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Abstract

In the late seventies, an image of the large-scale structure in the Universe began

to emerge as a result of the accumulation of the galaxy redshifts. Most of the galaxies are

found to concentrate in large filaments and perhaps sheets leaving most of the volume empty.

Similar structures were predicted theoretically in the frame of the adiabatic theory of galaxy

formation (Zeldovich) and later in the hot dark matter cosmology. However, both scenarios

have been ruled out by the observations. With these sceanrios the dynamical part of the

scenario was also erroneously rejected by many as well. In this talk, I derive the Zeldovich

appro_mation from the exact dynamic equations and show that it is always better than

the standard finear approximation. The advantage of the Zeldovich approximation is the

greatest in the quasi-Linear regime when 6r,ns < 1(6 _= _p/p), but the displacement of the

matter is essential. The range of scales in the quasi-finear regime depends upon the slope of

the initial spectrum and increases with decreasing n, where n is the exponent, if the initial

spectrum is approximated by a simple power law P(k) o¢ k n.



1. Introduction

The detection of the fluctuations in the MBR temperature (Smoot, et al, 1992) pro-

vides a solid foundation for the theories of the large-scale structure based on gravitational

instability. Although the most popular model of the eighties, the standard CDM (Cold Dark

Matter) model, has been unable to reconcile the amplitude of the temperature fluctuations

with the level of structure on the scale of tens of Mpc, its combination with the HDM (Hot

Dark Matter) model marginally agrees with all current observations (Davis et al. 1902;

Klypin et al. 1993; Pogosyan and Starobinsky, 1903). There are other options as well. For

instance, one may change the primeval spectrum in a CDM-dominated universe (the n = 0.8

model looks reasonably good, Cen et al., 1992), or postulate a non-zero cosmological term,

A _ 0.7-0.8 (Efstathiou et al. 1990). Still another option is the hypothesis invoking the co-

operative galaxy formation in the CDM scenario (Bowen et al. 1992). The common feature

of all the above models is the assumption that the present structures in the universe emerged

from the small random Gaussian density fluctuations due to gravitational instability in an

expanding universe.

The e.dsting structures which are commonly mentioned in a cosmological context range

from globular clusters with M ",. lOSMo to the largest superclusters of galaxies with M .--

1015M@. On larger scales the distribution of gala.des becomes gradually more homogeneous

with the growth of the scale. The small scale part of this range is a highly nonlinear regime

6_,_ >> 1, here 8 = 6pip. The scale where the amplitude of density fluctuations reaches

unity, 6rm_ = 1 defines the scale of nonlinearity which is of the order of a few Mpc depending

on a particular definition of 6rmo. Practically the evaluation of 6_,n, involves smoothing of a

density or galaxy distribution with a certain window function. Two common windows, the

Gaussian and the top-hat windows, result in an approximately two-fold difference in the

scale of nonlinearity; RT-H _ 2RG almost independently of the initial spectrum (Melott

and Shandarin, 1903). It is accepted that the nonlinear scale in the universe RT-ft =

8h-lMpc (where h. = H/IO0) and this value is often used for the normalization of the initial

perturbations.

On larger scales the density perturbations are small, 6,.ma(R > Rnt) < 1 and the

linear approximation is usually thought to be at least qualitatively correct. However, this

contradicts to the assertion that there are structures on a scale of several tens of Mpc: for

example, the Great Wall or the Great Attractor.



There are several ways to resolve this contradiction. First, the structures on large scales

are not statistically significant and are not real physical objects. They are rather artifacts of

the remarkable ability of the human eye to see structures in purely random distributions. The

lack of an unambiguous statistic able to characterize the large scale structures quantitatively

seems to support this point of view. On the other hand, the ?/-body simulations of the most

successful cosmological models seem to exhibit similar structures in the simulated "galaxy"

distributions. Dismissing this result is more difllcult, because in the N-body simulations we

have a lot more information about the distribution in question and can control the evolution

of the structures (Kofman et al. 1992, Coles, Melott, and Shandarln 1993).

Secondly, one can say that either the assumption about the Gaussianity of the ini-

tial fluctuations or the gravitational instability scenario itself is wrong. However, no good

scenario based on the non-Gaussian initial conditions and explaining the large-scale struc-

ture has been suggested. The same can be said about nongravitational mechanisms of the

formation of the large scale structure.

