
NASA Contractor Report 195027
/--J

/ •

/

TBell: A Mathematical Tool for Analyzing
Decision Tables

D. N. Hoover and Zewei Chen

Odyssey Research Associates, Inc., Ithaca, New York

(NASA-CR-19502T) TBeII: A

MATHEMATICAL TOOL FOR ANALYZING

DECISION TABLES Final Report

(Odessey Research Associates) 51 P

N95-20691

Unclas

G3/61 0038882

Contract NAS1-18972

November 1994

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

https://ntrs.nasa.gov/search.jsp?R=19950014274 2020-06-16T08:17:54+00:00Z

TBell: A Mathematical Tool for Analyzing Decision Tables 1

D. N. Hoover

Zewei Chen

Odyssey Research Associates, Inc.

301 Dates Dr.

Ithaca NY 14850-1326

Internet: {hoove,chen}@oracorp.com

November 29, 1994

1This document is the Final Report for NASA contract NAS1-18972 (Task 13), sponsored by NASA
Langley Research Center. Thanks to Lance Sherry, Ted Ralston, Maureen Stillman, David Guaspari,
and Dana ttartman for many suggestions improving this paper. Special thanks to David Guaspari for
several important technical contributions.

Contents

1 Introduction 1

Decision Tables 3

2.1 Semantics of Decision Tables 4

2.2 Semantics of the Table in Figure 5
2.3 Partitioned Decision Tables and their Semantics 8

3 Logical Basis 11

3.1 Finite Logic 12

3.2 Finite Decision Diagrams 12

4 Tool

4.1

4.2

4.3

4.4

4.5

Description 16

Exclusiveness Testing 16

Exhaustiveness Testing 17

Structural Analysis 18
Code Generation 20

Generating English-Language Documentation 20

5 Research Directions

5.1

5.2

5.3

5.4

5.5

5.6

23

More General Queries about Decision Tables 23

Accounting for]]legal Scenarios 23
Behaviors .. 23

Systems of Interrelated Decision Tables 24

Algorithms for Partitioning Decision Tables 24

Methodology for Developing Correct Decision Tables 24

A PVS Formalization 28

B Generated Code 31

C Documentation Generated by TBell 36

C.1 Vertical Guidance Speed Targets (Descent Path) 37

C.I.1 Descent Path (descent_path) 37

oo°
111

CONTENTS iv

C.1.2

C.1.3

C.1.4

C.1.5

C.1.6

Approach (approach) 37

Econ Path Under Construction--CAS Regime (econ_path_const_cas) . . 37

Econ Path Under Construction--Mach Regime (econ_path_const_mach) . 38

Edit Path Under Construction--CAS Regime (edit_path_const_cas) . . 38

Edit Path Under Construction--Mach Regime (edit_path_const_mach) . 39

D Verification of Generated Code Using Penelope 40

E A Survey of Other Decision Table Tools 50

Chapter 1

Introduction

We take the point of view that system designers prefer to use formal methods whenever their

task is well-defined and a suitable formalism is available. Industry does not need to be sold on

formal methods or to be told to use a particular formal method, such as a specification language

or theorem prover based on formal logic. Rather we must recognize that many of the methods

used in industry are semi-formal or formal. For these methods, we must develop mathematical

theory and software to help analyze specifications, and offer advice about good methodology.

We expect that such an opportunistic approach will give impressive near term results, stretch

the imaginations of formal methodists, make formal methods accessible and beneficial to system

designers, and help clarify the long-term aims of formal methods research.

This paper describes how we have applied this point of view to one formal specification

method commonly used in systems design, the decision table. A decision table is a tabular

format for specifying a complex set of rules that choose one of a number of alternative actions.

The problem with this form of specification is that it is not always easy to see that the table

indicates exactly one possible action for each possible input scenario, that is, the table defines

a (total) function. Determining whether a table actually defines a function is essentially a

problem in propositional logic. Canned routines available to us [Mar93, SOR93a, McC94] did

not seem useful because they did not give very helpful information about what is wrong with

a flawed table (usually a lot).

Consequently we built our own prototype tool, called TBell 1, a window-based decision table

editor that performs the following functions:

• Shows for which inputs more than one course of action is indicated.

• Shows for which inputs no course of action is indicated.

• Performs an analysis finding structural defects in the table (correlations between variables

that mean that the table cannot define a function).

• Generates Ada code implementing the table.

ITBell is short for any of: TaBular Environment, LogicaL; T____Bell, TBcll's secret code name, alluding to
a fictional character known for being quick, small, clever, informative, etc.; or Tabella, Latin for "a little table."

CHAPTER i. INTRODUCTION 2

• Generates English-language text documenting the decision table.

All logical input and output is expressed in terms of tables so that the user does not need to

learn another formalism (i.e. symbolic logic). TBell's internal functions are written in SML/NJ,

with its window interface written in td/tk.

The logical manipulations that TBell performs (involved in all of the functions listed above)

are based on finite logic, a generalization of propositional logic, and finite decision diagrams,

a generalization of binary decision diagrams designed to support finite-valued (as opposed to

Boolean-valued) variables. The finite-valued approach eliminates the need to code finite-valued

variables using several Boolean-valued variables, which seems to improve performance and

simplifies the translation between formulas or decision tables and finite decision diagrams.

The basic coverage analysis functions are relatively straightforward. Structural analysis,

however, depends on a nontrivial mathematical innovation.

Because TBell efficiently performs an important class of analyses using a language (that of

decision tables) familiar to practitioners in the field and saves labor by generating code and

documentation, we feel that it has good prospects of being used advantageously in industry.

Generating code and documentation from the formal specification (the decision table) will also

eliminate the common problem of specification and documentation getting out of date when

the code is modified. As modifications will be made to the decision table, up-to-date code and

documentation will be generated from it.

Our aim in this project has been to produce a formal tool of a different nature from conven-

tional program specification and verification. In fact we believe that the difficulty of using such

products (in particular, of learning to do a proof) precludes their being adopted by nonspe-

cialists. Nevertheless, we have profited from using two conventional formal methods systems,

PVS [SOR93b] and Penelope [GMPg0]. PVS is a general theorem prover; Penelope is a formal

verification system for Ada. We used PVS in our preliminary investigations of particular de-
cision tables before we understood that we should build our own tool. Later we used PVS to

check the correctness of TBeU's results. We used Penelope to check the correctness of generated

code by verifying some examples.

This work was carried out in cooperation with Honeywell as part of a NASA project on

applying formal methods to the development of avionics software. We thank Lance Sherry for

guidance in identifying the problems of most concern to practitioners and in identifying the

nature of those problems.

Besides developing a tool to support coverage analysis of decision tables, we developed a new

form of decision table, the partitioned decision table, which can represent the same information

as a decision table much more compactly, in much the same format as it might be described in

English or implemented in code. Our tool does not currently support partitioned decision tables,

but the logical apparatus necessary has already been included in support of English-language

document generation.

Some other tools supporting decision table analysis already exist. The capabilities of some

of them are described in Appendix E.

Chapter 2

Decision Tables

A decision table (Figure 2.1, as presented in [She94b]) is a tabular format for specifying a choice

of the actions that a system is to take. Each possible action is called an operational procedure.

OI ational Procedures

OF ational

arios

O F ational

L
Scenario

Inputs (SI i)
and

States (si)

t

Behavior

I
Behavior

Outputs (BO i)
and

Functions (fj)

Operational Procedure

Scenarios

Op Proc 1 Op Proc 2

Scen 3

Inputs States

SI 1 sl,s2 s2

SI 2 sl,s2,s3 sl

SI 3 sl sn sn

Scen I Scen 2

sl sl

sl sl

sl s2

Behavior Behavior 1 Behavior 2

Functions

fl,f2 f2 f2

fl, t3 fl f3

Outputs

BO 1

BO 2

BO 3 fl fm 13 f2

Figure 2.1: A decision table with both scenarios and behaviors [She94].

3

CHAPTER 2. DECISION TABLES 4

A decision table is divided into two parts.

A specification of conditions (values of input vaxiables) under which the various opera-

tional procedures will be enabled. These enabling conditions axe called the engagement

criteria for the various operational procedures. Each engagement criterion is the union (or

disjunction) of more specific situations called scenarios, each corresponding to a column

of (this half of) the decision table. This part of the decision table is called the scenarios

part.

A specification of what actions (changes to values of state variables, output values pro-

duced) axe associated with each operational procedure. These actions axe called behaviors.

Different parts of the behaviors may be specified either directly or else in terms of further

decision tables. This part of the table is called the behaviors part.

A decision table is intended to define a function. That is:

• each possible set of values of the input variables satisfies the engagement criterion of

exactly one operational procedure; and

• any decision tables used in defining behaviors of operational procedures are functional

It is clear that the main requirement is the first one, functionality of operational procedure

selection, since if that were satisfied for all decision tables in a system specification, then the

second requirement would automatically be satisfied. In this project, we regarded each table

as an independent entity. In Section 5 we will discuss the possibility of taking advantage of

interdependence among tables, such as the fact that a decision table describing part of the

behavior of an operational procedure should be able to assume that its inputs satisfy the

engagement criterion of that operational procedure.

For the rest of this paper, when we say "decision table" we will mean only the scenarios
half.

2.1 Semantics of Decision Tables

As we see from Figure 2.2, a decision table is divided into rows and columns. Their significance
can be described as follows.

First column: a list of parameter or variable names (e.g. flightphase) one in each

row. (A variable name can be a complex mathematical expression, such as ac_alt <

dap_seg_alt, but in the table it is still just a variable name.)

Second column: a list of nonempty lists of state (or value) names, one list in each row.

The list in row n represents the set of possible states (or values) of the parameter named

in row n. For example, the variable flightphase can take any of the values takeoff,

climb, cruise, descent, or approach.

