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Single point modeling of rotating turbulent flows

By A. H. Hadid 1, N. N. Mansour 2 AND O. Zeman 3

A model for the effects of rotation on turbulence is proposed and tested. These

effects which influence mainly the rate of turbulence decay are modeled in a modified

turbulent energy dissipation rate equation that has explicit dependence on the mean

rotation rate. An appropriate definition of the rotation rate derived from critical

point theory and based on the invariants of the deformation tensor is proposed.

The modeled dissipation rate equation is numerically well behaved and can be

used in conjunction with any level of turbulence closure. The model is applied

to the two-equation k-e turbulence model and is used to compute separated flows

in a backward-facing step and an axisymmetric swirling coaxial jets into a sudden

expansion. In general, the rotation modified dissipation rate model show some

improvements over the standard k-e model.

1. Motivation and objectives

The ability to accurately model the effects of rotation on turbulence has a wide

variety of important applications in rotating machinery and combustion devices.

Many turbulent flows of engineering importance involve combinations of rotational
and irrotational strains. However, turbulence models of the eddy viscosity type

are oblivious to the presence of rotational strains since they depend only on the

mean velocity gradients through their symmetric part (i.e. the mean rate of strain

tensor). The rotation rate, for example, does not explicitly enter the equations for

the turbulent kinetic energy and its dissipation rate, yet evidence from experiments

(Wigeland and Nagib 1978, Jacquin et al. 1990) and from direct numerical simula-

tion (Bardina et al. 1985, Speziale et al. 1987, Mansour et al. 1991) show that the

decay rate of turbulence is reduced by the presence of rotation.
The effects of rotation on turbulence are known to be subtle. They are manifested

through changes in the spectrum of the turbulence caused by nonlinear interactions.

For initially isotropic turbulence, rotation inhibits the cascade of energy from large

to small scales. Zeman (1994) proposed a modified energy spectrum that takes into

account the effects of rotation at high Reynolds number by introducing a rotation

wavenumber, kn = _, below which rotation effects on spectral transfer are

important. Much of the application work in simulating rotating flows have been

conducted using varieties of eddy viscosity models (k-e or k-l) and second order

closure models with modified dissipation rate transport equation to account for
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rotational effects. However, most of these models fail to predict the asymptotic

behavior of the turbulence decay rate in the limits of large rotation rate. The
objectives of this work are to model the effects of rotation using single-point two
equation models and to offer an appropriate definition of the mean rotation rate

that is consistent with the fact that spin is the main cause of reduction in the
dissipation rate.

2. Accomplishments

For incompressible viscous flow with constant properties, the modeled transport
equations for the turbulent kinetic energy, k, and its dissipation rate, e, that are
widely used for engineering applications take the form;

k,, + Ujk,j = Dk + Pj, - e (1)

e,, + Uje,i = D, + P, - _/,, (2)

where Dk and D_ are the diffusion terms for k and e respectively and are modeled
as

,j J ,j

where v is the laminar viscosity and vt is the eddy viscosity = C_,k_/e. ak and at
are the ratio of Prandtl to Schmidt numbers and are taken as constants. Pt is the
production term for k given as Pk '= -uiujUi,j, where i ,"uiui is the Reynolds stress
term and Ui is the mean velocity in the/-direction.

Assuming that the production of the dissipation rate PC is proportional to the

production of turbulent kinetic energy Pk, i.e P_ ,,, P_/T where T is the turbulent
time scale given by T = k/e. Similarly assume that the destruction rate of dis-

sipation rate _ is proportional to the turbulent energy dissipation rate term, i.e.
• _ ,,, e/T. The modeled form of the dissipation rate equation becomes

+ ui ,j= Dr + Cl- Pk - c2--£ (3)

t I
Due to the symmetry of the Reynolds stress tensor uiuj, the kinetic energy pro-

duction term can be written as Pk = -u_u_Sii, where Sij = (Ui,j + Uj, i)/2 is
the mean rate of strain tensor. Therefor it can be seen that the standard dis-

sipation rate, eq. (3), has no explicit dependence on the mean rotation tensor

f_ij = (Ui,j - Uj,i)/2. It follows that the commonly used modeled dissipation rate

equation can only be affected indirectly by rotational strains through the changes
that they induce in the Reynolds stress tensor.

