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INTRODUCTION AND BACKGROUND

Originally the goal of this contract was to develop a method for analyzing the structural
response of mistuned bladed disk with nonlinear constraints such as shroud contact and
friction damping. The approach was to used harmonic balance methods of approximating
nonlinear response, and efficient, receptance methods for representing the linear substructures.
It was postulated that the receptance approach could be used to reduce the number of degrees
of freedom to just those directly associated with the nonlinear constraints. The harmonic
balance method of dealing with the nonlinearities would replace a system of nonlinear ordinary
differential equations with a system of nonlinear algebraic equations. Thus, using both
approaches the calculation of the response of a mistuned bladed disk, such as the NASA
turbopump would be reduced to that of solving a relatively small system of nonlinear algebraic
equations.

Several primary objectives had to be achieved in order to meet these objectives. They

wWere:

1. The response of the system with nonlinearities had to be nearly harmonic and have
unique solutions.

2 The receptance method had to be developed to a point where it accurately predicted
system response, and, yet was computationally efficient.

Initial studies were done during the first two years of this contract addressing the first
issue of representing nonlinearities. Two types of nonlinearities were studied: the impact of
neighboring shrouds, and friction dampers. It was found that for the case of neighboring
shrouds hitting each other that the problem could have multiple solutions, even in the case of
one blade. This meant that it was not feasible to include this type of physics (shroud lift-off
or shroud hitting) when trying to simulate the response of bladed disks since the large number
of possible solutions that could occur with multiple blades would make this problem
extremely difficult to solve. It was found in the initial study, that friction constraints, on the
other hand, always resulted in unique solutions that could be represented very well using
harmonic balance methods. Consequently, it was decided to go ahead with the second part of
the project, but include only friction-type nonlinearities in our formulation.

A result of this original study was that it was shown that some very unusual dynamic
response that had been observed in a NASA turbopump was Very possibly due to shroud
contact. This work is documented in [1].



A formulation was then developed for reducing the number of degrees of freedom in a
mistuning analysis. Initial work had been done in developing this approach when NASA
decided that it had to significantly reduce funding for this project. As a consequence, it was
agreed that the statement of work for this contract would be revised and the deliverables
changed to the following:

e Complete the development of a computer code for performing linear mistuning
analyses with reduced order models developed from a SPAR/EAL finite element model
of the blade and an annular disk. Reduced order models are models that can be
explicitly derived from the finite element model and that have significantly fewer
degrees of freedom than a comparable finite element model, e.g., 10,000 degrees of
freedom per blade reduced to six.

o The code will be based on a Monte Carlo type analysis in which the frequencies of the
blades vary randomly and the forced response is calculated over a range of excitation
frequencies.

e Document linear mistuning code.

e Prepare a paper on the mistuning analysis of a NASA turbopump for the Advanced
Earth-to-Orbit Propulsion Technology — 1994 Conference.

Consequently, the final effort on this contact has focused on developing a linear mistuning
code and that development and documentation is the focus of this report. A paper on the
mistuning analysis of a NASA turbopump is included in volume II of the Proceedings of the
Advanced Earth-to-Orbit Propulsion Technology — 1994 Conference and is cited as

reference 2.

DEVELOPMENT AND DOCUMENTATION OF LINEAR MISTUNING
CODE

The development and documentation of the linear mistuning code is documented in the
three appendices of this report. They are:

e Appendix A: Summary Report. This summary report provides a brief summary of
the theory and application of the linear mistuning code.

e Appendix B: User Manual. This manual specifies the input requirements for running
the linear mistuning code.

e Appendix C: Theoretical Manual. This manual provides a detailed explanation of the
theory and application of the linear mistuning code (in effect, this is an expanded
version of Appendix A).



DELIVERY OF LINEAR MISTUNING CODE

The linear mistuning computer code (LMCC) and the input files used in analyzing the
NASA turbopump have been transferred to NASA Marshall Silicon Graphics Computer on
which the researchers where given an account. The example case, the NASA turbopump, ran
correctly on the NASA computer. There was a problem with compatibility in transferring to
the Silicon Graphics computer at NASA in that the random number generating subroutine did
not work correctly on the Silicon Graphics if certain optimization options were used during
its compilation. This problem is documented in the User Manual.

Thus, LMCC and example files have been successfully delivered to NASA Marshall at

this time.

KEY RESULTS

Interesting results from running LMCC are discussed at some length in Appendix A.
Briefly, however there are two key results:

1 1t works well, i e., it is computationally efficient and accurate.

2 When the disk is stiff, it predicts very different mistuned response from the mass
spring models that were used in the past. LMCC shows that bladed disk systems
can have a large amount of amplitude scatter from blade to blade even when the
disk is very stiff The old mass/spring models predict that, in this case, the blades
would act as uncoupled, independent systems (the disk is almost a rigid
foundation) and that there would be very little amplitude scatter. This could be a
very important result if NASA decides to go to bladed disk systems with stiff
disks, e.g. if they decide to use integral bladed disks. (Experimentalists at the
engine companies have also observed large blade to blade scatter and reported that
the mass spring models did not predict this behavior.)

RECOMMENDATIONS

Several things could be done to make the linear mistuning code more efficient, more

accurate, or more convenient. The primary ones are:

1. Modify the input data so that the disk modes could be calculated using cyclic
symmetric boundary conditions in EAL. Currently, LMCC requires that the
modes of the disk be calculated using a model of the full disk.



2. Add aerodynamic coupling between the blades. Currently, only blade and disk
modal damping are included. During 2 NASA review, this option was not judge to
be very important since most NASA applications correspond to very short stiff

blades.

3 Modify the input preprocessor SO that LMCC is compatible with other finite
element codes. Currently, it only works with EAL or SPAR programs.

Nonlinear constraints could also be added to the formulation. For example, with
appropriate modifications LMCC could handle shroud friction constraints in a very efficient

manner.

Lastly, LMCC could be a very useful tool in assessing various strategies for actively
controlling bladed disk response. The reason for this is that its structural fidelity would allow
the researcher to quantitative assess the effect on system response of putting actuators at

various locations on the disk and blades.
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Appendix A: Summary Report

EXECUTIVE SUMMARY

A reduced order approach is introduced that can be used to predict the steady-state
response of mistuned bladed disks. This approach directly takes results from a finite
element analysis of a tuned system and, based on the assumption of rigid blade base
motion, constructs a computationally efficient mistuned model with a reduced number of
degrees of freedom. Based on a comparison of results predicted by different approaches
it is concluded that: the reduced order model displays structural fidelity comparable to
that of a finite element model of the entire bladed disk system with significantly improved
computational efficiency; and under certain circumstances both the finite element model
and the reduced order model predict quite different response from simple spring-mass
models.

INTRODUCTION

The resonant amplitudes of turbine blades tend to be sensitive to minor variations in
the blades’ properties. It is realized that, because of the rotational periodicity of its
geometry, a bladed disk usually has natural frequencies that are clustered in narrow
ranges. When the natural frequencies of a system are close together, slight variations in
the system’s structural properties can cause large changes in its modes, and,
consequently, its dynamic response. The sensitivity of a bladed disk’s dynamic response
to small variations in the frequencies of the blades is referred to in the literature as the
blade mistuning problem and has been studied extensively, for examples refer to Dye and
Henry (1969), Ewins (1988), Fubunmi (1980), Griffin and Hoosac (1984), or Ottarsson
and Pierre (1993). It is important to understand mistuning since it can result in large blade
to blade variations in the vibratory response and the high response blades can fail from

high cycle fatigue.

Much of the work that has been done in mistuning utilizes spring-mass models to
represent bladed disks in order to reduce the number of degrees of freedom and to make
the problem computationally tractable, for examples refer to the previously cited papers.
The model’s parameters, such as the mass and the spring constants, are chosen in an ad
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hoc manner and one must question the ability of such simple models to accurately
represent such complex systems. While some attempt has been made to corroborate the
accuracy of spring-mass models by comparing predictions with specific test data, for
example Griffin (1988), such work is relatively scarce.

Efforts have been made to develop more structurally accurate models for bladed disks
by using plate elements to represent the disk and beam elements to represent the blades,
for examples refer to Kaza and Kielb (1984), and Rzadkowski’s two papers in (1994).
While there can be blade configurations for which the beam representation may be
adequate, plate, thick shell, and even solid elements are often needed to represent modemn
low aspect ratio blades. The finite element method could be a possible choice to
accurately model a whole bladed disk, but it is recognized that the time cost and the
storage space required to run these programs would be prohibitively high. For example,
one could imagine using the Monte-Carlo approach of Griffin and Hoosac (1984) with
detailed finite element models of the entire mistuned bladed disk. Such an approach
would involve the analyses of hundreds of mistuned disks in order to determine the
statistical variations in the blades’ vibratory response. Clearly, such computations are
currently beyond the capabilities of even super computers and would be hardly suitable
for use as a design tool. Furthermore, because of the extremely large number of degrees of
freedom involved and the closeness of the natural frequencies, one must question if such

results would even be numerically accurate.

The limitations associated with spring-mass and beam models and the direct finite
element approach motivate us to consider the possibility of developing a new mode! for
analyzing mistuned bladed disks. Our goal is to develop a methodology that will directly
take the results from a finite element analysis of a tuned system and construct a
computationally efficient mistuned model with a reduced number of degrees of freedom.
The intent is that the approach will display structural fidelity comparable to a finite
element model and computational efficiency more comparable to that of a spring-mass
model.

APPROACH FOR REDUCING THE NUMBER OF DEGREES OF FREEDOM

In the study of the steady-state response of complex structures, one widely used
analytical approach is the receptance method, Bishop and Johnson (1960). The
receptance method is based on the observation that the dynamic response of every
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substructure is determined by how it interacts with its environment at its boundaries. If
the substructure interacts with its environment only at limited areas, it is convenient to
express the degrees of freedom of the entire substructure in terms of the degrees of
freedom of its interfaces. The benefit of this method is that when several substructures
interact with each other, it is only necessary to solve for the degrees of freedom
associated with the interfaces. Once the degrees of freedom of the interfaces are
determined the response of all substructures and, consequently, the whole structure may
be calculated. To apply the receptance method to the mistuned bladed disk, it is divided
into two substructures — the disk (Figure 1) and the blades (Figure 2). Modal analysis 1s
then used to determine the substructures’ behavior in terms of the degrees of freedom of
the interfaces. However, the receptance method has two shortcomings:

Figure 1. Disk substructure Figure 2: Blade substructure

1. The substructures’ modes have to be free at the disk-blade interfaces in order to be
admissible. This works reasonably well for the disk since the blades provide
relatively little constraint at its rim and, consequently, only a few families of disk
modes are required to represent its response. However, it is undesirable to use
the free-free blade model. Because blades generally vibrate close to the clamped-
free condition, a large number of the free-free modes are needed to achieve a good

representation of its vibratory response.

2. A direct application of the receptance method results in a formulation with a
reduced number of degrees of freedom. However, depending on the number of
nodes at the blade interface, the number can still be quite large, especially if solid
elements are used to model the blade’s neck. Since it is undesirable to restrict the
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approach to blade models with only a few nodes at the disk-blade interface, the
receptance method needs to be modified in order to make it even more efficient.

This is done using the following simplifying assumption.

It is assumed that the disk-blade interfaces undergo rigid body type translations and
rotations. The blade vibration is then determined as a combination of blade base motion
and clamped-free blade modes. As will be shown, this approach results in a formulation
that has a relatively small number of degrees of freedom (six times the number of blades)
and is consequently, computationally efficient. In addition, since the blade’s response is
represented in terms of its clamped-free modes its response can be quickly characterized
with only a few modes.

