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Abstract

The methodology and a rigorous solution formulation are presented for stress

intensity factors (SIF's, k) and total strain energy release rates (SERP_ GT) of a

multicracked plate, that has fully interacting cracks and is subjected to a far-field

arbitrary stress state. The fundamental perturbation problem is derived, and the

steps needed to formulate the system of singular integral equations whose solutic_

gives rise to the evaluation of the SIF's are Jdex'*_ Parametric studies are con-

ducted for two, three and four crack problems. The sensitivity and characteristics
of the model is demonstrated.

1 Nomenclature
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-- inclination angle between inner tips of two parallel cracks

- direction cosines between two local coordinate systems

- strain tensor

- four roots of the characteristic equation

- angle defining orientation of local coordinate system

-- far-field and total stress field, respectively

-- components of stress in global coordinate system

- stress from the perturbation problem in p_ local frame

- transformed jm crack stressed to the pm local frame

- normalized real variables

- Fourier transform of the stress function with respect to x

- angle between L - T and X - Y coordinate systems
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- roots of the characteristic equation (real numbers)

- half crack length

- compliant matrix coefficient in z_-9i frame

- auxiliary functions

- mode-I and mode-II stress intensity factors

- Fredhohn kemek

- normal traction at crack surface

-- shear traction at crack sudace

- position vector defining the origin of a local coordinate system

- components of the position vector rj
-- Fourier variable

- real variable along a crack axis

- displacement assodated with x and y coordinates, respectively

- weight function

- local, global and material coordinates (L - strong direction)

- kernel matrix

- compliant matrix codilcient in L- T frame

- functions of s in Fourier space (i.e., constants in x,y-real space)

- constants of substitution

- horizontal and vertical distances between crack tips

- material's parameters in L- T frame

-- modified stif_ess parameters

- Airy stressfunction

-- total strain energy release rate

-- discrete auxiliary function

- effective stress intensity factor

- loading vector

- (iso) stands for isotropic singular, (reg) for nonsingular part

2 INTRODUCTION

Consider multiple cracks embedded in an infinite anisotropic plate (Fig. l(a)). The

plate is under a far-field stress denoted by cr_, (in particular _xx, °_YY, and _xY, where

(X,Y) is the global coordinate system), and the cracks are defined in their local frames

(xj,y_) (Fig. l(b)). The origin of each local frame is defined by the position vector rj,

and the orientation of the local frame with respect to the global frame is defined by the

angle _j. Each crack is symmetrically situated within its own coordinate system and is

2a_ long, as shown in Fig. l(b).

The general solution formulation can be outlined in four basic steps. The first step

is to derive the local stress equations for each crack in its respective local coordinate

system. This derivation is achieved by defining the fundamental problem; that is a single

crack in an infinite anisotropic plane (Fig. l(b)). The fundamental problem is then

decomposed into two subproblems: the problem of the undamaged plate containing an

imaginary crack (Fig. l(c)), and the perturbation problem (Fig. l(d)) of a plate with

a single crack subjected to the appropriate crack-surface tractions which are found from

the solution of the complementary undamaged problem. The analysis of the perturbation
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problem leads to singular stresses that govern local crack-tip behavior.

The second step is to formulate the total perturbation stress field for each crack, which

includes the interaction of all cracks through the summation of the trandormed local

stresses of all other cracks. In the third step of the formulation, the total stress equations

are normalized. A set of Cauchy-type singular integral equations, expressed in terms

of unknown auxiliary functions, is obtained by subjecting the total perturbation stress

equations to the crack-surface traction field at each crack location. The fourth and final

step of the formulation is to express the stress intensity factors (SIF's, kland k_) in terms

of the discrete auxiliary functions H, lj(rp) evaluated at each crack tip. These discrete

auxiliary functions are obtained by implementing of the Lobatto-Chebyshev collocation

techmque. Finally, the strain energy release rate (SERR, GT) is calculated in terms of
SIF's.

(b)

Figure 1: Muliticracked plate geometry and method of solution. (a) Multicracked plate.

(b) Fundamental problem for jth crack. (c) Undamaged plate. (d) Perturbation problem.
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3 LOCAL STRESS FORMULATION

Consider the fundamental problem (Fig. l(b)), which is defined as a single crack in

an in_te anisotropic plate; its solution can be obtained by decomposing it into an

undamaged problem (Fig. 1(c)) and a perturbation problem (Fig. l(d)). The essence

of this decomposition is that the traction forces applied along the crack _ in the

perturbation problem are the opposite of the obtained stress field of the undamaged plate

at the particular location of the imaginary crack. As a result, the undamaged plate's

traction field can be defined in terms of the normal (pj) and shear (qj) stress components

along the imaginary crack surface:

where

(i)

(2)

_=_yj(=#,0)=_xx-°_YYsin2_#+_yoos2_ (4)
2

The mixed bounda.D, conditions for the perturbation part of the fundamental problem

(Fig.l(d)),_ =q_r=s,dintermsofsty,==

%,,=-pj(=j)and %,,=-_(=_) (s)

along the crack suzface (i.e., l/# -- 0 and - a# _ zj _< aj), and in terms of continuity of

displacements

u+=u- and u +=u- (6)

ou_d,ofthecrack(*.e.,y#= 0andI=_1> =#,seeFig._(b)).Here the superscript "-I -_

indicatesthe value of displacement at a point approached from the positive side of the

plate,(i.e.,y > 0),whereas "-" indicatesthe same point approached from the negative

side of the plate (i.e.,g < 0).

The governing equation for the preceding two-dimensional enisotropicplate problem

can be expressed in terms of the Airy stressfunction F#(z_,g_) as

_F 8iF _F _F _F

_ +_,a--_-_+_,a-_--_+_-_ +_,_ =0
where

(7)

71=-_-_; 7== e, , 7_=-_; and 74=_; (8)

Here, for general two-dimensional anisotropy b,l, b_, bl_, bls, bss,and bss are independent.