In order to sensitize the dissipation rate equation to rotational effects, consider

the simple case of isotropic turbulence in a rotating frame. In this case, an initially
decaying isotropic turbulence is described by;

k,, = -e (4)
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.2

e,, = -C2 k (5)

Equations (4) and (5) do not distiguish the difference between isotropic turbulence
in a rotating frame and in an inertial frame, Models that have a non zero rotational

correction have been proposed by Bardina et al. (1985), for example, for rotating

isotropic turbulence where eq. (5) takes the form

e 2

e,,= -C2%-- Csne (6)

with C2 = 1.83 and C3 = 0.15.
The above model is able only to accurately predict the reduction in the decay

rate of the turbulent kinetic energy in rotating isotropic turbulence for weak to
moderate rotation rates where the effects are small. However, for sufficiently high

rotation rates and long enough time, the model drastically underpredicts the decay

rate of the turbulent kinetic energy.

Hanjallic and Launder (1980) proposed a model for which the E-transport equation

in rotating isotropic turbulence takes the form

e 2
= -C2_- C3_2ke,t

£
(7)

where 6'2 = 1.92 and C3 = 0.27.
This model predicts unphysical behavior of negative dissipation rate at high ro-

tation rates, thus violating the realizability constraint. Other modifications to the

dissipation rate transport equation have been proposed to account for rotational

strains, e.g Raj (1975) and Pope (1978). Again they fail in one way or another to

account accurately for the rotational effects.

3. Proposed model

In the present work a new model is proposed that accounts for rotational effects

and correctly predicts the asymptotic behavior at zero to inifinte rotation rates.
Consider the dissipation rate equation in rotating isotropic turbulence

with

e,,=_(1.7+ 5 a2 ) e26 a2 + 1 k (8)

a = 0.35Ro -1 (9)

where Ro is the Rossby number defined as Ro -x = f_k/e. For ft >> 1, C2 = 2.5,

which gives a power law exponent n = 0.6 (in k -_ t-") roaching the power law

proposed by Squires et al. (1993) for the asymptotic state of rotating homogeneous

turbulence at high Reynolds numbers.
The experminental data of Jacquin et al. (1990) are used to test the proposed

model. Their experiments consisted of measuring the velocity field and characteris-

tic quantities characterizing the fluctuating field downstream of a rotating cylinder
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containing a honycomb structure and a turbulence producing grid. The coupled

differential equations for k and e describing the effects of rotation on an initially
isotropic turbulence can be written as

k,t=-e (10)

0_2 _2

These equations were solved numerically using a fourth-order Runge-Kutta inte-

gration scheme. The model predictions (with C2 = 1.7 and Ca = 5/6) are compared
with the experimental data of J_quin et al. (1990) as shown in Fig. la. The model

predicts well the evolution of turbulent kinetic energy and its decay rate for a wide

range of rotation rates. We have also tested the model for the three Reynolds

numbers measured by Jacquin et al. (1990), and found similar agreement of the

model predictions with the data. We should point out at this point that the value
C2 = 1.7, proposed here for zero rotation rate, is lower than the value convention-

ally used in k-e modeling. We find that with the conventional value of C2 = 1.92

(and Ca = 3/5) the model fails to predict the experimental data (see Fig. lb)
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FIGURE 1. Decay of turbulent kinetic energy. Symbols are the data of Jacquin

et al. (1990), lines are the model predictions, o & _ f_ = 62.8 (tad/s), v &

f_ = 31.4 (rad/s), -" & ........ ft = 15.7. (a) Model predictions with C2 = 1.7

and C3 = 5/6; (b) Model predictions with C2 = 1.92 and C3 = 3/5.

4. Rotation Rate For General Flows

In order to test the rotational correction proposed in eq. (8) to the dissipation

rate equation for general flows where the rotation rate is a function of position and
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in the presence of mean strains, the question arises as to what is the appropriate
definition of the rotation rate, _?

In most previous studies, the rotation rate or the mean vorticity ft was replaced

by v/f_ijf_ij/2, where f_ij = (Uid - Uj,i)/2 is the rotation rate tensor of the mean
flow. However, such definition does not distinguish between a vortex sheet and
a vortex. A definition of a vortex or a region of vorticity (with spin) was given

by Chong et aL (1990) -using the arguments of the critical point theory and the
invariants of the deformation tensor- as a region in space where the vortlcity is

sufficiently strong to cause the rate of strain tensor to be dominated by the rotation

tensor, i.e. the rate of deformation tensor has complex eigenvalues. This definition

satisfies the principle of frame invariance since it depends only on the properties
of the deformation tensor. We shall use it because the reduction in the dissipation

rate is due mainly to the spin that the mean imposes on the turbulence. Consider

the matrix Dij of the elements of the deformation tensor,

Di_ = Uij (12)

which can be split to
Dij = Sij "}- _ij (13)

