | IbSCNR—SO | |er
llbsenvr—soll®? = 1b]|* — ASscnr-so

. . AA .
= 2 _ 2 e b 2 .
|1b]}* — [b; (Th.- P— i)°]
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Figure 5.4: Probabilty vs AA for NASA data

In summary, the new procedure essentially generates a biased load estimate
with a reduced noise variance whereas the original method gives a non-biased
estimate and a larger variance. Since both of the two methods have desirable
characteristic in the load estimation, one has to decide how to make trade-off
between the noise sensitivity(variance) and the model accuracy(bias). Generally
if a large amount of noise is expected, the new SCNR could be used to reduce
the corrupting effects of the flight stage noise by confining the deviation of the

load estimate.
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5.6 Generalized Method for Reduction of Noise
Sensitivity(GNR)

In (5.15), the variance of the error ¢, is reduced by changing b; to c;bi. Now we

will generalize the method by using the scaled vector benr such that
BGNR = BC, (5.35)

where B = diag(i)l,...,l;n) and ¢ = [c1,...,¢n),& < 1. Then the new load

estimate using GNR is
Loonr = M'beyr = M.Be. (5.36)
From (5.16) and using (5.35), the decrease in noise sensitivity is
AS = |[B]|* — {lbenrll* = (1 — ¢)BB(1 —¢). (5.37)

Also from (5.19) and (5.36), the change in the noiseless load prediction accuracy

can be written as
AA=Ly— Lognr=M.B-1— M,Bc= MdB(1 - c). (5.38)

In order to reduce the noise sensitivity by using the GNR method, we need
to maximize the change in noise sensitivity AS with respect to a fixed AA such

that
max AS = min ¢ BBc.
M!B(1-c)=AA (5.39)
(5.39) can be solved by the Lagrangian method with
G(c) = ¢ BBc+ A[M,B(1 — c) — AA]. (5.40)
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Taking the gradient G(c) with respect to ¢ and set it to zero gives

VG(cx) = 2BBcx +NXBM,(-1) =0 (5.41)
and
cx = —%B-QBMO = %B“Mo. (5.42)

Putting c* into the constraint equation gives

M!B(1 - ¢) = AA,
A

M.B(1 + §B"1Mo) = AA,
_(AA-M.B1) _(AA-L,)
= 2NEBEM, P (o49
Then cx can be expressed as
L,—AA
cx = (5>———)B™M,. 5.44
g5~ M (549
Therefore the change in the noise sensitivity ASgyr can be written as
1 co  (Lo— AA)?
ASenr = —(02 — 02 gvp) = |IB2 = Lo 24" 4
SGNR o2 (aeo aco,GNR) ”b” ”Mo”2 (5 5)

€o

5.6.1 Sub-optimal Generalized method for Noise Reduc-
tion

As stated in the previous section, the value of M, in (5.45) is not known. There-
fore, we need to tolerate a sub-optimal procedure in practical applications. The
change in noise sensitivity AS using GNR is

(Lo — AA)?

— l1h12 —
ASGNR'_ Hb” ”Mollz

(5.46)
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Similarly from (5.45), the sub-optimal GNR using the "Maximum-minimum Cri-
teria” gives

ASGNR—SO = méax min AS. (547)

—T 0o <€o<T0¢c,
Applying the ro., Criteria, (5.47) becomes

(io + "'er”?;“ - AA)2
IM,||2 - nr2e2,

ASenr-so = |IblI> — (5.48)

5.6.2 Performance Analysis of the GNR procedure

The probability that the GNR method noisy estimate io,GNR lies within the ro.,
interval can be expressed as

2%

2
P{GNR=S0} = P{Lo—r0., < Lo < Lo+ra,} = 51— exp—T-dz, (549)

T Jrls

where from (5.30)

rigk= 7ol __ B4 (5.50)
llbenrll  llbonrlloe,
and
;o (Lo—A4)

Similarily for suboptimal GNR method, the interval for the evaluation of the

probability in (5.49) can be expressed as

SR | S— (5.52)
llbenrsoll  |lbenr-solle,
where
£ fJo + Taea 8 - AA 2
lbowrosoll = ¢ Ll = A4 (5.53)

||Mo||? — mr?aZ,
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5.7 Conclusion and Remarks

This section provided a study of how the trade-off between variance(or noise
sensitivity AS) and bias(or accuracy AA). We also presented the new methods
for an effective reduction of noise variance when a given amount of accuracy
deterioration AA is allowed. This problem is also studied in a different setting in
the field of statistical analysis. In Ridge Regression [7], the problem of constrained
LS is solved. It solves the LS problem of the min, ||Az — b|| with the constraint
that |Jz|] < a. However, in this problem the idea relating the prediction accuracy
and sensitivity is not explicitly used. Thus our study provided an alternate

approach for analyzing how variance and bias are related to each other.
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Chapter 6

Total Least Squares and

Correspondence Analysis

The Total Least Squares(TLS) method was popular in signal processing appli-
cations recently, while the correspondence analysis technique was created over
twenty years ago and used in applied statistical and data analysis. These two
seemingly distinct topics developed independently among their own researchers.
In this section, we provided the basic reformulation and analytical and geomet-
rical tools to prove the equivalency of these two basic and useful methods.

In this section, we consider the total least squares estimation method well
known in numerical analysis and modern signal processing as well as the corre-
spondence analysis technique encountered in applied data and clustering analysis.
Due to historical reasons of development, each of these two subjects have gen-
erally been formulated with its own notations and solutions. However, upon
more detailed consideration, both optimization problems reduce to the appli-

cation of SVD technique for the respective solution. Indeed, upon appropriate
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pre-processing operation of translating the centroids of the data matrices to the

origin, these two methods are equivalent.

6.0.1 Total Least Squares(TLS)

Least squares techniques based on the statistical assumption that only error is
present in the vector to be estimated. Total least squares, which is introduced by
Golub and Van Loan, attempts to generalize the solutions by allowing both ob-
servation matrix and estimator vector to be corrupted by errors. This assumption
allows us to have a more consistent solution since errors are usually presented in
all data. The problem of TLS can be stated as follows. For an overdetermined
system of equations of the form Az ~ B, errors occured in both A and B. The

TLS solutions for x solves the perturbed problem of
(A+AA)=B+ AB,

with the constraint that the F norm ||AA, AB]||r is minimized. It can be seen
that the classical LS problem solves the same problem above except that no error

is assumed in the matrix A(or AA = 0).

6.0.2 Correspondence Analysis(CA)

In statistical and data analysis, there are myraids of analytical, graphical, and
intuitive methods for performing data reduction, clustering and display of statis-
tical properties. The CA techniques was proposed by Benzecre [3] and studied by
Lebart [19], Greenacre [9] and others. This technique was clearly motivated by
several standard statistical multivarite techniques of principal component analy-

sis and discriminant analysis. It provides an analytical method of displaying of
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a large centered matrix in low dimensional spaces such as the two dimensional

space.

Graphical and Numerical Examples

For a given data matrix X € IR™", a basic problem of data reduction is to
determine and eliminate the set of redundant columns(or rows). If two vectors
are strictly independent, one of the vectors can be eliminated. However, the
presence of noise will make the redundant vector strictly independent. The con-
cept of collinearity in [25] quantify the amount of linear dependencies for a given
column(or row) vector relative to all other columns(or row) vectors of X. The

collinearity index of matrix X can be defined as
k5 = [T N [(X ] th roull, T=1,...,m, (6.1)

where X+ is the pseudo-inverse of X.
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We now look at a physical load problem when the 18 x 12 strain gage mea-

surement matrix X is given by X =

/125 -138 11.6 42 118 119 11.3 234 369 503 89.4 128.7 \
214 -29 192 128 179 215 165 40.0 421 73.7 582 683
30.8 9.1 234 236 207 369 288 674 289 383 403 277
425 29.7 29.1 436 282 644 246 37.2 209 204 248 8.9
56.6 61.4 41.4 768 254 372 21.7 23.1 158 108 153 2.7
778 1263 41.0 54.7 244 215 198 123 82 22 35 152
270 -192 263 85 292 153 236 258 64.1 296 1328 821
454 -23 358 18.0 329 202 31.6 27.7 59.0 256 988 568
62.3 14.0 452 242 37.1 215 37.8 27.1 453 213 724 342
85.8 34.3 55.7 300 428 212 41.1 265 364 170 502 13.9
110.7 552 68.0 334 44.1 196 434 228 289 11.7 295 -3.0
1314 82.0 66.6 442 394 212 373 191 139 65 54 —189
46.3 -22.6 419 11.9 38.1 147 40.1 166 834 09 160.6 63.0
646 —35 49.0 183 418 13.7 434 166 693 4.6 1295 489
1384 51.2 80.8 193 531 94 529 209 308 108 351 2.7
163.3 62.6 827 30.7 494 190 49.1 219 200 68 87 -—189
914 155 65.1 186 50.8 42 510 68 580 3.7 969 317
\114.4 359 74.6 189 53.1 1.7 548 148 458 105 68.2 164 /