In this paper, we will be primarily concerned with applications involving unidirec-

tional fiber reinforced composites; these can be idealized at the macrolevel as a pseudo-

homogeneous transversely isotropic material. Consequently, the preceding six inde-

pendent constants now become dependent on the four independent elastic constants,

ELL, E_,Gr.T and v'LT, where (L,T) is the material coordinate system rotated by the

angle fl with respect to (X,Y), see Fig. l(b).
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Thus,

hi I --

_=
b12 _--"

_=
b_ =

_=

where

B_+ (B_+ B_- 2B_-B_)_n'(_-_)_'(n- _)
[B_ sin_(_ - _) - Bn c_(f_ - _) + ½ (2Bi_ + B_) cos 2(_ - _)] sin 2(_ - _)

[_(_ - _) - sin'(_- _) - ½(2B_2+ S_)co,2(_- _)]sin9.(n- _)
(9)

Bn= _-!-" Bm ----L" Bn --_-z_" and B_m --l-

Note that this special case of transverse isotropy does not diminish from the generality

of the subsequent solution for the general anisotropic case; all that is required to recover

the general solution is to experimentally identify the six independent constants used in

_uation (9).
A rigorous solution for this stress function can be obtained by employing the Fourier

transform. Assume the stress function to be expressed as

1
Y(z,y) = -_ C _ C,,.eZ'U'e-_ds

m=l

(10)

Then, on substitution into eq. (7) the characteristicequation isobtained. It has four

complex roots, which take the followingform:

pt = a+ib;, p2 ffi c+id;

#_ = -a + ib; #4 -- -c + id;
(11)

where a and c > 0.

The Airy stressfunction must also satisfythe physical requirement that the stress

function isfinitethroughout the domain of the plate. Therefore, the following forms of

F_(zj,yj),which are automatically bounded at infinity,can be used for the upper half

plane (for _ > 0),

F(z,_I+) = _1 J-ooF°[Uze(_-al'l)_ + (7_e(i_-clsl)_] e-_ds (12)

and for the lower half plane (fort/< 0),

I _ [C_ec_'+°'"_C,_C_+°'"_,] 03)F(_,_-) = _f__ + e-'=ds

Note: Constants C,= for j = 1, 2, 3, and 4 are fmzctions of the Fourier variable s and are

determined by using the local stress continuity conditions at the boundaries between the

half planes ( Z/= 0) and by using the perturbation boundary conditions subsequent to

the determination of the total stresses at each crack location.

The stresseswithin the upper and lower halfplanes are calculatedby using the second

derivativesof the stressfunctions [1].Therefore, the stressesfor the upper halfplane are

o_+)..= _12_f-: [cz(-_1_1+ ibs)'e_'_'-'_"_,+ c_(-_lsl+ ia_)'e_-.-.I._).]e-'ds (14)
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1 [Cle(__alal}_ + e__d s_): -_ f_,' c,_(_-*'_] (,5)

* It, (-alsI + + c, (-clsl+ i_) e-'d8_) =_ _j_.i, _,),(_-""_ ,(_-*'_] (16)
and for the lower haft plane

_) = _ _J__[o_(al,I1 + ibm)*e(_+'_")_+O,(clsl + iris)*e("_+°l°l_]e-'da (17)

_)= - 2"_1/-2" [ Cse(_'+_l'l)' + C'te (_*+¢1"1_] e-C'=ds (18)

:_ _. It,(_J,l+_b,)_('+"_'+C,(oi.I+"-')o('+_""]_-'d,(,9)
The continuity conditions for local stresses _ and _r_ are identically satired, given

G+_=_+_ (20)

and

o_(bs+ _lsl) + O=(as+ iclsl)= 03(_ - ialsl) + O4(ds- iclsl) (21)
respectively.

The solution of equations (20) and (21) for Cs and 04 in terms of Ca and C_ can be

written in the following form:

cs = s_c_ + s_c,
o, = sso_+ &c2 (22)

where

are

Isl(a+ c)+ i(d - b)_
[sl(c-_)+i(d-b)s

s, = I_1(_- ,) +._(d- b),
S_= 2_1_/

I'1(_- _)+,(d- _,),
S_= I_l(a+ c) - i(d- b)s

I_l(c- _)+ ((a- b)_

(23)

The strains are calculated by using the generalized Hooke's law. The normal strains

_=ffi = bn_== + bn(rmz + b,e_rffi_ (24)

From eqs. (24) the s_alns for the upper and lower half planes can be obtained. Then

by using the strain-displacement relations [1]; the displacements for the upper and lower

half plane can be obtained:

u(z,y) = f e_fdz (25)
,,(.,y)= J'_,,,,d_

To obtain the singular integral equations we introduce the following auxiliary func-
tions:
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f_(_)= _[_,+(_,o)- ,_-(_,0)] (26)

f_(z) = _[v+(z,0)- v-(z,0)] (27)

Expressions forthe unknown constants CI and C2 can be determined in terms of these

auxiliary functions, since we know that It(t)and f_(t)are nonzero only within the crack

region (i.e., -a < t < a). There_re,

C, --- ff. D451 (t) - D2/z(t)e.tdt
D1D4 - DgDs

(_)

where

F Ds$_(t)- Dlf_(t)_taj.02=- _ _--=-_._D_Ds
(zg)

2al,I[I,ICa+ ,) + i (d- b)s]b_
2,1sl[1.!Ca+ c)- i (d- b)s]bu

^ Isis[s(d- b)-- i (a + c)Isl]--

2clSls[-s(d- b)- _(a+.c_)Isl]b_
(_ + d2)(alsl+ ibs)

Similarly, C3 and C4 can be expressed in terms of the auxiliary functions by using eqs.

(22) and the resets of eqs. (28) and (29).

Substituting expressions for the constants Cm into the local stress equations (14)

through (19) results in the formulation of a set of double integral equations with respect

to the Fourier variables a (-co < s < oo) and t (-a < t < a). Integrating with respect

to s will give a set of singular integral equations with respect to t, which are valid for

any jth crack within its own local coordinate system (zi, V#) :

1 'J
(31)

where

it, i,,-- l(tj + f,_(tj dtj

'r:,[,,,&-
(32)

(33)

Qo= ac[(a+e)'+ (b- d)_l[(t_- =_)_+2bCt_- =_)_+ Ca+ b_)Y_j]
× [Ct_-_)_ _dCt_-_)_ + (a +_)_]

(34)

with

Q, = R, (t_- _.)_+ y;[R_(t_-- _)_ + y_R_(t_- _) + y_/h] (35)
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with

R_ = a_bc+_c+2_c_+2a2ca+_d+_
= a4c + 2aZb_c + b% + 2aSc 2 + 2ab2c z + 2aZc s + ac 4

