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Abstract

This report describes the use of computer program 'SEEK' which works in

conjunction with two user-written subroutines and an input data file to

perform an optimization procedure on a user's problem. The optimization

method uses a modified feasible directions gradient technique. SEEK is

written in ANSI standard Fortran 77, has an object size of about 46 K bytes

and can be used on a personal computer running DOS. This report describes the

use of the program and discusses the optimizing method. The program use is

illustrated with four example problems: a bushing design, a helical coil

spring design, a gear mesh design and a two-parameter Weibull life-reliability

curve fit.
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SUMMARY

This report describes the use of a computer program, 'SEEK' for

engineering design optimization. The program is not complete in itself in

that it is written to work with problem specific user subroutines and an input

data file. It performs a gradient search optimization of the user's problem

to find an optimal set of design parameter values. Optimization is performed

using a modified feasible directions gradient technique. The program is

written in ANSI standard Fortran 77 and has an object size of about 46 K bytes

for the optimizing code alone for use on a personal computer running DOS. Its

source code is about 1,200 lines in length and its size is 39 K bytes.

In the OPTIMIZATIONFORMATsection, the four interface vectors to the

procedure are described. These vectors are: I) the problem constants, 2) the

independent design parameters, 3) the constraint bounds, and 4) the objective

function terms. The problem constants and independent design parameter values

define a specific trial design. In the optimization, the program varies the

design parameter values to search for the design which has the best objective

function value while satisfying the constraint bounds.

In the PROGRAMMINGsection, the report describes the two analysis

routines, BOUNDSand VALUESwhich the user must write to evaluate the

constrained functions and the objective function. BOUNDStakes as input the

constant and design parameter vectors and produces a vector of the constrained

function values as its output. VALUEStakes as input the sameconstant and

design parameter vectors and produces the objective function value vector as

its output. The format and make-upof the input data file which gives the

four vectors of constants, design parameters, constraint limits and objective

function weighting coefficients are described. In this file, extensive



labeling for the four vectors is included. The design verification feature of

the optimization program is described also. Once a numerical optimum is

found, the program provides the user the opportunity to try alternate designs

for comparison purposes.

To illustrate the use of the program, four examples are presented:

I) a bushing design, 2) a helical coil spring design, 3) a spur gear mesh

design, and 4) a Weibull data curve fit. The bushing design problem is to

find the length and diameter of a bushing to minimize the friction torque in

the bearing for a given load and material properties. The spring design is to

find the wire diameter and meancoil diameter which support a given

alternating load with a required stiffness. Three different design objectives

of minimumspring weight, minimumspring height and minimumcoil volume are

sought. The gear design is to determine the numberof pinion teeth, diametral

pitch and face width for a compact spur gear set to transmit a given power at

a given input speed with a given speed reduction. Twoobjectives are sought:

I) minimumcenter distance for a desired life and 2) maximumlife for a given

center distance. The fourth example showsthe fitting of a two-parameter

Weibull distribution to life data for a series of identical units tested at

the sameload.

Each example includes an analysis of the problem, the organization of

the optimization variables, the writing of the analysis subroutines and the

input data file for a specific problem, the compiling and running of the

program, the use of design verification to obtain reasonable values and an

interpretation of the output data file. In each case, the design verification

opportunity leads to the discovery of a practical solution with near optimal

characteristics.



After the examples, the OPTIMIZATIONMETHODsection presents a

description of the gradient search method with its three modesof operation:

I) unconstrained searching, 2) acceptable design searching, and 3) feasible

direction searching along one or more design constraints. The unconstrained

searching modeemploys the gradient in the objective function to improve the

design at the fastest rate when possible. The acceptable design searching

uses the sumof the gradients in the violated constraints to find the

acceptable design region. And, the feasible direction searching modecombines

the gradients in the objective function and the violated constraints to

improve the objective function value while keeping the trials within the

acceptable design region. This section concludes with a description of the

program structure and operation.



INTRODUCTION

Optimization is a mathematical process of seeking the most favorable

combination of parameters to achieve the best outcome possible [I-3]. In

design, one constantly searches for an ideal trade-off of conflicting

performance objectives. For aircraft transmissions, for example, we might

wish to obtain the lightest transmission which has someminimumacceptable

service life, or we maywant to maximize the service life at a given

transmission weight [4]. These objectives are sought throughout the design

and development process with repetitive design descriptions and evaluations -

on paper or CADlayout at the design stage and in hardware at the prototype

stage. Manyof the optimizing, trade-off decisions which develop and improve

the product are madeby engineers without the help of mathematical models of

the product's performance.