These data are obtained from a NASA/Ames hypersonic wing test structure
(HWTSS) load measurement experiment. The columns represent the output
responses of 12 strain gages located at the wing and fuselage region of the aircraft

when 18 known input load conditions are applied on different locations of the wing
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Figure 6.1: Correspondence Analysis of NASA HWTSS load data

structure in the calibration stage. In practice, the number of gages available
during a flight is usually much less than that available during the calibration.
Thus, from the data in matrix X, we are motivated to determine the redundant
gages that can be eliminated. Evaluations Collinearity indices are computed as
Kk = (24, 4.3, 52, 7.8, 34, 6.2, 29, 7.5, 32, 8.3, 32, 9.5). Applying the CA
technique gives S = diag(.61, .31, .18, .18, .083, .067, .051, .031, .011, 6.6-
1073, 5.6-1073, 7.2-10"'7). The coefficients of expansion of the 12 column
vectors for the two dominant singular vectors are shown in Fig. 6.1.

From the collinearity index x, we observed that all the odd numbered column
data vectors are fairly céllinea.r. From Fig. 6.1, we see that these vectors are

grouped closely together. However, the even-numbered column data vectors are
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Optimurm straight line

Figure 6.4: Mean translated data vectors

is zero. In general, the above condition need not be satisfied for arbitrarily P

and P,. Now, consider the column zero mean translated version of A and b.

_ |:(a1+a2)/2] - (b1+bz)/2]
= b= , (6.5)
(0.1 +a2)/2 (b1+b2)/2
and Ae A— A= [(01—02)/2] ,5=b—5= [(bl_b2)/2}
(a1 — az)/2 (by — b2)/2
B [(al —az)/2 B (az — al)/2} . (6.:6)
(b — b2)/2 (ba — b1)/2

After mean translation, P, and P, are anti-symmetric. That is, 151(1) =
—P5(1) and P,(2) = P5(2). Clearly, the optimum straight line runs from P to
Py, with 22+ Z2 =0 and d = 2||A||* = 2P, For any other alternate straight
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line, Z2 + Z > 0, and

&%= (d/2+d/2) = /(d/2)? - Z2 +/(d/2)* - Z& <d/2+d/2=d. (6.7)

Thus, any alternate straight line yields inferior TLS and CA results.

6.1.2 TLS and CA Criterion for general dimensions of

data matrix

Correspondence analysis can be used to represent data collected in matrix form
in a more compact format by projecting the raw data onto a lower dimensional
subspace.

Let A = (a;;) € IR™" with m > n the original data matrix. For simplifi-
cation purposes, which wil become clear later, let us assume that 32, a;; = 0
(i.e. A is "centered”) and let the expression of A = ULV’ be its singular value
decomposition.

Now, let Q = [¢V,...,¢"¥)] € IR™’ be a matrix with J < n orthonormal
columns and H = AQ = (hi;), with h;; = a;. g9, the matrix with its elements as
the the projections of A onto Q.

In this context, Q represents the basis-matrix of a J-dimensional subspace.
For the purposes of correspondence analysis, it is reasonable to vary @ so that
the projection coefficients h;; are as separated as possible, with respect to each
basis vector ¢,

In order to satisfy this requirement, one can perform the maximization of the
following quantity over the space spanned by the columns of @ such that

D =

j=14

i(hu‘ — his)?

m
=1 k=1
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J m m
= 22 > (hj — 2hsjhu; + hiy)

J m J m m m m
= mY D hi-2my S Y hyh+m3 3 ki
j=li=1 Jj=li=1k=1 Jj=1k=1
J m J m m
— om3 3 H - 233y 3
j=li=1 Jj=1li=1 =1
m m m h
= 2mY Y (h} - Y. 2)
j=1i=1 k=1 M
J m
= 2m}_ ) (h; — Hy)?,
j=1i=1
where H; = Y7, hi;/m. Since A is "centered”, it can be shown that H; = 0, Vj.
Therefore
maxD = 2mmaxzzh (6.8)
j=1li=1
= 2mmax|[H|[, (6.9)
where || - || is the Frobenius norm of a matrix.

The above maximization can be solved by the use of the singular value de-

composition of A. In fact,
IH|[F =114QlIF = llUZV'QII%
= [|lUZV'|[%

J
= [lUS[bv,..., 0]llF < Dol
The equality is obtained when Q@ =V, = [v;,...,v.], hence
V= QV = [IJ,OJx(n_J)] (6.10)

and H = AQ = AV, = UXV'V; = [oquy,. . .,05u.y]. This results are known in

the area of correspondence analysis.
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Now, let [Q, Q+] € IR™*" be an orthonormal expansion of Q. Then we have

1H|F = OY A’ AqY)

J
g
j=1

mn n
Z q(J')’A'Aq(J') _ E q(j)’A'Aq(J')
i=]1 j=J+1

n
= Y qWVEVGD — AQH IR
j=1
n n
= 3 3 ot (gD vi)? - |AQHIF
j=1lk=1
= Y or - |AQ*|I%,

=1

x

where £ = diag(oy,...,0.) € IR™". As a result, the maximization of D is

equivalent to the minimization of
min ||AQ*|[% = min [|A(I, — QQ)|} = min||A - A|[% = min [|AA|I%, (6.11)

where A= HQ' and AA= A- A

The maximization problem stated above(or minimizing D) is therefore min-
imizing the energy of the perturbation imposed on the original data matrix A.
This perturbation reduces the rank of A to rank(A) < J when the vector X in
the orthogonal subspace spanned by @ solves the equation AX =0.
Case for H; # 0

Now consider the case when A is not "centered”, H; # 0 or Y, ai;; # 0

(which is a more general case), then we can write

1
mng = 2mmax||H - ;n—lmHH%
1
= 2mmax ||(Im — T—n-lm)H||%-

= 2mmax || H,|l%
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= 2mmax | PH|%

2mmax || PAQ|F,

where 1,, is a square matrix of all ones, P = I, — #lm and H, = PH. Thus we
can still carry out the same data reduction by using A, = PA, a "centered” form
of A.
for shifted H criteri
In order to justify the equivalence of TLS and CA, we need to look at a
shifted H criteria. Now we consider the shifted projection of A onto the subspace

spanned by columns of Q such that
H=AQ+ B. (6.12)

Instead of maximizing D with H = AQ as before, we maximize the shifted

H = AQ + B as described above. Therefore we can write

J m
max D = 2mmax) Y (hj— H;)?
j=1li=1
= 2mmax | P(AQ + B)||%
Q
= 2mmax |(A., Bo) I%
—I;
where A, and B, are centered form of A and B and @ = 715(Q', ~I,Y € R
and QQ = I,.
From the above, the form of the minimizing with the cases before is the same

as that of the shifted version which we are now minimizing the expression of
min [|(Ao, Bo) (In+s — Q@) I} = min [|A (Ao, Bo)I%- (6.13)
Thus the results can be summarized as:
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Correspondence Analysis

For the shifted version of H = AQ+B, the minimizing problem is equivalent
to that of
min |A(4,B,) |7,

or finding the vector X in the orthogonal subspace spanned by Q = 715(62’ ,—1y)
which satisfies the equation (A,, B,)X = 0.
Total Least Squares

The total least squares problem AX = B can be stated as follows: find the
minimum norm vector X = [, —Z]' which solves exactly the perturbed equation
(A,B)X = 0, where (A,B) = (A, B) — A(A, B). The Frobenius norm of the
perturbation applied to the appended matrix (A, B), namely ||A(A, B)||r, has
to be minimized. Therefore both TLS and CA approaches are equivalent in this

formulation.

Assumptions and Observations

For the TLS and CA equivalence to hold, we have the following assumptions.
e Both matrix A and B have to be centered as stated above.

¢ In Correspondence Analysis, the rank j of the subspace on which the matrix
A is projected can be chosen freely. However, the rank of the TLS problem

are usﬁally reduced to the numerical rank of A itself.
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Chapter 7

Neural Networks and its

applications

7.1 Introduction

The development of neural networks are motivated by the theory of human neural
systems. The theory of human neural systems involves the study of the behavior
of the interconnected processing elements called neurons. Neurons are processing
or decision making units by which information are passed from one region to an-
other region. In human nervous system, a vast number of interconnected neurons
are responsible for processing and relaying information and commands from one
part of the human body to the other. This complex chain of commands and deci-
sion making pi'ocess motivated the development of Artificial Neural Network(NN)
which mimic the behavior of the human nervous system. The basic elements in
neural networks called neurons is modeled as that of the human nervous system.