+2aZbc_/+ 2bScd + 2_d + 2a_c_ + Sated _ + _ + a_

Rs = a2bc s + bsc s + 2a,_ 4 + 2a4cd + 4a2b2cd + 2b4cd + aSc2d

+_d + a21_i _ + bScd 2 + 4_ + as_ + _ +

Q2 _--- (36)

with

P_ = (a _ 4-b :t) (_ --I-_)

R_ --- (a2c+b_c+ac _ +at/_)

R7 = a_bc + bSc + 2b2_ + acid + 2abd _ + ad _

Rs = aSz _ + ab% _ + a_c s - b_c s -- 2a:_bat - 2bScd

--2abed - aSd _ - abed _ + a_cd _ - b_cd _ - 2abd s

=

Rao ffi 5c+ad

6'-  dCo
Rx_ - bc _ + aSd + abed + bcd _ + 2bd (bc + ad)

=

(37)

with

R14 "- a 4- c

Ra5 -- 2ab+bc+ad+2cd

Rae = aS+ab2+2a_c+2ac*+cS+2abd+2bc-,d+cd2

Ra, -- 2ab_ +Im s + aad + abed + 2a_cd +bcd _

Rns (t_ - z_) s + y1 [RlnCt_ - z_)' - y_(t_ - z_)R_o + y}I_]

(3s)

(3o)



with

and

Rio = a_bc + bSc + 2b_cd + acid + 2abd_ + ad

P_ = aSo_+ ab2c2+ a_ca _ b_ca_ 2a_bod

-2bScd - 2ahead - aad2 _ abed_ + a_od2 _ b_cd9-_ 2abda

(40)

(41)

Q6 = (42)

with

R2l = ad + bc

P_ = -a_ c + b_c - ac_ + ad2 + 2abd + 2bc_l

R2s = bc z + aad + abed + 2b_cd + 2ab_ + bed 2

Note, that the special case of an isotropic material can be recovered by the following

substitutions: b = d -- 0, and a -- c = 1, thus giving R1 - Ra = R7 - Ra = R10 - RI_ --

Rls = R17 = R_9 =/hi =/_ = 0; P_ = 1;/h = P_ =/h = Rll = R_s =/h4 =/hs =
R20 = -R_ = 2; and R2 --- Rle - 6. The parameters Qi then become

Q(o')=4[(t_-x_)'+d]' (43)

Qi'') = _z,_[3(t_- x_)_+d]

2 2

Qi'=)= 2(t_-x_)[(t_- =_)'+3_]

Qt")= -2_[(_-_)' -_] =Q?-)

(44)

(45)

(46)

(4_)

(4s)

(49)

and the stresses reduce to the isotropic stress formulas derived previously in reference

[2].

This completes the formulation of the fundamental problem (or local stress state)

for the jth crack. Henceforth, the formulation of the multiple crack problem will be
addressed.
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4 TOTAL STRESS FORMULATION

The total stress state p(o_,=) for the pth crack is defined as the local stress state of the

pth crack (_z) plus the contribution to that stress state of all remaining cracks. This

may be represented mathematically as

n--1

,,_(=,,_,,)= _,(=,,_,)+ _ _,[=_(=,,y,),_(=,,_,)] (50)
y=l

for p = 1, ..., n,where _ is defined through standard tensor transformation of the stresses,

i.e.

and/_le, _ axe the dizec_on coe_es between the (xj, gj) and (xp, I/p) coordinstee with j

identifbm_ the remaining cracks. Note, this statement does not hnply that the concept

of superposition has been inl_olmd, since the stress perturbation boundary conditions (see

eqs. (5)) have not yet been utilized to determine the unknown auxiliary _mctions.

For functional compatibility within eq. (50), coordinate transformations must be

simultaneously applied to a_ remai_ng jth crack coordinate variables. As a result, the

dominant part (i.e., the _st term ofeq. (50)) possesses a singularity whereas the regular

terms within the summation lose their original singularities and yet still contribute to

the total stress state, as one might expect.

By replacix_ subscript j by p in eqs. (33 and 32), respectively, and evaluating them

at Yv = 0, the singular terms of the singular integral equations are obtained from the

term of eq. (50) applied for shear (<TO) and for normal stress (<r_). Finally, the variables

x and t are normalized by using zp = o_ and t_ - o_T,where _ and _" are defined between

-1 and 1. Therefore,

°'(P) - _/-x + dTp (5_)

(52)

where E=y and E_ are material-relsted coefficients proportional to local x-direction stiff-

ness (denoted by superscript I) or local g-direction sti_ness (denoted by superscript

2) with respect to the local crack coordinate system. Consequently, we will cal] them

modified stiffness parameters (MSP's). The MSP's are

[c (a 2 + b_) + a (c _ + d_)] (53)
EP(_) = 2ac [( a + c) _-4- (b - d) _] b_

_,_ = (_'+_) (_ + _) (_ + _) (54)
2a_[Ca+c)'+ (b- d)']b_

2ac [( a 4- c)' 4- (b -- d)'] b,l

2ac [( a -I- c) 2 4- (b - d)'] b._

lO



Figure 2: Geometric relationships between a pair of cracks and their local variables.

For the isotropic case

and

_,(_) = _,0) _ 0

B

_= ¢_=
whereas in the orthotropic case, only

(57)

The regular terms of the singular integral equations are obtained by" transforming

the remaining stresses into the local pth crack coordinate system simultaneously with

coordinate transformation. The coordinate transformation between the zj, y_ and xp, yp

systems is determined from the following geometric relationship (see Fig. 2):

r_x + ¢_cos_ - _/_sir_ = rpx + zpcos_p - ypsir=gp (58)

r_, + z_sinp_ + #_cosp_ = rpy + zp_i_p + ypcospp (59)

where rjx, rjy are the rectangular components of the jth crack position vector referred

to the global coordinate system X- IF, and _oj is the angle of rotation between the global

and local systems.