In this talk I discuss the third option. I assume that the initial fluctuations of Gaussian

type are amplified by gravitational instability. The scale of nonlinearity Rnt, defined by

the equality 6_m_(Rnt) = 1 corresponds to the measured one, assuming an appropriate

smoothing window function. I show that there is a range of scales R,_t < R < Rq,t where

6_rna(R) < 1 but the density field is non-Gaussian, which can naturally account for the

large-scale structure in the universe. It is natural to define this stage of evolution as a

quasilinear regime: on the one hand it is not nonlinear since 6rma(R) < 1, but the spatial

distribution is very non-Gaussian. The density distribution is also non-Gaussian in the

sense of the distribution function. This actually is an additional factor helping to explain

the large-scale structure, but I stress the non-Gaussian character of the geometry of the

density distribution, which I believe is more important.

2. Linear and Quasi-Linear Solutions

It is useful to begin with a brief summary of the linear theory of gravitational instability

(Peebles, 1980). The equations describing the evolution of density perturbations in a dust-

like medium is convenient to write down in terms of the comoving coordinates xi = ri/a, the

peculiar velocity v_ = b -1 • dxi/dt = d_ri/dD and the density perturbation 6 = (p - _)/_

06 Ovi 06 60vi
+ + + = o, (1)
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where D is the function of time t or the scale factor a = a(t) describing the growing mode

in the li=¢arregime,a = #/#o,, f = D/(H. Z)), and H = a/a. The perturbationof

the gravitational potential has been normalized in such a way that in the linear regime

vi = -@_/Ozi and the right hand side of Eq. (2) is zero to the linear order. The last two

terms in Eq. (1) and the second term in Eq. (2) are nonlinear and usually are discarded in

the linear analysis. Now we can easily obtain the growing linear solution of the gravitational

instability

5(x, D) = D. 5o(x), (4)

vi(x, D) = voi(X) , (5)

where 50(x) and v0i(x) are the initial density and velocity perturbations.

Discarding the nonlinear terms in Eq. (1) and (2) we assume that they are small

compared to the corresponding linear terms which are proportional to 6. However, in some

cases an additional condition must be satisfied before the nonlinear terms are dropped.

Comparing the first two linear terms in Eq. (1) we conclude that 6/D ,-. v/lv, which

roughly means that 6 is small (6 < 1) if D < iv�v, where g_ is the characteristic scale of

the velocity field and v is the magnitude of the velocity perturbations. Two nonlinear terms

in Eq. (1) have the order of v6/Q and v6/iv correspondingly here g6 is the typical scale of

the density fluctuation. The last term is obviously small compared to the linear terms while

6 < 1. But the first nonlinear term can be neglected only when 6 < 16/lv. The ratio of

these scales is always less than unity and can be a small number depending on the initial

spectrum. In the case of the power law initial spectra

P(k) _ k", k_ < k < ks, (6)

where kl and ks are the free parameters specifying the longwave and shortwave cutoffs, one

can easily show that for n > -1 l, -_ 16 and for -3 < n < -1 Q/I_, "-. (k2/kl)_ "_. The last

estimate indicates that the standard linear theory can be applied only until 6 £ (k2/k_)'_

not until 6 < 1.



The explanation to this is of course very simple. The linear solution (Eq. (4) and

(5)) does not take into consideration the displacement of points from their Lagrangian (i.e.,

unperturbed positions), and therefore becomes invalid when the rms displacement exceeds

the short wavelength cutoff

~ D > kf (U

since v •D ~ 6. (_/k2)(_+_)/2k_ _ for n < -1.

Figure 1 shows a simple example illustrating the the above discussion. Three panels

show a one-dimensional realization of the initial density, velocity and potential perturbations

v(1D) IL._ z'2v(sD) /k_ The size of the box is 4000respectively for the CDM spectrum: • CDM_,j = _, • ¢DM_ J"

Mpc and the short wave cutoff of the spectrum roughly corresponds to the scale of galactic

sizes lc,aoff _ 1Mpc. Only a small part of the box is shown.

This problem can be easily solved by using Lagrangian coordinates. Retaining the

convection terms in Eq. (1) and (2) one can develop the linear theory of gravitational

dD \Ozi}o

clvi
-0

dD

where -(Ovi/Ozi)o = *0(q). The solution to these equations is obvious

instability in Lagrangian space

6(q,D) = D.50(q) , (10)

vi(q, D)- v0i(q) (11)

The density and velocity distributions in Eulerian space can be obtained via the equation of

motion

x(q,D) = q + D.v0(q), (12)

which is the Zeldovich approximation. For n > -i both approaches give similar results,

although the Lagrangian one is always more accurate. In this case clumps of a typical

mass M -_#k_"3 form and they are displaced by the typicaldistance d ,,-k_"I. UsuaLly the

Zeldovich approximation isextrapolated until the causticsform. This isa very good ap-

proximation when the firstgeneration pancakes form from a continuous median (Shandarin,

Zeldovich 1989). However, we are going to apply this approximation to the hierarchical

clusteringscenario,assuming that small scalefluctuationshave already collapsedinto grav-

itationallybound objects. Therefore we can not expect that the medium iscontinuous, we

would rather think of itas consistingof clumps of various sizes.