Optimization offers the promise of assistance with the difficult trade-

off decisions at the early stages of the design, before costly prototypes are

constructed and tested [5]. A spectrum of optimization codes have been

written to assist in the design of complex structures which can be modeled

with large matrices of simultaneous linear equations [2,3]. With an objective

computer search through the space of potential designs, we are given a greater

chance of determining a truly optimum design.

Unfortunately, manymechanical design problems cannot be described by a

set of linear equations. The size of the problem as measuredby the numberof

independent design parameters and the constraints which are to be satisfied

may be small. But the complexity of the problem may be large due to the non-

linear and often discontinuous nature of the design property and constraint

relations. This combination keeps the optimization of mechanical designs in
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the realm of an art which requires considerable engineering insight to

complement the available mathematical models and computer solutions {6].

In modeling mechanical systems, one is often confronted with the choice

of obtaining exact solutions to an approximate model or obtaining approximate

solutions to an exact model. With the designer active in the process, rapid

solutions of an approximate model can lead to practical optimal designs even

whenthe mathematical optimum contains someflaws {7]. Modified gradient

optimization techniques such as the feasible directions method are quite

powerful and rapid when they have continuous models in which gradients can be

calculated. The method of this optimization is to have the engineer write

Fortran subroutines which model the design with continuous properties as

functions of the constants and independent design parameters which define the

design. The optimizer can then find the optimal solution to this 'ideal'

problem and report it to the engineer to allow a check of alternate designs

which satisfy additional constraints of practicality. The end result is a

practical, optimal design.

This report describes the use and background of a Fortran program, SEEK,

which is written to assist the mechanical designer in developing balanced

optimal designs. The intent of the program is to keep the engineer in the

process while providing a systematic search of potential designs. In doing

this, it allows the engineer to use the mathematical models of the

optimization to evaluate near optimal, practical designs. SEEK,which

requires two user-written analysis subroutines, reads its input from an ASCII

data file and writes the output of the optimization both to the screen and to

an output ASCII log file. To document the optimization clearly, the input



data file includes a significant amountof text to describe the numerical

values in the output file.

The report includes an OPTIMIZATIONFORMATsection which describes the

basic format of the optimization problem: the constants, design parameters,

constraint bounds and objective function; as well as a PROGRAMMINGsection,

which describes the programmingrequired to prepare SEEKfor use in an

interactive design session. This section describes: the two analysis

subroutines, the input data file, the use of the program with changes to the

input file and design verification in the interactive session.

To demonstrate the power and ease of use of this optimization procedure,

several small design examples follow in the next sections: a bushing, a

spring, a spur gear mesh, and the fitting of a two parameter Weibull

distribution to experimental test data.

An OPTIMIZATIONMETHODsection follows which describes the structure and

operation of the optimization code. This code is small with 1200 lines and

less than 40 k bytes so the optimization can be performed on a personal

computer running with DOS. The speed of a 486 machinemay becomeattractive

for the more complex analysis models.



OPTIMIZATIONFORMAT

An optimization problem may be formulated as a constrained search in

terms of four vectors and two sets of relations. In this formulation, only

inequality relations are used for the constraints. The four vectors are:

I) the constants of the problem which do not change for a given design, 2) the

parameters which define a design and which are the sought values, 3) the

constraint values which may be upper or lower bounds on properties of the

design, and 4) the objective function's weighting coefficients.

In this formulation, at least two Fortran subroutines are needed:

I) BOUNDSwhich evaluates the constrained variable values _n terms of the

constants and design parameter values and 2) VALUES which evaluates the

objective function's value for a given set of constants and design parameter

values. These two subroutines combine with the input data file to define the

specific problem for optimization. The gradient calculations which perform

the optimization by calling these two subroutines repeatedly and the input and

output file interfacing are contained in the SEEK Fortran code.

Constants

Each problem is defined by a series of constant values such as: size,

power level, speed of operation, elastic modulus, material strength or

requested service life. These constants are fixed for all trial designs of

the optimization effort, and the constrained properties and objective function

values are direct functions of them. The constants may change for a different

design using the same analysis subroutines, however. For example, designs

made of steel will have different properties from those made of nylon, yet

each steel design will have the same material stiffness and strength as the

other steel designs.