CHAPTER 2. DECISION TABLES 5

Operational Procedure Climb

Input Pararn States

takeoff, climb, takeoff takeoff takeoff takeoff
flightphase cruise, descent climb climb climb climb

approach cruise cruise cruise cruise

fcc_alt_capL_hold on, off on on off off

prev_vg_ref_ah
= vg_ref_alt TRUE, FALSE FALSE FALSE * *

Ivg_ref_alt -
cruise_air I<= TRUE, FALSE * * * *

cruise..alt_tol

cruise_alLvalid TRUE, FALSE * * * *

ac__alt< dap_seg_alt TRUE, FALSE * * * *

dap_¢xists iTRUE, FALSE * * * *

dap__overspecd_cond TRUE, FALSE

TRUE, FALSE
dap capt hold_cond * * *

hm_cond TRUE, FALSE * * * *

vg type = profile

compare(vg..ref._alt,
eo_safe._speed_alt)

TRUE, FALSE

engine_out TRUE, FALSE FALSE TRUE

above_eo_max_alt TRUE, FALSE * FALSE

LT, EQ,GT * GT

TRUE TRUE

FALSE

GT GT

takeoff takeoff
climb cfirab
cruise cruise

on off

FALSE *

TRUE FALSE

GT *

FALSE *eo_decel_cond TRUE, FALSE * * * FALSE

Figure 2.2: A simple decision table.

• Other columns: the body of the table, grouped under headings. The headings axe opera-

tional procedure names. (In Figure 2.2 the only operational procedure named is Cl£mb,

for reasons of space.) Each column is called a scenario. For each parameter listed in

the first column of the table, a scenario lists in the same row a set of values for that

variable compatible with that scenario. An asterisk "*" indicates that any value will do

(i.e. it is equivalent to listing all the values listed in the second column of the same row).

CHAPTER 2. DECISION TABLES 6

The engagement criterion for a given operational procedure consists of all assignments

of values to parameters that are compatible with one of the scenarios listed under that

operational procedure.

That is what we call a concrete decision table. A more abstract mathematical model of a

decision table can be given as follows. This model is based on a less rigorous decision table

semantics given in [She94a].

Given a set S, let :P+(S) denote the set of nonempty subsets of S.

An abstract decision table consists of the following.

• A finite set P = {Px,...,Pn} of parameters (all the parameters listed in the first column

of the table).

• A finite set V of values (all the values listed anywhere in the second column).

• A map a : P -* :P+(V). The map a is called the signature of the table. Let Si = a(pi),

i = 1,..., n. (Si is the set of values listed in the ith row of the second column.)

• A finite set 0P of operational procedures. (For present purposes, these are just names

without any further interpretation.)

• A scenario for a signature a is a map s: P -* _+(V) where for each p • P, s(p) C_ a(p).

Equivalently, a scenario is an n-tuple (81,...,.Sn), where 8i = s(pi) C_ Si, i = 1,...,n.

(Each column of a table body stands for the scenario (sl,...,3n) where si is the set of

values listed in the ith row, or Si if %" appears.)

Let E be the set of scenarios for a.

The body of T is a map body : 0P --* P+(E) (set of scenarios in which an operational

procedure is engaged). (In a concrete table, body(opp) is the set of scenarios represented

by columns listed under opp.)

Given an abstract decision table T, the engagement criterion eng_crit(opp) of an operational

procedure opp is the predicate

eng_crit(opp) C Sz x ... x S,,

given by
(Vl,..., v,_) • eng_crit(opp)

if and only if there exists a scenario (sx,..., sn) • body(opp) such that

(vl • sxand...andv, • s,_).

The denotation (that is, mathematical meaning) of the abstract decision table T is the relation

RT C (8_ x ... x S,,) x OP

CHAPTER 2. DECISION TABLES 7

given by

((vl,..., v,t), opp) 6 RT iff(vl,..., v_) E eng_crit(opp).

That is, operational procedure opp is enabled when the parameters Pl,-.., P= have respective

values vl,..., v_ if and only if vl,..., v, are compatible with some scenario of opp.

The abstract table T is functional ("correct") if RT is actually a function, that is, for

each (Sl,...,s,_) 6 $1 x ... × Sa there is exactly one operational procedure opp such that

((sl,..., s,),opp) E RT. The property of being functional is equivalent to the conjunction of

the following two properties.

T is exclusive if and only if for each (sl,...,s,) 6 $1 × ... × S= there is at most one

operational procedure opp such that

((sl,...,sn),opp) 6 RT.

T is exhaustive if and only if for each (sl,..., sn) E $1 x... × S= there is at least one operational

procedure opp such that ((sl,..., s,), opp) E RT.

An advantage of decision tables is that, at least for small tables, it is possible to check

exclusiveness by inspection. Exhaustiveness is much harder.

2.2 Semantics of the Table in Figure 2.2

As an example, we will define the various parts of the semantics for the table in Figure 2.2.

• There are fifteen parameters. Note that some of the names contain white space and/or

relation symbols. Nevertheless, they name single parameters.

P = {
flightphase,

fcc_alt_capt_hold,

prev_vg_ref_alz = vg_ref_alZ,

Ivg_ref_alz - cruise_altl <= cruise_alt_tol,

cruise_alt_val id,

ac_alt < dap_seg_alt,

dap_exisZs,

dap_overspeed_cond,

dap_capt_hold_cond,

hm_cond,

vg_type = profile,

engine_out,

above_eo_max_alt,

compare (vg_ref_alt, eo_saf e_speed_alt),

eo_decel_cond

.

CHAPTER 2. DECISION TABLES 8

• There are twelve values.

V -- { takeoff, climb, cruise, descent, approach, on, off,

TRUE, FALSE, LT, F_, GT}.

a(flightphase) = {takeoff, climb, cruise, descent, approach},

a(fcc_alt_capt_hold) = {on, off},

a(engine_out) = {TRUE, FALSE}, etc.

OP = {Climb, Descent Intermediate Level,...}. Only Climb is shown in Figure 2.2.

Each column in the body of the table represents a scenario. The first column represents

the scenario sl that satisfies

sl(flightphase) = {takeoff, climb, cruise},

s1(fcc-alt-capz-bold)= {off},
sl(dap_exists) = {TRUE, FALSE}, etc.

(Of course, this is only a partial description of El-) Viewed as a tuple, the scenario is the

15-tuple

({takeoff, climb, cruise}, {on}, {FALSE}, {TRUE, FALSE}, {TRUE, FALSE},...).

• body(Climb) = {El,...,s6}, where each si, i = 1,...,6 is the scenario corresponding to

the ith column (and in particular sl is as defined in the previous item).

• (vl,..., vls) E eng_crit(Climb) iff for i = 1,..., 15, vi E a(v_), and any one (or more) of

the following six conditions holds.

- vl E {takeoff, climb, cruise}, v2 = on, v3 = FALSE, and v12 = FALSE.

- vl E {takeoff, climb, cruise}, v2 = on, v3 = FALSE, v12 = TRUE, v13 = FALSE,

and v14 = GT.

- vl E {takeoff, climb, cruise}, v2 = on, v3 = FALSE, v12 = TRUE, v14 = GT, and

vls = FALSE.

- Vl E {takeoff, climb, cruise}, v2 --off, and v12 --FALSE.

- vl E {takeoff, climb, cruise}, v2 = off, v12 = TRUE, v13 = FALSE, and v14 = GT.

- Vl E {takeoff, climb, cruise}, v2 = on, v12 = TRUE, v14 --GT, and v15 --FALSE.

2.3 Partitioned Decision Tables and their Semantics

A disadvantage of decision tables as described above is that they are not very dense in infor-

mation. Consequently, they can be very large, making it difficult to ascertain anything about

them by eye. In this section, we propose a more compact notation, which we call partitioned

CHAPTER 2. DECISION TABLES 9

Operatioaal Procedure

Category Input Param States

Flight
f_tptm¢

r

fcc_alt_capt hold

takeoff, climb,

cruise, descent

approach

on, off
Altitude

prev_vg_rcf_ah

= vg_.ref alt TRUE, FALSE
Target

Ivg..ref_alt - TRUE, FALSE
cmise_ah I <=

Status
cmisc_alUtol

cruise_air_valid TRUE, FALSE

ac_alt < clap seg._alt TRUE, FALSE

Climb De..g_nt Intermediate Level etc.

Desc/Appr

Path

Status

on

TRUE

FALSE

takeoff

climb
a_mach

on

TRUE

TRUE

on off

FALSE

on

TRUE

FALSE

dap_exists TRUE, FALSE

dap..ovesspeed_cond TRUE, FALSE * * *

dap_capLhold_coud TRUE, FALSE , * FALSE

Hold hm cond TRUE, FALSE
Manual

VG Type vg_Wl_ = profile TRUE, FALSE

engine out TRUE, FALSE

Engine-
above_eo_max_ah TRUE, FALSE

Out compare(vg_rcf_.ah,

co_safe_speed_air) LT, EQ, GT
Status

eo_decel__cond TRUE, FALSE

:ALSE TRUE TRUE

I. FALSE *

* GT GT

* FALSE

Figure 2.3: A partitioned decision table

decision tables. For contrast, we will refer to the usual style of decision table, defined above,

as simple decision tables. The structure of partitioned tables also corresponds closely to the

layout we use for English-language documentation (Section 4.5, patterned after the Honeywell

SRD [tton94]).

Our decision table analysis tool, TBell, does not currently support partitioned decision

tables, but it contains the necessary logical apparatus.

CHAPTER 2. DECISION TABLES 10

Figure 2.3, shows a partitioned decision table. The single macro-column under the heading

"Climb" in Figure 2.3 corresponds to all the columns under the same heading in Figure 2.2.

The following features distinguish a partitioned decision table from a simple one:

• Horizontal and vertical double lines partition the table.

• The horizontal double lines partition the variables into categories.

The vertical double lines partition the body of the table into macro-columns.

In the body of the table, double lines mark off boxes we call macro-entries. Each macro-

entry is divided into micro-rows and micro-columns by single vertical and horizontal lines,

like the body of a simple decision table. A macro-entry is like the body of a mini-simple

decision table.

The meaning of a partitioned decision table is the same as that of the simple table obtained

by replacing each macro-column by the set of simple columns obtained by piecing together

one micro-column from each category in the macro-column. This idea can form the basis of a

mathematical semantics similar to that given for simple decision tables.