Signals processed by the neurons travels to adjacent neurons such that a specific
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command or signal can be passed to the intended destination. In recent years,
thanks to the availability of high speed computers, much attention has been given
to the development of Artificial Neural Network with applications ranging from
pattern recognition, function approximation, image processing, system identifi-
cation to dynamical system problems. It is illustrated in [20] [12] [21] that a large
number of problems can be handled by some forms of neural networks without
prior assumption of the system model. This robust nature makes neural networks
a good methology for solving a wide range of problems. Before demonstrating the
usefulness of neural networks in solving our load measurement problem, the fol-
lowing section will give a brief overview of the theory and development of neural

networks by presenting some practical examples and applications.

7.2 An Overview of Neural Networks

Since the theory of neural networks is still not quite mature, there are still some
unsolved issues such as the type of architecture of the neural networks, the type
of training methods and the design procedures. Recently, much works have been
done on the applications of neural networks. There are two main categories in
neural networks. The first category is called the dynamic neural networks as the
system parameters is dependent on time or the network possess "memory”. The
second category is called static neural networks since the system parameters are

static in time or "memoryless”.
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Figure 7.1: A basic neuron

7.2.1 Basic Neural Units or Neurons

Neural Networks consist of basic processing units called neurons. It can be viewed
as input/output devices where the output is determined by a specific rule or a
functional relation. The figure (7.1) shows a neuron with multiple inputs z =
[Z1,...,zs) € IR" and a single output y;. In addition, the neuron is defined by
its activation function f(-), the bias b; and the weights w;;.

Thus, the output of the i-th neuron can be written as

Y = f(f1 zwi; + bi), (7.1)
=

where 7 is the total number of input to the i-th neuron.

The activation function f(-) is an important element of a neural network for
the nature of the function introduces nonlinearity into the NN. Such nonlinearites,
which we will explore later, allows the NN to handle nonlinear problems. The type

of activation function used is known as the sigmoid function which usually take
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Figure 7.2: A sigmoid function

the form of a step function, tangent, logarithm or sometimes even linear function.
An examples of such a function is shown in fig (7.2) where the functional relation

can be expressed as,

(7.2)

Furthermore, the bias b; and the parameter o determine the shape of the

sigmoid functiorr which we can select during the design phase of a neural network.

7.2.2 Basic Neural Networks

A typical neural network consists of interconnected neurons. Different types of
architecture are commonly used in NN. Neurons can be fully connected(i.e. each
neuron is connected to the other neurons via a weigh). However, most popular
NN requires only neurons to be connected to adjacent layers of neurons which we

will subsequently discuss in detail. Besides the architecture of the NN, NN can be
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Figure 7.3: A Multiple Layer Perceptron Neural Network

classified as the ”feedforward static NN” and ”feedback /recurrent /dynamic NN”.
Feedforward NN allows signals to flow in one direction. One of the important
types of NN is called Multiple Layer Perceptron(MLP). The second class of NN is
characterized by the feedback network such as the famous Hopefield Network.[21]
[32] In chapter 8, NN will be used to solve the load measurement problem. The
type of NN to be used for this application will be in the form of a static NN or
MLP.

7.2.3 Multiple Layer Perceptron (MLP)

A neural network can be made up of several layers of neurons. In MLP, only
adjacent layers are connected to each other. Fig. (7.3) shows a fully connected

MLP Neural Network.
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A NN can be partitioned into the input layer, the hidden layers, and the
output layer. In fig (7.3), the number of hidden layers shown can be selected for
some specific problems. However, the exact number of layers to be chosen for a
specific problem is still quite arbitrary. It usually requires experimentations or
trial-and-error methods in determining the number of layers for possible optimal
solutions. Works in this area shown in [20] proved that two hidden layers NN
can approximate any types of function if enough number of neurons are being
used. However, additional layers might reduce the number of required neurons
and thereby greatly reduces the complexity of the problem. In chapter 9, we will
discuss this aspect of the problem and suggest a procedure of designing a neural
network by selecting the number of neurons in a layer using our load estimation

problem as an example.

7.Z.4 Training Techniques for Neural Networks

In order for the Neural Network to act as a function approximation, system iden-
tification or pattern recognition network, we need to train the neural network
by adjusting the weights and bias iteratively until the desired objective or error
criterion is achieved. The training procedures can be classified into two types.
One type is called the supervised learning and the other type is called the un-
supervised learning. Supervised learning [{12] involves the use of target values or
patterns. Targets and input pairs are presented to the neural network for training
at each step until an error criterion has been reached. For unsupervised learning,

the neural network is only presented with inputs without the aid of the targets.
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7.3 Training by Back Propagation(BP) Tech-
nique

Due to the relative ease of use and the stability in the solution, Back Propagation
became one of the most popular training techniques since its introduction [27].
For enhancing the convergence properties of the BP technique, modifications
had been made such as the addition of momentum terms in the direction of
update. BP is essentially based on the optimization theory using first order
gradient descent methods. The success of the convergence of the BP relies on the
direction of the search. In addition, the BP attempts to solve the optimization
problem which is equivalent to the search of the global minimum to an energy
or error function defined as E. As a result, BP sometimes give solution of local
minimum and may not always arrive at the global minimum. Other methods
using a momentum term (or a second order gradient method) such as conjugate
gradient method as studied in [17] attempts to avoid the solution to settle on a

local minimum.

7.3.1 Notations and Definitions

Here are some of the notations and definitions used in deriving the Back Propa-

gation method:
e E - Error or energy function for minimization.
e L - Last layer of the neural network.

e N — Number of neurons in the L-th (last) layer.
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e N, - Number of neurons in the [-th layer.
e m — m-th step of the iterative updating process.
e {; — i-th element of the training vector.

o w;;(l) — The weight connecting j-th neuron’s output in (I — 1)-th layer to i

-th neurons in [-th layer.
e a;(!) — Output of the i-th neuron in the I-th layer.
e u;(l) - Input to the i-th neuron’s activation function in the [ layer.

e 4 — Learning rate for the back propagation training.

b;(l) — Bias of the i-th neuron in the I-th layer.

7.3.2 Derivation

Using the notations defined previously, the input u;(l) and output a;(l) to the i

-th neuron in the [ layer can be expressed as

'U,,(l) = %w;,-(l)aj(l - 1) + b;(l), and
j=1
a(l) = flw®) (7.3)

In Back Propagation, the weights are updated according to the expression as
w0 = P (0) + Awy (), (7.4)

where m is the iteration step and Awg-") (I) is the change or updates in weights

for step m.
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The weight updating process is according to a first order gradient descent
method such that the updating direction is in the negative gradient of the energy
or error function E as expressed by

1 m
=3 le[# )~ a{™(L)P, (7.5)
m=1i=1
where M, is the total number of training patterns and N is the number of
neurons in the last layer(or the number of output elements).

Using chain rule, the updating step can be expressed as

OFE

Awi™() = 7.6
PO = —ume (7.6)
_ E  9a{™ (1) )
(m)(l) 3’w(m)(l)
(m) (m)
L 8a( )(l) 6u(m)(l) (78)
ou.™ (1) Owy; ™ (1)
From equation (7.3) we have,
8a{™ (1) ,o (m)
— = u; (1 and 7.9
s = ) (7.9)
(m)
! (7.10)
Ow;;" (1)
From equation (7.8) and (7.10), we have
A (1) = ws™ O @ ))a (- 1). (711)
For the last layer, the partial derivative 6§m) (L) can be expressed as
OF
§™(L) = ———— =™ — al™(L). 7.12
)= 5 (L) (7.12)

Again using chain rule the derivative can be expanded as
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™ (1 +1)

o oF Nuv BE
0=~y = T m) ]
8ai™ () o™ +1)
N OF
- -

da{™ (1)
N, ——
w{(1+1)

8a{™ (L +1)

Ny

=001+ 1) 8ul (1 + 1)

(7.13)

wiP(l+1) (7.14)

= =Y &0+ 1)@+ D)+ 1),(7.15)

j=1
where =L —-1,...,1.

Then the weight updating can be written as

Aw*O () = wl + b0 £ @™ 0)al™ (1 - 1)

Now,

Niy

5™y = — Z 5™+ 1) W™+ 1wV +1)

J_

8™y = ™ —a™(L).

Then we can evaluate,

§™M(L—1) = —Nz: 8™ (L) (™ (L)wi (L)
NL 2
§NL-2) = - z 8™ (L — 1) f' (™ (L — 1))wi (L -

5™(1) = -26‘""@/(u(’"’@))w""’(z).