The program will read these constants and their labels from the ASCII

input file, store them in arrays and use the values whenever the constrained

property or objective function values are calculated.

Parameters

In each problem, we are searching for a set of parameter values which

optimize the objective function to either a minimum or a maximum value. These

parameters are the second vector entered in the input data file. The

optimization scheme proceeds by analyzing repeated trials until it selects one

for which the analysis yields an optimum objective function value. So the

values entered for the design parameters include an initial value for each

parameter for the first trial analysis. This vector also includes upper and

lower values for each design parameter. These upper and lower values serve to

establish the relative sensitivity of the parameter for the gradient searches,

but do not limit the value itself. By increasing the span between the upper

and lower values for a design parameter, the user can increase the sensitivity

of that parameter in the design search. If it appears that a design parameter

is not changing as the optimizer seeks out better designs, increasing this

span between the upper and lower values will increase its tendency to change

in future optimization runs.

After reading these parameter values and their labels from the input

file, the program will store them in arrays, use the parameter ranges to set

relative sensitivities which will not change throughout the optimization and

place the initial parameter values into the parameter array. The parameter

array will change throughout the operation of the program until it contains

the values of the parameters which optimize the objective function.



Constraints

Limiting each design is a series of constraints on the properties of the

design. These constraints may be applied directly to one or more of the

parameters such as the thickness of a beam or they may be applied to a

calculated property of the design such as the maximum stress in the beam. The

constraints of this algorithm are inequality constraints. In the general

optimization formulation, two types of constraints are possible: inequality

and equality. Gradient search algorithms require a continuum of parameter and

property values in which to move around in search of the optimum. Inequality

constraints provide boundaries to the design space but do not diminish it.

Equality constraints reduce the space by one dimension. Each equality

constraint transforms one independent design parameter into a dependent design

parameter. There are two ways to include an equality constraint in this

algorithm: I) reduce the design space by one, or 2) enter the equality

constraint into the data as an inequality constraint.

The first method is the best because it simplifies the calculations

making the optimization more direct and faster. If the width of a rectangular

spring is always seven times its height, then one can remove the width from

the list of independent design parameters and set it equal to seven times the

height in the calculations. This reduces all gradient calculations by one

element and leaves a full design space for the remaining parameters' gradient

searches.

The second method may be easier to implement if the equality constraint

is not tied to the parameters directly. By entering it as an inequality

constraint, one leaves the design space at its larger dimensional size and

cuts it in half with the bounding value. Since the unbounded optimal design



would probably lie off this constraint, placing this bound between the

unboundedoptimum and the acceptable design space will place the bounded

optimal design right on this constraint and thus actually satisfy the equality

constraint.

The program will read these constraints, their directions and their

labels from the input file, place them in arrays and use them in the

subroutine BOUNDS,which is provided by the user, to limit the acceptable

design space throughout the optimization.

Objective Function

In each optimization, some property or combination of properties, called

the objective function, is to be minimized or maximized. The weighting

coefficients of these properties are the last vector entered in the input data

file. These coefficients may be percentages, unit conversions to place the

properties in the same dimensions or they may be switches such as zero and one

to change the optimization in the data file by changing the sought objective.

The assumption is that the objective function to be optimized may be expressed

as a linear sum of terms, each with its own weighting coefficient. The

weighting coefficients and direction of optimization will remain fixed

throughout the optimization.

The program will read these coefficients and their labels from the end

of the input data file, place them in arrays and use the coefficients to

modify the objective function property values. These values are calculated in

subroutine VALUES which is provided by the user.

10



PROGRAMMING

With these four vectors defined and labeled, the program starts the

output file with an echo of the input data to document the optimization

problem. It then proceeds to seek an optimal design with the modified

feasible directions gradient method. Using gradients in the objective

function and in the violated constraints, the program can move from an initial

design which does not satisfy the design constraints to designs which are

valid. It can also improve a valid initial design to obtain an optimum design

within the assumptions of the model.

Once an optimum design is found, the program prints: the found design

parameters, the objective function value with its componentfunction values,

and the constraints with both their design and limit values. The program then

offers the user the opportunity to try alternate designs. On receiving the

revised design parameter values, the program uses subroutines BOUNDSand

VALUESto check this design, prints out its properties and offers the user the

chance to try another alternate design. All design trials are printed to the

screen and the ASCII output log file.