MATHEMATICAL FORMULATION

——— Disk Equation —————

If the disk substructure is subjected to a harmonic excitation, its response is given by

the receptance matrix R, i.e,

- zd

ug Rg,a Rg,B fo
= M

B a BB B

where ﬁd, fd, and RY are the displacement, the external force, and the receptance

associated with the disk. The subscript o denotes the group of nodes that do not interact
with other substructures and the subscript B denotes the group of nodes that reside at the
disk-blade interfaces. Since the only external forces on the disk are the interactive forces
at the disk-blade interfaces

7 -5 @)
Equations (1) and (2) imply that

-d d <d (3)

To formulate the disk equation in a more reduced order form, i.e., a formulation with six
degrees of freedom per interface, the following two relations are introduced
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g =Qf o U5 @)

fd=x5, 'f'g (5)

where ug is a vector whose components are the six equivalent rigid body-type motions of

the disk at the interfaces and fg is the resultant forces on the disk at the interfaces. QB o
is the geometric relation between ﬁﬁ and u0 and Zo,ﬁ is the geometric relation between

?g and -f'g. The inverse relations of equations (4), and (5) are

6=, i ©®)
fa =38, 1S )

+ +
where Qg’o and Zg,B are the generalized inverses of the matrices Qg,o and Zg,ﬁ'

Their expressions are

T -1 T
o), =0}, o, ] s ®

-1
gd *_gd T(ed d T
OB —ZO'B (ZO!B EO,B ) (9)
In essence, equations (6) and (7) state that ﬁg is the least squares fit of ﬁg and fg is the

non-self-equilibrated forces estimated from fg. There are many possible choices of the

distributed force fg " The reason that only the non-self-equilibrated forces were used is

that, because of Saint Venant's Principle, the self-equilibrated forces die off quickly away
from the interfaces and their global effect on the system should be relatively small.
Substituting equations (6) and (7) into equation (3), results in the reduced order
receptance formulation for the disk

fd (10)

where
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RS, =QS, RipZop (a1
By applying standard modal analysis, the disk receptance RE-B can be written as
5 4T

RBB 2 Ja 4)}-5 (]2)
( _0?+2iQ0f CJ]

where ¢ is the jth disk mode, and mJ , CJ , and co are the modal mass, modal damping

ratio, and natural frequency of the jth disk mode. Combining equations (11) and (12), the
reduced order disk receptance can be written as

8, %
d _ jo Yo
Roo=2 573 — (13)
i mj[mj -Q +21§lecjj

where 6?0, the jth reduced order disk modes, is written as

d,=Q8, o (14)

— Blade Equation =—————

Consider a single blade whose base is constramed to move in a plane undergoing small,

harmonic translations and rotations. Let u, b e the six-degree-of-freedom displacement

vector of the blade base and, again, denote the group of nodes that do not interact with the
disk by the subscript & and the group of nodes that reside at the interface by B. The

receptance equation for the blade can be written as

QQO o—Raa(f +Q MGQQGO ) (15)
15 =Qpo o (6)

where Q is the excitation frequency. ﬁb, £° , and RP are the displacement, the external

force, and the receptance associated with the blade. Mg'a is the blade mass matrix

A-6



associated with the group-a nodes. Qg'o and QE , are geometric functions such that

Qg'o ﬁg and Q‘B)‘o ﬁg describe the motion of the entire blade provided that the blade
follows the motion of its base and does not deform. The term ©° Mg’a Qg'o ﬁg in the
right hand side of equation (15) describes the inertial force introduced by the blade base
motion. Rearranging equation (15), the motion of the group-a nodes ﬁg can be expressed

in terms of the external excitation force ?2 and the blade base motion ﬁg, ie,

- 3 250 b b -=b
il =R5, To+(@ RS o Mo +1)Qo0 B0 (17)

From modal analysis, the receptance Rg o can be wnitten as

.—b -b T
b ¢j,a ¢j.u 18
Ro.a =2 b (18)

2
. m (m? -Qz+2iQm?C?j

)

where 6? is the jth mode for a blade clamped at its base, and m?, C?, and m? are the

modal mass, modal damping ratio, and natural frequency of the jth blade mode.

Figure 3: Forces acting on free body diagram of blade

The resultant force on the blade base, 'fg , is needed in order to assemble the entire

system. To determine 'fg consider the blade as an object which can move and deform in
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space (Figure 3). The forces acting on the blade are the excitation force ?3 and the
interactive force at the interface fg. Since linear and angular momentum have to be

conserved, one can deduce that
b 2aqb=b bzb b b b
zh(-0° M J=20f" =2gafa +fo (19)
where Zg is a geometric function which calculates the resultant force and moment about

the blade base O. Substituting equations (16) and (17) into equation (19), ?},’ can be

, — .. Fb .
expressed in terms of the blade base motion ug and the external excitation fg, 1.€.,

=b b -b b zb
fo =Zo,o uo+Ho,a fo. (20)
where
b badb AD 4 b b b b b
Zo.o = ’Qz h2 M Q.- Q zo,ot Ma,u Ra.a Ma.a Qa,o (21)
b 2 b b b b
Ho,m:"'Q Z0,0l M u,aRa,a_ZO.a (22)

Equation (20) describes the relation between the interactive force fg , the blade base
motion ﬁg, and the external excitation ?g for a single blade. Clearly, similar equations

apply for all blades. In fact, equations (20), (21) and (22) describe the motions of all of
the blades provided the vectors represent the collections of the corresponding vectors of
individual blades and the matrices become block diagonal matrices with the corresponding
matrices of individual blades at the diagonals.

Assembling the Substructures —————

Equations (10) and (20) describe the relations between the interactive forces and the
motion of the interfaces for the disk and the blades respectively. Since there are four

unknown vectors, ﬁg, fg , iig, and -fg to be determined, there needs to be two additional

constraints. The first is Newton’s law of interactive forces, i.€,

£d

=b
£8=-1, (23)
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The second one is Hooke’s law which provides a constitutive relation at the interfaces,
ie,

d -b)

fg = Ko.o(ﬁ() —Ug (24)

where Ko,o is the stiffness matrix associated with the attachment at the disk-blade

interfaces.! By solving equations (10), (20), (23), and (24) simultaneously, the four

. oL -b .
unknowns can be expressed in terms of the external excitation force f, 1€,

0 =(R2, +K3h 1+ 28 (R, + Kb BT @5
o =[1+200(R00 + Koo )r HY, o (26)
8 =—RE[1+28, (RS, +Koh )| B Th @)
£ = —[1 +20,(R5.0+ Koo )r HS ) 28)

The vibration of the blades can then be easily derived by substituting equation (25) into
equation (17).

Remarks on the Mathematical Approach

There are several advantages of using the reduced order formulation (equations (17)

and (25)) to solve the blade mistuning problem:

1. The coefficient matrices Rg,o, Zg‘o, and Hg’a are calculated from the
substructures’ modes. Since the frequency range is usually limited to a narrow
range near a particular engine order crossing, only a few dominant modes need to
be included in the calculation and, consequently, the computational cost is low.

1 If the attachment is infinitely stiff, then (24) implies that the displacements in the blade and disk are
equal, and, consequently, (24) becomes a continuity requirement.
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2 For blade mistuning problems, the disk is treated as a cyclic symmetric structure.
As a result, its modes can be calculated efficiently by applying cyclic symmetric
boundary conditions on a disk segment corresponding to a single blade.

3. The most computationally intensive part of this approach lies in computing the
inverse of the matrix [I+zg.o(Rg'o+K;'lo) in equation (25). This is a square
matrix with dimension six times the number of the blades. In many problems the
rigidity of the disk is such that only three degrees of freedom are needed to
describe the blade’s motion at its base, two rotations and translation normal to the
disk. In either case the number of degrees of freedom are orders of magnitude

smaller than for a finite element model for an entire mistuned bladed disk.

4 The reduced order method is especially computationally efficient when running
Monte Carlo simulations of blade mistuning since the disk’s modes and the
nominal blade’s modes need only be calculated once. The coefficient matrices
associated with the blades (Zg,o and Hg,a) are calculated by changing the
cantilever blade frequencies in the receptance calculation for each blade. On the
other hand, a direct simulation using finite element models would require

completely new calculations for each mistuned stage.

COMPARISON OF RESULTS

A computer code named LMCC (Linear Mistuning Computer Code) has been
developed based on the reduced order approach. A test problem was developed, Figure 4,
and analyzed using: 1) modal summation based on a direct finite element analysis, 2)
LMCC, and 3) the mass-spring model of Griffin and Hoosac (1984) as depicted in
Figure 5. The response of the spring-mass model is determined using the computer code
BLDVIB. The vibratory response of more than one hundred different resonant crossings
have been examined of which the examples presented in this section are representative.

The geometry of the test problem was chosen so that the following requirements were
satisfied:

1. The disk and the nominal blade have natural frequencies that are representative of
a turbo-pump. Both the blades and disk are assumed to have material properties
associated with a super nickel alloy.
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2. The test problem represents a 1 41 6

realistic three dimensional

structure with low aspect ratio,

plate-like blades. A test problem 4 2
consisting of beam-type blades

r
HH
L4

L
(o]

would not be appropriate since a
goal is to check the validity of the 4 -5

simplifying constraint that the

bases of the blades move as rigid

bodies. H

1 1 1 1 1 1 1

3. The entire system does not have 6 -4 -2 0 2 4 6

too many degrees of freedom. As Figure 4: Finite element model

a result the entire bladed disk can of test problem

be directly analyzed by finite

i" Biade

elements without expending too
much computational time or
having numerical stability
problems.

There are still several parameters of
the reduced order model that need to be

determined before the algorithm can be R
Ground

implemented. The attachment stiffness
Figure 5. Spring-mass model used

matrix K,, is set to infinity to by Hoosac and Griffin

represent the simplified geometry of the

test problem. The other parameters that need to be determined are the damping ratios of
the substructures” modes. It is assumed that both the blades and the disk have the same
damping ratio. Its value is chosen so that the resonant response predicted by LMCC for
the tuned system is the same as that predicted by the finite element method.

Tuned Response

First a comparison will be made between LMCC and the finite element method based
on the natural frequencies of a tuned bladed disk. LMCC does not readily compute
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natural frequencies. However, if the system is lightly damped they can be inferred by the
system’s resonant frequencies since they can be calculated using LMCC’s forced
response algorithm. Figure 6 shows a comparison of natural frequencies. The integer “y7
refers to the engine order of the excitation which excites the jih nodal diameter mode.
Overall, the two methods agree reasonably well. However, the reduced order approach
tends to predict slightly higher frequencies probably because of the assumption of rigid
blade base motion which tends to over constrain the system. Note that the reduced order
model represents the structure’s response over a wide range of frequencies and nodal
diameters. Results from the spring-mass model are not shown since the natural
frequencies of the tuned system are part of the input parameters to the method and not

calculated results.

40000

1 1 L 1 1 v 1 1 ¥ T 1

Direct FEM B—

35000 } Reduced Order Model X

30000 d

25000

20000 }
15000

10000

Resonant Frequency (HzZ)

5000 ¢

o 1 2 3 4 5 6 7 g 9 10 11 12

Integer j

Figure 6: Tuned System Frequencies

The nominal properties of the spring-mass model were calculated using the approach
given by Griffin (1988). Initially, the spring-mass model predicted a spurious second
mode which had to be eliminated by varying some of the parameters. Figure 7 shows
representative response curves of the tuned system as predicted by the three different
methods. For this particular case, the bladed disk is subjected to a fourth engine order
excitation and the blades vibrate predominantly in their first bending mode. It appears
that the three curves agree well with each other though the response predicted by the
reduced order model is at a slightly higher frequency.
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Figure 8: Mistuned response curves for blades in first

bending




Mistuned Response

The finite element model is mistuned by varying the elastic modulus of the material in
each blade. This same effect is simulated in LMCC by changing the natural frequencies of
each blade when calculating its receptance. In the case of BLDVIB the stiffness, ky;, of
each blade was altered to produce the same frequency distribution. Figure 8 shows
representative response curves of the blades as predicted by the three methods. In this
case the bladed disk is subjected to a fourth engine order excitation and the blades
predominantly vibrate in their first bending mode. Clearly, the agreement of all three
methods is quite good. In general, it was observed that the reduced order model and the
spring-mass model give comparable results when the blades respond predominately in
their first bending modes.