Chapter 3

Logical Basis

TBell uses a generalization of binary decision diagrams (BDDs) that we call finite decision

diagrams (FDDs). The idea involved is quite simple, but seems to be new or at least not

generally known. As we feel that most systems using BDDs will want to adopt it, we describe

it here. The underlying idea is that most methods applicable to Boolean or propositional logic

generalize to what we call finite logic, logic in which the variables can take finitely many values

instead of only two. The application to decision tables, and all systems involving a finite state, is
obvious since variables in a decision table can take more than two values. The main observation

is that most techniques for manipulating propositional logic generalize straightforwardly to

finite logic. In particular, the finite logic generalization of the if-then-else expression is the case

expression, which obeys the same laws. BDDs are essentially a special if-then-else normal form.

FDDs are the corresponding case normal form, and can be manipulated using essentially the
same methods.

Another way of looking at FDDs is that they are just decision trees in a particular form,

with special rules for manipulating them.

Of course finite logic includes propositional logic because variables in finite logic can take just

the values true and false. On the other hand, finite logic can be coded into propositional logic

by coding each finite valued variable by several Boolean-valued variables, as has been common

practise, but such coding is unnecessary, and translation to and from FDD representations is

simpler and more natural without coding into Boolean variables.

In our logical discussions, we write

A=B

to indicate that A is equivalent to B, that is, each is deducible from the other, and

A=_ B

to indicate that B is deducible from A.

11

CHAPTER 3. LOGICAL BASIS 12

3.1 Finite Logic

A finite language L consists of a set P of variables together with a signature a that maps each

p E P to a finite set of values a(p), the type of p. A literal of L is a formula

p E s (3.1.1)

where s C_a(p). (If s = a(p), then (3.1.1) is the identically true proposition, and if s = 0, then

p is identically false.) A formula of L is just a boolean combination of literals.

An assignment (or valuation) of L is a mapping a with domain P such that for all p E P,

a(p) E a(p); a satisfies a literal p E s (write a(p E s) = true), if a(p) E s. For a complex

formula A, a(A) is defined as propositional logic; for example, a(A h B) = true iff a(A) = true

and a(B) = true. A formula is valid if and only if it satisfies every assignment.
Which rules or formulas are valid in a finite logic depends on the signature. For example,

in the logic given by the signature of the table in Figure 2.2,

flightphase E {takeoff, climb} Y flightphase G {cruise}

flightphase E {takeoff, climb, cruise}

and

comp(vg.lef_alt, eo_safe_speed_alt) E {LT, EQ, GT}

isvalid.Nevertheless,itappears that allmethods applicableto propositionallogicgeneralize

easilyand naturallyto finitelogic.We describefinitedecisiondiagrams, a generalizationof

Boolean decisiondiagrams,below. We alsodevelopedand studieda generalizationofresolution,

but finitedecisiondiagrams proved more effective.

3.2 Finite Decision Diagrams

Boolean decision diagrams (BDDs) were introduced by Lee [Lee59] and later popularized by

Akers [Ake78]. Since Bryant [Bry86] they have been recognized as the most important practical

method for representing Boolean expressions. Essentially, a BDD is an ordered if-then-else

normal form for Boolean expressions with subformula sharing, depending on only a few simple

identities involving if-then-else. Since the laws for manipulating an expression

if b then c else d

have nothing at all to do with the (common) type of e and d, BDDs were later generalized

to Algebraic Decision Diagrams [BFG+93] or Multi-Terminal Decision Diagrams [CFM+93],

which can be expressions of any type. Here we offer the further obserwtion that if-then-else

has a perfectly good finitely branching analog, the case expression,

CHAPTER 3. LOGICAL BASIS 13

where p is a finite-valued variable, _,..., _p are all the possible values of p, and each of

az,..., akp is an expression of some given type T. Case expressions satisfy the obvious general-

izations of all the same laws as if-then-else expressions. We call the corresponding generalization

of BDDs Finite Decision Diagrams. They are essentially finitely branching decision trees in a

normal form with hashing of common subtrees (so that they are really decision graphs, or

diagrams, rather than trees). Here is the precise definition of the normal form.

• A strict linear order < on propositional variables is given.

• Each subterm of an FDD of type T is either an element of T or else of the form

casep of :1_ a, I.-. Ic_,_ ak,

where p is a variable of L and for each variable q occurring in any of al,..., akp, p < q.

• An FDD has no vacuous case splits

casep of :1_ a I--. I d, _ a

(such a term is equivalent to just a).

• Subterms are hashed to save space and computation.

We have not yet implemented the hashing in TBell, so our FDDs are really finite decision trees.

The point is that the normal form is unique (equivalent formulas have the same normal

form) because of the ordering and the elimination of superfluous case splits. In paxtictdar,

for Boolean-valued FDDs the normal form of the Boolean expression true is just true and the

normal form of false is just false. Hence valid or contradictory formulas can be detected simply

by putting them in normal form. Equivalent FDDs are equal.

It is easy to operate on FDDs and obtain an FDD representation of the result. The basic

idea is shown by the following basic identity of case expressions.

/(pl,..., p,) =
case Pl of

:1' _/(_',_,...,r,,,) I ... I
C_LlkpI ::_ f (_kklpl , P2, • ° ° "_Pn)"

Once functionapphcationshave been pushed down to the leaves,any vacuous case splitshave

been eliminated, and new subformulas have been entered in the hashtable, we have an FDD. For

binary functions, we use a more complicated identity to preserve the order of the variables. For

notational simplicity, we give this identity for if-then-else. The generalization to case expressions

and to N-ary is obvious.

g(if p then b else c, if p' then b' else c')

= if p then g(b, if p' then b' else c') else g(c, if p' then b' else d), p < p', (3.2.2)
= if p then g(b,b') else g(c,c'), p = p',

= if p' then g(if p then b else c, b') else g(if p then b else c, c'), p' < p.

CHAPTER3. LOGICAL BASIS 14

Bryant notes that the ternary form is useful for.function composition, but it is the binary form
that is crucial.

One can prove by induction on the number of variables that a function of finite valued

variables is equivalent to an FDD because if Pl < ... < P_ are finite-valued variables then

f(pl,. • .,Pn) _ case pl of _a =_ f(_a,p2,. ,Pn) I- • I _a 1"" " "_,1 =_ f(_IP, ,P2,...,Pn).

(This generalizes Shannon normal form.)
Note that, in theory, the variables in a decision diagram need not be finite-valued, but

operations on the resulting diagrams would not be computable. One could, however, generalize

further by permitting the variables to be arbitrary-valued but requiring only finitely many
distinct cases at each node. Finiteness is not required at all for the values at the leaves,

however.

All of TBell's operations are based on FDD manipulations. All are straightforward, except

for structural analysis.

An example. Here is a simple example of how FDDs work. Suppose that a is a signature

such that a(p) = {a,b,c} and a(q) = a(r) = {TRUE, FALSE}. We will abbreviate a formula

such as q 6 {TRUE} by q and q 6 {FALSE} by _q.

Consider the formula (boolean valued function of p, q, r) P given by

p • {b, c} and (q or r).

There are two ways to represent P as an FDD (with the variables in alphabetical order). The

first applies the idea of Shannon Normal Form given above.

p • {b,c} and (q or _r)

_= case p of

a =_ FALSE and (q or _r) I

b,c _ TRUE and (q or -_r)

- case p of
a =_ FALSE I

b, c =V (q or -,r)

= case p of
a =_ FALSE J
b,c =_ (case q of TRUE =_ TRUE I FALSE =_ -_r)

_= case p of
a _ FALSE J
b,c:=_ (case q of TRUE =_ TRUE I FALSE =_ case r of TRUE =_ FALSE J FALSE =_ FALSE)

The other way to transform P into an FDD is to represent its atomic components as FDDs and

then apply eq. (3.2.2) to build up the BDD representation of P. Thus,

q = case q of TRUE =_ TRUE J FALSE =_ FALSE

CHAPTER 3. LOGICAL BASIS 15

and

Thus,

-_r = case r of TRUE =_ FALSE I FALSE =_ TRUE.

q or -_r

-- (case q of TRUE =_ TRUE I FALSE =_ FALSE) or
(case r of TRUE =_ FALSE I FALSE =_ TRUE)

= (case q of
TRUE =_ TRUEor(case r of TRUE =_ FALSE I FALSE =_ TRUE) I

FALSE =_ FALSE or (case r of TRUE =_ FALSE I FALSE =_ TRUE)

= (case q of
TRUE _ (case r of TRUE _ TRUE or FALSE I FALSE =_ TRUE or TRUE) I

FALSE =_ (case r of TRUE =_ FALSE or FALSE I FALSE =_ FALSE or TRUE)

- (case q of
TRUE =_ (case r of TRUE =_ TRUE I FALSE =_ TRUE) I

FALSE =_ (case r of TRUE =_ FALSE I FALSE =_ TRUE)

= (case q Of
TRUE _ TRUE I

FALSE =_ (case r of TRUE =_ FALSE I FALSE =_ TRUE).

To get the representation for P, observe that

p E {b,c} _ case p o(a ==FFALSE I b, c =_ TRUE,

then apply eq. (3.2.2) with "and" instead of "or."

Chapter 4

Tool Description

This section describes the various functions of TBeU. TBell presently supports only simple

decision tables, but we intend to add support for partitioned decision tables.

The logical analysis, code generation, and English-language generation modules of TBell

are all written in Standard ML of New Jersey (SML/NJ). Its window interface is written in

tcl/tk.

Using SML as the programming language for TBeU permitted rapid, almost bug-free devel-

opment of the program. Furthermore, the implementation of decision tables corresponds almost

exactly to the mathematical definition of symbol tables given in Section 2 (including concrete

and abstract tables as well as the semantics of tables). Performance seems to be quite memory

dependent. Our FDD module performs comparably to a more mature and sophisticated BDD

package written in C, perhaps because it treats FDDs directly instead of coding them as BDDs.

But that is one of the advantages of SML---one can concentrate on the mathematics and the

algorithms instead of the coding.

The logical analyzer has three functions: detecting overlap (exclusiveness failure) between

engagement criteria of different operational procedures, detecting non-coverage (exhaustiveness

failure), and detecting specific structural defects in a decision table that prevent it from being

functional. Logical analysis is a purely pushbutton affair, as is code generation. English-

language documentation requires some additional information about how to describe variables

in English and how to group related variables.