Analysis Subroutines

To model a problem, the program needs two analysis subroutines: BOUNDS

and VALUES. These subroutines are problem specific and should match the input

data. Subroutine BOUNDS calculates the constrained property values for each

design trial and gradient perturbation as direct functions of the constants

and design parameters only. Data are passed to BOUNDS with two dynamically

dimensioned arrays: CONST(NCO) for the constants and X(NX) for the design

parameters, and the constraint value results are returned to the program in

the array VCSTR(NCS). Subroutine VALUES calculates the objective function

11



values also as direct functions of the constants and design parameters only.

Data are passed to VALUES with the same two arrays: CONST(NCO) for the

constants and X(NX) for the design parameters, and the object function values

are returned in the array OBJECT(NOB).

Both subroutines must be able to determine their outputs as continuous

functions over the range of design parameters used. Since small perturbations

are given to the design parameters to determine corresponding changes in the

objective function value and in the constrained variable values throughout the

design search, the subroutine calculations must be defined and continuous.

Discrete parameter requirements such as integer tooth numbers for gears and

standard component sizes can be added by the user in the verification stage of

the optimization process. They cannot be included in the simulation model

itself.

These subroutines may contain formulas, interpolated data, iterations or

other subroutines as long as the resulting calculations yield continuous

functions of the design parameters. If the subroutines call other

subroutines, they should not have the same names as those subroutines included

in the optimizing part of SEEK, which are listed in Table I.

Common blocks may be used by the subroutines, but SEEK uses four common

blocks, which should not be altered: CURVE, PAR, VAR, and UNITS. One of these

common blocks, UNITS, contains four integer variables, NW, NR, NF and ND.

These are the file numbers for writing and reading to the interface devices.

NW identifies the screen, NR identifies the keyboard, NF identifies the output

file and ND identifies the input file. The user may add additional

information to the output with these file numbers, bearing in mind that BOUNDS

and VALUES are called many times by SEEK in the optimization process.

12



Table I

Subroutines of Proqram SEEK

Line

756

983

1207

1113

1033

1174

724

912

874

740

1088

1210+

1146

Name

BACK

BOUNCE

BOUNDS

CHECK

GRADNT

MERIT

RESIZE

SCAN

SCOUT'

SIZE

UNIT

VALUES

WALL

Function

Search for Acceptable Design Space

Find Gradient Sum of the Violated Constraints

User Supplied Constraint Analysis

Test for Constraint Violation

Evaluate a Gradient

Evaluate the Objective Function Sum

Unscale the Design Parameters into Real Units

Increment the Design in the Acceptable Design

Space

Try a New Design Position And Check the

Constraints

Scale the Design Parameters to Unit Space

Normalize a Vector

User Supplied Objective Function Analysis

Evaluate a Specified Constraint

13



Input Data File

Coordinated with these two required subroutines is the ASCII input data

file, which is described in Appendix A - SEEK.DOC. The initial line in the

data file is a text line of fifty characters or less which describes the

design being optimized. This is followed by a line which contains a single

number, NCO, - the number of constant values to follow, which is the first

vector in the data file. Each optimization constant is then entered in a set

of three lines: I) the numerical value, 2) the name of the constant in thirty

characters or less, and 3) the units for the constant in twelve characters or

less. With this information, the program will label the constant values

whenever it prints them.

Following the constants in the input data file is the list of

independent design parameters, which is the second vector. After the last

constant has been listed, the next line is once again a single number, NX, -

the number of parameter values to follow. Each parameter is then entered in a

set of three lines: I) three numerical values - a low estimate for the

parameter, a high estimate and an initial estimate; 2) the name of the

parameter in thirty characters or less; and 3) the units for the parameter in

twelve characters or less.

The list of constraint bounds is the third vector. After the last

parameter has been listed, the next line is a single number, NCS, - the number

of constraint bounds to follow. Each bound is then entered in a set of three

lines: ]) the word 'UPPER' or 'LOWER' followed by the numerical value

including its decimal point, 2) the name of the constraint in thirty

characters or less, and 3) the units of the constraint in twelve characters or

less.

14



Finally, the list of weighting coefficients is the fourth vector

entered. After the last constraint has been listed, the next line is a three

letter prefix, 'MIN' or 'MAX', which describes the direction of optimization.