Since 6{™(l) can be recursively computed starting from §™(L)

1)

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

=™ _

agm)(L) at the last layer, the term Back Propagation is used in the sense that the

error is propagated from the last layer.
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Update Frequency

In the last section, the update of the weights are done when each input target
pair or patterns are presented to the network. This type of update is suitable for
some on-line problems when real-time training is necessary. However, the update
can be done when all the patterns have been presented to the network. This type
of update is called Block Update and is known to be more robust because the
weights are updated when the training patterns are averaged. Thus for the load
estimation when real-time training is not necessary, Block Update method will be
used. The Block Update method can be generalized by the following modification

to the update equation in equation (7.16) as
(k+1) (k) 2 (m) (m)y (m)
B0 =wf O +u L ENOS @GV, (722)

where k is the block update step and M,, is the total number of training patterns.
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Chapter 8

Load Estimation Problem -
Linear and Non-linear Least

Squares Approach

In this chapter, we will discuss the use of nonlinear least square approach in
solving the load estimation problem. This problem is motivated by the NASA
F-111 data.set. The objective is to use the calibrated data to predict the load
experienced by the wing structure during the in-flight stage.
Load Conditiong

Here we will define the notion of loading conditions in the calibration and in-
flight stage of the load estimation problem. During calibration, loads are applied
on different parts of the wing while the corresponding set of n gages’ readings
are recorded. If we assume that the number of different loading condition is m,
we can define the g-th loading condition as the set of all individual point loads

as LC@ where1 < g < m.
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Now the individual load applied on the wing structure I = (I,...,l¥Y €

IR”*2 can be written as
l,@ = [si,sizi, 8],  i=1,..., J(q)’ (8.1)

where (z;,%:) is the relative position of the load on the wing structure and J@
is the total number of individual load points for the g-th load condition £C‘@.
Single Equivalent Load

As discussed in chapter 2, the first, second and third elements of the load

vector l; represents the shear, the moment and the torque. In order to simplify
the set up of the system of linear equations, the notion of equivalent single load
is used. Thus the equivalent single load L@ € IR'? corresponding to the g-th
load condition £C? can be defined as

J@

L@ = 3" (8.2)
i=1
J(@)

= ) [si, siTi, syi). (8.3)

i=1
For simplicity, we will concentrate on the shear s element of the load vector since
the use of the other elements will lead to similar procedures and results. Now

the shear load of £C? can be written as

J@
L@ =%"s. (8.4)
i=1

Then the calibration stage can be summarized by the following steps.

Calibration Stage Procedure

e Known loads, which are defined as a specific load condition £C@ = {lfq)ll <

g < J9}, are placed on different parts of the wing structure as shown in
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(a)
Calibrated Loads of Load Condition £C

l () l ()
2 T (@)

Wing Surface

Figure 8.1: Wing Structure in Calibration Stage of Load Condition £C@

fig. (8.1). Usually, the specific choice of I@ are due to actual loading
conditions of interest(such as the loads on the leading edge of the wing is

more pronounced).

o The magnitude of the known calibrated loads are simultaneously increased(we
denote qu) as the equivalent load as described in equation (8.4) for 1 <
j < k where k is the total number of loads of varying magnitude) and the
corresponding gage readings are recorded(in the F111 Calibration data ex-
ample, an approximate k = 50 points are recorded). Fig 8.2 shows a typical

gage vs. load response curve obtained from a specific load condition £C @,

e Loads are relocated so that a new set of data corresponding to a different

loading condition £C9*Y can be recorded.
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e For the F111 data case, there are m = 9 load conditions while each sets

contains 50 data points.

As seen in fig. 8.2, high degree of nonlinearities are present in the data. As
a result, the conventional linear methods are inadequate for accurate estimation.
However, we will still discuss the linear approach in estimating the load as a
comparison to the neural network approach. In order to understand the load

problem, the load estimation procedure can be summarized in fig (8.3).
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Figure 8.3: The Load Estimation Problem
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8.1 Linear Approach

The conventional linear approach attempts to find a relationship between the

gage and load data (Mb = L) in a linear least square sense. It solves for the

minimizer b of the system of linear equations such that

min ||[Mb ~ L|| = ||IMb— L]|.

(8.5)

Since the gage matrix M € IR™>" and the load vector L € IR™k, the system of

equations can be written as

where

MI

LI

Mb = L
1 1 _ -
n) ) om@) [
1 1 1 1
mScI) m§=2) miﬁ Lgc)
b = )
P i om| |
LB ) I V)
. 1 .
U
1 1
) ol
| g
cc cetm
1
= LL(II)"'Llfi"'!;(lm)"'Lgcm)J)
coth colm)

m is the number of loading conditions,
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k is the number of points per loading condition, and
n is the number of gages.

The solution b to the linear system can be expressed as
b= M*L, (8.8)

where M+ is the Moore-Penrose pseudo inverse of M.

The corresponding load estimate L can then be computed as
L=m'M*L, (8.9)

where 7 is a n X 1 vector from the in-flight gage reading.

8.2 Non Linear Least Squares Approach

Since nonlinearities are present in the data set, the load problem of solving the

nonlinear system(f(M) =~ L) can be written as
min || f(M) — L], (8.10)

where f(M,b) is a nonlinear function of M and b.

8.2.1 Neural Network Approach

In solving the problem min, ||f(M) — L|| where f(-) is a nonlinear function, the

neural network approach can be used as an approximator of the function f(-).
First, the structure of the NN has to be chosen for this problem. Since there

is no definite approach in choosing the number of layers or the number of neurons

for the network, we need to use a trail-and-error approach to determine a possible
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Figure 8.4: The Back Propagation Training Process

optimal selection. In chapter 9, we will discuss some aspects of determining the
number of neurons in a hidden layer. In our simulations, two hidden layers are
used for it is found to be adequate in most cases. The Back Propagation(BP)
training procedure, which can be illustrated in fig. (8.4), is used in the learning
process.

Once the Network is properly trained(i.e. when an error criterion has been
reached), the NN can be used to estimate the wing load during the in-flight stage.
The prediction process is fast enough for real-time application since all the time
consuming computation or training can be done in the ground calibration phase.
Fig (8.5) shows that a load estimate can be obtained by passing the in-flight gage
data to the trained Neural Network.
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Figure 8.5: The Load Prediction by a Trained Neural Network

8.3 Simulation Results and Observations

In order to evaluate the performance of the trained Neural Network, the NN has
to be tested using existing calibration data. The sigmoid function used for this
example is defined in (7.2), where we set a = 1. Although we have m = 9 sets
of loading conditions, we only used m = 5 sets for calibration and training. The
remaining load conditions are used to validate and quantify the performance of
the network. After the training is completed, the NN is tested with three different
sets of loading conditions. In this simulation, the performance of the NN and the
linear methods are compared by computing the relative error which is denoted

by

) .
éNN — ” true 'LLtNN,eattmate ” (811)
rue

and similarly the relative error of the linear approach can be denoted as

_ _ Ltrue - LLS,estimate
Ls = || I

g (8.12)

H
Ltrue

where
L. is the true calibrated load used as a verification,
L NN estimate 15 the estimated load using Neural Network approach, and

L 15 estimate 15 the estimated load using Neural Network approach.
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Three performance analysis plots in fig. 8.6, 8.7 and fig. 8.8 show enwn and €5

vs. load test samples.
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As observed in fig. 8.6,8.7, and fig. 8.8, the simulation results from the Neural
Network approach: have better performance in most sample cases. In addition
large errors occurred in using linear LS method for some specific data samples,
whereas the errors fromr the NN Approach are all relatively small. In general,
the relative error-of NN are more or less confined in the range of 20 ~ 30% or
below. In additiorr, for the linear LS method, large error occured in some specific
examples. This seems to be a verification of the general superiority of the NN
to the LS method when nonlinearlities are present in the system. Moreover, NN
approach performance will not deteriorate even when the data is actually linear

for NN can handle both linear and nonlinear systems.
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8.4 Distributed Load Estimation Problem

In the past section 8.2.1, the solution for the single load estimate are presented.
Single load estimate is the equivalent load estimate which consists of a single
load point L = (S, Sz, Sy), where S denote the equivalent shear load and (z;, 3:)
denote the relative location of the equivalent load on the wing surface. It provides
only the location and the magnitude of the equivalent load(or equivalently the
shear, moment and torque components of the Load L). In real life situations,
loads are usually distributed on different locations of the wing structure. Thus
the knowledge of the single equivalent point load is not adequate in providing
information as how the load is distributed on the wing. This lack of information
might becomes undesirable in dangerous situations such as when a large load is
concentrated on a specific region of the wing structure. As a result, the estimate
of the distributed load is highly relevant and useful since it might provide an
“early warning signal” for the presence of structure overloading.