Figure 9 depicts representative response curves when the blades are excited in their
first torsional mode. It is clear from the plots that the reduced order model works much
better than the spring-mass model in representing the response of the system. This case
differs from the bending mode case in that the disk is effectively much stiffer. This
stiffness effect is discernible from the fact that the percentage change in the frequencies of
the four and five diameter modes of the tuned system (Figure 6) is an order of magnitude
smaller for the torsional modes than the first bending modes. For a stiff disk, the spring-
mass model predicts that the blades essentially respond as isolated mistuned blades on a
rigid foundation. However, both the finite element and LMCC results indicate that there
is still significant interaction between the blades that results in complex system dynamics
that is not captured by the simple spring-mass models.2

Limitations of the Reduced Order Model

Additional simulations were made with both thicker and thinner disks. In general,
finite element and LMCC results agreed quite well except for one case. Figure 10 shows
the response curves predicted by the three different models for a bladed disk when the
thickness of the disk is halved. In the case in question, the tuned system has a response
which is similar to the frequency veering that is observed for the second and third modes
when j equals seven in Figure 6. As a result, the bladed disk has two families of modes
that are close together and that respond to the excitation. Because of the closeness of the

2 Simulations were also made of the response of the mistuned system in first bending with a stiffer disk.
In this case all three methods predicted that the blades would respond as isolated blades. Again, the
spring-mass model worked quite well for first bending.
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frequencies, the resulting modes contain significant amounts of both disk and torsional
blade response. It appears that neither the reduced order model nor the spring-mass
model successfully predict the correct results. One problem with the LMCC model is
that it does not predict the separation in the frequencies of the two families of modes
very accurately. This problem was addressed by introducing a finite value of the blade
attachment stiffness matrix, K, so that the frequency difference for the tuned system’s
response was the same as that of the finite element model. Figure 10(d) shows the
response curves predicted by the reduced order model when the attachment stiffness has
been adjusted. The results from the reduced order model agree somewhat better with the
finite element results, but not as well as in the other cases examined.

Execution Time Comparison

There are two principal advantages of the reduced order mode! approach which lead to
increased computational efficiency. The first is that the number of degrees of freedom
that must be determined (three or six per blade) in the forced response analysis is
independent of the refinement of the finite element model of the blade and disk models
that are used to calculate its input. Thus, LMCC is especially efficient when compared
to a direct finite element solution of a bladed disk that has a large number of elements.
Secondly, the most computationally expensive part of the calculation with LMCC is in
calculating the modes of the clamped blade and tuned disk using finite elements. Since
this needs to be done only once, LMCC becomes progressively more efficient when more
mistuned bladed disks are simulated in a specific Monte Carlo analysis. An estimate of
the relative run times of LMCC and a finite element analysis using modal superposition
for a representative case indicates that LMCC would be two to three orders of magnitude
faster for a one hundred bladed disk simulation.

CONCLUSIONS

A new reduced order approach has been developed for analyzing the forced response
of mistuned bladed disks. The reduced order model is based on the idea of decomposing
the bladed disk into substructures and representing the response in terms of the degrees of
freedom associated with their interfaces. It further assumes that the blade bases undergo
rigid body-type motions. The blade vibration may then be expressed as a combination of
blade base motion and cantilever blade modes. This approach results in only six



equivalent degrees of freedom, three rotations and three translations, at each disk-blade
interface. Because of the reduction in the number of unknowns, the reduced order model
provides a formulation which can be solved efficiently by computers. An advantage of
this formulation is that the reduced order model is directly calculated from finite element
analyses of a single clamped blade and a tuned disk without any additional ad hoc
assumptions.

Comparisons of results from direct finite element simulations and the reduced order
model indicate that, in general, the reduced order model agrees quite well with the finite
element baseline. An exception to this agreement occurred when modes from two
different families (one predominately blade modes and one predominately disk modes)
were close in frequency and excited simultaneously. Comparisons were also made with
results from spring-mass models. The spring-mass models predicted good results when
the blades were responding predominately in first bending, but did not predict the
response when the disk was stiff and the blades were responding predominately in first
torsion.

REFERENCES

Bishop, R. E. D. and Johnson, D. C_, 1960, Mechanics of Vibration, Cambridge
University Press.

Dye, R. C. F. and Henry, T. A, 1969, “Vibration Amplitudes of Compressor Blades
Resulting From Scatter in Blade Natural F requencies,” Transactions of the ASME,
pp. 182-188.

Ewins, D. J., 1988, “Structural Dynamic Characteristics of Bladed Assemblies,” ALGOR
Manual on Aeroelasticity in Axial-Flow T urbomachines, Vol. 2, Specialized Printing
Service Limited, Loughton, pp. 15-1 to 15-37.

Fabunmi, J. A, 1980, “Forced Vibrations of a Single Stage Axial Compressor Rotor,”
Journal of Engineering for Power, Transactions of the ASME, Vol. 102, pp. 322-328.

Griffin, J. H. and Hoosac, T, M., 1984, “Model Development and Statistical
Investigation of Turbine Blade Mi stuning,” Journal of Vibration, Acoustics, Stresses,
and Reliability in Design, Transactions of the ASME, Vol. 106, pp. 204-210.

Griffin, J. H, 1988, “On Predicting the Resonant Response of Bladed Disk Assemblies,”
ASME Journal of Engineering for Gas Turbines and Power, Vol. 110, pp. 45-50.



Kaza, K. R. V. and Kielb, R. E., 1984, “Flutter of Turbofan Rotors with Mistuned
Blades,” AIAA Journal, Vol. 22, No. 11.

Ottarsson, G. and Pierre, C., 1993, “A Transfer Matrix Approach to Vibration
Localization in Mistuned Blade Assemblies,” ASME Report No. 93-GT-115,
presented at the International Gas Turbine and Aeroengine Congress and Exposition,
Cincinnati, Ohio, May 24-27.

Rzadkowski, R., 1994, “The General Model of Free Vibrations of Mistuned Bladed
Discs, Part I. Theory,” Journal of Sound and Vibration, Vol. 173, No. 3, pp. 377-
393.

Rzadkowski, R., 1994, “The General Model of Free Vibrations of Mistuned Bladed
Discs, Part 1I: Numerical Results,” Journal of Sound and Vibration, Vol. 173, No. 3,
pp. 395-413.

Wagner, L. F, 1993, “Vibration Analysis of Grouped Turbine Blades,” Ph.D. Thesis,
Camegie Mellon University, Pittsburgh, PA.



APPENDIX B: UsSer MANuAL FOR LMCC

INTRODUCTION

LMCC (Linear Mistuning Computer Code) is a FORTRAN program designed to
solve for the steady-state vibratory response of mistuned bladed disk assemblies. It is
the implementation of the Reduced Order Algorithm developed by Yang and Griffin.
This algorithm directly takes the results from a finite element analysis of nominal
substructures (i.e., disk and blade) to construct a model for a mistuned bladed disk. With
blade bases being assumed moving rigidly, it constructs a reduced order system of
equations which can be computationally efficiently solved.

In the following descriptions of the procedure for running LMCC, it is assumed
that the reader may refer to the example files provided with the LMCC code.

CONTROL FLOW OF LMCC

LMCC is composed of several subprograms. Figure 1 shows the control flow of
LMCC. The names of the subprograms under the UNIX system are shown in the
brackets. Block 1 is the interface between EAL and LMCC which rearranges the output
data from EAL for the use of LMCC. Block 2 calculates the frequency independent
properties of the disk and the nominal blade. Block 3 helps users to specify the stiffness
of the disk-blade attachment and generates the mistuned natural frequencies of the blades.
Block 4 utilizes the outputs from the previous blocks to calculate the forced response of
the mistuned bladed disk and generate preliminary results from which the vibration of the
disk and the blade can be calculated. Block 5 extracts the information from preliminary
results to calculate and print out the nodal amplitudes of the blades.

An important rule to run LMCC is that the subprograms in the same block are
mutually independent but are dependent of the results from the previous blocks:
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Example 1. If a user wants to change the attachment stiffness of the disk-blade

interface but keep analyzing the same set of blades after a certain run, he/she can

just go back to Block 3 to run the subprogram [interface] and run [assembly] in

Block 4 and [amplitude] in Block 5, consequently; he/she does not have to run

[ranbld] in Block 3 or any subprogram in Blocks 1 and 2.

Example 2. After a certain run, if a user decides that he/she wants to see the

amplitudes of certain blade nodes which were not printed out previously, he/she

only needs to rerun the subprogram [amplitude].

Example 3. To run a Monte Carlo simulation for the mistuned analysis of a particular

nominal design, one can run LMCC according to the following steps:

Step 1.
Step 2.
Step 3.
Step 4.
Step S.

Step 6.
Step 7.
Step 8.

Step 9.

Run EAL for the disk and the nominal blade.

Run [eal_disk] and [eal blade].

Run [disk] and [blade].

Run [interface].

Run [ranbld] to generate mistuned blade frequencies. Giving different
seeds to the random number generator will produce different sets of
blades.

Run [assembly].

Run [amplitude].

If necessary, rename the output file of [amplitude] to save the result of
a particular stage. The default output file name is
“Imcc.out.amplitude.™ If this file is not renamed, the next run of
[amplitude] will overwrite the file.

Change the seed of [ranbld] and go back to Step S.
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INSTALLATION OF LMCC

To install LMCC under UNIX systems, one can do the following:

1. Store all of the LMCC source codes in a directory and cd to this directory.
2. Key in make to create the executables automatically. You can also build LMCC

manually by keying in the following commands:

£77 -o
£77 -o
£77 -o
£f77 -o
£77 -o
£f77 -o
£77 -0
£77 -o
Notice:

eal disk eal_disk.f

eal blade eal_blade.f

disk disk 0.f disk 1.f disk_2.f dmatrix.f zmatrix.f
blade blade 0.f blade 1.f blade_2.f dmatrix.f zmatrix.f
interface interface.f

ranbld ranbld 0.f ranbld 1l.f

assembly -O assembly.f dmatrix.f zmatrix.f

amplitude -C amplitude.f

Since LMCC is quite computationally intensive, users are encouraged
to compile the optimized executables. However, due to problems from
some vendors, the optimization should be used with care. For
example, on Silicon Graphic workstations running IRIX 5.2, using
MIPS FORTRAN 77 to compile ranbld with optimization can cause

the executable to work improperly.

3. Correctly set the PATH environment so that the executables of LMCC can be

found by the system.

INPUT FILES FOR EAL

Before running LMCC, the finite element analysis by EAL has to be done first.
The format of the EAL input files for the disk and the (nominal) blade are as follows:

I File for the Dis}

The input file for the disk must contain the following
statements (in addition to the standard input data, for instance,
geometry, element type, etc.) This version of LMCC requires that a
modal analysis of the entire disk is made, that is, not a cyclic
symmetric segment.
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*XQT EIG

$ END OF EIG

*XQT DCU

PRINT 1 JLOC
PRINT 1 VIBR MODE

$ END OF DCU

Input File for the (Nominal) Blad
The input file for the blade must contain the following
statements (in addition to the standard input data, for instance,

geometry, element type, etc.)
*XOT M
$ END OF M

*XQT EIG
RESET M=CEM

$ END OF EIG

*XQT PS

*ONLINE=1
*FORMAT=2

CEM

$ END OF PS

*XQT DCU

PRINT 1 JLOC
PRINT 1 VIBR MCDE

$ END OF DCU



Notice

1. The execution sequence shown above should be strictly followed. Otherwise,
LMCC will indicate there is an error. The general rule is that the natural
frequencies have to be printed out first (by EIG), then CEM matrix (by PS), then
JLOC (by DCU), and finally VIBR MODE (by DCU).

2 LMCC needs the complete mass matrix of the nominal blade to calculate the
forced response of the system. Since EAL can not print out the moments of
inertia of the nodes while using lumped mass matrix (DEM), LMCC uses the
consistent mass matrix (CEM). Therefore, when running EAL on the blade, one
must use CEM for the analysis.

3. The joint locations (JLOC) and the natural modes (VIBR MODE) have to be put
in Cartesian coordinates. LMCC will not work properly if they are specified in

polar coordinates.

INPUT FILES FOR SUBPROGRAMS OF LMCC

To run the subprograms of LMCC, the associated input files have to be ready
beforehand. There are eight input files corresponding to each of the subprograms
indicated in Figure 1. The input files are named as [subprogram namej.in. For example,
the input file name for subprogram eal_disk is eal _disk.in. The input files provide
information which are essential to the forced response analysis and will be read by the
subprograms. The formats of the input files are as follows:

Example File 1: Input File for Subprogram eal_disk — eal_disk.in
The subprogram eal_disk functions as a interface between EAL and LMCC which
reads the EAL ouput for the disk and reformat it for the input of LMCC.