This is followed by a line with a single number, NOB, - the number of

weighting coefficients to follow. Each coefficient is then entered in a set

of three lines: I) the numerical value, 2) the nameof the property in thirty

characters or less, and 3) the units for the property in twelve characters or

less.

Desiqn Verification

As described at the start of this section, the use of SEEK is somewhat

interactive. Because the user must add at least two subroutines to the

program in addition to the input data file, the combined program must be

compiled separately for each optimization application. After writing the

analysis subroutines with the proper dynamic dimensioning in the calling

arguments, the user may add subroutines to the end of the source code for SEEK

and compile the program in the environment in which it is to be run. The

compiler should be a Fortran 77 compiler of which there are several PC

versions available. Once compiled and linked into an executable program, the

optimizer can be run with the matching data file to find an optimal design.

With the interaction of the data file and the analysis subroutines, the

user may change the way an optimization is conducted through small changes in

the data file. By using one and zero as weighting coefficients to an

objective function that contains totally different terms and by switching

constraints from UPPER to LOWER or changing their values to make them active

or inactive, one can change an optimization significantly.

15



For example, one could have a transmission life optimization program

which included bounds on the transmission size and life as well as terms in

the objective function for size and life E81. By requesting that the size be

less than somevalue, that the life be greater than zero and by having a

weighting coefficient of one for life and zero for size and by selecting 'MAX'

in the input data file, one would have an optimization that would maximize the

life of the transmission within a given acceptable size. Shifting the

requests in the input file to request that the size be greater than zero, that

the life be greater than somedesired value, and by having a weighting

coefficient of zero for life and one for size with 'MIN' selected in the input

data file would minimize the size of the transmission for the requested

service life.

Smaller changes in limit values or problem constants could change the

size of a requested design or someother feature without requiring a change in

the compiled program. As stated earlier, the program generates a complete log

file of the obtained designs and the verified designs in response to keyboard

input after an 'ideal' design has been found and written to the screen and the

log file. Speed of execution of the program is entirely dependent upon the

complexity of the analysis models. Small optimization programs can run

quickly on the personal computer. The following four sections will

demonstrate the use of SEEKfor several different design optimizations.

16



BUSHINGOPTIMIZATION

Four examples of increasing complexity will be presented to illustrate

the capability of SEEK. The first example is that of the design of a low-

speed bearing to support a radial shaft load. For this application, the

simplest bearing is a bushing which is defined by its material, length and

diameter.

Theor_

Consider the design of a bushing to support a radial shaft load. With

little or no lubrication, a bushing's capacity is both strength and power

limited [g]. By constraining the bearing length to be less than or equal to

somepercentage of the shaft diameter, one can treat the radial load as

supported uniformly over the length of the bushing. Thus:

L
< B (I)

D

The nominal contact pressure in the bushing can then be taken as:

F

p - (2)
LD

where the pressure, P, is measured in MPa; the load, F, is in Newtons; and the

length, L, and diameter, D, are in mm. And the sliding velocity in the

bushing, Vs, measured in m/s is:

D 2 tr 0-3
Vs - f/( ) I (3)

where the shaft speed, _, is in RPM.

thus:

The strength limit on the bushing is

17



P _ Pmax (4)

The power limit on the bushing, which is proportional by the coefficient of

friction to the power lost in the bushing, is the PV factor of:

F D 2rr

L D 2 60

Fo(o)p Vs - 10-3 < (6)
L _ - PVmax

Figure I is a graph of the contact pressure in a bushing versus the

contact sliding velocity which shows the regions of the two pressure limits.

Acceptable designs have pressures lower than the plotted values. As the speed

increases, the power limit becomes active and restricts the design to lower

and lower acceptable pressures. Values for these limits for both metallic and

non-metallic materials are readily available [10,11].

Given adequate strength, a bushing may be sized to minimize the

frictional torque on the shaft. This torque is given in N-m by:

D

Tf = wu F I0-3 (7)
2

Proqramminq

The problem of designing a bushing is now defined mathematically. The

constants which specify the particular application are: I) the radial load, F;

2) the shaft speed, _; and 3) the coefficient of friction, p. The two design

parameters to be selected are: 1) the bushing length, L; and 2) the shaft

diameter, D. The three inequality constraints are: I) the length to diameter

]8
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ratio, #; 2) the acceptable pressure, Pmax; and 3) the acceptable pressure

times velocity factor, PVma x. All three constraints are upper bounds. The

objective function, which is to be minimized, is the frictional torque, Tf.