Fig. 8.9 shows the difference between the single load and the distributed load
representation. It also shows how the wing structure can be partitioned into
regions of interest.

Distributed load estimate not only provides the estimate of the single equiv-
alent load, but also provides the positions and magnitudes of all the forces in
specific regions of the wing.

Distributed Load Problem The distributed load problem selects the right pattern
g = g+ or £CU = {I"]1 < j < J@} from the set (LCD,LC?,. .., Lct™)
which represents the pattern set of all possible flight conditions.

If we can solve this general problem, we will be able to identify the magnitude
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Figure 8.9: Single Equivalent Load and Distributed Load on a Wing Surface
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of the specific force acting on a specific small region of the wing. As a result, the
solution might provide valid information such as early warning signals for local
overloading of the wing structure. However, such a task seems to be too ambi-
tious. Alternatively, a sub-optimal approach can be adopted in order to retrieve
as much information as possible for the in-flight data analysis. Since we only have
a limited number of load patterns obtained in the calibration stage, the best we
can do is to utilize those sets of data to achieve our goal. If each patterns in
the calibration stage are valid in-flight characteristic loading conditions, we can
use them as the training patterns. Once the neural network has been properly
trained, we could(with some degree of accuracy) be able to identify which previ-
ously trained load pattern(or loading condition) the wing is experiencing during
the in-flight session. Such a procedure seems useful since if we train the network
with some specific conditions that represent a dangerous overloading situations,
"early warning signals” might be available once this pattern is encountered during
flight. Before apply the neural networks approach to the distributed load prob-
lem, the next section will discuss some basics of pattern recognition by neural

networks.

8.5 Pattern Recognition by Neural Network

Pattern recognition by neural networks can be described as using nonlinear clas-
sifier to separate classes or patterns by drawing partitions between classes in the
pattern space. Fig (8.10) shows a typical pattern space and how nonlinear sepa-
rable cases can be partitioned into decision regions using nonlinear classifier such

as NN.
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The training input matrix and target matrix for this neural network are the

gage matrix M and the target matrix T' where

-1 1 -
mgl) mfcl) m(l’ln) mi’f')
(1) (1) (m) (m)
Mg Myg -+ Myp" -0 Ty
M = ) _ . ) ) ) and (8.13)
LRI R R )
cc CC‘("")
"1 1---0 07
0 --- 0---0 --- 0
e N (8.14)
0 - 0---1 - 1]
et cetm)

The neural network approach in solving the problem of identifying the pat-

terns of loading can be summarized as follows:

o The structure of the neural network such as the number of layers and the
number of neurons are chosen by in some(ad-hoc) manner(chapter 9 will

discuss the issue of the selection of the number of neurons).

e M’ and T are presented to the neural network and trained by back propa-
gation(using block update frequency as described in the last chapter) until
the maximum number of steps has exceeded or the the error criteria ¢; is
is met as given by

E=|T-T|[<¢, (8.15)

where 7' is the output of the neural network.

e A noisy version of the gage matrix which we define as M’ and the target

T are presented to the Neural Network. Then the second phase of training
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continues until the error criteria is met or the maximum number of steps

has been exceeded. The noisy version of the gage matrix can be expressed

as
M = [M', M, M), (8.16)
M, = [M'+¢€], and (8.17)
My = [M'+é€), (8.18)

where e; and e; are mk x n normal random noise matrix with two different

amount of noise variance.

e The Neural Network is again trained with the noiseless matrix M’ and T

to guarantee accurate prediction of the patterns for noiseless cases.

e Once the NN has beer trained, the in-flight gage data 7 will be passed into
the NN. A "one” in the i-th position of the output target T indicates the

presence of the i-th load pattern.

8.6 Results and Observation

Results shown in fig. (8.11) and (8.12) shows reasonably good recognition per-
formance even for noisy situations. For 10% noise level, a recognition error of

less than 1% is observed.-
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Figure 8.11: Neural Network for Load Pattern Recognition
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Chapter 9

Performance Analysis and
Design Criteria of Neural

Networks

In this chapter, we will discuss the issue of design criteria and the performance
aspects of neural networks. There aré a number of parameters determining the
performance(accuracy) of the neural networks in estimating the targets(loads).

The parameters can be listed as follows.

e ¢ = error criteria for stopping the training process.

n = number of iteration required for convergence.

p = number of steps or time needed per iteration n.

e 0. = the noise variance for the model.

a = the degree of nonlinearities in the sigmoid function.
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e ny = total number of nodes in the neural network.

e n; = number of hidden layers in the neural network.

The two basic important terms which quantify the performance of the neural
network can be defined as the prediction accuracy py and the time ¢ required for

training.
e t = n#*p = total time needed for the training process.
e p; = the load prediction accuracy.

The total time for training can be related as a function of the basic parameters
as

t = f(€, 0,y Na, ). (9.1)

Similarly, the performance of the neural network can also be related as

Pr= g(fx ae)a,ndynl)' (92)

Fig. 9.1 shows the simulation results of the F-111 data set(the gage and load
data are listed in Appendix B) in which the number of neurons in the first hidden
layer is varied. The number of neurons in the second layer are fixed at 2. Since
excessive neurons often causes overfitting of the model and insufficient neurons
causes underfitting of the model, we expect that the errors will be high in these
cases. Indeed from Fig. 9.1, we observed that the relative errors are both high in
these cases. Thus we can conclude from this example, the optimum choice seems

to lie in the vicinity of 14 neurons in the first hidden layer.
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9.0.1 Generalization and Training Accuracy

The ability of the NN to estimate the targets with untrained data is sometimes
referred to the term generalization performance [17]. The error criteria ¢ can also
be interpreted as the training accuracy of the NN. Thus the performance of the
NN depends more on the generalization performance rather than the training
accuracy of the network. The issue of generalization and training accuracy can
be viewed as an analogy to the issue of noise sensitivity and model accuracy as
discussed in chapter 5. Although a large number of neurons can increase the
training accuracy, the problem of overfitting might cause the network to have
a poor generalization performance. Thus we need to select the right number of
neurons such that the effects of overfitting can be avoided or reduced. In other
words, we need to increase the number of neurons only if it is necessary.

In order to quantify the generalization performance of the network, an ap-
proach called ”Cross Validation”, in which calibration data are separated into
two parts, can be used. One part of the data are used for training and the other
part are used for validation. Thus from the validation results, one can quantify

the generalization performance of the network.

9.0.2 SVD, CA and Collinearity Method for Reducing

Neurons in a Layer

Recently, Xue in [29] proposed the use of SVD in determining the number of
neurons in a hidden layer. By determining the effective rank of the weight matrix,
one can effectively determine the number of neurons needed in a hidden layer.

Let the output of the i-th hidden layer be A € IR™, the input of the i-th layer
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be P € IR™, where m is total number of neurons in the i-th hidden layer, and n
is the total number of inputs from the i-th hidden layer, and W € IR™*" is the
weight matrix of the i-th hidden layer.

Thus the output of the i-th layer can be written as,

A=WP, (9.3)

where each row of W represent the weights of a neuron. If two rows of W are
nearly identical, the output vector A will have two identical elements. Thus if
two neurons give the same output for every input vector A, reducing one neuron
from these two will give the same results. Based on this observation, if two rows
of W are nearly linearly dependent, one can eliminate the extra neuron without
affecting the performance of the network.

However in practice, the determination of the effective rank of a matrix is
usually a sensitive issue. Xue in [29] proposed the use of an error criteria in
determining the effective rank of the weight matrix W. However, the use of this
method is not straightforward and clear. By using correspondence analysis(CA)
and collinearity index(CO), we can provide an alternate and simple method to
determine the rank of W and thus reduce the number of neurons in a layer.