The complex eigenvalues of Dij are found by solving the characteristic equation

]Dij - )tgii[ = 0, where the )ds are the eigenvalues of Dij. For a 3 x 3 matrix, _ can
be found from the solution of

_3 + p_2 + Q)_ + R = 0

where P, Q and R are the matrix invariants and are given by

P = -Ui,i

(14)

(15)

1

Q = 2(P 2 - SijSji - f_ij_j,)
(16)

1
R = -_ (_p3 + 3PQ - S,jSjkSk_- 3_ij_"ljkSki) (17)

For an incompressible flow P = 0 from continuity and the characteristic equation

becomes
+ Oh + R = 0 (IS)

Now if

an d,

A=

B= - -
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then the three roots of ,k are;

[A+B, A+B _-_2 +i V_, A+B2

That is ,k can have:

(i) all real roots which are distinct when

[(0/3/3 + (R/21_] < 0,

or

(ii) all real roots where at least two roots are equal when

[(Q/3) 3 + (R/2) 2] = O,

(iii)
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or

one real root and a pair of complex conjugate roots when

[(O/3) 3 + (R/2) 2] > o.

We shall follow Chong et al. (1990) and define the rotation rate

v_
f_=_(,k)=-_--(A-B), when[(Q/3) 3+(R/2) 2] >0, (19)

= 0 otherwise. It is important to note that for two dimensional Cartesian flows,

the rotation rate defined by Eq. (19) reduces to fl = [X/_, when Q, the determinant

of the deformation tensor matrix, is negative. For pure shear the definition, eq. (19)
yields fl = 0. Conventional models that are calibrated for shear flows, need not be
recalibrated when corrections based on fl are added to the model.

5. Numerical Procedure

For a two-dimensional, incompressible and steady turbulent flow, the Reynolds
averaged momentum, continuity, turbulent kinetic energy and dissipation rate equa-
tions can be written in the generalized form;

o(oo)°(ew)+! (prve)=_ r_.b-; +;N rr,, +s_r
(20)

Where r = 1 for Cartesian two-dimensional flow, and y = r for two-dimensional ax-

isymmetric flow. Table 1 gives a summary of the terms in eq. (20) for the dependent
variables solved in the code.
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1 O.

U 2pe

V #e
W! I_,

k I_ + I_tlak

Oo

Pe
2p_

Pe
P + pt/(Yk

I_+ IJilak

O.

-oP/O + 1/rO(,,rav/o )/O 
-OP/O +
-pVW/," - W/r
Pk - pe
C_Pk_/k - C2p_2 /k

Table 1. Summary of the governing equations, p is the density, F_, and F_,

are the exchange coefficients in the axial and radial directions respectively, Sv is
the source term for the variable _. In the table, #e is the effective viscosity given

as pe -- p Jr Pt, where p is the laminar viscosity and pt is the turbulent viscosity,

_t =C_pk2/e •

In the standard k-e turbulence model the constants C_, C1, C2, ak and a_ have

the values 0.09, 1.44, 1.92, 1.0 and 1.0 respectively.
In the rotation modified k-e turbulence model, only C_ takes the form given by

eq. (11) i.e, C2 = 1.7 + (516)a21(_ 2 + 1).

The governing transport eq. (20) is solved using the primitive variables on a

nonstaggered mesh and converted into a system of algebraic equations by integrat-

ing over control volumes defined around each grid point. The SIMPLE pressure-

correction scheme (Patankar 1980) is used to couple the pressure and velocities

and the resulting algebraic equations are solved iteratively. The convective terms
are differenced using a second-order upwind scheme while the diffusion terms are

approximated by a central differencing scheme.The physical domain is discretized

using a non-uniform mesh where grid points are clustered close to the walls.