One begins by invoking TBeU's window-based decision table editor and entering the table to

be analyzed. This table may be stored and re-edited at a later time. An example decision table,

derived (with one change) from Section 10.2.5.5 of [Hon94], a case of speed scenario selection,

is shown in Figure 4.1.

4.1 Exclusiveness Testing

TBeU can test for overlap at three granularities: whether two given columns overlap, whether

the engagement criteria of two given operational procedures overlap, or whether there is any pair

of operational procedures whose engagement criteria overlap. In each case, the output format

16

ORI,GIINAL PAGE IS

OF POOR QtJAEITY

CHAPTER 4. TOOL DESCRIPTION 17

Figure 4.1: Speed scenario selection table.

Figure 4.2: Speed scenarios: overlap table.

is the same: a listing of all pairs of overlapping columns (belonging to distinct operational

procedures) among the pairs tested, as in Figure 4.2. Columns are given names of the form

opp.n, indicating the nth column listed under opp. The columns listed under descent_path.1

econ_path_const_cas.1 indicate exactly the overlap between these two columns.

4.2 Exhaustiveness Testing

The exhaustiveness test returns a table consisting of a set of columns defining scenarios not

covered by the decision table. In logical terms, the columns of a simple decision table can be

looked at as clauses (conjunctions of literals) in a finite-valued (as opposed to Boolean-valued)

logic--see Section 3.1. The non-coverage table returned is essentially a disjunctive normal form

(disjunction of clauses) of the negation of the disjunction of the columns in the body of the

input table. Figure 4.3 shows the non-coverage table for the decision table given in Figure 4.1.

The table returned is not unique. As the logical analyzer presently works, the non-coverage

table is determined by the order of the variables in the input table. There exist heuristics for

(2)Y P'o(oqOL ALrr '_

CHAPTER 4. TOOL DESCRIPTION 18

Figure 4.3: Speed scenarios: scenarios not covered.

varying the order of variables [l_ud93] that could produce a more compact output.

The table returned may be tacked onto the input table rather than returned as a separate

table. In the future, doing so may facilitate formally recognizing some of the columns not

covered as illegal scenarios, that is, scenarios that, we claim, inputs to the table will never

satisfy. We will discuss this the idea of illegal scenarios further in Section 5.2.

4.3 Structural Analysis

Because overlap is relatively easy to detect by eye, there are usually few overlaps in a table.

Furthermore, the overlap table produced by TBell points directly to the culprits responsible.

Non-coverage, on the other hand, is much more difficult to deal with and, in practise, we

find that tables often leave many scenarios uncovered. Hence the non-coverage table produced

by TBell may be large, and one may be at a loss where to start mending the input table.

Furthermore, one cannot point to any particular columns responsible for non-coverage, since it

is the whole table that is responsible. For that reason we have developed a form of structural

analysis that can detect specific defects in tables that we have noticed occur often in practise. It

amounts to pointing to a few variables, rather than columns, responsible for non-functionality.

The method we use to search for structural defects is mathematically based. We have proved

that if a table contains a defect of this kind, our algorithm will find it.

We detect the following class of defects. Suppose a simple decision table T and variables

Pl,...,Pk are given. Suppose also, for the sake of the present discussion, that the table we are

given has only one column for each operational procedure. Suppose that there is some logical

formula B, not identically true or identically false, such that for every column s of the table,
either

• every assignment of values to the variables Pl,---,P_ that is compatible with s satisfies
B, or else

• every assignment of values to the variables Pl,...,Pn that satisfies B is compatible with
8.

OY QUALr

CHAPTER 4. TOOL DESCRIPTION 19

Figure 4.4: Speed scenarios: results of structural analysis on one variable.

Then T cannot be functional. The point is that though the table has columns that in some

sense contain or are contained by B, it has no columns complementary to B. Therefore, one of

the following two conditions must pertain.

• All columns contained by B are contained by columns that contain B. Hence T is not

exclusive.

• For some column contained by B, the column obtained from it by complementing B is

not covered by T. Hence T is not exhaustive.

If we drop the assumption that each operational procedure has only one column, the same

idea is valid, but the argument is more complicated.

The user can ask TBell whether a given input table has a structural defect of this kind

related to a particular set of variables or whether it has a defect related to any set of variables

of a given cardinality. TBell returns a table or set of tables each representing a formula B

as described above. For example, if our input table is the table in Figure 4.1 and we ask for

information about defects involving one variable, then we get the set of tables in Figure 4.4.

They tell us some problems with the input table: the only specific value dap_exists and

dap_con are ever assigned is true, never false, and that fcc_asr occurs only with values econ

and edit, never with the value def_econ.

If we asked for structural analysis involving two variables, we would get additional informa-

tion such as that two variables occur only with the same sign, suggesting that they are actually

equivalent conditions and that only one of them should occur in the table. Structural analysis

involving more variables yields more complex information.

We recommend that analysis of a table begin with overlap analysis. Once all overlaps

have been eliminated, proceed to structural analysis on one variable. Once there are no more

problems with single variables, proceed to structural analysis on two variables, etc. Finally, do

coverage analysis and make final corrections to the table.

In genera/, one should correct all structural defects involving n variables before proceeding

to structural analysis on n+ 1 variables, because otherwise all n-variable defects will be repeated

somehow as n + 1-variable defects.

CHAPTER 4. TOOL DESCRIPTION 20

Structural analysis is sufficient to guarantee functionality of an exclusive table, because if a

table is not exhaustive then the disjunction of its columns is a formula of the kind that will be

found by structural analysis.

4.4 Code Generation

It is easy to efficiently generate code (here, Ada code) from decision tables using the internal

representation employed by TBell's logical analyzer. Essentially TBell combines the FDDs

representing the engagement criteria of the various operational criteria into one big P(0P)-

valued FDD in which each path through the FDD ends in the set of all operational procedures

whose engagement criteria contain that path. An FDD is just a big nested case statement, so

we translate it into a big nested Ada case statement. When a path ends in a singleton {opp),

return opp. If a path ends in the emptyset, raise the exception Undefined. If a path ends a

set with more than one member, raise the exception Ambiguous. Of course, if one generates

code from a functional decision table, these exceptions will never arise. The point is that we

can generate code that implements a table whether or not the table is correct (functional).

One might wish to do so if one believed that the bad cases would in fact never arise, or if one

wished to prototype a program using an early version of a decision table. Such a prototype will

automatically indicate a flaw in the table by raising an exception.

The giant case statement is encapsulated in a function subprogram to which the decision

table variables are input as global Ada variables. Code generated from Figure 4.1 is shown

in Figure 4.5.TBel] alsogeneratesdeclarationsand wraps everythingup in a compilableAda

package,though we expect thatthe generatedsubprogram willbe used ina contextotherthan

the package generated by TBeU.

The enormous-case-statementtranslationappears toproduce near-optimalcode implement-

ing a decisiontable.Itmay be possibleto optimizethe sizeand performance of the code by

using heuristicsto choosea betterorder forthe decisionvariables.(Currentlythe orderisthe

same as the order in which the variablesarelistedin the decisiontable.)

We plan to provide an option to generate more readablecode. This more readable code

willevaluate engagement criteriaof individualoperationalprocedures and then eitherreturn

an operationalprocedure or raisean exception,as appropriate. The readable code foreach

engagement criterionwillbe essentiallyan Ada versionof the English-languagedocumentation

describedin the next section.

4.5 Generating English-Language Documentation

One of the principal documents describing the Honeywell code that we worked from on our

project was the Software Requirements Document (SRD). In what we might describe as rela-

tively formal English, it described engagement criteria and behaviors associated with various

classes of operational procedures at various levels of a flight control system. The engagement

criteria in the SRD were easy to translate (or, more properly, transcribe) into code or into a

formal specification in a language like PVS or Larch (modulo a few ambiguities and cases where

CHAPTER 4. TOOL DESCRIPTION 21

function dp_spd_scn return spdscn is

begin

if fcc_asr then

return approach;

else

case fms_speed_mode is

when econ =>

if dap_exists then

if dap_con then

if speed_change then

raise Ambiguous;

else

return descent_path;

end if;

else

return descent_path;

end if;

else

if dap_con then

Figure 4.5: Generated Ada code.

1. FCC Approach Speed Request.

FCC Approach Speed Request (fcc_asr) is FALSE.

2. Descent/Approach Path Status.

Any of the following requirements are satisfied.

(a) Descent/Approach Path Exists (dap_exists) is TRUE.

(b) All of the following requirements are satisfied.

i. Descent/Approach Path Exists (clap_exists) is FALSE.

ii. Descent/Approach Path Under Construction (clap_con) is TRUE.

iii.Speed Changed (speed_change) is FALSE.

Figure 4.6: Generated documentation.

the text seemed to be garbled). Since the SRD text was so formal, it seemed worth attempting

to generate this text directly from the decision tables. Figure 4.6 contains an extract from the

result.

TBell generates lATEX source. We plan to add options to generate documentation in Mi-

crosoft Word and Word Perfect format.

CHAPTER 4. TOOL DESCRIPTION 22

The logical form of the generated text is identical to that of a partitioned decision ta-

ble. That is, the variables are partitioned into categories (corresponding to headings like "De-

scent/Approach Path Status" and "FCC Approach Speed Request"). In the text, the word

"any" (resp. "all") signifies a disjunction (resp. conjunction) of the list of conditions following

it. Thus, the text is a disjunction of conjunctions of formulas, each formula itself a disjunctive

normal form containing variables of only one category.

In order to generate this English text, the user must supply the categories as well as the

phrases describing the variables. If the user does not supply categories, then none will be used.

If the user does not supply descriptive phrases for variables, then the variable name will be used

(the same name as in the table, included in round brackets if there is a descriptive phrase).

Chapter 5

Research Directions

The research described in this paper has been going on for only a short time and there is much

yet to be done. Here we will list some of the more substantial research topics that remain.