Correspondence analysis and collinarity method are applied to our simulation
example as shown in fig.(9.1). From fig. (9.2) and fig. (9.3) we can group the
nearby point to form one single point. Using CA, the effective rank of the weight
matrix W is 15 while using CO gives an effective rank of 13. Thus this simple
example seems to agree with our simulation shown in fig. (9.1) that the vicinity
of 16 neurons is in the region of the optimum choice of neurons. Although the use
of the CA and CO is not straightforward as the grouping of points requires the

right criteria of closeness. Different criteria of closeness between points sometimes
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Figure 9.2: Correspondence Analysis of the weight matrix W

render different results. However we provided a practical and simple approach
of combining SVD, CA, and CO in determining the possible optimal number of

neurons in a layer.
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Chapter 10

Conclusions and Future Work

This thesis provided a study of parameter estimation using linear and nonlinear
LS approach. We have discussed the issue of model accuracy/noise sensitivity
and derived a bound for the change in the model accuracy(represented by its
residual) as a function of the noise. The problem of the trade-off between model
accuracy and noise sensitive is a major issue. This problem is also analogous
to the issue of generalization and training accuracy of the neural network. We
have also studied and derived the equivalency of TLS and CA. These two seem-
ingly different topics in the field of signal processing and statistical analysis are
shown to be equivalent with proper scaling and centering of the data matrix.
In practice, the data matrix are sometimes nonlinear in nature and the use of
linear LS methods is insufficient for accurate parameter estimations. Motivated
by the nonlinearities in the NASA F-111 data matrix, we studied the possible
use of nonlinear LS methods. Conventional nonlinear least square methods and
spline approximation require the exact modeling of the functional relationship.

The use of neural network provides a practical and robust approach in dealing
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with highly nonlinear data. Using the NASA data as the training data, we sim-
ulated the estimation procedure by using neural network approaches. Although
the computational effort in using neural networks is very high, the results we ob-
tained are both useful and encouraging. Compared to the conventional linear LS
approach, the neural network approach yields significantly better performance in
load estimation. We also showed the ability of neural network in estimating the
load conditions. The recognition of the trained load conditions during flight pro-
vided a possible method to provide ”early warning signal” for the wing structure
once a dangerous overloading condition is encountered.

We also studied the aspects of designing neural networks. The selection of
the number of neurons in a hidden layer is crucial in designing a neural network
with good generalization and estimation accuracy. Underfitting and overfitting
yields poor performing network if the number of neurons is not correctly used.
Work done by Xue in [29] proposed the use of effective rank of the weight matrix
determined by SVD as a way to reduce the number of neurons in a layer. We
found that Correspondence Analysis and Collinearity Index methods appeé.red
to be equally effective in determining the effective rank of the weight matrix and
thereby effectively reduces the number of neurons in a hidden layer.

We have studied both the linear and nonlinear methods for solving LS prob-
lem. As we expected, the linear methods are more analytically tractable while
nonlinear methods need to be based on heuristic techniques. Thus more works is
needed to fuily understand the nonlinear methods including the neural network
approaches.

Some of the unsolved problem and possible extension to our work include:

e Other types of NN other than MLP can be used for the Load Problem.
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Analytical analysis and design aspects of NN need to be considered.

The use of a mix of NN types to recognize complex decision regions such
as the "exclusive or(XOR)” operation(disconnected pattern space),which is

not possible for MLP type NN.

The use of basis function in defining the pressure distribution can be used

instead of point loads.

Computer simulated structural analysis can simulate gage-load relation but

lack the ability to model the actual structure itself.

A combination of computer analysis and structural testing(calibration) can

be used to design a better and more accurate flight load estimations system.
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Appendix A

Computer Codes for Neural

Network Load Estimation

This appendix lists the matlab [6] computer codes for the single load estimation

procedure. The procedures are summarized below:

1. datreduct.m —— Reduces the number of points in a load condition;
2. datred.m ——— Select the load conditions to be reduced;

3. datsetup.m —— Set up the gage/load data for training;

4. trainNW.m —— Train the NN with noise;

5. trainNN5.m —— Train the NN without noise;

6. testset.m « —— Test. the NN performance.
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datreduct.m

res = 1;

while (res==1l),
clg:

hold off;
Leff=b;

mm=a;

ss=size(a) ;833=33(1) ;88=838/2-3;ss=round(ss);
Leff=Leff (1l:s8);
=mm{l:s838,:);
plot (Leff,mm, "*');
hold on;
plot (Leff,mm) ;
s=size (Leff);s=s(l);
step=(max (Leff)-min (Leff))/s(1);
$npoint=input ('please input number of points ');

disp('the maximum number of points you can input is ');
disp(s):
disp('please input the Leff value to be picked for your reduced
data ');
disp('e.g. input [-2000 -4000 -5000 ~8000 -11000] for 5 points,
but more than 1 point "):
disp('or the name of the vector, e.g. v ');
Lin=input (‘'please enter now ');
np=size(Lin'):;
npoint=np(1l);
mmr=zeros (npoint,12) ;Leffr=zeros (npoint, 1) ;
for k=1:npoint,
temp = 1;
for i=1l:ss,
templ = Leff (i) - Lin(k):;
if sign(templ) == -sign(temp),
mmr (k, :)=mm(i, :);
Leffr(k)=Leff(i);
temp = Leff (i) - Lin(k);

% disp(temp) ;
else
temp = Leff(i) - Lin(k);
end;
end;
end;

plot (Leffr,mmr) ;
plot (Leffr,mmr, 'o');
hold off;
gagemat=mmr;
gagemat=-gagemat’;

% gagematrix normalization

109



mm=max (max (gagemat) ) ;

gagemat=gagemat /mm;
targets=Leff (i);

% targets normalization
targets=-targets’;
tt=max(targets'):
targets=targets/tt;

disp('enter 1 if you want to fit better ');
res=input (’enter 0 if you are satified >>');

end,
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datred.m

disp('load condition 1.3 -===-- LC 1 7');
disp('load condition 11.3 -==--- LC 2 ');
disp('load condition 13.3 --———- LC 3 '");
disp('load condition 17.2 ~=———- LC 4 ")
disp('load condition 21.4 --———- LC S ');
disp('load condition 24.8 ---—-—- LC 6 '):;
disp('load condition 28.4 --——-- LC 7 °*);
disp('load condition 9.3 -=——-- ILC 8 ');
disp('load condition 91011 ----—- LC 8 ');
t(1,:)="dat0l1’'; tr(l,:)="rdat01’';
t(2,:)="'dat02'; tr(2,:)="rdat02';
t(3,:)="dat03'; tr(3,:)="rdat03';
t{4,:)="dat04"'; tr(4,:)="rdat04';
t{(5,:)="dat05'; tr(5,:)="rdat05';
t(6,:)="dat06'; tr(6,:)="rdatl06"';
t(7,:)='dat07'; tr(7,:)='rdat07';
t(8,:)="'dat08'; tr(8,:)="rdat08';
t(9,:)="'dat09'; tr(9,:)="rdat09’';

disp('enter the load conditions to be used for training *');
disp('For example [1 2 3 4 5] for selecting LCl to LC5 ");
kk=input ('enter ');

s=size (kk) ;s8=8(2);

for i=1l:s,

J=kk (i) ;

eval(t(j,:));

datereduct;
c=setstr(['rdat’',int2str(j)1):

if j==1,

save rdat0l mmr /ascii /double;
save rdat0l1_L Leffr /ascii /double;
elseif j==2,;

save rdat02 mmr /ascii /double;
save rdat02_L Leffr /ascii /double
elseif j==3,

save rdat03 mmr /ascii /double;
save rdat03_L Leffr /ascii /double
elseif j==4,

save rdat04 mmr /ascii /double;
save rdat04_L Leffr /ascii /double
elseif j==5,

save rdat05 mmr /ascii /double;
save rdat05 L Leffr /ascii /double
elseif j==6,

save rdat06 mmr /ascii /double;
save rdat06_L Leffr /ascii /double

111



elseif j==7,

save rdat07 mmr /ascii /double;
save rdat07_1 Leffr /ascii /double
elseif j==8,

save rdat08 mmr /ascii /double;
save rdat08_ L Leffr /ascii /double
elseif j==9,

save rdat09 mmr /ascii /double;
save rdat09_L Leffr /ascii /double
end;

end;
end.
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datsetup.m

disp('Enter the number Load conditions to be included for
training');

disp('For example, enter {1 2 3 4 5] --— LCl1l to LC 5 is used for
training'");

temp3=input ('enter>>"');
tempd=size (temp3);
temp4=temp4(2) ;

gmmr=(] ;

gLeffr=[];

for i = 1l:temp4,

ttt=temp3 (i)

if ttt==1,

load rdat01;

load rdat0l_L;

mmr=rdat0l; Leffr=rdat0l_L;
elseif ttt==2,;

load rdat02;

load rdat02_L;

mmr=rdat02; Leffr=rdat02_L;
elseif ttt==3,

load rdat03;

load rdat03_L;

mmr=rdat03; Leffr=rdat03_L;
elseif ttt==4,

load rdat04;

load rdat04_L;

mmr=rdat04; Leffr=rdat04_L;
elseif ttt==5,

load rdat05;

load rdat05_L;

mmr=rdat05; Leffr=rdat05_L;
elseif ttt==6,

load rdat06;

load rdat06_L;

mmr=rdat06; Leffr=rdat06_L;
elseif ttt==7,

load rdat07;

load rdat07_L;

mmr=rdat07; Leffr=rdat07_L;
elseif ttt==8,

load rdat08;

load rdat08_L;

mmr=rdat08; Leffr=rdat08_L;
elseif ttt==9,

load rdat09;

load rdat09_L;

mmr=rdat09; Leffr=rdat09_L;
end; .

gmmr=[gmmr ', mmr*]’;
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glLeffr=[gLeffr’',Leffr']’;
end;
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trainNwW.m

Train pattern recognition problem
load conditions are represented as patterns

TRAIN WITH NOISE

This file trains a two hidden layer log-sigmoid/log-sigmoid
network to classify loading conditions patterns

It is then trained on loads with noise.
the network is then again trained on noise free loads.
The result is a network which can properly estimate
noise free loads and does a good job of estimating
loads with noise.