1.0 0.0 0.0 :record 1
0.0 1.0 0.0 :record 2
0.0 0.0 1.0 :record 3
0.866 -0.5 0.0 :record 4
0.5 0.866 0.0 :record 5
0.0 0.0 1.0 srecord 6
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3 NDI:record 7

481 :record 8

482 :record 9

483 .record 10 (7+NDI)
0.0 5.0 0.0 .recoxrd 11 (7+NDI+1)
10 :record 12 (7+NDI+2)
45 .record 13 (74+NDI+3)
12 :record 14 (7+NDI+4)
3 4 5 .record 15 (7+NDI+5)
(1t03)

Matrix of direction cosines which transfers the disk coordinates to the first
blade coordinates.
(4 to 6)
Matrix of direction cosines which transfers the ith blade coordinates to the
(i+1)th blade coordinates.
(7)
NDI: Number of disk nodes per disk-blade interface.
(8 to 7+NDI)
Nodal numbers of disk nodes residing at the first disk-blade interface.
(7+NDI+1)
Position of the reference point O (in disk coordinates) associated with the first
blade.
(7+NDI1+2)
Nodal number difference between corresponding disk nodes residing at
neighboring interfaces.
(7+NDI+3)
Number of disk modes to be stored in the library (for future use).
(7+ND+4)
Number of blades.
(7+ND+5)
Degrees of freedom of VIBR MODE printed out by DCU.

File eal_blade.in — Input File for Subprogram eal_blade

10 :record 1
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3 NBI:record 2
1 :record 3
2 :record 4
3 :record 5 (2+NBI)
0.0 5.0 0.0 :record 6 (2+NBI+1l)
3 4 5 :record 7 (2+NBI+2)
Explanation of Records

(M

Number of blade modes to be stored in the library (for future use).
(2)

NBI: Number of blade nodes per disk-blade interface.
(3 to 2+NBI)

Nodal numbers of blade nodes residing at disk-blade interface.
(2+tNBI+1)

Position of the reference point O (in blade coordinates).
(2+NBI+2)

Degrees of freedom of VIBR MODE printed out by DCU.

File disk.in — Input File for Subprogram disk

10 NDM:record 1

2 :record 2

3 :record 3

8 :record 4

9 :record 5

13 :record 6

14 :record 7

21 t:record 8

22 :record 9

23 :record 10

25 :record 11 (1+NDM)
Explanation of Records

¢)

NDM: Number of disk modes to be included in forced response calculation.
(2 to 1+NDM)

Mode numbers of disk modes to be included in calculation.
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File blade.in — Input File for Subprogram blade

3
1
3
4
2
8 3 (1.0, 0.0)
9 3 (1.0, 0.0)

nation of Recor

(1)

NBM:record 1
:record 2

:record 3
irecord 4 (1+NBM)

NF:record 5 (1+NBM+1)
:record 6 (1+NBM+2)
rrecord 7 (1+NBM+1+NF)

NBM: Number of blade modes to be included in forced response calculation.

(2 to 1+NBM)

Mode numbers of blade modes to be included in calculation.

(1+NBM+1)

NF: Number of non-zero components of excitation forces to be specified.
(1+NBM+2 to 1+NBM+1+NF)
Non-zero components (in blade coordinates) of excitation forces. In this

example, record 6 specifies that force component 3 on blade node 8 is (1.0,0.0)

and record 7 specifies that force component S on blade node 9 is (1.0,0.0).

Notice that force components have to be specified by complex numbers to

take into account the possible phase difference between force components.

File interface.in — Input File for Subprogram interface

6
1 1 (1.
2 2 (.
3 3 (1.
4 4 (8.
5 5 (7.
6 6 (1.

Explanation of Records
(1)

00ES55,
00ESS,
00EOS,
70E05,
20E08,
00ESS,

.0)

QOO OOO
[e]

NK:record 1
:record 2
:record 3
:record 4
:record 5
:record 6
:record 7 (1+NK)

NK: Number of non-zero components (in blade coordinates) to be specified
for the disk-blade attachment stiffness matrix Koo. (Koo is a 6x6 complex

matnx.)



(2 to 1+NK)
Non-zero components of K00. In this example,
record 2: stiffness in x direction is infinite.
record 3: stiffness in y direction is infinite.
record 4: stiffness in z direction is (1.00E08,0.0).
record 5: torsional stiffness in x direction is (8.70E05,0.0).
record 6: torsional stiffness in y direction is (7.20E08,0.0).
record 7: torsional stiffness in z direction is infinite.

Notice that stiffness components have to be specified by complex numbers to
take into account the possible damping mechanism.

File ranbld.in — Input File for Subprogram ranbld

3 :record 1
1 trecord 2
3 :record 3
50.0 irecord 4
874377 trecord 5
Explanation of Records
1
Indicator for blade natural frequency disturbance.
1 = identical blades.
2 = sinusoidal distribution.
3 = gaussian distribution.
2
Blade mode to be disturbed.
(3)
Indicator for the frequency disturbance on other modes.
1 = no disturbance.
2 = same magnitude.
3 = same percentage.
4)
Amplitude (sinusoidal distribution) or standard deviation (gaussian
distribution) of the disturbance in Hz
(%)
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Number of nodal diameters of sinusoidal distribution or seed for the gaussian

random number generator.

File assembly.in — Input File for Subprogram assembly

i :record 1

4 :record 2

4450.0 4950.0 100 :record 3

0.0025 :record 4

2 ND:record 5

13 0.0020 :record 6

14 0.0015 :record 7 (5+ND)
0.0027 -record 8 (5+ND+1)

2 NB:record 9 (5+ND+2)
3 0.0022 .record 10 (5+ND+3)
4 0.0024 :record 11 (5+ND+2+NB)

Explanation of Records
(1)

Flag for error estimate on LU algonthm.

1 = perform.

0 = do not perform.
(2)

Excitation engine order.
(3)

Excitation frequency bounds (in Hz) and number of the intervals of the
calculation. In this example, the lower bound is 4450 Hz, the upper bound is
4950 Hz, and the number of intervals is 100. The forced response will be
calculated for every 4 Hz from 4450 Hz to 4950 Hz.
(4)
Damping ratio for disk modes in general.
(5)
ND: Number of disk modes with damping ratios to be particularly specified.
(6 to 5+ND)
Mode numbers and damping ratios of the particular disk modes. In this
example, record 6 specifies that the damping ratio for disk mode 13 is 0.0020
and record 7 specifies that the damping ratio for disk mode 14 is 0.0015.
(5+ND+1)



Damping ratio for blade modes in general.
(5+ND+2)
NB: Number of blade modes with damping ratios to be particularly specified.
(5+ND+3 to 5+ND+2+NB)
Mode numbers and damping ratios of the particular blade modes. In this
example, record 10 specifies that the damping ratio for blade mode 3 is 0.0022
and record 11 specifies that the damping ratio for blade mode 4 is 0.0024.

File amplitude.in — Input File for Subprogram amplitude

2 NN:record 1
4 :record 2
8 :record 3 (1+NN)

2 NC:record 4 (1+NN+1)
3 .record 5 (1+NN+2)
5 .record 6 (1+NN+1+NC)

ion of I
1)
NN: Number of blade nodes to be printed.
(2 to 1+NN)
Blade nodes to be printed. In this example, amplitudes of nodes 3 and 8 will
be printed.
(1+NN+1)

NC: Number of displacement components to be printed for each node
specified above.

(1+NN+2 to 1+NN+1+NC)
Displacement components (in blade coordinates) to be printed. In this

example, displacement components 3 and 5 will be printed.

EXAMPLE RESULT

After successfully running subprogram amplitude, the forced response of the
bladed disk is stored in file Imcc.out.amplitude. This file has documents in the beginning
which explain the format of the data printed. The format is designed to be read by general
plotting routines. An example of the file is as follows:
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ADDITIONAL CONSIDERATION AND POTENTIAL PROBLEMS

While using EAL as the preprocessor of LMCC, we found that EAL occasionally
generates disk modes which are not mutually orthogonal. The problem was that modes of
the same number of nodal circles and same number of nodal lines should have the same
mode shape except that they are out of phase. EAL sometimes generates this kind of
modes with correct mode shapes which are not completely out of phase. This kind of
error causes the forced response calculation so that LMCC will give meaningless results.
Typically when this error occurs, it is indicated by the fact that LMCC predicts
unusually high forced response over part of the frequency range.



Appendix C: Theoretical Manual for LMCC

ABSTRACT

This appendix contains the theory of the reduced order algorithm upon which the Linear
Mistuning Computer Code (LMCC) is based. Chapter 1 is the introduction and motivation of
this research project. Chapter 2 and Chapter 3 state the theory of the reduced order
algorithm. Chapter 4 gives some benchmark test cases and the comparison between the
reduced order model and the traditional spring-mass model.

Chapter 1: INTRODUCTION AND MOTIVATION

In the use of turbomachinery in modem aircraft, blades have failed from high cycle fatigue
because of excessive vibration. Based on experiments and earlier analytical investigations
[1-5], it is realized that, because of the rotational periodicity of its geometry, a bladed disk
usually has natural frequencies that are clustered in narrow ranges. When the natural
frequencies of a system are close together, slight variations in the system’s structural
properties can cause large changes in its modes, and, consequently, its dynamic response. The
sensitivity of a bladed disk’s dynamic response to small variations in the frequencies of the
blades is referred to in the literature as the “blade mistuning problem” and has been studied
extensively. It is important to understand mistuning since it can result in large blade to blade
variations and the high response blades can fail from high cycle fatigue. For modern aircraft,
such as a space shuttle, the high vibratory response of bladed disks is of special concern
because of the severe operating conditions to which they are subjected.

Every year, a great number of experiments are conducted by industry to ensure that the
blades are safely designed. These experiments are generally expensive and time-consuming. In
order to reduce the time and cost associated with these experiments, turbine manufacturers
replace part of the experiments by numerical simulations. From a modeling point of view,
traditional simulations can be classified into several categories. One of them is to directly use
finite element methods. The direct finite element approach is straight forward and can
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accurately model the characteristics of a structure provided that the structure is represented
with enough elements. However, since 2 structurally accurate finite element model for a
typical bladed disk can have more than 1,000,000 degrees of freedom, the associated
computational time for deriving the eigenvalues and eigenvectors of a single stage can be as
high as 1,000 CPU minutes on a CRAY. If a thorough mistuning analysis using Monte Carlo
Simulation is desired, the total CPU time it consumes will be prohibitively high. (For
example, 100,000 CPU minutes for a 100 stage simulation.) In addition, the extremely large
memory requirements for data storage and the numerical errors associated with numerical

instabilities make the direct finite element approach unfeasible.

There have been attempts 10 develop structurally accurate models for bladed disks.
Reference may be made to a feature article by Leissa (10}, in which, the progress in modeling
plades for vibration analyses is discussed. Many of the attempts to develop structurally
accurate models for bladed disks use plate elements to represent the disk and beam elements
to represent the blades [3,11-13,21]. While there can be blade configurations for which the
beam representation may be adequate, plate, thick shell, and even solid elements are often
needed to represent modern, low aspect ratio blades. With recent improvements in finite
element methods and computer speed, a whole bladed disk could be modeled accurately but,
as previously mentioned, it is recognized that the cost of running these programs would be
prohibitively high for use during the design process. This leads to the attempts by researchers
to use substructuring techniques 1n which results from finite element analyses of individual
substructures are used to obtain the dynamic behavior of the whole bladed disk [14,15].
There have also been attempts to introduce the cyclic symmetric boundary conditions into
finite element codes to model bladed disks so that the system modes can be efficiently solved
for and, because of the clustered natural frequencies being separated, the numerical stability is
improved [7,16,17].

While finite element models with cyclic symmetric boundary conditions can be easily
solved for tuned bladed disks, much of the work that has been done in mistuning utilizes
spring-mass models to represent the bladed disk [1,2,4,8,18-21] in order to reduce the number
of degrees of freedom and to make the problem computationally more tractable. While they
may often provide reasonably accurate predictions of the system'’s response, the model's
parameters, such as the mass and the spring constants, aré usually chosen in an ad hoc manner
and one must question the ability of such simple models to accurately represent such complex
systems. Little work has been published which verifies their accuracy.