One component of the regular part of the total stress is obtained by transformation

of the stresses from jth crack local coordinate system into the pth crack local coordinate

system simultaneously with the coordinate transformation and substituting yp -- 0:

_J - - _) - _> _sin0co_0+ _03 (cos'0- sin_0)=,y, - _, =_=J _'_'_/ ,.,., _ (60)
#¢_,,_, = tr_)=# sin _ O + try!# cos' O - 2try!,,# sin _ cos _/

11



where 0 = _p -_j. Therefore, we can obtain from eqs. (58) and (59)

xj = pz + zpco60

Y_ = P2 + zp dm O
(6_)

where (pl,p2) is the vector connecting the centers from jth to pth cracks expressed in

the jth coordinate system:

z_ = (r,r - r,y) 8in_ + (rex - r_x) _ ¢_
P2 -- (rpy- r3y) co6_pj - (rex - rjx) sin_oj

(62)

The regular, normalized form of the parameters Q, for i - 0,1, ..., 6 is obtained by

using the coordinate normalization _ = %_ and tj = ajT, in addition to the coordinate

transformation, to produce the parameters Q_reg) :

2b(afr -- t)1 - a._ cosO) (p_ + %6sine) + (a' + b2) (P2 + ae6 sin 0)']

[(_T- v, - %6co_0)*+ 2d(a_r- _ - 0,6_0) (_ + _ _h0) +
(c_ + _) (Pa + ap6 sin0) 9-]

(83)

(o4)

Q(,'_) = a,o(_,- - w - o,6co,o)'+ (_ + _,in0) [- (_,- - _ - _ co,e)'a,,

(66)

{ (aj_" -- Pz -- a_ co_0) _ R2z + (p2 + a.,e6sin0) [P_2 (aj_- - Pz - %6 cose) 2

+(_ + _,,in o)(a_,--v,-,,,6 cosO)_ +_ +,,_,,i_e)'R,_]},_
(69)

12



So the regular normalized component of the shear stress becomes

w'heIe

kerl ---- aj27rbll Q'-e,}l_ I'--__(Q_re_) - Q_r_)) S_. 0 COS0 -I" Q(_) (COS' 0 -- sin' 0)] (71)

-- 21rb_Q(o_)[- sin0cos0+ - 0)]
(72)

The regular normalized component of normal stress is

(73)

where

i (74)kers= _ auqCo,_)

ker,--- aj I [Q(")sin'O-I-Q (r=_) cos'O-- 2Q(s"_) sin Ocos O] (75)2_b,=OCo'_,)

Thus, the total stresses (a_ and a_) for n cracks can be written in the following
for_

,,o'_= {f_l 1ker ,fildT -t- fl i ker,f,,dl" 4-... -k li_l ker ,f(._i),dl"

=,_(s) 1 }
-F fl_, ker ,f(r,_a},d'r "t- _ fL rl___dT -F _') fI_i r.___dl. (76)

,,o; -- {fz_, ker afa,dT + fz._aker ,f,,d_" 4-...-I- fa_z ker 3f(,,_,)adr

_('_ _ _ rl } (77)"_" fl I ker 4f(._l)2dT 4- _ it_, r___dT -l- w J-1 _-___dT
,f

The formulation of this vjstem of singular integral equations is complete once the

single-value conditions for the auxiliary functions f_ are chosen. In the case of straight

cracks, this single-value condition [3] is

where j stands for the jth crack,and _?takes on the value o£ 1 or 2.

(z8)

5 SOLUTION FOR THE STRESS INTENSITY FAC-

TORS

The integralequations obtained are of the Cauchy type; thus forsharp cracks,the stresses

and strainswillhave a square-root singularity,and the classicdefinitionof a SIF may be

used (see refs.[4],[5],[6]and [7]).Therefore, the mode I and II SIF's for the jth crack

are

13



(70)

(so)

_(-1) = lim [-2(1 +_)1{ {#crT_(_,0)) (81)
_-I

_(--1) = l._.t_x_l.[--2(1-I- _')]i {#_(_,0)} (82)

where the normal and shear stresses,eqs. (76) and (77), are used. Note that this

definitionof a SIF was originallydeveloped for an isotropicmaterial wherein the mode-

I normal stressis related only to the normal crack-opening displacement Av and the

mode-If shear stressisrelated only to the shear displacement Au. The same definition

can also be applied to anisotropicmaterialsby assuming that modes I and H are based

on normal and shear stresses only;, however, as will be shown in ecp. (86) to (89), these

stressesare driven by a mixed mode displacement (Av and Au) field.

It is well known [3] that the auxiliary functions (f) can be expressed as a product of

the'unlmown bounded functions (fir) and the known singular weight functions (w):_

f(.)=

The singular weight function uJ for a sharp crack is

I#(T)----(_ --1)-½

(s3)

(s4)

Erdogan [3] found, for example, that in the case of a Cauchy-type singular integral

equation (eqs. (76) and (77)), the dominant part can be expressed in terms of the

function H evaluated at the tips of the jth crack:

1 1/ 1)-½
1

= Hnj(--1)-_-(T + --H,_(1)_22 (It- + O(_') (85)
1)-½

where q is 1 or 2, and O(1") is the higher order term, which in subsequent calculations

is neglected. Equations (85) can be substituted for the dominant part (last two terms in

eqs. (76) and (77)) of the normal and shear components of the total stresses in eqs. (79)

to (82). This substitution and subsequent evaluation of the limits at the crack tips results

in the redefining Of the SIF's, normalized with respect to V/_ and o_jp, and expressed in

terms of the functions H,Ij:

(86)

(87)

= - E_(_)u - ,_(-1) [E_')H,.¢(-I) + ,, ,.,,j(-1)] _ (88)

The Lobatto-Chebyshev collocationintegrationtechnique was employed, because it

isknown to provide excellentresultsin dealingwith the preceding Cauchy-type singular

14



integral equations. The unknown functions H,y are determined at a discrete set of points

TI, T_, ..., T,n called abscissas. In this way, each integral equation is reduced to a set of

algebraic _qu_tions with _o_ns H_Xn) , H,_(_), ..., H_(_,), which are the discrete

values of the functions H,#; hence its name, discrete auxiliary function. Note that Hj 4 and

H2j axe proportional, respectively, to the difference in shear and normal displacements

at the crack tips:

zx. ~ H, (90)
Av ~//2

Consequently, H W can be used as a measure of the crack-opening displacement at the

crack tip.