LOAD PROBLEM

%

%

%

%

%

%

%

%

%

% .
% The network is first trained on noise free loads.
%

%

%

%

%

%

%

%

%

INITIALIZE NETWORK ARCHITECTURE
%
[R,Q] = size(gagemat);
S1 =20;
S2 =2;

disp('the number of 1 st hidden layer neurons is ');

disp(Sl);

res=input ('enter y if you want to change it, otherwise push enter
>> ', '8");

if res=='y’,

Sl=input ('enter no of 1st layer neurons >>');

end;

disp('the number of 2 nd hidden layer neurons is ');

disp(52);

res=input ('enter y if you want to change it, otherwise push enter
>>l’l31);

if res=='y',

S2=input ('enter no of 2nd layer neurons >>');

end;

[s3,Q] = size(targets):

[wl,Bl] = nwlog(S1l,R});
W2 = rands(S2,81)*0.01;
B2 = rands(Ss2,1)*0.01;
W3=rands ($3,82) *.01;
B3=rands (S3,1)*.01;

% TRAIN THE FUNCTION

%
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% PROBLEM

% Get gage data to be trained
P = gmmr';

T = gLeffr’';

% Normalize the data
nmm=max (max (abs (P)));
ntt=max(abs(T));

P=-P./nmm;

T=-T/ntt;

% TRAINING PARAMETERS

disp_freq = 200;

max_epoch = 16000;

err _goal = 0.01;

1r = 0.05;

lr_inc = 1.05;

lr dec = 0.7;

momentum = 0.95;

err_ratio = 1.04;

% TRAINING WITHOUT NOISE

TP = [disp_freq max_epoch err_goal lr 1lr_inc lr_dec momentum
err_ratiol:;
[Wl,B1,W2,B2,W3,B3, xx]=trainbpx (W1,B1, 'logsig',W2,B2, ...
'logsig',W3,B3, 'logsig',P,T,TP);

% SAVE NETWORK TRAINED WITHOUT NOISE

%
save prl wl Wl /ascii /double

save prl bl Bl /ascii /double

save prl w2 W2 /ascii /double

save prl b2 B2 /ascii /double

save prl w3 W3 /ascii /double

save prl b3 B3 /ascii /double

% TRAINING PARAMETERS

max_epoch = 3000;

err_goal = 0.06;

rand('uniform?’);

TP = (disp_freq max_epoch err goal 1lr lr_inc lr_dec momentum
err_ratio]:

% TRAINING WITH NOISE

for pass = 1:5

fprintf('Pass = %.0f\n’',pass);
[dd1l,dd2]=size (gagemat) ;
$avegagval=norm(gagemat) /ddl/dd2;
P = [gagemat, gagemat, .
(gagemat + gagemat.*rand(R,Q)*0.1),
(gagemat + gagemat.*rand(R,Q)*0.2)];

T = [targets targets targets targets];
$size(T);

[W1,B1,W2,B2,W3,B3, xx]=trainbpx (W1,B1, 'logsig',W2,B2, ...
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*logsig’',W3,B3, 'logsig’,P, T, TP);

end
rand('uniform') ;
% PROBLEM
P = gagemat;
T = targets;
% TRAINING PARAMETERS

max_epoch = 16000;

err_goal = 0.05;

% TRAINING WITHOUT NOISE AGAIN

TP = [disp freq max_epoch err_goal 1lr 1lr_inc lr_dec momentum
err_ratio];

[W1,Bl1,W2,B2,W3,B3,xx]=trainbpx(Wl,Bl, 'logsig',W2,B2, ...
*logsig’,wW3,B3, 'logsig’,P,T,TP);

% SAVE NETWORK TRAINED WITH NOISE

%
save pr2 wl Wl /ascii /double
save pr2_bl Bl /ascii /double
save pr2 w2 W2 /ascii /double
save pr2_b2 B2 /ascii /double
save pr2_w3 W3 /ascii /double
save pr2_b3 B3 /ascii /double

% SUMMARIZE RESULTS
%
A = logsig(W3*logsig(W2*logsig(Wl*P,Bl),B2),B3);

SSE = sumsqr (A-T);
fprintf('Final sum squared error without noise: %g.\n',SSE);
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trainNN5.m

% Train Neural Networks problem

% load conditions are represented as patterns

% Using gage matrix of datset

% This file trains a two hidden layers log-sigmoid/log-sigmoid
% network to classify loading conditions patterns

%

%

3 The network is first trained on noise free loads.

% The result is a network which can properly classify
% noise free loading conditions and does a good job of
classifying

% loads with noise.

% LOAD PROBLEM

%

%

% INITIALIZE NETWORK ARCHITECTURE

%

[R,Q] = size(gagemat):

S1 =20;

s2 =2;

disp('the number of 1 st hidden layer neurons is ');

disp(S1):;

res=input ('enter y if you want to change it, otherwise push enter
>> ','s8');

if res=='y',

Sl=input ('enter no of 1lst layer neurons >>');

end;
disp('the number of 2 nd hidden layer neurons is ');
disp(S2);

res=input ('enter y if you want to change it, otherwise push enter
>>|,lsl);

if res=='y’,

S2=input ('enter no of 2nd layer neurons >>');

end;

[S3,0] = size(targets):

[Wl,Bl] = nwlog(S1,R):
W2 = rands(S2,81)*0.01;
B2 = rands(S2,1)*0.01;
W3=rands (§3,S82)*.01;
B3=rands (S3,1)*.01;

% TRAIN THE FUNCTION

%
$ PROBLEM

% Get gage data to be trained
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P = gmmr';

T = gleffr';

% Normalize the data
nmm=max (max (abs (P)));
ntt=max (abs (T))
P=-P./nmm;

T=-T/ntt;

% TRAINING PARAMETERS

disp_freq = 10;

max_epoch = 16000;

err_goal = 0.005;

lr = 0.05;

lr_inc = 1.05;

1lr dec = 0.7;

momentum = 0.95;

err_ratio = 1.04;

% TRAINING WITHOUT NOISE

TP = [disp_freq max_epoch err_goal lr lr_inc lr_dec momentum
err_ratio):
[Wl,Bl,w2,82,W3,83,xx]=trainbpx(Wl,Bl,'logsig',WZ,B2,...
'logsig',W3,B3, 'logsiqg’,P, T, TP} ;

% SAVE NETWORK TRAINED WITHOUT NOISE

%
save prl_wl W1l /ascii /double
save prl bl Bl /ascii /double
save prl_w2 W2 /ascii /double
save prl b2 B2 /ascii /double
save prl_w3 W3 /ascii /double
save prl_b3 B3 /ascii /double
% TRAINING PARAMETERS

SUMMARIZE RESULTS

%
%
A = logsig(W3*logsig(wW2*logsig(W1l*P,6Bl),B2),B3);

SSE = sumsqr (A-T);

fprintf ('Final sum squared error without noise: %g.\n',SSE};

119



testset.m

% This is to test the NN and Normal equation approach

% For load condition 1 to 9 the relative error is displayed
% The relative error is stored in errn=[error-Normal
Equation,error-NN,error-NN-trained with noise]

% error-NE -——-relative error using normal equation approach
% error-NN —-—-relative error using NN and trained without noise
$ error-NN-WN ---relative error using NN and trained with noise

disp('enter the Load condtion to be tested’);
in=input ('enter>>");

for k=1:9

if k==in,
eval(['dat0',int2str(in)]l);

end;

end;

disp('enter 1 if the NN is trained with noise'");
disp('enter 0 if the NN is trained without noise');
temp9=input ('enter>>");

% Test with no noise trained network
load prl_wl; Wl=prl_ wl;
load prl_bl; Bl=prl_bl;
load prl_w2; W2=prl w2;
load prl_b2; B2=prl_b2;
load prl_w3; W3=prl w3;
load prl_b3; B3=prl_b3;

if temp9 == 1,
load pr2_wl;
load pr2_bl;
load pr2_w2;
load pr2_b2;
load pr2_w3;
load pr2_b3:;
end;