The goal of this research is to develop a methodology that will directly take the results
from a finite element analysis of a tuned system and construct a computationally efficient
mistuned model with a reduced number of degrees of freedom. The intent is that the approach
will display the structural accuracy of the finite element model and computational efficiency
comparable to a spring-mass model.

Chapter 2: RECEPTANCE METHOD AND REDUCED ORDER
MODELING

2.1 Receptance Method

In structural dynamics, one widely used analytical method is to subdivide a complex
structure into several substructures, analyze the behavior of the individual substructures, and
then use the receptance method [6] to reassemble the structure. Receptance method is based
on the observation that, for every substructure, the dynamic response is determined by how
the substructure interacts with its environment. If the substructure interacts with its
environment only at a limited number of interfaces, it is possible to express the degrees of
freedom of the entire substructure in terms of the degrees of freedom of these interfaces. The
benefit of this method is that when several substructures interact with each other, we only
need to solve for the degrees of freedom of the interfaces. Once the degrees of freedom of
these interfaces are determined the response of all substructures and, therefore, the whole
structure is known.

To apply the receptance method to a bladed disk, let us consider the disk and all of the
blades as two separate substructures. We can then write the receptance equations for the disk
and the blades

-d Rd . d
u o= 2.1)
-b -b
- pb
v =R 2.2)
-d-d d . R .
whereu ,f ,and R are the displacement, the external force, the receptance associated with

>b

the disk, andu , f , and RP are the displacement, the external force, and the receptance
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associated with the blades. By denoting the group of nodes which do not interact with the
other substructure by @, and the group of nodes which are residing at the interfaces by B, we

can write equations (2.1) and (2.2) in components,

(2.3)

(24)

Since, in general, the only external forces on the disk are the interactive forces at the disk-blade

interfaces, we assume that

(2.5)

Furthermore, if we assume the excitation forces on the blades are prescn’bed, then, by
requiring the displacements to be continuous and the interactive forces to follow Newton’s

Interactive Force Law,

- d - b
ug =us (2.6)
~d b
fp=-Tp 2.7)

we can solve for the forces at the interfaces using equations (2.3) and (2.4)
b (pb d ) -1ob 3b
fg= ‘(R s +Rpsl Rpafo (2.8)
and

~d b d \"l.p b
fﬁz(RB.B+RB.B) Rgafa 2.9)

-b -d
Since the only unknowns on the right hand sides of equations (2.3) and 24)arefg and g,

the response of the entire bladed disk is known.
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The benefit of using equations (2.8) and (2.9) is that we only need to solve the problem in
the subspace-B without the necessity of either calculating the inverse of the dynamic
impedance of the whole bladed disk or finding the modes for the entire system. However,
finding the receptances for the disk and the blades beforehand still can be computationally
intensive. A mathematical expression for the receptances of the disk and the blades are

d _[vd ~2agd -1
R =(K‘-0*M%+iq ) 210

b_{wb ~2agb . : -1
=(Kb-o?Mm +1QCb) @.11)
where Kd, Md, and C9 are the stiffness, mass, and damping matrices of the disk, and Kb,
M b, and C° are the stiffness, mass, and damping matrices of the blades. Q is the excitation
frequency. RPisa block-diagonal matrix if there is no structural links between the blades.

An alternative way of calculating these receptances is to use the substructures’ modes.
That is, by applying standard modal analysis, the receptances can be written in the following

form
~d-dT
O 0;
2.12)
d(d2 2 . d d) (
mjmj -Q +2IQ(DJ‘CJ
~b-=bT
RP = ¢j 9
% b( b2 2 ... b b) (2.13)
meJ -Q +2lQ(.l)jCj

where ¢, m i CJ, and  j are the modebshape modal mass, modal damping ratio, and natural

frequency of the j-th d]Sk mode, and ¢ j, mt;, CJ, and @ ; are the mode shape, modal mass,
modal damping ratio, and natural frequency of the j-th b]ade mode, respectively. This method
is in general better that equations (2.10) and (2.11) since, with the substructures’ modes
derived in advance, using equations (2.12) and (2.13) to calculate the receptances needs merely
algebraic multiplications and additions, whereas equations (2.10) and (2.11) involve the
calculation of matrix inverses for every excitation frequency. The other benefit of equations
(2.12) and (2.13) is that not all of the substructures’ modes are needed in the calculation.
Since the modes with natural frequencies close to the excitation frequency will dominate the
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response, the other modes can be eliminated from the calculation without a significant loss of

accuracy.

However, there are still several shortcomings which prevent us from using the receptance
formulation (the combination of equations (2.8), (2.9), (2.12), and (2.13)) to solve our
problem:

1. The substructures’ modes used in equations (2.12) and (2.13) have to be free at the
disk-blade interfaces, or, in other words, they have to be admissible. To satisfy this
requirement, it is fine for us to use the disk modes which are clamped at the inner edge
and free at the outer edge, but it is undesirable to use the free-free blade modes.
Because the blades generally vibrate close to the clamped-free condition, we need a
large number of the free-free modes to achieve a good representation of blade vibration.
Another more realistic reason for not using free-free blade modes is that most of the
analyses done on the blades in the industry, either numerically or experimentally, use
cantilever blades. There is much more information available on the clamped-free blades
than the free-free blades.

2. In equations (2.8) and (2.9), we need to find the inverse of the matrix (Rbﬁ.ﬂ + Rdﬁ.sl
This matrix has a dimension of the group-B nodes which is much smaller than the
dimension of the whole bladed disk, but, still, there can be too many degrees of
freedom to be solved for. Since we do not want to restrict our analysis to use a
particular type of blade models, for example, beam-type blade model with single-node
contact at the disk-blade interface, we need to modify the receptance method to have
the capability to handle multiple-point disk-blade attachments.

—— 2.2 Reduced Order Modeling Based On Rigid Blade Base
Assumption

One of the reasons that the direct receptance method is not particularly attractive is that
there are still too many degrees of freedom. In this section, we would like to propose a
reduced order method which is capable of handling multiple-point disk-blade attachments and,
yet, results in a formulation having fewer degrees of freedom.



For a system of substructures having multiple point contact with each other, it is in
general not possible to reduce the number of degrees of freedom of its receptance formulation.
However, for a bladed disk, the deformation of the disk-blade interfaces is in general not
significant in comparison with the deformation of the blades. Therefore, except for the case
when the high nodal diameter disk modes strongly participate, each of the blade bases can be
reasonably approximated by six degrees of freedom, namely, three translations and three
rotations. With this assumption, the number of degrees of freedom of the reduced order
formulation will be six times of the number of blades which is much smaller than that of the

direct receptance formulation.

Chapter 3: MATHEMATICAL FORMULATIONS

Figure 3.1 shows a schematic of a bladed disk assembly. By subdividing the structure
along the dashed line as indicated in the figure, we have two types of substructures, namely,
the disk (Figure 3.2) and the blades (Figure 3.3). Observing Figures 3.2 and 3.3, one can se€
that the vibration of the disk is a function of the interactive forces at the disk-blade interfaces.
In addition, the dynamic response of the blades is also determined by these interactive forces
provided the external excitation on the airfoils are taken into account. As a result, the

vibration of the entire structure can be expressed in terms of the interactive forces.

Blad i
o (fg) -1

Figure 3-1: A schematic graph for a bladed Figure 3-2: Substructure disk
disk assembly
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The goal of this chapter is to present the — ey
application of the described reduced order %%g b
approach to bladed disk assemblies. In \% v/ (fa'i
Sections 3.1 and 3.2, we will present the %;\ t m,(@

-b| o
Bl

mathematical formulations which express the f )

vibration of the disk and the blades in terms of i K

the reduced order degrees of freedom of the g s %
disk-blade interfaces. In Section 3.3, we will ¥

derive the solutions for the whole structure by § ﬁ%_%’

utilizing the results of Sections 3.1 and 3.2.

Figure 3-3: Substructure blades

3.1 Formulation for the Disk

3.1.1 Disk receptance
For the disk substructure which is clamped at the inner edge and free at the outer edge, the
equation of motion is
=d - d —-d -d .
Mdx +Cx +K9x =f eif G.1)

where Md, Cd, and K9 are the mass, damping, and stiffness matrices respectively, ; ‘ is the
complex displacement vector whose real part is the physical displacement of the disk, Q is the
excitation frequency, and f e I 5s the complex forcing vector whose real part is the
physical force acting on the disk. When the bladed disk is operated at a stationery speed, the

steady-state response of the disk can be written as

—-d =d .
X =u el G.2)

—

where u is the complex amplitude vector of the response. By substituting (3.2) into (3.1)
and eliminating time dependent terms, we obtain

(3.3)
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where RY is the receptance matrix of the disk with the expression

R¢ =(K¢-Q2M? +iQ ) 64

By applying standard modal analysis technique and approximating the structural damping by
modal damping, the disk receptance can be further written as

el

d _ i 9

K —Z al a2 2 d.d 3-5)
J mJ(oJ - +219(DJCJ

-~d
where ¢ j is the j-th disk mode, and mdj, Cdj, and codj are the modal mass, modal damping ratio,
and natural frequency of the j-th disk mode, respectively.

To calculate the receptance Rd, equation (3.5) is preferable than equation (3.4) from the
computational point of view since equation (3.5) inheres several nice properties:

1. Equation (3.4) involves the calculation of a matrix inverse which is in general
computationally expensive. In the case of near or at the natural frequency of the disk,
the use of equation (3.4) is particularly undesirable since the dynamic impedance
(Kd —o?M?+iQ Cj) tends to be ill-conditioned. On the contrary, equation (3.5)
needs merely algebraic multiplications and additions. It is therefore computationally
more efficient and reliable.

2. For a particular frequency range of interest, only a limited number of the disk modes
dominate the response and the other modes participate in an insignificant manner. By
eliminating the insignificant disk modes from the calculation, equation (3.5) still
remains an accurate representation of the disk receptance and yet has the advantage of
higher computational efficiency. On the other hand, using equation (3 4) to calculate
the disk receptance would require an intensive computational effort independent of the
frequency range of interest.

3. The disk receptance for the reduced degrees of freedom of the disk interfaces can be
easily derived using equation (3.5) and results in a computationally efficient approach.
However, using equation (3.4) for the same purpose does not have such a benefit. We
will see the reason for this in the next section.
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3.1.2 Disk receptance at the disk-blade intertaces
As was mentioned in Chapter 2, the response of the disk is a function of the interactive
forces that act between the disk and the blades. To derive the disk receptance associated vgtla
the disk-blade interfaces, we need to write the force vector f  and the mode shape vector ¢
in components,

o1

-d e

0j = oy ’ (3.6)
¢ip
'f°d

i (3.7)
\fs !

where the subscript “p” indicates the disk-blade interfaces and “a” indicates the other parts

of the disk. Since the only forces acting on the disk are the interactive forces between the disk
and the blades, we have

-~d -
fo=0 (3.8)
Combining equations (3.3), (3.5), (3.6), (3.7), and (3.8) we obtain
~d-=q T
Gdzz ®j 9ip ;; 9)

- 2
d{ d 2 . d . d
Jm.(co- —Q°+2iQw; §;
i i®)
In particular, if we are interested in the displacement of the interfaces, equation (3.9) implies

-d d —d

up=Rpggfp (3.10)
- d

where u g is the displacement of the disk at the interfaces. RdB'B is the disk receptance

associated with the interfaces and is given by,



S
4 _ B @B
Rgp=2

2
d| d 2 . . d,d
ij((oj —Q°+2iQ0;L;

(3.11)

The key results of this section is the reduced disk receptance equation (3.10) which governs
the relation between the forces and the displacements of the nodes associated with the disk

interface degrees of freedom.

3.1.3 Derlving six equivalent MQMMMMM

It was discussed in Chapter 2 that the disk receptance associated with the interfaces still
has too many degrees of freedom to be optimally efficient. The goal of this section 18 tO
derive a reduced ordered disk receptance which has significantly fewer degrees of freedom.
The basic idea is to find six equivalent degrees of freedom which will approximately represent
the disk at each disk-blade interface. Assume that, for the j-th disliir&terfac_g, Jhe translation
and rotation about a reference point O is approximately given by v o and 8 o respectively.