Each of the singular integral equations subjected to the stress boundary conditions

(eqs. 5) can be replaced by m - 1 algebraic equations with 2nm unknown parameters

(see ref. [2]).In the Lobatto-Chebyshev method, the abscissas are calculated according
to

(r - I)_"
T,. =COS

_--I

with the corresponding weights given by

for r----1,...,m (91)

7r 7r
m

uh=_v,n=2(m_l) and wr=m_l for r=2,3,...,m-1

The collocation points are then found by using the formula

(92)

(2z- l)_r for z = 1,2,...,m- 1 (93)
f_--cos 2m--2

In order to have the complete system of 2nrn algebraic equations, the single-value con-

ditions (eqs.(78)) are also expressed by using the collocation technique:

Wt

= 0
r=l

Thus, the resulting system of algebraic equations can 5e written in the form

@4)

[A]{H}= (95)

where [A] isa fullypopulated 2nm x 2nm matrix of coefildentsand {7_} isthe loading

function vector.

The unknown parameter vector {H} can be determined through inversionof the [A]

matrix; thus,

{H} --[A]-'{7_} (96)

although only the appropriate values (i.e.,//,#(4-1)) are used to calculate the SIF's for

the jth crack (see eqs. (86) to (89)).

The general solution for any multicrack problem is now complete with the automatic

generation of the associated FORTRAN code for the evaluation of eqs. (96). This

FORTRAN program was utilized to obtained the following results, which are compared

with published results obtained by other methods.
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6 STRAIN ENERGY RELEASE RATE

In fracture mechanics, perhaps the most important physical quantity is the strain energy

release rate (Gr), usually denoted by G. Cherepanov[8] discussed the generalized formula

for GT given an anisotropic material.

(97)

Using the roots of the characteristic equation in terms of the real components eq. (11),
we can show that

](= - _d)_+ (_d+ _)'
(gs)

or utilizing eqs. (102) and

expression for GT, that is

where

(105), developed subsequently, we can obtain a simplified

cr = -_,,, (=+ c)_,_ (99)

and represents an effective SIP. Note the significant coupling between the normal and

shear stresses and the displacement components in this effective SIF.

In the case of an isotropic material we may substitute a -- c = 1, b = d = O,

E_) = E(J), and bn -- b,_ = _ into eq. (98). Consequently, the well-known fracture
mechanics relationship is recovered:

' I¢-']'}gc,=o= _. + (_oo)

7 NUMERICAL APPLICATIONS

The focus of the following parametric study will be limited to investigating the influence

of the crack geometry configuration and strength of anisotropy on the resulting driving

force. To accomplish this the four independent elastic constants were taken to be

G£T
= 0.4

Err
VLT = 0.25

Err
= 1.0

F-CT

and the strength of anisotropy, _,is a specified constant greater than or equal to one.

Note that F._ is always chosen to be the weaker direction, i.e., to be less than or equal

to Er.r. Although, the influence of GLT and VLT on the driving force ]s important, this

aspect of the parametric study will be reserved for future work.
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7.1 Two Orack Interaction

7.1.1 Collinear Cracks

In order to validate the results obtained with the automatically generated FORTRAN

code, the well-known problem of two parallel interacting cracks is considered here. The

plate, with two cracks of length 2a and a preferred direction defined by I2 -- 22*, is

subjected to a normal far-field stress state (a_,) as shown in Fig. 3. Results are obtained

Figure 3: Geometry and loading condition of two collinear cracks problem.

over a wide range of strengths of anisotropy, as defined by the ratio Er.rfETr. As Fig. 4

shows, the SIF's do not depend on the strength of anisotropy, even though the discrete

auxiliary functions do. The results indicate that at both the inner and outer crack tips

mode-I SIF's are exactly the same as the isotropic SIF's from references [9] and [11], and

mode-II SIF's are zero for this configuration.

Although, the mode-II SIF is zero over the entire range of strengths of anisotropy

examined, the shear crack opening, as represented by H1 (see eq. (90) is zero only for

the special case of an isotropic material (i.e., ELL/Err -- 1). Figure 4 dearly shows that

even small amounts of anisotropy (Er.L/ET'r > 1) produce shear displacements at the

crack tip and that this shear displacement increases significantly for 1 < ELz,/Err < 5

and becomes constant for Er.r./ErT > 15. Consequently, two collinear cracks within a

transversely isotropic material will always (provided fl -- 22 °) produce a mode-I crack tip

local stress field with a mixed-mode local displacement field even when the strength of

anisotropy is small. This fact can be understood, even for the case of a single crack[10],

by examining eqs. (86) to (89), where it is apparent that in an anisotropic material

the normal and shear stresses are coupled with both normal and shear displacement

components, respectively.
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ET.r./F__- for two equal collinear cracks in a composite place reinforced at _ = 22 ° and
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FigILre 5 shows how the MSP's vary with respect to the strength of anisotropy

ELL/F-a.z.. Using the isotropic values (i.e., EL_/EaT = 1) of the MSP's, we can ob-

tain the results given in equation (57). Increasing the strength of anisotropy sig_d_cantly

increases E_), E(_) and E_ ), while E_ ) remains nearly constant. Note that E_} --- Eg)

over the entire range of ELz,/ErT. Revisiting eq. (87) and Figs 4 and 5, explains why

the mode II SIF is zero. It stems from the fact that although both normal and shear dis-

placements are induced, E_ ) is so much less than E_ ) that the ini]uences of the normal

and shear displacements are counteracted.

As discussed previously, the total Gr represents an important measure of the driving

force for crack propagation in fracture mechazfics. The GT's at the inner and outer crack

tips for the two coUinear cracks are shown in Fig. 6. Clearly, the maximum GT'S (for

both the inner and outer crack tips) occur in the isotropic case. In the anisotropic case

when Er.L/Ea-r > 15 the Gz-'s rapidly reduce to nearly 50% of the isotropic values.

Although both the GT (Fig. 6) and the SIF's (Fig. 4) indicate that the inner crack tip

will propagate, only the GT's unambiguously indicate that as the strength of anisotropy

increases, the crack-driving force is reduced. Thus, we can conclude that (1) the isotropic

case gives rise to the greatest driving force and (2) that the SIF (unlike the GT) is unable

to detect the decrease in the crack-driving force as a function of strength of anisotropy.

Now let us examine the influence of changing the preferred direction angle f/on the

same co]linear crack configuration with a strength of ardsotropy ratio ELL/E_ = 40.