% Linear solutions
AA=P';

x=pinv (AA)*T';
res=norm(AA*x-T"'") ;
res=res*res;
szl=size(b):;
szl=sz1(1l):
szl=round(szl(1l)/2);
a=a(l:szl,:):
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b=b(l:s8zl1,:):
%a=a(1:50,:);
$b=b (1:50, :);

Pt=-a'/nmm;
targetss=-b'/ntt;

$P=n2gfll;
%targetss=n2Ll1l;

$ A is the output of the NN network--or estimated load using NN
% P is the test gage values

% T is the targets or true load for testing

A = logsig(W3*logsig(W2*logsig(W1l*Pt,bBl),B2),B3);

if temp9 ==1,

A2 =
1ogsig(pr2_w3*logsig(pr2_w2*logsig(pr2_w1*Pt,pr2_b1),pr2_b2),Pr2_b
3):

end;

error=A-targetss;

YY=Pt'*x;
errorN=YY'-targetss;

errorNn=errorN./targetss;
errorn=error./targetss;
errn=[errorNn',errorn’']};

if temp9==1,

error2=AZ2-targetss;
errorn2=error2./targetss;
errn=[errorNn’',errorn',errorn2’'];
end;

$plot (abs (error), '*');
plot (abs (erxrn),'*');

grid;
end;
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Appendix B

Calibration Data from NASA
F-111 Load Measurement

The reduced load vector L € IR® and the corresponding gage matrix M €

IR3%*12 gre listed below.
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\

3,571
—5,561
4,710
—7,010
—2,833
—3,544
-2,087
-32,653
3,554
—4,571
-1,727
—1, 785
—2,973
—4,191
—5,314
—-7,019
-9, 798
—11,669
—1,704
-1,719
—~4,119
—5,210
—5,952
—8,565
—11,199
-13,116

—-871

-1,397
~2,293
3,191
—3,887
—4,660
—6,129
—7,045

-301

—384

-779
~1,718

—32, 465
—3,216
—4,721
—5,655

—739
—737
~-1,173

—32,870
—4,240
—5, 587
-8,317

—10,025

)

/

\

-0.23
-0.52
—-0.34
-0.82
~0.32
—-0.50
-0.17
-0.23
-0.18
~-0.21
-0.10
-0.12
-0.19
-0.27
-0.39
—0.80
~-1.03
-1.14
—0.10
-0.10
—0.28
—0.43
-0.70
—0.96
-1.15
-1.28
-0.07
-0.14
-0.24
—0.40
-0.63
—-0.82
-0.98
-1.07
—-0.02
-0.03
—0.06
-0.14
-0.21
-0.29
—-0.76
-0.85
-0.03
-0.03
—-0.05
-0.12
-0.19
-0.31
-0.72
-0.85

—0.28
—-0.46
-0.28
-0.78
~0.18
-0.27
-0.19
-0.25
-0.31
-0.43
-0.13
-0.14
-0.21
-0.31
-0.41
-0.91
-1.15
-1.29
-0.09
-0.10
-0.23
-0.31
-0.58
—-0.94
-1.12
—~1.26
—0.05
—-0.09
-0.15
-0.22
~0.39
-0.62
-0.81
-0.89
-0.03
-0.03
-0.07
-0.16
-0.23
-0.32
—0.88
—-0.96
—0.05
-0.05
-0.08
-0.23
-0.38
-0.67
—-1.12
-1.27

—-0.12
-0.24
-0.16
-0.39
—0.15
-0.22
—-0.08
-0.10
-0.08
-0.11
-0.08
—0.08
-0.10
-0.14
-0.19
-0.39
-0.50
~0.57
—-0.04
—0.05
-0.13
-0.20
—0.32
—0.46
—-0.55
-0.62
—0.03
—0.08
-0.11
-0.18
-0.28
-0.36
—0.44
—-0.48
-0.01
-0.01
-0.03
-0.07
-0.09
-0.13
—-0.34
-0.39
—0.02
—0.02
-0.03
-0.07
-0.10
—0.16
-0.36
—0.43

—-0.12
-0.23
-0.15
-0.39
-0.11
-0.16
-0.09
-0.12
-0.13
-0.18
—-0.06
-0.08
-0.10
-0.13
—0.20
—0.42
—0.56
-0.63
-0.05
—0.05
-0.12
-0.17
-0.30
—-0.47
—0.58
—0.64
-0.02
-0.05
-0.08
-0.13
-0.21
-0.32
—-0.41
—0.45
-0.01
-0.01
-0.03
-0.07
—0.11
-0.15
—-0.39
—0.44
—-0.02
—0.03
-0.04
-0.10
-0.17
-0.29
-0.51
—0.59

—0.45
—0.96
—~0.66
—-1.56
-0.67
-1.00
-0.39
—-0.50
1.46
1.46
~0.21
-0.22
-0.37
-0.53
-0.75
—1.53
—-1.94
—2.18
-0.21
—-0.21
—0.54
-0.81
-1.31
-1.81
-2.17
—-2.40
-0.15
-0.30
-0.51
-0.81
-1.25
—1.64
-1.99
-2.18
-0.06
-0.07
—0.14
-0.32
-0.47
-0.63
—-1.56
-1.75
1.46
1.45
1.46
1.46
1.46
1.46
1.46
1.46

-0.80
-1.25
-0.85
—2.02
-0.91
-1.33
—-0.55
-0.72
—0.43
—0.62
-0.28
-0.30
~0.48
-0.71
—-0.99
—-2.02
—2.57
-2.88
-0.28
-0.27
-0.70
—1.04
—1.68
—-2.36
—2.83
-3.13
-0.20
—-0.41
-0.70
-1.08
-1.67
—-2.20
-2.70
~2.98
-0.08
—0.09
-0.19
—0.45
-0.67
-0.91
~2.16
~2.43
-0.09
-0.09
-0.14
-0.36
—0.56
-0.93
-1.91
-2.21
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—0.45
-0.91
-0.59
—-1.47
-0.53
-0.80
-0.39
-0.51
—0.41
-0.57
-0.22
-0.22
~0.37
—-0.54
-0.74
—1.55
—-1.96
—-2.20
-0.20
-0.19
-0.50
-0.71
-1.20
-1.73
—-2.07
—2.30
-0.11
-0.24
—-0.41
-0.65
-1.03
—1.43
-1.76
-1.93
—0.08
~-0.07
-0.14
-0.32
—0.48
—-0.85
—~1.58
-1.77
-0.08
-0.08
-0.12
-0.32
—-0.51
-0.86
—-1.62
-1.87

-0.63
-1.22
-0.78
—1.99
-0.76
-1.13
—0.60
-0.78
-0.58
-0.80
-0.31
-0.32
-0.52
-0.75
-1.01
-~2.12
—2.68
-3.02
-0.27
~0.26
—0.66
—0.94
-1.59
—-2.34
-2.80
-3.13
-0.18
—0.36
-0.61
-0.92
-1.44
-2.00
-2.49
-3.74
—-0.10
-0.12
-0.22
—0.50
-0.73
—-0.98
-2.29
~2.60
-0.12
-0.12
-0.17
—0.45
-0.72
-1.21
-2.24
—2.57

~0.69
-1.45
—0.99
-2.33
-1
—1.61
-0.65
-0.85
0.00
0.00
-0.32
-0.34
—0.56
~0.82
-1.14
-2.30
—2.94
-3.30
—0.31
-0.31
—-0.82
-1.21
-1.95
—-2.70
-3.25
-3.61
—0.24
-0.50
—0.85
-1.33
~2.00
-2.62
-3.22
—-3.56
-0.09
-0.11
-0.23
-0.53
-0.78
-1.07
-2.50
-2.83
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00

-0.75
—-1.54
-1.03
—2.49
-1.13
~-1.67
—-0.74
-0.98
-0.58
-0.81
-0.35
-0.37
~0.61
-0.90
-1.25
—-2.53
-3.23
—3.65
-0.34
-0.33
—-0.86
-1.23
—2.05
—-2.92
-3.51
—-3.91
-0.25
—0.51
-0.88
-1.37
-2.08
-2.78
—3.40
-3.76
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—-0.80
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—-2.82
-3.19
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—-2.43
-2.82
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-3.15
—3.56
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-0.82
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-3.33
-3.72
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—2.45-
-3.08
—3.36-
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—-0.14
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—-0.62
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-1.23
-2.77
-3.16
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-2.56
-2.94¢
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-3.83
—4.11
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—1.08
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