5.1 More General Queries about Decision Tables

Our logical analysis algorithms are adequate to test any desired property of a decision table,

not just coverage properties. One might want to ask questions that would validate the contents

of a decision table, such as: "Operational procedure opp will not be selected if condition A

holds." The problem is to design a good language for asking such questions.

5.2 Accounting for Illegal Scenarios

Our practical work with Honeywell showed that in many cases certain scenarios (combinations

of values of input variables) are considered to be impossible. For example, they might be

physically impossible. Alternatively a certain decision table T _ may be part of the definition

of the behavior of a certain operational procedure opp occurring in a decision table T; hence

inputs to T' always satisfy the engagement criterion of opp, defined by T.

The main deficiency in the use of decision tables as outlined in this report is that the

configurations considered illegal are nowhere dearly documented. We propose to remedy this

deficiency by creating a dummy operational procedure, called Illegal. All illegal configurations

must be recorded as scenarios belonging to operational procedure Illegal. Engagement criteria of

all legitimate operational procedures are relative to the legal scenarios (those complementary to

the engagement criterion of Illegal). All functions of TBell should generalize straightforwardly.

5.3 Behaviors

Our discussion in this report covers only the selection half of a decision table, which says which

operational procedure will be engaged in a given situation. The other half of a decision table

23

CHAPTER 5. RESEARCH DIRECTIONS 24

describes what effect each operational procedure will have on the state of the system and what

outputs it will produce. Part of the behavior may be described by further decision tables.

We would like to support the behaviors half of the decision table as well. Exclusiveness and

exhaustiveness testing are not directly relevant for behaviors, though they are relevant for any

dependent tables used to define parts of behaviors; code and English document generation are

relevant. The most basic way to support behaviors is simply to include them in the table and

to generate code and documentation.

5.4 Systems of Interrelated Decision Tables

In order to offer a higher level of support to the behaviors part of a decision table, we would like
to take account of the fact that a decision table that describes part of the behavior associated

with an operational procedure of a parent table will receive only inputs that satisfy the en-

gagement criterion of that operational procedure. Thus any input configurations not satisfying

that engagement criterion can be justified by context as illegal configurations of the dependent

decision table.

These considerations call for a system that deals not with single decision tables but with

systems of interrelated decision tables, the set of illegal configurations of a dependent symbol

table being justified according to context.

Going further in this direction, one can imagine a formalism for successive uses of decision
tables with a state change in between. This idea points toward either a predicate transforma-

tion system (as in [GMP90]) involving decision tables or, if the whole system can be regarded

as finite-state, integration with a model-checking system (such as [CLM89]). Integrating with

a model-checking system would be especially natural since such systems use methods similar

to ours, namely finite logic and FDDs. In either case, ability to justify declaring certain config-

urations illegal would be enhanced by the ability to prove invaxiants of the system containing

our decision tables (such as the invariant that illegal configurations never occur in the system).

5.5 Algorithms for Partitioning Decision Tables

In order to construct a partitioned decision table or to generate English-language documentation

for a simple decision table, the user must supply a partition of variables into categories that

give a reasonable structure to the information in the table. We would like to find a way to

generate such partitions automatically.

5.6 Methodology for Developing Correct Decision Tables

All of the methods relating to correctness discussed in this report deal with detecting errors in

decision tables. In theory it would be better to develop decision tables in an orderly fashion

without the errors. We might imagine a method starting with a small table having a small

number of variables and operational procedures and gradually refining the table into a complex

CHAPTER 5. RESEARCH DIRECTIONS 25

one by splitting variables and operational procedures. It is hard, however, to see how such a

procedure would be adequate to develop the complex decision tables we encounter in practise.

Perhaps a better method would be to develop tables as compositions of simpler tables (i.e.

sequences of simpler decisions). A third possibility, based on structural analysis, would be to

add columns to a table one by one, maintaining exclusiveness, until all structural flaws were

eliminated.

Bibliography

[Ake78]

[BFG+93]

[Bry86]

[CFM+93]

[CLM89]

[GMP90]

[Hon94]

[Lee59]

[Mar93]

[McC94]

[Rud93]

S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-27:509--

516, June 1978.

I. Bahar, E. Frohm, C. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi.

Algebraic decision diagrams and their applications. In ICCAD '93, 1993.

It. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, pages 677-691, August 1986.

E. M. Clarke, M. Fujita, P. C. McGeer, K. McMillan, J. C.-Y. Yang, and X. Zhao.

Multi-terminal binary decision diagrams: An efficient data structure for matrix

representation. Technical report, Computer Science Department, Carnegie-Mellon

University, February 1993.

E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In

Proceedings of the Fourth Annual Symposium on Logic in Computer Science. IEEE

Computer Society Press, June 1989.

David Guaspari, Carla Marceau, and Wolfgang Polak. Formal verification of Ada

programs. IEEE Transactions on Software Engineering, 16:1058-1075, September
1990.

Honeywell, Inc. Apparatus and Method for Controlling the Vertical Profile of an

Aircraft, Aug. 16 1994. United States Patent #5,337,982.

C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell

Systems Technical Journal, 38:985-999, July 1959.

Carla Marceau. Penelope Reference Manual ORA, December 1993.

W. W. McCune. Otter 3.0 reference manual and guide. Technical Report ANL-94/6,

Argonne National Laboratory, 9700 South Cass Ave., Argonne IL 60439-4801 USA,

January 1994.

Richard Rudell. Dynamic variable ordering for ordered binary decision diagrams.

In ICCAD '93, 1993.

26

BIBLIOGRAPHY 27

[She94a]

[She94b]

[SOR93a]

[SOR93b]

Lance Sherry. The operational procedure information model. Technical report,

Honeywell, Inc., 1994.

Lance Sherry. A structured approach to requirements specification for software-

based systems using operational procedures. In IEEE Digital Avionics Systems

Conference, 1994.

N. Shanl_r, S. Owre, and J. M. R.ushby. A Tutorial on Specification and Verification

Using PVS. Computer Science Laboratory, SRI International, Menlo Park CA 94025

USA, March 1993.

N. Shankar, S. Owre, and J. M. Rushby. A tutorial on specification and verification

using PVS. Technical report, SRI International, Menlo Park CA 94025 USA, March
1993.

Appendix A

PVS Formalization

The following is the PVS file containing a formalization in PVS of the engagement criteria

given in [Hon94] Section 10.2.5.5 (speed scenario selection for the Descent Path operational

procedure). The theory is that expressed by the table in Figure 4.1 (except that here we use

the name other instead of def_econ).

The two theorems exhaustive and exclusive verify that the missing columns and the overlaps

pointed out by TBeU are in fact correct. The PVS proof of each was simply

(then* (auto-rewrite-theory "VG") (do-rewrite) (iff) (bddsimp))

It was our practise while developing TBell to check its results by doing these kinds of proofs

in PVS.

VG : THEORY

BEGIN

speed_mode: TYPE -_ {econ, edit, other}
fcc_asr : boolean

dap_exists : boolean

dap_con : boolean

speed_change : boolean

fms_speed_mode : speed_mode
eas.mode : boolean

descent_path : boolean = -_ fcc_asr A (dap_exists V (dap_con

approach: boolean = fcc_asr

econ_path_const_cas :

boolean = -_ fcc_asr A (fms_speed_mode = econ) A dap_con

econ_path_const_mach :

boolean = -_ fcc_asr A (fins_speed_mode = econ) A dap_con

A "_ speed_change))

A speed_change

A speed_change

A cas_mode

A _ cas_mode

28

APPENDIX A. PVS FORMALIZATION 29

edit_path_const_cas :

boolean = -_ fcc_asr A (fms_speed_mode = edit) A dap_con A speed_change A cas_xnode

edit_path_const_mach :

boolean = -_ fcc_asr A (fins_speed_mode = edit) A dap_con A speed_change A -_ cas_mode

exhaustive :

THEOREM

(descent _path

V approach

V econ_path_const_cas

V econ_path_const._rnach V edit_path_const_cas V edit_path_const_mach)

((fcc_asr -- FALSE

A (fms_speedJnode -- econ V fins_speed_mode = edit)

A dap_exists = FALSE A dap_con = FALSE)

V

(fcc_asr ---- FALSE

A fins_speed_mode = other

A clap_exists -- FALSE A dap_con ---- TRUE A speed_change - TRUE)
V

(fcc_asr = FALSE

A fms_speed_raode = other A clap_exists = FALSE /k dap_con = FALSE))

exclusive :

THEOREM

(descent_path A approach) = FALSE

A (descent_path A econ_path_const_cas)

(fcc_asr : FALSE

A fins_speed_mode = econ

A dap_exists = TRUE

A dap_con = TRUE A speed_change = TRUE A cas.xnode -- TRUE)

A (descent_path A econ_path_const_raach)

(fcc_asr -- FALSE

A fms_speed_mode = econ

A dap_exists = TRUE

A dap_con = TRUE /k speed_change = TRUE A cas_mode = FALSE)
A (descent_path A edit_path_const_cas)

(fcc_asr -- FALSE

A fms.speed_mode = edit

A dap_exists = TRUE

A dap_con = TRUE A speed_change = TRUE A cas..mode = TRUE)

A (descent_path A edit_path_const_mach)

APPENDIX A. PVS FORMALIZATION 30

(fcc_asr : FALSE

A fms_speed_raode = edit

A dap_exists = TRUE

A dap_con = TRUE A speed_change = TRUE A cas_mode = FALSE)

A

(approach

A

(econ_path_const_cas

V econ_path_constmaach

V edit_path_const_cas V edit_path_const_mach))

----FALSE

A

(econ_path_const_cas

A

(econ_path_const._rnachV edit_path_const_casV edit_path_const_mach))

_- FALSE

A

(econ_path_const_mach A (edit_path_const_casV edit_path_const_mach))

= FALSE

A (edit.path_const_casA edit_path_const_mach) = FALSE

END VG

Appendix B

Generated Code

The following code was generated by TBell from the table in Figure 4.1 (again with def_econ

changed to other).

Several things about the code should be noted.

• TBell does not prettyprint the generated code at all. The indentation in code below was

obtained by running it through Penelope [Mar93].

• This particular example of code compiled without modification. That is not generally the

case, for the following reasons.