These quantities are summarized in Table 2.

The relations for the constraints are equations (I), (4) and (6), and

the relation for the objective function is equation (7). A subroutine BOUNDS

which is written to determine the constrained values using equations (I), (2)

and (6) is listed in Table 3. And a subroutine VALUES which is written to

determine the objective function value using equation (7) is listed in

Table 4.

The simplicity of the subroutines matches the simplicity of the

relations. In each subroutine, the input constant and design parameter

vectors are converted to individual variables which have names that identify

them more clearly. Then the equations are entered in an easily checked format

and the results are transferred to the output constrained variable or

objective function vectors. Note that the vector quantity subscripts match

the input data order. These quantities are numbered in the output file echo

of the input to assist the user in verifying that the proper input and output

quantities are used for the equations in the two analysis subroutines.

Once written, these two subroutines must be compiled and linked to

program SEEK to generate an executable program to perform the optimization.

One way to do this is to add the subroutines to the end of the source file for

program SEEK.FOR, save the combined program with a problem specific name such

as BUSHING.FOR and compile it. The result will be an executable file,

BUSHING.EXE. A second way would be to compile SEEK.FOR and the two analysis

subroutines BOUNDS.FOR and VALUES.FOR separately to generate object files

20



Table 2

Bushinq Optimization Parameters

Constants

D

Design Parameters

D

Inequality Constraints

 'max
D

P % Pmax

P Vs % PVmax

Objective Function

(Tf)mi n
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Table 3

Bushinq Constraint Evaluation Subroutine Bounds

C

C

C

C

C
C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

SUBROUTINE BOUNDS(CONST,NCO,X,NX,VCSTR,NCS)

BOUNDS DETERMINES THE PRESENT CONSTRAINT

FUNCTION VALUES

FOR A BUSHING DESIGN EXAMPLE

PARAMETERS:

CONST - FIXED DESIGN CONSTANT

NCO - NUMBER OF DESIGN CONSTANTS

NCS - NUMBER OF INEQUALITY CONSTRAINTS
NX - NUMBER OF INDEPENDENT DESIGN PARAMETERS

VCSTR - PRESENT CONSTRAINT VALUES

X - PRESENT DESIGN PARAMETER VALUES

ALL VALUES ARE IN PROBLEM UNITS

CONST(1) = F

CONST(2) = N

CONST(3) = f

- RADIAL LOAD (POUNDS)

- SHAFT SPEED (RPM)
- FRICTION COEFFICIENT

X(1) = L

X(2) = D

- BUSHING LENGTH (IN)

- BUSHING DIAMETER (IN)

VCSTR(]) = P

VCSTR(2) = PV

VCSTR(3) = L/D

- AVERAGE BUSHING CONTACT PRESSURE

(PSl)
- BUSHING PRESSURE TIMES VELOCITY

FACTOR (PSI - FT/MIN)
- BUSHING LENGTH TO DIAMETER RATIO

DIMENSION CONST(NCO),X(NX),VCSTR(NCS)
PI = 3.14159265

FORCE = CONST(I)

RPM = CONST(2)

BLEN = X(])

DIA = X(2)

PRESS = FORCE/(BLEN*DIA)

PV = O.O01*PI*FORCE*RPM/(60.O*BLEN)

RATIO = BLEN/DIA

VCSTR(]) = PRESS

VCSTR(2) = PV

VCSTR(3) = RATIO
RETURN

END
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Table 4

Bushinq Objective Function Evaluation Subroutine Values

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C
C

C

C

C

SUBROUTINE VALUES(CONST,NCO,X,NX,OBJECT,NOB)

VALUES DETERMINES THE PRESENT DESIGN

OBJECTIVE FUNCTION VALUES

FOR A BUSHING DESIGN EXAMPLE

PARAMETERS:

CONST - FIXED DESIGN CONSTANT
NCO - NUMBER OF DESIGN CONSTANTS

NOB - NUMBER OF OBJECTIVE FUNCTION TERMS

NX - NUMBER OF INDEPENDENT DESIGN VARIABLES

OBJECT - PRESENT OBJECTIVE FUNCTION VALUES

X - PRESENT DESIGN PARAMETER VALUES

ALL VALUES ARE IN PROBLEM UNITS

CONST(1) : F

CONST(2) : N

CONST(3) : f

- RADIAL LOAD (POUNDS)