[13%A]

(Here, we omit the subscript “j” temporarily for the iirgp]icity of writing.) If we denote _ghde

translation of the k-th disk node of this interface as vV k and the rotation of the node as 0 k.
then, for small amplitude vibration, we can write

vk=vo+90xpk

(3.12)
-d —d
6k=0o0 (3.13)
where p  is the position vector from point O to the k-th node. If we define the vectors
_[74]
~d_|vo
“°’\~d‘ (3.14)
0o
a [3¢)
Uk= »d’ (3.15)
0 x

k=1, 2, .., DNI, where DNI is the number of disk nodes at the disk-blade interface, then
equations (3.12) and (3.13) can be cast in matrix form
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uk=Q,,u, (3.16)
where
) 1w,
Q= (3.17)
0 I
o G,
d - -
Wio= —(p ﬁ’z 0 (p If)x (3.18)
iy -G o

and I is the 3 by 3 identity matrix.

-~ d .
Now, since u g is the displacement vector for all of the disk nodes at the disk-blade
interface, we have

UB ={u .Uk ...U DNI (3]9)

Then equations (3.16) and (3.19) imply

up=~Qz,uo (3.20)

where
d T [ 4 T 4T 4 T

Qﬂ,o = Q 1,0 Q k,0 Q DNl o0 (3.2])
Without dropping the subscript j” for the j-th disk-blade interface, equation (3.20) would be
written as

[ws);- (et e s

up/j=\Qg,ofju of; (3.22)

Then, for all of the interfaces, equation (3.22) implies



- —od

QB oo (3.23)

where, with the number of blades being denoted by NB,

RS o o
ug usg Uplk ---\UBINB (3.24)
d . d d d
Qp,, = diag [{Qs,o)l "'(QB,o)k o a.o)NB} (3.25)
o M M o
Upo =[lUog)1 ...\U o)k -..1U o/NB (326)
Notice here that Qdﬁ o 15 a block-diagonal matrix with diagonal blocks (QdB 0’ k(k= \ N_I?)d.

Equation (3.23) gives an approximate relation between the reduced order dlsplacements u,
and the dlsplacements of the interfacial disk nodes Up. U gisavector with dimension 6°NB
and u B has a dimension of 6:DNI*NB. QB o is a rectangular matrix with dimension
6:DNI*NB by 6°NB

We also need to find the resultant forces and moments for the each interface. For the j-th
disk interface, the resultant force and moment about the reference point O are

—-d —-d

o= Tk (3.27)
k

“d ~d —~d -—-d
- .

where Tt o is the resultant force acting on the disk at the disk interface and T o is the resultant

moment about the reference point O acting on tlae disk at the interface. & k is the force acting
on the k-th disk node of the j-th interface and 1 i is the moment acting on the k-the disk node

[Y342)

of the j-th interface. Notice here that the subscript “j” is temporarily omitted for simplicity in
writing. Equations (3.27) and (3.28) can be rewritten in matrix form by using the procedure

presented earlier,

o
T—me——
A

= o

—-d
o I
e -



where the skew-symmetric matrix de o has been defined in equation (3.18). If we define the

vector

\ iy (3.30)

and recognize that

=mT; T1 .Wx Tk ..TDNI TDNI (331)

g T
fp

then equation (3.30) can be written as

fd d T-f:d
0= Qp, fs (3.33)

(Y982}

d . .
where Qﬂ,c has been previously defined in equation (3.21). Now, using the subscript
which was dropped previously, equation (3.33) would be in fact written as

3= 13 J; f7s)
folj= QB,oj fpl; (3.34)
Therefore, for all of the disk-blade interfaces, equation (3.34) implies

d
fo=Qp, fp (3.35)

where, with NB denoting the number of blades,

~dT [(f ) (E 3): (; g)r:BJ (3.36)

*dT (fa’ ‘fs) '(FS)NB

(337)

and QdB, o Was defined in e_gléation (3.25). Equation (3.35) go_ygms the relation between the
resultant interfacial force_g, fo anq. the individual nodal forces, f g, of the interfacial nodes for
every disk interface. f, and fp are vectors with dimensions 6*NB and 6*DNI-NB
respectively.
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3.1.4 Reduced order disk receptance
Equation (3.10) govemns the relation between the actual interactive forces and the actual
displacements of the disk nodes at the interfaces. Equations (3.23) and (3.35) describe the
relation between actual degrees of greedom and the reduced order ones. _T% find the relation
between the reduced order forces f . and the reduced order displacements U o, W€ need to gmd
the inverse functio_psd for equation (3.23) and (3.35). For equation (3.2_?)d since U ¢ 1§
overdetermined by u g, it is possible to find a least square approximation of U o such that the

error

~4ll2

- d d
Error =[lup-Qp ol o

(3.38)

. .« . . 3 . - d . . .
is minimized. The least square approximation of u o can be mathematically wntten in a

simple form

-d d t—d

uo=Qgo us (3.39)
d *. L d . .
where Q 8,0 1S the generalized inverse of Q B.C with the expression
d * ( g T d )_1 d T
Qo =1Qpo pd Lo (3 40)

For equation (3 .35), since E; is*%nder-determined by -f. ?,, there are many P(gssible
approximations of f g for every given f ,. However, by requestin‘gdthat the norm of f g to be
minimized, it is possible for us to find a unique approximation of f g that retains the non-self-
equilibrated forces only and neglects the self-equilibrated forces. The expression for the non-
self-equilibrated approximation is

-l e

p=\Qpo/ To (3.41)
da *.

where Qg , 18 defined in equation (3.40).

Here we are actually proposing an assumption that the self-equilibrated forces at the
interfaces are negligible. This assumption should be valid for the lower system modes since
the disk does not locally deform very much in these cases. It, however, may not be
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Combining equations (3.10), (3.39), and (3.41), we can have the following equation

-d d =—d
uo=Rgofo (3.42)
where
A
d . .
R o,o=z d( 2 "02 - . (3.43)
j ; - @
m;\0; —Q°+2iQ0;8;
and
-d g +—d
¢50=Qp,0 @8 (3.44)

Rd o Is the reduced order dislé receptance matrix associated with the disk interfaces and has
dimension 6*NB by 6*NB. ¢ jc1s the reduced order interfacial displacements for the j-th disk
mode. Equation (3.42) is the reduced order disk r_gcgptance equation which governs _Ehde
relation between the reduced order displacements U o and the reduced order forces fo
Remember that this equation is the reduced order form of equation (3.10), the disk receptance
equation associated with the disk-blade interfaces. Based on the assumption that the self-
equilibrated forces at the interfaces are negligible, equation (3.42) approximates the disk
behavior by 6 degrees of freedom per interface.

—— 3.2 Formulation for the Blades

3.2.1 Beceptance formulation fora single blade
To begin with, let us consider a single blade which is clamped at its base. The blade base
moves rigidly so that its motion can be fully described by 6 degrees of freedom, namely, 3
translations and 3 rotations. Let X o be the 6-degree-of-freedom displacement vector of the
blade base, where O is a reference point residing at the blade base. Using subscript “B” to
denote the group of blade nodes which reside at the blade base and subscript “a” to denote
the nodes other than the nodes of group B, the equations of motion for the entire blade can be

written as
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b b b i b b
Mu,aza+Cbu’aza+Kbu‘azu=fue —Mm.QO'oxo

(3.45)
—~b —=b b —b

Xa=2a+QqoXo (3.46)
-b p —b

xp=Qpo%o (3.47)

where Mbu’a, Cb J— an_q Kbu'u are the mass, damping, and stiffness matrices assoc_:iatt,ed with
the group-o nodes. x: and x; are the displacements of the blade. Qbu'ox o is the
displacement vector of the group-a nodes assuming that the blade follows the base and does
not deform at all. Z« is the deformation of the group-& nodes relative to the ungegormed
configuration. fo € i ;¢ the external force acting on the blade. M o QyoXolsan
inertial force associated with the blade base motion that is introduced when writing the
equations of motion in terms of relative motion. The derivations of matrices Qbu’ o and QbB‘ o
are similar to the process described in Section 3.1.3; we will not repeat it here. When the
bladed disk is operated at a stationery speed, the steady-state response of the blade can be
written as

—-b —=b
xcl:uole’m

(3.48)
b =b g
Xp=usp¢c (3.49)
b =b o
Xo=Uo® (3.50)

Substituting equations (3.48), (3.49), and (3.50) back into equations (3.45), (3.46), and (3.47)
and eliminating time-dependent terms, we have

g

b b —b

"b_Rb b ( 2 b

Ug = a'afa"'Q Ra.uMa,a+I Qa,ouo (3.51)
-b b b

up=QpoUo (3.52)

b . . . . .
where R a0 1S the receptance matnx associated with the group-a nodes. It has the expression
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-1

- (K”a_a—n" M°,  +iQ Cba‘u) 6.53)

s discussed in Section 3.1.1, calculating the inverse of the dynamic impedance matrix

Kba'a—ﬂz Mbm‘(Jl +iQ Cba‘a is undesirable since the matrix tends to be ill-conditioned

when the excitation frequency Q is close to the natural frequencies of the blade. Similar to the

way we formulate the receptance equation for the disk, the receptance Rbm,Ql can be cast in the
following form by applying the standard modal analysis technique,

b ¢ia9ja

: 2 : (3.54)
j mt}(m"j ~Q*+2iQ L]

-b
where ¢ o is the j-th mode for a blade clamped at its base, and m i C_,J, and (ob are the modal

mass, modal damping ratio, and natural frequency of the j-th mode. It should be emphaglzg.d
that the degrees of freedom of the group-B nodes do not appear in equation (3.54) since ¢ j g,
the mode shapes at the blade's base, are zero.

3.2.2 Force on the blade base
While equations (3. 51) and (3.52) enable us to calculate the motion of the blade for any

given external excitation fa and blade base motion u ,, we have not yet determined thte)
resultant force on the blade base. The resultant force on the blade base, denoted as f 4
hereafter, needs to be known in order to assemble the equations for the disk-blade interfaces.
To achieve this, we first consider the blade as an object which can move and deform in space.
The forces acting on the blade are the excitation force f ; and the interactive force at the blade
interface f . Since the linear momentum and angular momentum have to be conserved, we can
write the conservation law, about the reference point O, for small amplitude vibrations,

=b =b i

Ly= €
% K %nk (3.55)
%H;ﬁpkak—Z(ﬂﬁPkX“k e (3.56)

where L g is the linear momentum %f the l_(.-g'l blade node, H g is the angular momentum of the
k-th node about the node itself, @ y and 1 y are the force and the moment acting on the k-th
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blade node, and p  is the position vector from the reference point O to the k-th node. By
defining the following 2 vectors,

p =L; H; Lk Hy ---Lpny Hsn (3.57)

1 T1 - Tk Tk -+« TBN TBN (358)

where BN is the number of blade nodes, equations (3.55) and (3.56) can be rewritten in matrix
form,

_ it

Q,p =Q, 1 ¢ (3.59)

b . .
where Q ,is a 61:BN by 6 matrix which can be derived by the same procedure presented in
Section 3.1. Q, hasthe function of calculating the resultant momentum about the reference

point O.

Now, by definition, the momentum of the blade can be written as

p =M"x (3.60)
where M ? is the mass matrix of the entire blade. For the steady-state vibration,

b _=b

x =u ¢ (3.61)

Substituting equations (3.60) and (3.61) into equation (3.59) and eliminating the time-
dependent terms, we have

2 . bT bb_ pT b
-0°Q, MPu =Q, f (3.62)

Recall that equations (3.51) and (3.52) describe the displacements of the blade nodes. By
substituting them into equation (3 162) and recognizing that

-i:b_ b T;b
0=Qp,o fp (3.63)
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we have

-} -~} b b
f0=Zbo’oUo+H0‘afu (3.64)
where
2 -_02 bT b b a b T b b mP b
0.0 -Q QO M QO-Q Qq_o M o,0 R a,a o, Qa,o (365)
b 2 b T by b T
H,,=-27Qqo MR, ,-Q,, (3.66)

Equation (3.64) gives the expression _gf;) -t: 2, the interactive force ac_:.titr;g on the blade base, in
terms of the blade base displacement u 4 and the external excitation f a. The calculation of the
coefficient matrices Zb ocand H o are tedious but straight forward. Notice again that the
blade receptance Rba‘a will be calculated using the blade modes (equation (3.54)) instead of
directly finding the inverse of the dynamic impedance (equation (3.53)). This remark is
important since equation (3.54) is efficient and stable when implemented computationally.