- A decision table variable does not have to be an Ada variable (see, for example, Fig-

ure 2.2). To generate code, decision table variables should indeed be Ada expressions.
If a decision table variable is a complex Ada expression, like

a+b>=c

then the generated code will contain an improper declaration

a + b >= c : boolean;

but will not contain any declarations of the variables a, b, and c. The improper

declaration of an expression has to be removed and the variable declarations have to

be added by hand.

- The function compare may need to be declared differently or more than once with

different types if it is used to compare other than integer quantities. The purpose

of compare is do to comparisons when an answer of the form "greater," "less," or

"equal" is required.

For the following reasons, however, it does not seem important to try to generate decla-

rations properly through TBell.

31

APPENDIX B. GENERATED CODE 32

- Doing so would not save any labor or improve assurance that the code is correct,

since essentially the same information in a similar form would have to be entered via
TBeU.

- Since the inputs to the decision routine are passed via the variables, those variables

have to receive values somewhere, probably somewhere else. Consequently their

declarations will in fact have to be put somewhere else as well, so there is really no

way to avoid manually modifying the declarations.

In a word, the value of generating code from TBell is in the subprogram that implements

the table, rather than in the packaging around it.

The code as generated here essentially implements a decision tree that corresponds to the

table implemented by the code. Scenarios for which the table does not indicate any operational

procedure raise the exception Undefined; scenarios for which the table indicates more than one

operational procedure raise the exception Ambiguous.

Implementing the code as a decision tree gives near-optimal execution speed, but is not

very readable. If for some reason the code is to be modified or checked by hand, a way of

generating more structured code would be indicated. We plan to provide an option to generate

code structured like the generated documentation shown in Appendix C. We have not yet

implemented such an option, but the fact that we can generate the documentation shows that

there are no unsolved technical problems involved.

In principle, we believe that the proper approach is to modify the decision table instead of

the code (except for the enveloping declarations) and generate the most efficient code.

Here, then, is the Ada code generated by TBell from the table in Figure 4.1.

-- Wa.rning! *** !

-- i) The package TEST_PAK is only an example: you will probably want to

-- put the subprogram in your own package somewhere.

-- 2) The type declarations are syntactically correct (unless

-- you used "others" to stand for unspecified members of an

-- enumeration type), but you may want them to appear in some other

-- package.

-- (,)

-- or

-- (**)

3) The object declarations may not be syntactically correct. In

particular they may be of the form either

expression : type;

identifier_l.identifier_2 identifier_n : type;

APPENDIX B. GENERATED CODE 33

-- instead of

-- identifier : type;

-- Nevertheless, they do correctly indicate the type of the given

-- expression.

-- Some object declarations should be in another package. Those of

-- form (_*) must be in another package, _here they must take the form

-- identifier_n : type;

-- "Declarations" of expressions (form (*)) will have to be broken up

-- into declarations of the component variables.

-- End Warning **_*******

package EXAMPLE_PAX is

type spd_scn is (descent_path, approach, econ_path_const_cas,

econ_path_const_mach, edit_path_const_cas, edit_path_const_mach);

type speed_mode is (econ, edit, other);

fcc_asr : boolean;

fnLs_speed_mode : speed_mode;

dap_exists : boolean;

dap_con : boolean;

speed_change : boolean;

cas_mode : boolean;

Undefined, Ambiguous : exception;

funcZion dp_spd_scn return spd_scn;

end EXAMPLE_PAK;

package body EXAMPLE_PAK is

-- WARNING: you may need to declare *compare* with other input types

type COMP is (LT, EQ, GT);

fu/iction compare(x, y : in integer) return COMP

is

begin

if (x<y) then

return LT;

elsif (x=y) then

return EQ;

else

return GT;

end if;

end compare;

function dp_spd_scn return spd_scn

APPENDIX B. GENERATED CODE 34

is

begin

if fcc_asr then

return approach;

else

case fms_speed_mode is

when econ =>

if dap_exists then

if dap_con then

if speed_change then

raise Ambiguous ;

else

return descent_path;

end if ;

else

return descent_path;

end if ;

else

if dap_con then

if speed_change then

if cas_mode then

return econ_path_const_cas ;

else

return econ_path_const_mach;

end if ;

else

return descent_path;

end if ;

else

raise Under ined;

end if ;

end if;

when edit =>

if dap_exists then

if dap_con then

if speed_change then

raise Ambiguous ;

else

return descent_path;

end if ;

APPENDIX B. GENERATED CODE 35

else

return descent_path;

end if;

else

if dap_con then

if speed_change then

if cas_mode then

return edit_path_const_cas;

else

return edit_path_const_mach;

end if;

else

return descent_path;

end if;

else

raise Undefined;

end if;

end if;

when other =>

if dap_exists then

return descent_path;

else

if dap_con then

if speed_change then

raise Undefined;

else

return descent_path;

end if ;

else

raise Undefined;

end if ;

end if ;

end case;

end if;

end dp_spd_scn;

end EXAMPLE_PAK;

Appendix C

Documentation Generated by TBell

The following is the documentation for the table in Figure 4.1 as generated by TBell's SML

module. Text generation is not currently available through TBell's window interface.

The ISTEX source of the text below is exactly as generated by TBell, except for adding a
"*" to keep the first heading from affecting the section numbering of this report.

In order to generate the following documentation, it is necessary to supply the following
information in addition to the table.

• A descriptive phrase for each variable and each operational procedure. In the text, this

phrase always precedes the (parenthesized) name as used in the table.

• The variables must be divided into categories, to give some structure to the description

and to make it more compact. The names of the categories are used as headings, here

"FCC Approach Speed Request," "FMS Speed Mode," "Descent/Approach Path Status"

and "CAS Mode."

Given this information, TBell automatically reorganizes the table and generates ISTEX source

for the documentation.

The style of the documentation generated by TBeU closely imitates the documentation

provided by Honeywell, which is a kind of quasi-formal English, very suitable for specifying code.

Automatically generating documentation from a table has the advantage that the correctness

of the documentation (relative to the table) is guaranteed and that the usage of terms can be

made absolutely consistent.

The main problem with the Honeywell documentation was understanding what the possible

values of the parameters were. Some sort of declaration section should be added to the generated

documentation.

36

APPENDIX C. DOCUMENTATION GENERATED BY TBELL 37

C.1 Vertical Guidance Speed Targets (Descent Path)

C.1.1 Descent Path (descent_path)

Engagement Criteria

All of the following requirements are satisfied.

1. FCC Approach Speed Request.

FCC Approach Speed Request (fcc_asr) is FALSE.

2. Descent/Approach Path Status.

Any of the following requirements are satisfied.

(a) Descent/Approach Path Exists (dap_exists) is TRUE.

(b) All of the following requirements are satisfied.

i. Descent/Approach Path Exists (dap_exists) is FALSE.

ii. Descent/Approach Path Under Construction (dap_con) is TRUE.

iii. Speed Changed (speed_change) is FALSE.

C.1.2 Approach (approach)

Engagement Criteria

FCC Approach Speed Request (fcc_asr) is TRUE.

C.1.3 Econ Path Under Construction--CAS Regime (econ_path_const_cas)

Engagement Criteria

All of the following requirements are satisfied.

1. FCC Approach Speed Request.

FCC Approach Speed Request (fcc_asr) is FALSE.

2. FMS Speed Mode.

FMS Speed Mode (fins_speed_mode)isecon.

3. Descent/Approach Path Status.

Allof the followingrequirementsare satisfied.

(a) Descent/Approach Path Under Construction(dap_con)isTRUE.

(b) Speed Changed (speed_change) isTRUE.

4. CAS Mode.

CAS Mode (cas_mode)isTRUE.

APPENDIX C. DOCUMENTATION GENERATED BY TBELL 38

C.1.4 Econ Path Under Construction--Mach Regime (econ_path_const_mach)

Engagement Criteria

All of the following requirements are satisfied.

1. FCC Approach Speed Request.

FCC Approach Speed Request (fcc_asr) is FALSE.

2. FMS Speed Mode.

FMS Speed Mode (fins_speed_mode) is econ.

3. Descent/Approach Path Status.

All of the following requirements are satisfied.

(a) Descent/Approach Path Under Construction (dap_con) is TRUE.

(b) Speed Changed (speed_change) is TRUE.

4. CAS Mode.

CAS Mode (cas_mode) is FALSE.

C.1.5 Edit Path Under Construction--CAS Regime (edit_path_const_cas)

Engagement Criteria

All of the following requirements are satisfied.

1. FCC Approach Speed Request.

FCC Approach Speed Request (fcc_asr) is FALSE.

2. FMS Speed Mode.

FMS Speed Mode (fins_speed_mode) is edit.

3. Descent/Approach Path Status.

All of the following requirements are satisfied.

(a) Descent/Approach Path Under Construction (clap_con) is TRUE.

(b) Speed Changed (speed_change) is TRUE.

4. CAS Mode.

CAS Mode (cas_mode) is TRUE.

APPENDIX C. DOCUMENTATION GENERATED BY TBELL 39

C.1.6 Edit Path Under Construction--Mach Regime (edit_path_const_mach)

Engagement Criteria

All of the following requirements are satisfied.

1. FCC Approach Speed Request.

FCC Approach Speed Request (fcc_asr) is FALSE.

2. FMS Speed Mode.

FMS Speed Mode (fins_speed_mode) is edit.

3. Descent/Approach Path Status.

All of the following requirements are satisfied.

(a) Descent/Approach Path Under Construction (clap_con) is TRUE.

(b) Speed Changed (speed_change) is TRUE.

4. CAS Mode.

CAS Mode (casnaode) is FALSE.

Appendix D

Verification of Generated Code

Using Penelope

The following is the complete Penelope verification of the code generated by TBell for the table

in Figure 4.1. This verification constitutes a complete check that this particular piece of code

is a correct implementation of the table. The specification is a transcription into Penelope's

specification language, Larch/Ada, of the PVS formalization given in Appendix A.