Results shown in Fig. 7 indicate that the mode-I SIF's are the same as those previously

obtained, even though the discrete auxiliary functions show that the normal and shear

crack-opening displacements vary significantly with preferred direction. Note that the
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Figure 7: Discrete auxiliary functions and normalized SIF's versus _ for two equal

collinear cracks in a composite plate (strength of anisotropy ELL/EfT = 40; subjected

to far-field normal stress,see Fig. 3).
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shear displacements are zero only for the special cases in which the preferred direction is

parallel (f_ - 0 °) or normal (_ -- 90 °) to the crack con_ration; otherwise both openings

have nonzero values. The local shear crack-opening displacements maxima occur at

fl - 22 ° and 68 °, whereas the local nonzero minimum for the shear displacement occurs

at _ -- 45% Conversely, the normal crack-opening displacements are apprQximately

constant over the range 0 < f_ < 40 with the maximum value occurring at f_ -- 30°; it

then significantly decreases when _ > 40, until a value equivalent to 30_ of the maximum

normal opening is reached at N --- 90 °. Clearly, this indicates that although mixed mode-

displacements may be observed, in actuality, counter to common expectations resulting

from isotropic materials, the anisotropic case may have only a mode-I driving force.

In Figure 8 the _P's are shown as a function of the preferred direction orientation

angle _. Note that the _-_1) curve relative to the curve E_ ) is symmetrical about the

line _ -- 45 °. The other two MSP's are again equal to each other and to zero for the

orthogonal cases _ -- 0 ° and 90 °. Consequently, E_) and E_) must be related to bm

and b_ (see eq. (9)). In order to give a clearer physical interpretation to EO) and E_)

let us relate them to the corresponding material parameters ELf and F-aT.

Considering the fact that

E(_ ) = E(_ ) (101)

we can substitute eqs. (,54) and (55) into eq. (101) and solve for b22:

(102)

Or in terms of the roots of the characteristic equation

(103)
PlP.2P_P4 = bll

In the case of a transversely isotropic or orthotropic material, b -- d = 0, so eq. (103)

reduces to a well-known mathematical relation of the following form:

,,'c' = EL---kL- (104)
Err

By substituting eq. (102) into eq. (56), and the resulting equation into eq. (53), we
find that

E_) = -_E(2)c(a_ + b_)(a++ a (c2c)+d_) (105)

Thus, by using eq. (104) together with the transversely isotropic or orthotropic form of

eq. (105) (i.e., b ----d - 0) we can show that

= ac= (106)

On the basis of eq. (106) and our observations from Fig. 8 we may conclude that

for the general anisotropiccase, EO) isproportional to the square root of the effective

Young's modulus in the localx-direction and E_) is proportional to the square root of

the effectiveY'oung's modulus in the localV-direction. Note, however, for the general

anisotropiccase the constants of proportionalityare interdependent.
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The importance of being able to use the GT as a damage propagation criterion is

once again illustratedin Fig. 9,which shows the totalGr versus the orientationangle _.

Clearly,there are a number of angles at which Or extrema exist.The global maximum

occurs at _ = 0°,and the globalminimum at ft = 90°, for both inner and outer crack

tips. The other two important angles at which the Gz's reach a local minimum and

maximum are _t - 12° and fl -- 4T, respectively.Again a comparison of Figs. 7 and

9 shows that the GT'S can indicatethe criticalangles of interest,whereas the SIF's are

completely insensitiveto variationof the preferred direction.

7.1.2 Parallel cracks

Figure 10: Geometry and loading condition defining two parallelcrack problem.

Now let us consider the variationof the SIF's,the crack-opening displacements, and

the Gr's for the case when the two cracks are not collinear. A convenient parameter

that can be controlled is the inclination angle designated c_ between the horizontal axis

and the line connecting the inner crack tips in Fig. 10. An example of the previous case

(coUinearcracks) iseasilyobtained by settingc_= 0° . The constant parameters are the

distance between inner crack tips, 0.1az(where 2al is the crack length of crack number

1), the strength of anisotropy ELL/ETT -- 40; and the preferred direction f2 -- 45 °. As

a result of changing the crack con_figuration, the SIF's are no longer constant for the

inner crack tips; those associated with the outer crack tips, however, are not significantly

influenced. As illustrated in Fig. 11, mode-I SIF for the inner crack tip monotonically

increases with the angle c_; whereas mode-II SIF is zero only for _ -- 0° and 90 ° and

attains a maximum at cz = _t = 45 °, as we might expect.

It is interesting to analyze the discrete auxiliary functions which approximate the

shear and normal crack-opening displacements, Au and Av. The shear term of the inner
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crack tip is zero only when _ -- 40 ° (even though the shear stress is at a maximum). It

is larger for this configuration at a --- 900 (when the shear stress is zero) than it is for

the collinear crack configuration. Normal crack-opening displacements are the largest

also for _ - 90 ° . Note that changing the crack confi6n_ation by changing a does not

change the material properties because they are defined in the local coordinate system;

therefore, given the preferred direction f_ -- 45 ° we can find the pertinent MSP's in Fig.

8.

Once again the combined effect of mode-I and -II SIF's and the normal and shear

local displacements are captured by the single scalar measure known as the GT (see eq.

(97)). Figure 12 shows the GT at both the inner and outer crack tips as a function of

the crack configuration angle a. The shapes of these curves resemble the shapes of kl

and k2 for the inner crack tips (the degree of influence that kl and k_ have on the C_ is

clearly shown in eq. (99)). Since the maximum values of kl and k2 are reached at 90 °

and 45 °, respectively, the maxhnum value of the GT would be expect to occur somewhere

in between. Figure 12 indicates that for the inner crack tips this maximum is reached

when a - 70°; however, at the outer crack tip the Gr is only slightly affected (as are kl

and k2) by a change in _, and it reaches its maximum when _ - 90 ° .