6. Model Application

The performance of the present model for complicated recirculating flows is
demonstrated through calculations and comparisons with the experimental data

of Driver & SeegmiUer (1985) for backward-facing step flows and with the experi-

ments of Roback & Johnson (1983) for a confined swirling coaxial jets into a sudden

expansion.
Figure 2, shows the streamlines for the backward-facing step using the rotation

modified k-e turbulence model. The calculations were performed on a 100x40 grid

points. The computational domain had a length of 50H (H is the step height) and
a width of 9H. The experimental data were used to specify the inflow conditions
for a channel flow calculation where the fully developed profiles at the channel exit

were used as the inlet conditions for the backward-facing step calculations. Fully

developed flow conditions were imposed at the outflow boundary. The standard
wall function approach (Launder & Spalding 1974) was used to bridge the viscous

sublayer near the wall.
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FIGURE 2. Backward-facing step geometry and stream-function contours. The

contour levels were set between (-0.1 and 0.1) with an increment level = 0.01.
.... negative values, -- positive values.

The computed reattachment lengths were 5.50H using the standard k-e turbu-
lence model and 6.22H for the rotation modified k-e turbulence model. The modified

k-e model prediction is closer to the experimental value of 6.10H. While these re-

sults are encouraging, they are mainly due to the fact that we have changed the
value of C2 for the non-rotating case. In general, a change in the value of C_ will

result in poor predictions of the mean profiles. The mean velocity profile at three

locations downstream are shown on Fig. 3, while the turbulent stress profiles at

X/H = 4 are shown on Fig. 4. All the quantities were normalized by the step

height (H) and the experimental reference free-stream velocity (Urel). It can be

seen that the overall performance of the rotation modified dissipation rate equation
is better than the standard k-e model especially in the recirculation region (Figs. 3a,

and 4). Some improvements are also obtained in the recovery region using the mod-
ified k-e model. Figure 5 shows the contours of the effective rotation rate used as

defined by Eq. (19).

For the 2D/axisymmetric swirling flow computations, the expressions for the

invariants Q and R (Eqs. (16) & (17) respectively) are expanded and Eq. (19) is
used to obtain the values of _. The model was used to predict the mean profiles for a

confined double concentric jets with a swirling outer jet flow into a sudden expansion
(Roback & Johnson, 1983, see Fig. 6). Measurements are available for the mean
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FIGURE 3. Mean axial velocity profiles at different axial locations, o data (Driver
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FIGURE 4. Turbulent stress profiles at X/H = 4.
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velocity profiles and velocity fluctuations downstream of the expansion. Simulations
with a coarse nonuniform grid of 30×20 mesh points were made. However, there

is some uncertainty about the inlet conditions to be used since the first velocity
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FIGURE 5. Contours of the effective rotation rate, f/.
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duct.
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Roback & Johnson's swirling coaxial jets discharging into an expanded

profiles measured were 5mm downstream of the expansion.

To predict this flow, the measured profiles at 5mm were adjusted near the edges
and were used as inlet conditions at the expansion plane. Preliminary results ob-

tained with the coarse mesh indicate similar trends as the experiment. Figure 7
shows the streamline contours using the standard and the modified k-e turbulence

models. The figure shows that a closed internal recirculation zone forms at the

center with an additional zone at the corners downstream of the step. This causes a

flow diversion outwards with high gradients between these regions. Figure 8 shows

the axial and tangential velocity profiles at 25 mm downstream of the expansion
using the standard and the modified k-e turbulence models. Results in this case

indicate little or no improvements offered using the modified k-e model over the
standard k-e model. Finer mesh may improve the results but the uncertainties in

the inlet boundary conditions raise the question about the adequacy of using this
experiment for validation purposes.



Single point modeling of rotating turbulent flows 431

I I I

0. (a) z (m)

I I 1

0.3

I I I

0.3
0. (b) x (m)

FIGURE 7. Swirling coaxial jets discharging into an expanded duct. Stream-
function contour. ---- levels were set between (-0.15,0.) with an increment level

= 0.01, -- levels were set between (0,0.7) with an increment level = 0.05. (a)

Standard k-e model, (b) Modified k-e model.
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7. Conclusions

A new simple model for the turbulent energy dissipation rate equation has been

proposed to account for the rotational effects on turbulence. A frame invariant
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definition of the rotation rate proposed by Chong et al. (1990) based on the critical

point theory was used. The model can be used in conjunction with any level of
turbulence closure. It was applied to the two-equation k-e turbulence model and was

tested for separted flows in a backward-facing step and for axisymmetric swirling jet
into a sudden expansion. The model is numerically stable and showed improvements

over the standard k-e turbulence model. It is important to point out that the

present study was carried out to roughly evaluate the model, but that a systematic

recalibration of the constants in the k-e model is needed before going any further
with the proposed model.

The authors would like to acknowledge many discussions with Dr. K. Shariff
regarding proper definition of the rotation rate.
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