--! Verification status: Verified

-- l Larch

VG: trait

sort SpeedMode is (econ, edit, other)

sort OpProc is (descent_path, approach, econ_path_const_cas,

econ_path_const_mach, edit_path_const_cas, edit_path_const_mach)

introduces

proper: OpProc -> Bool

eng_crit: Bool, SpeedMode, Bool, Bool. Bool. Bool, OpProc -> Bool

undefined, ambiguous : Bool,

SpeedMode, Bool, Bool, Bool. Bool. OpProc -> Bool

asserts

forall fcc_asr, dap_exists, dap_con, speed_change, cas_mode:Bool,

fms_speed_mode:SpeedMode, opp:OpProc

proper_def: (proper(opp)

((opp=descent_path)

or

((opp=approach)

or

4O

APPENDIX D. VERIFICATION OF GENERATED CODE USING PENELOPE 41

(((opp=econ_path_const_cas) or (opp=econ_path_const_mach))

or

((opp=ediZ_path_consZ_cas) or (opp=edit_path_const_mach))))))

eng_crit_def: (eng_crit(fcc_asr, fms_speed_mode, dap_exists, dap_con,

speed_change, cas_mode, opp)

(if (opp=descent_path)

then ((not fcc_asr)

and

(dap_exists or (dap_con and (not speed_change))))

else (if (opp=approach)

then fcc_asr

else (if (opp=econ_path_const_cas)

then ((not fcc_asr)

and

((fms_speed_mode=econ)

and

(dap_con and (speed_change and cas_mode))))

else (if (opp=econ_path_const_mach)

then ((not fcc_asr)

and

((fms_speed_mode=econ)

and

(dap_con

and

(speed_change and (not cas_mode)))))

else (if (opp=edit_path_const_cas)

then ((not fcc_asr)

and

((fms_speed_mode=edit)

and

(dap_con and (speed_change and cas_mode))))

else (if (opp=edit_path_const_mach)

then ((not fcc_asr)

and

((fms_speed_mode=edit)

and

(dap_con

and

(speed_change and (not cas_mode)))))

else false)))))))

descent_path: (eng_crit (fcc_asr, fms_speed_mode, dap_exists, dap_con,

APPENDL_ D. VERIFICATION OF GENERATED CODE USING PENELOPE 42

speed_change, cas_mode, descenz_path)

((noZ fcc_asr) and (dap_exists or (dap_con and (not speed_change)))))

appr: (eng_criZ(fcc_asr, fms_speed_mode, dap_exisZs, dap_con,

speed_change, cas_mode, approach)=fcc_asr)

econ_path_const_cas: (eng_criZ(fcc_asr, fms_speed_mode, dap_ezisZs,

dap_con, speed_change, cas_mode, econ_paZh_const_cas)

((noZ fcc_asr)

and

((fms_speed_mode=econ)

and

(dap_con and (speed_change and cas_mode)))))

econ_paZh_const_mach: (eng_crit(fcc_asr, fms_speed_mode, dap_exisZs,

dap_con, speed_change, cas_mode, econ_path_consZ_mach)

((not fcc_asr)

and

((fms_speed_mode=econ)

and

(dap_con and (speed_change and (nol; cas_mode))))))

edit_paZh_consZ_cas : (eng_criZ(fcc_asr, fms_speed_mode, dap_exisZs,

dap_con, speed_change, cas_mode, ediZ_paZh_const_cas)

((not fcc_asr)

and

((fms _speed_mode=ediZ)

and

(dap_con and (speed_change and cas_mode)))))

ediZ_path_const_mach: (eng_criz(fcc_asr, fms_speed_mode, dap_exists,

dap_con, speed_change, cas_mode, edit_path_const_mach)

((not fcc_asr)

and

((fms_ speed_mode=edit)

and

(dap_con and (speed_change and (not cas_mode))))))

undefined: (undefined(fcc_asr, fms_speed_mode, dap_exists, dap_con,

speed_change, cas_mode, descent_path)

(_m_ op: OpProc: :

(noZ eng_crit(fcc_asr, fms_speed_mode, dap_exists, dap_con,

APPENDIX D. VERIFICATION OF GENERATED CODE USING PENELOPE 43

speed_change, cas_mode, op))))

ambiguous: (ambiguous(fcc_asr, fms_speed_mode, dap_exists, dap_con,

speed_change, cas_mode, descent_path)

(_me opl, op2 :OpProc: :

((opll=op2)

and

(eng_crit(fcc_asr, fms_speed_mode, dap_exists, dap_con,

speed_change, cas_mode, opl)

and

eng_crit(fcc_asr, fms_speed_mode, dap_exists, dap_con,

speed_change, cas_mode, op2)))))

--[end Larch

--_ with trait VG ;

package EXAMPLE_PAK is

type 0P_PROC_TYPE is (descent_path, approach, econ_path_const_cas,

econ_path_const_mach, edit_path_const_cas, edit_path_const_mach);

type fms_speed_mode_TYPE is (econ, edit, other);

fcc_asr : BOOLEAN;

fms_speed_mode : fms_speed_mode_TYPE;

dap_exists : BOOLEAN;

dap_con : BDOLEAN;

speed_change : BOOLEAN;

cas_mode : BOOLEAN;

Undefined, Ambiguous : exception;

function dp_spd_scn return OP_PRDC_TYPE;

--I where

--I global fcc_asr, fms_speed_mode, dap_exists, dap_con, speed_change,

cas_mode : in ;

--I return opp such that eng_crit(fcc_asr, fms_speed_mode, dap_exists,

dap_con, speed_change, cas_mode, opp);

--I raise

Ambiguous

<=> in

ambiguous(fcc_asr, fms_speed_mode, dap_exists, dap_con,

speed_change, cas_mode, descent_path);

--[raise

Undefined

APPENDIX D. VERIFICATION OF GENERATED CODE USING PENELOPE 44

<=> in

undefined(fcc_asr, fms_speed_mode, dap_exists, dap_con,

speed_change, cas_mode, descent_path);

--I end where;

end EXAMPLE_PAK;

package body EXAMPLE_PAK is

-- WARNING: you may need to declare *compare* with other input types

func¢iondp_spd_scn return OP_PROC_TYPE

--I where * * *

--I Elobal fcc_asr, fms_speed_mode, dap_exists, dap_con,

speed_change, cas_mode : in ;

--I return opp such that eng_crit(fcc_asr, fms_speed_mode,

dap_exists, dap_con, speed_change, cas_mode, opp);

--I raise

Ambiguous

<=> in

ambiguous(fcc_asr, fms_speed_mode, dap_exists, dap_con,

speed_change, cas_mode, descent_path);

--I raise

Undefined

<=> in

undefined(fcc_asr, fms_speed_mode, dap_exists, dap_con,

speed_change, cas_mode, descent_path);

--I end where;

--i VC Status: proved

--' BY instantiation of ambiguous in trait VG as rewrite rule

--' BY instantiation of undefined in trait VG as rewrite rule

--m BY instantiation of proper_def in trait VG as rewriCe rule

--' BY instantiation of eng_crit_def in trait VG as rewrite rule

--' BY limited simplification, limited simplification

--! BY synthesis of IF,

--' BY prenex simplifica¢ion, simplification

--' BY synthesis of EXISTS exhibiting approach

--' BY limited simplification

--' BY synthesis of TRUE

--' AND

--I BY synthesis of AND

--! BY synthesis of FORALL/IMPLIES

--m BY right substitution, in 2 then thinning,

--' BY limited simplification

APPENDIX D. VERIFICATION OF GENERATED CODE USING PENELOPE 45

--m BY synthesis of IF,

--m BY synthesis of IF,

--' BY synthesis of AND

--m BY cases, using cas_mode, then rewriting

-- m CASE TRUE

--m BY synthesis of EXISTS exhibiting descent_path,

econ_path_const_cas

--i BY limited simplification

--' BY synthesis of TRUE

-- l CASE FALSE

--m BY synthesis of EXISTS exhibiting descent_path,

econ_path_const_mach

--' BY limited simplification

--i BY synthesis of TRUE

--' BY prenex simplification

--' BY synthesis of EXISTS exhibiting descent_path

--' BY limited simplification

--i BY synthesis of TRUE

----!

----|

----|

---|

----|

--O

--|

----|

--|

---|

--m

__|

_-|

__|

_--|

__|

_-|

__|

_-|

__|

__|

__|

[]

AND

BY prenex simplification

BY synthesis of EXISTS exhibiting descent_path

BY limited simplification

BY synthesis of TRUE

AND

BY

BY

synthesis of FORALL/IMPLIES

synthesis of IF,

BY synthesis of IF,

BY prenex simplification

BY synthesis of EXISTS exhibiting econ_path_const_cas

limited simplification

synthesis of TRUE

BY

BY

Am

BY

BY

BY

BY

AND

BY

BY

prenex simplification

synthesis of EXISTS exhibiting econ_path_const_mach

limited simplification

synthesis of TRUE

prenex simplification

synthesis of EXISTS exhibiting descent_path

APPENDIX D. VERIFICATION OF GENERATED CODE USING PENELOPE 46

--!

-- -- |

BY limited simplification

BY synthesis of TRUE

--' BY synthesis of FORALL/IMPLIES

_-i BY right substitution, in 2 then thi_ing,

--' BY limited simplification

--! BY synthesis of IF,

--' BY synthesis of IF,

--, BY synthesis of AND

--m BY cases, using cas_mode, then rewriting

--, CASE TRUE

--, BY synthesis of EXISTS exhibiting descent_path,

edit _path_ const_ cas

--! BY limited simplification

__I BY synthesis of TRUE

--, CASE FALSE

--! BY synthesis of EXISTS exhibiting descent_path,

edit_path_const_mach

__m BY limited simplification

__m BY synthesis'of TRUE

--* BY prenex simplification

--, BY synthesis of EXISTS exhibiting descent_path

--m BY limited simplification

__i BY synthesis of TRUE

----I

---|

--m

__|

__|

_-|

--m

[]
AND

BY prenex simplification

BY synthesis of EXISTS exhibiting descent_path

BY limited simplification

BY synthesis of TRUE

AND

BY synthesis of FOKALL/IMPLIES

BY synthesis of IF,

BY synthesis of IF,

BY prenex simplification

BY synthesis of EXISTS exhibiting edit_path_const_cas

BY limited simplification

BY synthesis of TRUE

AND

BY prenex simplification

APPENDIX D. VERIFICATION OF GENERATED CODE USING PENELOPE 47

----!