7.1.3 Nonparallel Cracks

Consider a related case wherein the material strength of anisotropy is ELL�EfT -- 40,

the preferred direction is denoted by H -- 30 °, and the two cracks of equal length are

configured as shown in the Fig. 13. This figure indicates that crack ab remains horizontal,

while crack cd rotates around the crack tip c; where the crack tip distance between tips

b and c remains constant. Here we will examine the influence of varying the angular

orientation of crack cd, _(2), from 0 to 180 °. Figures 14 and 15 show the mode-I and -1I

SIF's, respectively, at the four crack tips. Notice that the outer crack tip of the horizontal

crack (tip a) is only slightly affected by the change in angular orientation of the crack

cd. Whereas, the other crack tips (b, c, and d) display significant and comple_ interactive

behavior for both mode-I and -II SIF. For example, mode-I _ for crack tip b has a local

maximum at 21, 42 and 132 °, and a local minimum at 0, 31,122, and 180 °, while crack

tip c starts at the same value as tip b, then smoothly decreases to approximately zero

(within the range 80 < _(2) < 140 °) whereupon the SIF sharply rises to again the same

value of SIF as that of crack tip a, at _(2) = 180 °. Similarly, extremum are observed for

the mode-I/SIF at a variety of angle, that is 20, 43, 110, 120 and 132".

The actual cal_ted GT'S are shown in Fig. 16. By comparing Fig.16 to Figs. 14

and 15, we can observe that the location of the extremum for the GT's are similar to the

SIF's. However, it is evident that the GT for outer crack tips a and d are dominated by

mods-I SIF, whereas inner crack tips b and c are significantly influenced by both modes.

Figure 16 also shows that GT is the largest at crack tip b for 0O < _(2) < 100 ° and

123 ° < _b(2) < 153 ° indicating possible self similar crack propagation within this range.

Note that when crack cd becomes aligned with the preferred fiber direction, GT (at crack

tip b) reaches a minimum while crack tip c reaches a maximum. Thus, we may conclude

that at this critical configuration, _(2) = 30 °, the inner crack tips b and c may be driven

towards each other and connect to form a macro kinked crack.
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Figure 13: Geometry and loading condition problem of two non-parallel cracks.
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Figure 17: Geometry and loading cond/tion of two inclined cracks.
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7.1.4 Influence of Crack Spacing

To determine the influence of crack spacing, let us consider the preceding two crack system

for the critical conF_uration _(2) = Q = 30 ° and analyze the behavior of these cracks to

examine how the GT varies with respect to the normalized inner crack tip distance d (see

Fig. 17). As we would expect, given the results shown in Fig. 13, the GT's of the outer

crack tips are hardly influenced by the change in positions of the cracks. But the GT'S for

the inner crack tips (b and c) display a strong interaction, especially for 0 < d < 0.2ai, as

shown in Fig. 18: the closer the crack tips, the higher the normalized GT, and thus, the

smaller the far-field stress state required to cause the cracks to propagate toward each
other.

7.2 Three Crack Interaction

Consider a transversely isotropic plate with a strength of" anisotropy ELI./F---,XT = 40 and

a three-parallel-crack system as shown in Fig. 19. The two cracks denoted ef and cd

are always symmetric, with respect to the horizontal line that coincides with crack _.

First let us keep the distance between inner crack tips b , c, and e (Dh) constant at

0.1al,while the angle Q, describing the preferred direction, is varied. Mode-I SIF's for

tips b, c, and e are shown in Fig. 20. A number of. observations can be made from

Fig. 20. First, the kl for crack tip b resembles an inverted parabola with s maximum

at _ = 45 °. Second, kl for crack tip b is the largest of" the three inner tips - for all

preferred directions because of the magnification influence of. cracks ef and cz/(situated

29



a

Figure lg: Geometry and loading condition debug three parallel cracks problem.
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in front of crack ab). Similarly, because of the mutual shielding of the cracks above

and below, the kl for cracks cd and ef must be smaller . Third, the kl at inner til_

c and e are identical in the range 0 < f2 < 25, but they begin to deviate from one

another, in a symmetrical manner, for preferred directions n :> 250. Also since kl for

crack tip e is larger than that for crack tip c, this would suggest that the influence of the

singular stresses is transmitted over greater distances along the preferred direction, thus

confirming the concept of stress-channeling (or in our case damage channeling) along

the preferred direction, as discussed by Spencer[12]. The distance of influence is clearly

dependent on the strength of anisotropy specified, as can be seen in Fig. 21.

Mode-II SIF's for the three inner crack tips are shown in Fig. 22. Here, the absolute

value of k_ for crack tip b is approximately zero for the various preferred directions and

exactly zero for the orthogonal conditions (f2 = 0, 90 °) . The absolute value of k_ for

crack tip e is the largest of the three with a local maximum at ft = 25 °. Again, this is

a function of the directional stress channeling effect. Also, note that the absolute values

of k_ for crack tips c and e are identical when the cracks are parallel and normal to the

preferred directions; however the magnitude at f/- 0 is more than twice that for ft = 90.

The variation of the Gr as a function of preferred direction, for the three inner crack

tips b, c, and e are shown in Fig. 23. Clearly, the GT combines all of the aforementioned

characteristics for each crack tip into one convenient parameter that exhibits a strong

dependence on the preferred direction angle _. Local maxima for these curves are located

within a 10 ° range centered at _ -- 45 °. It may be concluded from Fig. 23 that crack

propagation is easiest when the preferred direction makes a 45 ° angle, thus connecting

through reinforcement (or damage channeling) crack tips b and e. Hence, as a result of
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a physical crack propagation, we would anticipate a zigzag crack that develops through

the connection of cracks oJ_ and el.

Last, let us consider the case of two parallel cracks ef and cd that are a tlxed vertical

distance apart (D, - 0.1al) and crack ab is slid in between _em. Figure 24 shows the

variation of the Gr's for all crack tips as a function of horizontal position Dh for the case

when _ = 45 °. When the parameter Dh is zero, tip b is on the same vertical line that

connects tips c and e. Thus, when crack ab is away fTom the parallel cracks Dh > 0, and

when tip b is between cracks cd and cf, Dh < 0. Note that as crack tip b comes closer

to the vertical line connecting tips c and e, the Grs are magnified; with the amplification

factor of the inner crack tips being significantly greater than that of the outer crack tips.

Conversely, when Dh < 0 , all inner tips become strongly shielded, so the inner Gr's

sharply drop off, almost to zero. Note that crack tip e has the most rapid decrease and

quickly reaches a value less than that of tip c.