Equations (10), (11) together with Eq. (12) we call a quasi-linear solution in the

contrast to Eq. (4), (5) which are the linear solution to the gravitational instability equations

(1)-(3). One may think that there is only a terminological difference between them. In the

following sections we show that the difference is much more serious.

3. Perturbations in Quasi-Linear Regime

First of all, it is worth demonstrating that the quasi-linear regime possesses features

which distinguish it from the linear regime. However, before doing this we specify the range

of scales which are in the quasi-linear regime. For the illustrative purpose we will use an

example of a power law intial spectra (Eq. 6), however all the results are easily generalized

for an arbitrary spectrum (Shandarin, 1993).

The scale of nonlinearity knt is usually defined by the condition

kn£

5rms = 47r. D 2 / P(k)k2dk
0

= 1 (13)

This scale roughly separates perturbations in linear and non-linear regimes:

Gins(L)< 1 if L>k_{

and

> i if z<k;l

If a nonlinear distribution is smoothed with some window function, then the smoothing scale

Ls corresponding to the condition 6fins(L,) = 1 (where _(Ls) is the smoothed density field)

roughly equals kay: Ls "_ k_ (for details see Melott and Shandarin, 1993).

The perturbations in the quasi-linear regime have scales greater than k_'_ and therefore

6r,nm(Lql ) < 1. If one looks at the spectrum of the nonlinear distribution he finds very little

difference with the linear spectrum if k < knt (see Fig. 2). This means that the evolution

of the spectrum in this range of scales is perfectly described by the linear theory. However,

the spectrum is not the whole story.

Making gravitationally bound clumps of mass assumes the transport of mass from one

place to another. Therefore one can calculate and/or measure the rms displacement of mass

in the process of building up the structure. Assuming that the displacements corresponding



to the short wave perturbation k _> hnl are averaged out one can give an analytic estimate

of the rms displacement when the nonlinearity reaches a scale knt (Shandarin, 1993)

yo e(k)dk (14)
a;,.. = yo ., '(k)k'dk

For the discussion of thisresultsee Shandarin (1993), however, summarizing one can say

that the overall accuracy of the theoreticalestimate of drm, is similar to that of knl (Eq.

(13)).

In the case of the power law initial spectra (Eq. (6)) one easily finds that

and

In the former case the characteristic displacement of mass roughly corresponds to the char-

acteristic mass of nonlinear clumps drms "_ k_'_, which intuitively is very clear. In the

latter case drm, can be easily much greater than k_-t1 : d,,, >> k_t x, if kl << knt. If

the characteristic displacement drm, is greater than the typical distance between clumps it

obviously means that the clumps themselves are displaced coherently by the distance d,m_.

The perturbations having scales between the scale of nonlinearity k_'] and d,.,_, are in the

quasi-finear regime: on the one hand the perturbations are small _(g) < 1 (k_'t x < t < d,.m,),

but on the other hand the spatial structure is different from the initial (Gaussian) field.

As it was already mentioned the power spectrum in the quasi-linear regime can be

approximated by linear extrapolation of the initial spectrum

P(k,O)= I,Z k.L. (17)

Therefore neither spectral analysis nor correlation analysis can detect this regime to the

first order in 8. Scherrer et al. (1991) indicated that the growth of the perturbations is

accompanied by the shift of phases. Ryden and Gramann (1991) found the evolution of the

scale Lo = Lo(a) where the initial phases are significantly disturbed. It is a matter of a

simple calculation to show that

Lo oc d,.,n, (18)

A directcomparison of the density distributions,obtained in 3D N-body simulations,with

linear extrapolations from the same initial conditions showed that the 25% agreement could



be achieved when they both were smoothed with a scale L_5% _ 1.65d, ma (Melott and

Shandarin, 1993). It is worth stressing that this implies that L2s % does not scale with k_ 1 if

n < -1. Thus, we conclude that the power spectrum of the perturbations in the quasi-linear

regime is described by the linear extrapolation of the initial (linear) spectrum and the phases

are significantly distributed compared to the initial ones.