----|

----|

----|

----|

----|

----|

----!

----|

----!

----|

----|

_--|

_--|

----|

----|

----|

--! []

BY

BY

BY

BY

BY

BY

AND

BY

BY

BY

BY

BY synthesis of EXISTS exhibiting edit_path_const_mach

BY limited simplification

BY synthesis of TRUE

AND

BY prenex simplification

BY synthesis of EXISTS exhibiting descent_path

BY limited simplification

BY synthesis of TRUE

synthesis of FORALL/IMPLIES

right substitution, in 2 then thinning,

limited simplification

synthesis of IF,

BY prenex simplification

BY synthesis of EXISTS exhibiting descent_path

limited simplification

synthesis of TRUE

prensx simplification

synthesis of EXISTS exhibiting descent_path

limited simplification

synthesis of TRUE

is

begin

if fcc_asr then

return approach;

else

case fms_speed_mode is

when econ =>

if dap_exists then

if dap_con then

if speed_change then

raise Ambiguous;

else

return descent_path;

end if;

APPENDIX D. VERIFICATION OF GENERATED CODE USING PENELOPE 48

else

return descent_path;

end if ;

else

if dap_con then

if speed_change then

if cas_mode then

return econ_path_const_cas ;

else

return econ_path_const_mach;

end if ;

else

return descent_path;

end if ;

else

raise Undefined;

end if ;

end if ;

when edit =>

if dap_exists then

if dap_con then

if speed_change then

raise Ambiguous ;

else

return descent_path;

end if ;

else

return descent_path;

end if ;

else

if dap_con then

if speed_change then

if cas_mode then

return edit_path_const_cas ;

else

return edit_path_const_mach;

end if ;

else

return descent_path;

end if ;

else

raise Undefined;

APPENDIX D. VERIFICATION OF GENERATED CODE USING PENELOPE 49

end if ;

end if ;

when other =>

if dap_exists then

return descent_path;

else

if dap_con then

if speed_change then

raise Undefined;

else

return descent_path;

end if ;

else

raise Undefined;

end if ;

end if ;

end case ;

end if ;

end dp_spd_scn;

end EXAMPLE_PAK;

Appendix E

A Survey of Other Decision Table

Tools

ORA has conducted a survey of existing decision table tools. We have not actually used any of

these tools. The descriptions below are compiled from reviews and marketing information.

All the tools surveyed appear to do basic coverage analysis (exclusive and exhaustiveness

checks), and a number of them appear to have fancier approaches to generating code than TBeU

has. A number of them simplify decision tables. In the context of TBeU, that simplification

would be done by converting tables into the internal FDD representation and then back into

tables, a trivial operation. Some of the descriptions mention "flowcharts," apparently meaning

to express the idea of a decision diagram.

None of the other tools appear to do anything like TBell's structural analysis or to generate

English-language documentation. None seem to support anything like the partitioned decision

tables we have suggested. Some are components of larger program development systems.

Deva and Deva-Pro (Binary Triangles, La Mesa, CA)

DEVA-PRO 4.0 is a decision table evaluation program for strategic logic design and develop-

ment. It allows users to build huge decision tables and to check them for completeness and

contradictions. The program also measures the amount of tight logic in the decision table and

standardizes the decision table. It also creates two different tight flowchart representations of

the logic in the decision table, one of which is easy to turn into source code. The software

enables users to simplify the decision table, which means that they can automatically find the

smallest tight flowchart that represents the logic in their decision table. It is very useful to be

able to simplify the table's logic, especially at the abstract design stages, and thereby eliminate

the subtle, hard-to-find bugs. The program is protected by Rainbow Technologies' hardware

key. 200K RAM required. Price: $369.95.

50

APPENDIX E. A SURVEY OF OTHER DECISION TABLE TOOLS 51

Logic Gem (Logic Technologies, Inc.)

Logic GEM 1.0 Programmer's edition is primarily a decision-table editor and logic interpreter

for the IBM PC, PS/2 or compatible with 640K of RAM and DOS 2.0 or later. It can also

generate code in C, BASIC, dBASE III Plus, FORTRAN, and PASCAL. It is best at disclosing

patterns in code. The user interface is somewhat rough and its menu structure somewhat

illogical. Logic GEM is a good program for programmers who can use decision-tables, or for

those wanting to learn. Price: $198.

REFINE/COBOL 1.0 PC Version (Reasoning Systems, Inc., Palo Alto, CA)

REFINE/COBOL is an interactive, graphical re-engineering tool that allows programmers to as-

sess, redocument, quality-check, and convert existing COBOL applications. REFINE/COBOL

extracts business rules based on decision tables. It modularizes large COBOL applications into

manageable programs creating CALLs, USING parameters, ENTRYs, and linkage and work-

ing storage sections. The system performs program slicing to determine data dependencies for

change impact analysis, rationalizes data names across all programs in a JCL job, and reformats

COBOL source code. The system generates structure charts, set-use tables, flow charts, and

physical data model and data-flow diagrams. The system displays reports online graphically

and/or textually, and prints them on PostScript-compatible printers. REFINE/COBOL also

provides an interactive code that links reports to code.

Syslog Automation Methodology - SAM (Syslog, Montreal, Quebec)

SAM is an automated software design and development environment that is based on the

relational decomposition of software into primitive components. The SAM II logic verifier

analyzes the consistency and completeness of decision logic. The dependencies that frequently

exist among conditions are taken into account.

Logic Gem (Sterling Castle Software, Marina Del Ray, CA)

Logic Gem is a logic CASE tools program from. This package offers a variety of options for

generating program code from tabular-format rules and a well-focused set of powerful analytic
aids.

Logic Gem is a program development tool that allows the user to analyze program logic by

means of decision tables. A decision table is defined as a matrix associating a series of conditions

with a set of actions. Logic Gem, aided by its integral Logic Editor, has capabilities for helping

construct decision tables, evaluating the matrix and detecting inconsistencies, detecting and

eliminating ambiguities, and generating code in C, Pascal, line-numbered or structured BASIC,

FORTRAN, or dBASE III Plus. By transforming IF ... THEN logic into a decision table,

Logic Gem can make sure that program logic is complete by verifying that all possible states

have corresponding actions. A big advantage of the software is that it reveals unsuspected

APPENDIX E. A SURVEY OF OTHER DECISION TABLE TOOLS 52

patterns in a code. While its user interface could be smoother and its menu structure more

logical, Logic Gem is valuable for decision table programmers. Price: $99.

Teamwork (Cadre Technologies Inc., Providence, tt.I.)

Cadre Technologies Inc.'s Teamwork is a CASE package that operates on workstations us-

ing UNIX, VMS, HP Apollo Domain, and 0S/2 operating systems and takes advantage of

X-Windows for its platforms. It is a multi-user product for a client/server architecture. Team-

work's tools aid real-time CASE development for process specifications, control specifications,

decision tables, state/event matrices and process activation tables. Teamwork/RT (for real-

time) is a graphics module for Ward-MeUor and Hatley-Pirbhai extensions to data flow dia-

grams, and provides complete tables of notation for state and process specs. Teamwork/SIM

simulates the actions of the model. Price: $29,000.

Turbo CASE and MacBubbles (Structsoft, Inc. and Starsys, Inc.)

Structsoft's Turbo CASE and Starsys's MacBubbles are two CASE packages for the Apple

Macintosh. Both have menus with many command shortcuts. Programmers can decompose

processes into child process diagrams, decision tables, or minispecs. Data-dictionary entries

contain linkage information, and the program can switch context in mid-task. MacBubbles

supports only Yourdon/DeMarco dataflow diagrams and has a MacDraw-like interface. Price:
Turbo Case--S495; MacBubbles--$780.

DTABL (IBM, System Engineering Services, Armonk, NY)

DTABL maintains a library of limited-entry decision tables that can be compiled into high-

quality procedural code. Decision tables can be validated for consistency and completeness.

The compiler within DTABL attempts to select the best (or near best) flowchart. In addition

to its compiler, DTABL contains an interactive table editor and table verifier that indicates

incomplete or inconsistent logic rules. The system also provides questionnaire processing, which

interactively guides the user through a series of yes/no questions (conditions) to the proper set

of directions (actions). Object code can be generated in APL, PL/1, Cobol, or Algol.

FilePro Plus (The Small Computer Company)

FilePro Plus is a DOS character-based development system available for most UNIX systems

and some other platforms. Instead of a programming language, users enter processing com-

mands into DECISION TABLES containing a series of IF ... THEN statements to determine

processing in a program. It uses a proprietary database format, and can import and export

only DBF files. Although FilePro offers an assortment of tools for screen design, it lacks an

easy way of laying out fields. Price: $699.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection o! information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Informallon Operations and Reports. 1215 Jefferson Davis
Highway. Suite 1204, Adington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0t88), Washington, DC 20503.

1, AGENCY USE ONLY (Leave blank) 2. REPORT DATE

November 1994

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

TBelI: A Mathematical Tool for Analyzing Decision Tables C NAS1-18972

6. AUTHOR(S)

D. N. Hoover and Zewei Chen

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

Odyssey Research Associates, Inc. (ORA)
301 Dates Drive

Ithaca, NY 14850-1313

9. SPONSORING/ MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center
Hampton, VA 23681-0001

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: C. Michael Holloway
Task 13 Report

3. REPORTTYPEANDDATESCOVERED

Contractor Report

WU 505-64-50-04

8. PERFORMING ORGANIZATION

REPORT NUMBER

TM-94-0073

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-195027

12a. DISTRIBUTION I AVAILABIMTY STATEMENT

Unclassified-Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 2OO words)

This paper describes the development of mathematical theory and software to analyze specifications that are

developed using decision tables. A decision table is a tabular format for specifying a complex set of rules that

choose one of a number of alternative actions. The report also describes a prototype tool, called TBelI, that
automates certain types of analysis.

14. SUBJECTTERMS

formal methods, decision tables, technology transfer, binary decision diagrams,
formal specification

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

57

16. PRICE CODE

A04

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