7.3 Horizontal Notch Interaction With Three Microcracks

The final problem to be consider in this paper consist of a transversely isotropic plate,

with a strength of anisotropy (Er.L/Err) equal to 40, that contains a large horizontal

notch (of length 2al) and three radially oriented microcracks (of length a_ = as = a4 =

0.1al), as shown in Fig. 25. The radial distance between the inner tips of the notch and

the three microcracks remains fixed at 0.005al, while the orientation (angle f_) of the

preferred direction is varied from 0 to 180 °. The Gr's for all the inner microcrack and
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Figure 25: Geometry and loading condition defined for a horizontal notch and three

microcrack problem.

notch tips are shown in Fig. 26.

Evidently, the Gr for notch tip b is larger than that for any of the three microcracks

except when the orientation is within two small regions: 8° < _ < 20 ° and 70= < n < 98 °.

At these values the Gr of the inner tip of the 45 ° microcrack ef becomes greater than that

of the notch. All Gr curves display strong and complex dependence on the orientation.

Numerous local extrema exist with the maxima being noted as follows: for notch tip b, the

local nuudms occur at 0, 38, and 140°; for microcrack tip g, a maximum occurs at 30°; for

microcrack tip e, maxima occur at 15, 80, and 155°; and for the horizontal microcrack tip

c, the maxima occur at 0", 40 _, and 15Y. Again, if the maximum-Gr criterion is used to

predict crack propagation, we may conclude that the crack wig kink by connecting with

crack ef for the preferred direction when 8 ° < _ < 20 ° and 70 ° < f_ < 98°; otherwise it

will propagate in a self-similar manner.

Now let us orient the preferred direction f_ at a fixed angle of 15 ° and vary the radial

inner tip distance between notch tip b and the three microcrack tips c, e, and g. Figure

27 shows the amplification effect (which becomes noticeable when the tip distance is less

then 0.1al) resulting from the complex interaction of the cloud of microcracks with the

larger notch crack Clearly, the Gr for notch tip b is the largest until the tip distance

is decreased to approximately 0.04ai, whereupon the GT for the microcrark inclined at

45 ° drastically increases - exceeding all other curves and creating the condition for the

crack to kink.

Finally, let us discuss the influence of the strength of anisotropy, as shown in Fig. 28.

Here, we assume that the preferred direction and radial tip distance are held constant at

= 15 ° and 0.005al, respectively, while the strength of anisotropy ELL/ETT is varied.

When the material is isotropic (i.e., ELL/Err = 1) the GT at notch tip b far surpasses

34



25

2O

_0

1
1o

_ s

0

I I "I I I I I "I I'' i I I I i i I I

SE._R.%G'r' at inner crack tip °

/ \ ._..:.c
,/ \ .....o

r \% \P, /.- ..

l.i/ \\_ ./\ X, " -q

F-'" "" "<_ ........:-":---,---.,--,.__.,/]
0 20 40 60 80 100 120 140 160 180

Preferred direction, _, deg

Figure 26: Normalized GT versus f_ for notch and three microcrack inner tips in a

composite plate (strength of anisotropy ELL�Err = 40; tip distance, O.O05az; subjected

to far-field normal stress, see Fig. 25).
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Figure 27: Normalized Gr versusnormalized tipdistance between inner tipsofnotch and

three microcrack in a composite plate (strengthof anisotropy Ez,r/F-,_ = 40; reinforced

at _t+--15°;subjected to far-fieldnormal stress,see Fig. 25).
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and three microcracks in a composite plate (reinforced at fl = 15% tip distance, 0.00591;

subjected to far-field normal stress, see Fig. 25).

the Or's of the remaining microcrack inner tips. However, even a small change in the

strength of anisotropy significantly influences the value of the Or for all inner crack tips.

Note that when ELI./E.r'I" > 18, the GT for the inclined microcrack tip e becomes the

largest. And since the crack having the highest Gr will propagate _rst, a kinked crack

will be genersted by connection of crack ef to notch ab.

8 CONCLUDING REMARKS

A rigorous formulation has been presented for calculating the crack-opening displace-

ment, SIF and Or at the various crack tips of a multicracked anisotropic medium. This

formulation has been shown to simplify exactly to our previous isotropic formulation

which was validated for a number of published crack orientations. The size, orientation,

and distribution of all cracks were considered to be independent parameters of the solu-

tion. This unique formulations is computational]}, efllcient and oilers accurate solution

capability. It allows us to easily perform numerous parametric studies to analyze the

contribution of each parameter on the local stress field and the characteristics of the

damage progression in an anisotropic (e.g., transversely isotropic) material.

The problems of two and three, collinear and non-collinear, interacting cracks were

examined. By varying the strengths of anisotropy, we showed that materials with pre-

ferred off-axis directions relative to the applied load produced highly mixed-mode crack

propagation, even when only mode-I type crack geometry was present. A small change

in the strength of anisotropy (when 0 < ELrJF_rT < 5) was shown to highly influence
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the GT and crack-opening displacements for a given tip. These parameters then reached

a plateau when ELL/F-a_ > 15. Consequently, even slightly anisotropic materials should

be analyzed by using the fully anisotropic approach discussed in this paper.

Modified stillness parameters (MSP's) were presented as a function of strength of

anisotropy and preferred direction. We concluded that E_ ) and E_) are proportional

to the square root of the effective Young's module in the local z- and p-direction,

respectively, and that the other two MSP's are identical (i.e., E_) = E_ )) and related to

ble and/_ such that they vanish under orthotropic and isotropic conditions.

The discrete att_liary flmctions were shown to be related to the crack-opening dis-

placements Au and Av. We showed that for cases in which the preferred direction and

the applied stress do not coincide (i.e., off-axis orientations), a mode-I local stress field

is produced under mixed-mode local deformations, or alternatively, mode-I normal de-

formation results in a mlxed-mode local stress field. Farthermore, the total GT was

shown to be the most complete anisotropic fracture parameter (because of its sensitivity

in detecting changes in the strength of anisotropy and preferred direction). Thus we sug-

gest that for an anisotropic material it should be used as the crack propagation criterion

instead of the SIF.

Interaction ef[ects were demonstrated for all fracture parameters. Amplification of

the GT and/or the SIF was shown to occur when cracks were located in front of the

main crack. Conversely, reductions in the GT or SIF were observed when shielding of

a crack, by other cracks located above and/or below it, was present. Finally, stress or

damage channeling was discovered to play a significant role in the mechanisms that govern

crack interaction, in that, stresses were channeled along the preferred direction, causing

nonsymmetric interaction, even in the presence of symmetric crack config_lrations.
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