3:2.3 Formulation for all blades

Equation (3.64) is written for the j-th blade. Including the subscript “j”, it should be
written as

(E (t:).l =(Zbo,c)j (E s)J +(Hboa)j (ff

Therefore, for all of the blades, the equation that governs the states of the blade bases is

] (3.66)

o2 e -
A L 658
GG .
Sy O 3 R 5 70



Zbo,o = diag llzbw) 1 (i)o,tjj e llbo,clNBl (3.71)

Hboa = diag l(“bog) 1o l“bonlj e l“bonl Nﬁl (3.72)

Fotic that Zbo . and Hbo o are block-diagonal matrices with diagonal blocks (Zbo J j and
b ' »
H 3

on)I= 1 2, ..., NB, respectively.

— 3.3 Assembling Disk and Blades =———————

Recall that the purpose of the analysis s t0 develop a computationally efficient algorithm
to solve for the steady-state vibration of the blades. Equations (3. 51) and (3.52) enable us to
calculate the blade vibration provided that the external excitation f & and the blade base motion
U o are given. Since the external excitation is usually given, our goal is to solve for the blade

base motions.

While equation (3.42) governs the motion of the disk nodes residing at the disk-blade
interfaces, equation (3.67) governs the motion of the blade nodesbreSIdm% at the disk-blade
interfaces. Since there are 4 ynknown Vectors, namely, U o, f o, U o, and f o in the equations.
We need to introduce two additional equations to govern the behavior of the disk- blade
interfaces. The first of these is Newton’s Interactive Force Law which conserves momentum

at the interfaces,

£0=fe
o= 0 (3.73)
The second is Hooke’s Law which provides a constitutive relation at the interfaces,

-b (~ d - b\|

fo=KoolUo—Uo (3.74)

where K o is a matrix which represents the stiffness of the disk-blade attachments. Since the
attachment stiffness is in general determined by separate analyses, we will consider it as a

known quantity. By solving equations (3. 42), (3.67), (3.73), and (3.74) simultaneously, we
-b
can express the 4 unknowns in terms of the external excitation f o
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vo=—(RS, K12, R k)T T

7w, 679
fo=[t+2, R sk 2 T W0, 1L 6576
3= R 1+ 2[R ek O] TR 6
=12 (R k) T H 678

Recall that, equations (3.51) and (3.52) express the blade vibration in terms of the external
excitation and the blade base motion. Therefore, the vibrations of the blades can be easily
derived by substituting equation (3.75) into equations (3.51) and (3.52).

The dimension of this

It is important to notice that the mos computatlonally mtensn e part in equations (3.75)
is to calculate the inverse of the matrix T

+ Zb (R
matrix is 6*NB by 6*NB which is signiﬁcantly smaller than the dimension of a general finite
element model of a bladed disk. For a typical bladed disk with, for instance, 65 blades, the
finite element model could have thousands of degrees of freedom to be solved for; however,
the number of the unknown degrees of freedom is only 390 (= 6+65) if we use the reduced
order model.

Chapter 4: COMPARISON OF RESULTS

In Chapter 3, we have developed the algorithm for the reduced order modeling to solve for
the forced vibration of bladed disks. In this chapter, the algorithm will be tested on a
simplified model problem. A code named LMCC (Linear Mistuning Computer Code) has
been developed based on the algorithm. The results of LMCC will be compared with the
results of the direct finite element approach to examine the validity of the reduced order
model.
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4.1 Attachment Stiffness and Damping Ratios

Before we implement the proposed algorithm, there are still several parameters of the
reduced order model left to be determined. The first is the attachment stiffness matrix K ou
which simulates the stiffness of the disk-blade attachments (see equation (3.74)). Because of
the simplified geometry of our test problem, the attachment stiffness is effectively infinite.
Equation (3.74) then implies the continuity in displacements

- d - b
Uo=1Uo 4.1)

and equations (3.75), (3.76), (3.77), and (3.78) become

—ob —1 -‘b
Uo= -Rdo'o[l +Zbo‘oRdo'J H® f,

oa (4.2)
fo=l1+2, R )W, TS @)
bos —Rdo'o[l +Z,, Rdo,J B R, fo @4
-f.(‘i’ = _[I + Zbo,o Rdo,J ) Hbo.a F: (4.5)

The other parameters of the reduced order model to be determined are the damping ratios
of the substructures’ modes. Since the mechanism of the structural damping is not well-
realized so far, it is difficult to accurately determine these damping ratios by analytical
methods. However, since the peak amplitude of a slightly damped system is proportional to
the reciprocal of its damping ratios, we are able to determine these damping ratios by
numerical experiments. The procedure was used is the following;

1. Assume the damping ratios of the substructures’ modes are equal to some small value.
A better choice is the damping ratios of the system modes (if they are available)
because, based on our experience, the damping ratios of the substructures’ modes are
in general approximately equal to those of the system modes.

2. Adjust the damping ratios of the substructures’ modes such that the peak amplitude of
the tuned response of the reduced order model matches that of a reliable source, for
example, the physical experiment.
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In the following section, we will proceed to design a test problem to examine the validity
of the reduced order model.

=—————— 4.2 Design of the Test Problem

When designing an appropriate test problem, it is necessary to consider the following
issues:

1. The test case should represent a realistic object which can vibrate in three-dimensional
space. Spring-mass models should be avoided because they are in general unrealistic.
Models with beam-type blades will not be considered as appropriate choices either
since we intend to check the appropriateness of the rigid blade base assumption; in
other words, we want to desi gn a test problem having multiple nodes at each disk-
blade interface.

2. The test problem should be simple in geometry so that we can readily check the
results based on our physical intuition.

3. The whole system should not have too many degrees of freedom so that it can be
analyzed by the finite element method without costing too much computational time
or generating the numerical stability problem with the finite element solution.

After considering these requirements, a

4 e
simplified bladed disk with twenty four blades ;,F
(Figure 4.1) was chosen to serve our purpose. it 1°
The finite element model is constructed by using ]
plate bending elements with three degrees of aE==cs % 4

freedom per node, namely, one translation
perpendicular to the plane and two rotations ‘
parallel to the plane. The thickness of the disk is 7 94 -
0.8 inch and that of the blades is 0.15 inch. The
geometry is chosen so that the disk and the L L ) L ' . )

nominal blade have the natural frequencies that a L

typical turbo-pump stage would have. Both the Figure 4-1: Geometry of the test
problem (scales are in inches).

] . ] i Thickness of the disk: 0.80in.
properties associated with a super Nickel alloy. Thickness of the blades: 0.15 in.

blades and disk were assumed to have material
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— 4.3 Tuned System Responses’ =————

4,31 Resonant frequencles and mode shapes
From [7], we know that, if the blades are perfectly tuned, the j-th engine order traveling
excitation can excite only a certain family of modes. This family of modes has the
characteristics that the phase difference between the neighboring substructures is jA@, where
N is the number of blades and

2n
M =~ (4.6)

Based on the above knowledge, we can find the resonant frequencies for every family of
system modes associated with a specific integer j by finding the forced response peaks of the
bladed disk that result from the j-th engine order excitation.

Fecnnant Frequency Ccomparison 1
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15000
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x
> 25000
v
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@ 20000 |
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E 15000 |+ Reduced Order Model % -
a
Y]
[+ 4
10000 p -
5000
o | 1 1 1 1 1 1 1 i 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12
Integer jJ

Figure 4-2: Resonant frequencies for the tuned bladed disk predicted
by direct FEM and reduced order model

Figure 4.2 shows the resonant frequencies of the tuned bladed disk predicted by two
different techniques. The horizontal axis is the integer j mentioned above and the vertical axis

* The reduced order model used in this section has infinitely large attachment stiffness for disk-blade interfaces
and experimentally decided damping parameters as discussed in Section 4.1.
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is the resonant frequency predicted. The first technique, whose results are depicted by
diamonds, is the direct finite element approach. Using this method, we first find the modes of
the entire bladed disk, and, secondly, use the standard Mode Superposition Method to
calculate the forced responses of the system. The second technique, whose results are
depicted by stars, is the reduced order approach. It is apparent that there is reasonably good
agreement between the frequency predictions of these two approaches. It is also apparent
that LMCC predicts slightly higher frequencies, probably because the assumption of rigid
body motion at blades' bases slightly over-constrained the system.

It is worth noticing that the resonant frequencies of the system follow the blade alone
frequencies and disk alone frequencies in a particular pattern (Figure 4.3). The blade alone
frequencies, which are depicted by the horizontal dashed lines in Figure 4.3 are the natural
frequency for a blade rigidly constrained at its base. For this particular blade model, the first
blade alone frequency, 4893 Hz, is associated with the first easewise bending mode, the
second blade alone frequency, 21387 Hz, is associated with the first torsional mode, and the
third blade alone frequency, 30559 Hz, is the second easewise bending mode. There exists no
stiffwise bending modes because the type of finite elements we chose does not have degrees of
freedom in the stiffwise direction. The disk alone frequencies, which are depicted by squares,
are the natural frequencies of the disk with a clamped inner edge and a free outer edge.

Resonant Freguency Comparison 11
40000 T T T T T 1 T T T T

35000 - -

30000

25000

20000

Bladed Disk 90—
Blade Alone --- 7
pisk Alone -

15000

Resonant Frequency (Hz}

10000

L4
%
¢

5000

Integer j

Figure 4-3: Relation between the system frequencies and the
natural frequencies of the substructures
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Let us now classify the system modes into four groups as indicated by the four solid lines
in Figure 4.3 and number these groups from the bottom to the top of the figure. It is observed
that the group-1 system frequencies follow the natural frequency of the first blade-alone
bending mode very closely. When the system frequency is close to the blade alone frequency
and far away from the disk alone frequency, the corresponding system mode has the tendency
that the disk remains still and the blades vibrate in the associated blade alone mode. Examples
of this kind of “blade-type” system modes derived from the finite element analysis are shown
in Figure 4.4 and 4.5. Figure 4.4 shows a system mode with the phase difference between
blades being 4 Ap. For this particular mode, the blades vibrate predominantly in their first
bending mode and the disk hardly participates in the vibration though it does have a four-
nodal-diameter pattern. Figure 4.5 shows a system mode with the same phase difference
between blades. For this particular mode, the blades vibrate predominantly in their first
torsional mode and the disk hardly participates.
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Wiy W7y S e
Minsy) 00y, N ///" (L
) P N\ 1°
0, =
;?ﬂ - 4 ¢
i .
~ Ui i R
\‘1\1\\'// / X
<& "/’/, ‘(K\': - -
'ﬂﬁﬁ%§§i é%§§§§x§ ﬁﬁé; ¢
o
.?l\_\_““ 4 ¢
1 1 1 1 1 L 1
[ -4 2 0 2 4 [3
a) Three-dimensional plot for the mode b) Contour plot for the disk portion

shape

Figure 4-4: Mode #9 of the bladed disk (natural frequency = 4682.3 Hz). For this particular
mode, the disk hardly participates in the vibration. The integer j = 4.

The group-2 system frequencies follow the disk alone frequencies initially (from j=1 to
j=6) and then follow the natural frequency of the first blade-alone torsional mode (from j=8 to
j=12). When the system frequency is far away from the blade alone frequency but close to
the disk alone frequency, the corresponding system mode has the tendency that the disk
vibrates in the associated disk alone mode and the blades follow the disk without much
deformation. Figure 4.6 shows an example of this kind of “disk-type” system mode derived
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from finite element analysis where the phase difference between blades are 4 A¢. For this
particular mode, the blades follow the disk’s vibration passively while the four-nodal-diameter
disk modes vibrate vigorously. The last few system modes in group 2 (from j=8 to j=12) are
the modes where the disk tends to remain still and the blades tend to vibrate predominantly in

their first torsional mode.