4. Distribution Function and Filamentary Structure

We begin with the discussion of smooth initial perturbations, assuming that the initial

spectrum is sharply cut off at some scale. In this case the Zeldovich approximation can

of course be used. The linear theory in Lagrangian space (Eq. 10) suggests that density

perturbations retain all properties of the initial field. In particular, for Gaussian initial fields

all statistical properties remain Gaussian to the linear order. On the contrary, the linear

evolution of density perturbations (6r,_s < 1) described in Eulerian space disturbs some

properties of the initial field even to the linear order. As a simple example we consider the

density distribution function.

Assuming the initial perturbations to be Gaussian, the density distribution function

can be approximated as

1 (19)
=

where fi(_) is the fraction of Lagrangian volume where the density contrast 6 = (p - _)/_

2
has a value between 6 and 6 + d_; here _r_ _ 6r,_,s. Obviously the approximation breaks

down at _ < -1, since we know that 6 > -1. It also breaks down at large 6, though it is

not quite obvious (see Shandarin and Zeldovich 1989 and references therein). Here we shall

assume that 6 is in the range where Eq. 19 is approximately correct.

In Lagrangian space the growth of perturbations with time does not change the dis-

tribution function (to the first order) but reduces its range. On the contrary in Eulerian

space the density distribution function ceases to be Gaussian even to the first order in _.

The reason for that is very simple: the volume where 6 < 0 shrinks and that where 6 < 0

expands. The exact calculation is not quite easy, however the result is simple (assuming

both ]6 [< 1 and _o'6 < 1)

f (6) (1 - (20)

where fG(6) is the Gaussian distribution function (Eq. 19) and aD is a constant depending

on the dimensions: al = 3 in 1D, a2 = 9/4 in 2D (follows from the general expression given

in Gurbatov et al. 1991) and as = 2 in 3D (Kofman, 1993).



The density distribution function in Eulerian space (Eq. 20) may explain the formation

of structures called filamentary and cellular. By calling a density distribution filamentary we

probably assume that the dense regions forming a connected structure occupy a surprisingly

small volume. Quantitatively this can be expressed in terms of percolation thresholds (Shan-

darin and Zeldovich, 1989 and references therein). Let us consider a Gaussian density field.

Introducing a biasing parameter b one can study the topology of "overdense" regions with

6 > b • 0.s, and "underdense" regions with 6 < b. _r6. For example, if b = 2 then overdense

regions are isolated islands occupying totally about 2.5% of the volume in the ocean formed

by the underdense regions. If b = 0.5 then both overdense (occupying totally about 31%

of the volume) and underdense regions form connected structures with the exception of a

few isolated islands. It means that at some intermediate b a topological phase transition

happens: overdense regions begin to form a connected structure or percolate. Percolation

theory suggests that this happens at b = 1, when the overdense regions occupy about 16%

of the total volume.

The surfaces of constant b conserve the initial topology to the linear order, however,

the total volume within a certain b (6 > b0.6) decreases. We probably can see a difference in

geometry when the percolating volume (6 > 0"6) shrinks to roughly half of its initial value of

16%. Making use of Eq. (20) one finds that it happens when 0.6 = crfi_am _ 0.3.

From the symmetry of a Gaussian distribution one can easily anticipate that voids

(i.e., underdense regions) begin to be statistically isolated (= cease to percolate) at 6 < -0.

or b < -1. At the epoch of the formation of the filamentary structure (0.6 _ 0.3) their

total volume is increased from 16% to roughly 24% which does not look as impressive as the

decrease of the overdense volume from 16% to 8070. The voids double the volume at a later

time when the perturbation amplitude reaches the value of 0.6 = 0.void _ 0.5.

So far we have discussed the case of smoothed initial conditions. In more realistic sce-

narios as, for example, the CDM or C+CDM models, the large scale structure forms through

a hierarchical clustering: the larger structures are built from smaller clumps. Therefore the

clumpiness of the medium is very essential and must be incorporated into the above model.

Recent numerical studies of a bunch of the models with the power law initial spectra

(Coles et al. 1992, Pellman e* al. 1993) showed that the Zeldovich approximation works well

if the initial spectrum is cut off at k --. knt. Compared to the results of N-body simulations

with similar initial conditions but without the cutoff the Zeldovich approximation predicts

much stronger filaments especially when the spectral index n (Eq. 6) becomes greater than



-1. Cutting off the initial spectrum at some scale we eliminate small scale clumpiness.