- €
- 4
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a) Three-dimensional plot for the mode b) Contour plot for the disk portion

shape

Figure 4-5: Mode #57 of the bladed disk (natural frequency = 21260 Hz). For this particular
mode, the disk hardly participates in the vibration. The integer j = 4.

1
/
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]

a) Three-dimensional plot for the mode b) Contour plot for the disk portion
shape

Figure 4-6: Mode #33 of the bladed disk (natural frequency = 9714.5 Hz). For this particular
mode, the disk strongly participates in the vibration. The integer j = 4.
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Figure 4-7: Mode #39 of the bladed disk (natural frequency = 19265 Hz). This is a mixed-
type mode. The integerj=7.
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Figure 4-8: Mode #67 of the bladed disk (natural frequency = 27593 Hz). This is a mixed-
type mode. The integerj=9.

In addition to the blade-type and disk-type system modes, there are also the “mixed-
type” system modes. System modes of this type often have natural frequencies close to or
far from both blade alone frequencies and disk alone frequencies. They are in transition
between blade-type and disk-type behavior. Examples of the mixed-type system modes are
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shown in Figure 4.7, for a group-2 system mode with 7 A@ phase difference between blades,
and in Figure 4.8, for a group-3 system mode with 9 A phase difference between blades.

4.3.2 Tuned response curves
After confirming that the reduced order model works reasonably well in predicting the
system frequencies, we would like to see if the response curves predicted by the reduced
order model agree well with those predicted by the direct finite element approach. For the
purpose of comparison, we will also present the result predicted by BLDVIB [8]. BLDVIB
is a numerical code for the vibration analysis of bladed disks. It uses a spring-mass model to
represent the bladed disk.

Figure 4.9 (a), (b), and (c) are the tuned response curves of the blade tips predicted by the
three different methods. In this particular case, the bladed disk is subjected to a fourth engine
order excitation and the participating system modes are the blade-type modes with blades in
bending. It appears that the three curves agree well with each other though the response
predicted by the reduced order model shifts to a slightly higher frequency. Figure 4.10 depicts
similar plots for a blade-type mode with blades in torsion. It is observed again that responses
predicted by both LMCC and BLDVIB agree with the response predicted by the direct finite
element approach.

e———— 4.4 Mistuned System Responses’ =————

In this section, we will compare the mistuned response of the bladed disk predicted by the
three approaches mentioned in the previous section. The bladed disk is mistuned in the sense
that there are frequency variations from blade to blade. To ensure that the three approaches
solve for the response of the same mistuned bladed disk, we modified the code of BLDVIB so
that it can read the mistuned blade alone frequencies from the same source that LMCC does.
For the direct finite element approach, we simulate the blade frequency variations by changing
the Young’s modulus of each blade. Typical response curves for the blade-type, disk-type,
and the mixed-type vibrations will be examined.

* The reduced order model used in this section has infinitely large attachment stiffness for disk-blade interfaces
and experimentally decided damping parameters as discussed in Section 4.1,
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4.4.1 Blade-type system vibration
Figure 4.11 (a), (b), and (c) are the typical mistuned response curves of the blade tips
predicted by the three different approaches. In this case, the bladed disk is subjected to a
fourth engine order excitation and the participating system modes are basically the blade-type
modes with blades in bending. The tuned response induced by the same excitation was
discussed in the previous section (Figure 4.9). It appears that the reduced order model and the
spring-mass model give equally good results.

Figure 4.12 shows the mistuned response curves of the blade tips predicted by the three
different approaches. In this case, the bladed disk is subjected to a fourth engine order
excitation and the participating system modes are the blade-type modes with blades in
torsion. The response of the tuned stage was discussed in the previous section (Figure 4.10).
We can see that LMCC works much better than BLDVIB, though they predict equally well
the results for the tuned stage. One of the possible explanation for the failure of BLDVIB in
this particular case is that the spring-mass model does not account for the effects of three-
dimensional motion and multiple node attachment at the disk-blade interfaces. By observing
Figure 4.12(c), we also find that the blades do not interact as much as they should. This leads
to another possible reason for the failure of the spring-mass model that they can not account
for the complicated blade-to-blade coupling effect while the blades vibrate predominantly in
their first torsional mode.

4.4.2 Disk-type system vibration

Figure 4.13 shows the comparison of the mistuned results predicted by the direct finite
element approach and the reduced order model. For this particular case, the bladed disk is
subjected to a fourth engine order excitation and the disk participates vigorously in the
vibration since the natural frequency of the four-nodal-diameter disk modes is very close to
the system frequency. It appears the result predicted by the reduced order model agrees well
with the result predicted by the direct finite element approach. It is interesting to observe
that the blade mistuning does not affect the disk-type vibration very much.

4.4.3 Mixed-type system vibration
Figure 4.14 and Figure 4.15 are the mistuned responses for the mixed-type system
vibration. The vibration is mixed in the sense that both the disk and the blades participate in
the vibration and it is hard to tell which blade alone mode the blades vibrate in. Figure 4.14
shows the response curves for the mistuned bladed disk under a seventh engine order
excitation. Figure 4.15 shows the response curves for a mistuned bladed disk under a ninth
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Figure 4-15: Mistuned response curves predicted by different approaches. System is subjected to a
ninth engine order excitation. Both the disk and blades participate in the vibration.
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engine order excitation. It is apparent that the curves predicted by the reduced order model
agree very well with the curves predicted by the direct finite element approach.

In the last two sections, we observed that the reduced order model can accurately predict
the response of both tuned and mistuned bladed disks. The spring-mass model used by
BLDVIB failed to model the coupling effect between blades while the blades vibrate
predominantly in their first torsional mode. In the next section we will compare the execution
time taken by the direct finite element approach and the reduced order approach.

4.5 Execution Time Comparison

Figure 4.16 shows the execution time comparison between the direct finite element

approach and the reduced order approach when using a supercomputer.
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Figure 4.16: Execution time comparison between the direct finite element
approach and the reduced order approach.

The data are calculated based on the estimation for a typical bladed disk as following:

Number of blades 50
Number of degrees of freedom of a blade 15,000
Number of degrees of freedom of a disk sector 10,000
rees of freedom of a bladed dis 1,250,000 |
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The estimated CPU time for solving for 100 system modes is 1,000 CPU minutes per bladed
disk. The time for calculating the forced response using Mode Superposition Methods is
approximate 0.02 minute for every 100 excitation frequencies. Therefore, we can write down
the following equation for the relation between the execution time needed by using the direct
finite element approach and the number of bladed disks analyzed,

Tfem = 1000.02 N (4.7)

where N is the number of bladed disks.

If we use the reduced order approach for the blade mistuning problem, the CPU time for
solving for the modes of a nominal blade is approximate 15 minutes and that for the disk
modes is approximate 250 minutes provided that the cyclic symmetric boundary conditions
are used to improve the computational efficiency. The CPU time needed to process the
output of the finite element analysis for the use of LMCC is approximate 15 minutes. And,
for every 100 excitation frequencies, LMCC will take approximate 5 minutes to calculate the
forced response. Therefore, we can write down the equation for the relation between the
execution time needed by using the reduced order approach and the number of bladed disks
analyzed,

TIMEC = 280+ 5 N (4.8)

An immediate comparison we can obtain from observing equations (4.7) and (4.8) is that, for
every additional bladed disk, the direct finite element approach needs 1000 more minutes but
LMCC (the reduced order approach) needs only 5 more minutes. Figure 4.16 shows that, for
a typical mistuning analysis with 100 bladed disks analyzed, the direct finite element
approach needs 100,002 minutes and the reduced order approach needs only 780 minutes.

Chapter 5: CONCLUSIONS AND SUGGESTIONS

— 5.1 Conclusions

Mistuned vibration of bladed disks has drawn much attention since it can result in large
blade-to-blade amplitude variations and the high response blades can fail from high cycle
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fatigue. Due to the severe operating conditions that modemn aircraft are subjected to, accurate
predictions of the vibration of mistuned bladed disks become necessary. Using finite elements
to model a bladed disk is not a feasible approach for a thorough mistuning analysis since the
geometry of a bladed disk is so complex that a structurally accurate finite element model
would have too many degrees of freedom. Using spring-mass models to represent a bladed
disk results in low degree-of-freedom formulations. Though they can be efficiently and
reliably solved by computers, the ad hoc way in which they choose system parameters and
their questionable accuracy are undesirable.

To develop a structurally accurate and computationally efficient model for the bladed
disks, we first considered the receptance method. Though the receptance method can
significantly reduce the number of degrees of freedom of the system, the resultant equations
can still have too many degrees of freedom since the disk and the blade usually contact at
multiple points. Its necessity of using free-free blade modes is especially undesirable since, in
general, blades tend to vibrate like clamped-free modes and much of the work done on the
blades utilizes cantilever blades.

The reduced order modeling follows the idea of the receptance method but further
assumes that the blade bases undergo rigid body motion. The blade vibration is considered as
a combination of blade base motion and cantilever blade modes. By finding the six equivalent
degrees of freedom for the disk vibration at each disk-blade interface, we are able to reduce the
number of degrees of freedom of the whole structure down to six times the number of blades.
With this significant reduction in the number of unknowns, the reduced order model results in
a formulation that can be efficiently solved by computers. Along with its low computational
cost, the reduced order model is structurally accurate and provides a straight forward
approach for modeling the system since it directly takes the results from the finite element
analysis of a tuned system without ad hoc assumptions.

The validity of the reduced order model was examined by applying its algorithm to solve
for the forced response of a carefully designed test problem. The test problem is designed so
that it represents a realistic object that vibrates in three-dimensional space and has multiple
nodes at each disk-blade interface. For the purpose of comparing the reduced order model
with other reliable techniques, the geometry of the test problem is relatively simple so that it
can be efficiently solved by the direct finite element approach. It is shown in Chapter 4 that
the reduced order model can predict the tuned system frequencies reasonably well. By
comparing the results from the different approaches, it appears that the reduced order model
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is able to capture the characteristics of the mistuned bladed disk. It predicted response curves
that are almost identical to the results of the direct finite element approach for the more than
one hundred cases examined, of which the cases presented in Chapter 4 were representative.
The results predicted by a typical spring-mass model are also examined. It appears that the
spring-mass model predicts mistuned responses well when the blades vibrate in bending
modes but predicts poorly when the blades vibrate in high frequency torsional modes.

Based on the investigations we have done, we can conclude that the reduced order model
is a valuable model for the vibration analysis of mistuned bladed disks. It is valuable for the
following reasons:

1. It is structurally accurate and can be used for bladed disks of various kinds of
geometry because it utilizes the output of general finite element models instead of
being restricted to springs and masses or plates and beams.

2. Itis straight forward in the sense of modeling since the system parameters are directly
taken from the output of the finite element analysis instead of making ad hoc

assumptions.

3. It is computationally efficient because the number of degrees of freedom of its
formulation is only six times the number of blades. This number is significantly
smaller than that of a finite element model and of the same order of that of a more
complicated spring-mass model, for example, [9].

5.2 Suggestions

One of the subjects of bladed disk vibration under intensive study nowadays is the friction
related mistuning problem. Blade-to-blade and blade-to-ground friction dampers are integrated
into the bladed disk assemblies to dissipate energy so that the peak amplitudes of blade
vibration can be reduced. Since the nonlinear friction forces are sensitive to the displacements
and, sometimes, to the velocities of the blades, it is necessary for the analysts to have a
structurally accurate model. Much of the work has been done on this subject is based on
spring-mass models. With proper tuning, spring-mass models often predict reasonably
accurate responses for a linear system; however, their ability in predicting the response of a
nonlinear system is questionable since friction forces can considerably change the mode
shapes of the blades and this change can hardly be modeled by simple spring-mass systems.
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It is, therefore, reasonable to use the reduced order model for the analysis of friction
related mistuning problems. Because of the computational efficiency of the reduced order
model, we can easily derive the receptance for the friction interfaces of the bladed disk. It is
then possible to use this structurally accurate receptance to solve for the friction problem
either by time integration methods or by approximation techniques.
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