Cutting off the spectrum at larger scales (kc < k.L) and applying the Zeldovich approxi-

mation we would produce a quasi-llnear density distribution described at the beginning of

this section (we will call it a smoothed version of the structure) . Actually this quasilinear

structure is always present in the nonlinear distribution but is hidden due to clumpiness. In

the case when the scale of a possible quasilinear structure becomes much greater than the

scale of clumps (kc << knl) we may see the structure again because we come closer to the

continuous limit.

As was discussed before we may see a filamentary structure when the amplitude of the

density perturbations reaches a value of o'_ = 0.3(o':ilam/0.3). Correspondingly cutting off

the initial spectrum at ks, satisfying the condition 6r,na(k = kfilam ) _. 0.3, one can find a

k-1typical number of clumps in a randomly placed box of size litam" If this number is small the

filamentary structure can not be seen even if present in a smoothed version of the structure,

but if it is large enough we may see it. A simple estimate gives Nliza m ... (knL/klitam) 3.

In the case of the power law initial spectra knl/kfila m ,".. 0.3-_-"_+ ¢_I_z_'_)-_-_+ and
0.3

therefore
8

0.3 (21)

If n = 0 then N/iz_,_ "- 10(_il-]-!k_--)-2 and we probably can not see the structure: for smaller0,3

o', (larger scales) we have more clumps but the density contrast is lower, on the other hand,

for greater o"a the number of clumps is even less. However, if n = -2 then Nfil,,m "_

103(o'/ilam/0.3) -6 and it is probably more than enough for detecting filaments.

Similar arguments can be used in the discussion of voids. However, to detect voids

we probably need to deal with greater amplitudes (o'6 _ 0.5 instead of u6 _ 0.3) which

considerably reduces the number of clumps per void. This implies that observing voids in a

clumpy universe is more problematic.

5. Discussion

To address the problem of large scale structure formation we must study the displace-

ment of mass. This displacement consists of roughly two parts: the displacement towards

clumps and the coherent displacement of the clumps themselves.

The former, of course, accounts for the formation of clumps and is taken into consid-

eration by the hierarchical clustering theory (see Peebles, 1980 and references therein). The

10



latter may explain the formation of the large scale structure of the universe. Being coherent

on the nonlinearity scale k_t 1 this part of the displacement is not homogeneous on larger

scales and accounts for the large scale density fluctuations. These fluctuations are small

(6,,_° < 1) but nonGaussian. The nonGaussianity manifests itself by disturbing the initial

phases, however, the initial linear spectrum remains almost undisturbed at k _ k_. The

range of scales where the phases are considerably disturbed is proportional to the charac-

teristic displacement of the mass and can be estimated theoretically (Eq. 14). The range of

scales between k_'ta and drm, is in the quasilinear regime: _r6 < 1, but the phases are different

from the initial ones. For a power law initial spectrum dr,,_, -,_ k_t 1 if n > -1 the quasilinear

regime practically does not occur.

The formation of the filamentary and cellular structures is generic for gravitational

instability in the sense that it is always present in a smoothed version, but in practice it is

determined by the interplay of two rival factors: the amplitude of density fluctuations on

some scale cr(k,) and the clumpiness of the density distribution. If k, is not much smaller

than k,_t then the ampfitude cr(ks) is large enough but the clumpiness prevents us from

seeing filaments. On the other hand, when k, is much smaller then knt then the clumpiness

becomes more or less irrelevant but the amplitude of the density perturbations becomes

too small. Thus there must be an optimal range of scales where both factors can "reach a

compromise." This strongly depends on the initial spectrum. Quantitative estimates, based

on the ideas of percolation theory, show that for a power law initial spectrum with n _ -1

the clumpiness is small enough and we can expect the formation of an observable filamentary

structure. Incidentally the most popular cosmological scenarios (CDM and C+HDM) have

spectra satisfying the above condition in the range of the large scale structure.
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Figure Captions

Figure 1. A one-dimensional realization of the initial density, velocity and potential per-

turbations is shown. The initial spectrum is a one-dimensional analog of the CDM spectrum

pc(1D)/z._ z.2D(3D)/z._
DM_,_,I = ,-. _ CDM_,.,I.

Figure 2. Two dashed lines show the initial and linearly extrapolated spectra P(k) cx k °.

The solid line shows the spectrum calculated in the N-body simulation. The short vertical

line marks the nonlinear scale (Eq. 13).
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