- SHAFT SPEED (RPM)
- FRICTION COEFFICIENT

x(1) = L
X(2) : D

OBJECT(1) = Tf

- BUSHING LENGTH (IN)

- BUSHING DIAMETER (IN)

- BUSHING FRICTION TORQUE (LB - IN) C

DIMENSION CONST(NCO),X(NX),OBJECT(NOB)

FORCE : CONST(I)
FRICT = CONST(3)

DIA = X(2)

TORQUE = O.O01*FRICT*FORCE*DIA/2.0

OBJECT(1) = TORQUE
RETURN

END
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only. These object files can then be linked with SEEK.OBJ listed first to

produce an executable file, BUSHING.EXE {12,]3].

Since this is a two parameter design problem with a single objective

function, one can draw two graphs which illustrate the optimization. The

first is called a design space in that it is a graph in coordinates which

match the design parameters. Points in the graph represent specific design

parameter values or designs. Plotted in this graph are the design constraint

limits. These constraint limits divide the design space of potential designs

into two regions: I) an acceptable design region in which all design

constraints are satisfied, and 2) an unacceptable design region in which at

least one design constraint is violated. Figure 2 is a graph of a design

space for the bushing design problem.

The second graph, Figure 3, is a plot of the objective function versus a

design parameter. If the objective function were a function of both design

parameters, a contour plot on the same coordinates as Figure 2 would be

required to show how the objective function varies for different designs.

Since the objective function of equation (7) is not a function of the bushing

length, a simple graph of friction torque versus shaft diameter shows how this

property varies for the potential designs. Figure 3 is drawn directly below

the design space so that the objective function of friction torque can be

visualized as a plane contour rising in the design space above.

On inspection of these graphs, it is obvious that the optimal design is

the bushing with the smallest shaft diameter which satisfies the three

inequality constraints plotted in Figure 2. Once this information is known,

there is no need to go through a formal optimization to find the optimal

design. Optimization techniques have their greatest value for problems for
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which optimum solutions are not yet known. Knowing this optimum will help us

verify the effectiveness of the modified gradient method. But once an optimum

solution is known, either from a graphical analysis or by a computer

optimization, it is more efficient to calculate it directly [14].

Numerical Example

For an example, consider the design of a bushing to support 750 N at a

shaft speed of 40 RPM. The shaft is steel and the bushing is to be nylon

which has a coefficient of friction with steel of 0.2 and which has a design

pressure limit of 14 MPa and a design PV limit of 0.11MPa m/s. In this

design, the length is to be limited to be less than or equal to seventy

percent of the shaft diameter and the shaft size and bushing length are to be

in whole mm's.

Table 5 is a listing of an input file for this problem, including line

numbers which are not part of the input file. The first line is the problem

title. The next line is the number of constants, 3, which is followed by

three sets of three lines. Each constant is identified by its value, its name

and its dimension.

The frictional coefficient has no dimension, so its dimension line is

left blank in order for the following line which is the number of independent

design parameters, 2, to appear in its proper place. If this line 1] were not

left blank, an error checking routine would identify an error in the input

file on line 13 and stop the program. Line 13 is the next line of text in the

input file - the name of the first design variable. Due to the missing

line 11, the program would try to read this text as the numerical value for

the first design variable. Although this error message does not point

directly to the cause of the reading error, it does indicate the presence of
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Line

I
2
3
4
5
6
7
8
9

10
11
12
13
14
]5
]6
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Table 5

Col umn

I

First Bushinq Input File

RADIAL NYLON BUSHING

3

750.0

RADIAL LOAD

NEWTONS

40.0

SHAFT SPEED

RPM

0.2

FRICTION COEFFICIENT

2

0.0 10.0 5.0

BUSHING LENGTH

mm
0.0 10.0 5.0

BUSHING DIAMETER

mm
3

UPPER 14.0

CONTACT PRESSURE

MPa

UPPER 0.]I
PV FACTOR

MPa - m/s
UPPER 0.7

LENGTH TO DIAMETER
RAT I0

MIN

I

1.0

FRICTION TORQUE
N - m
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an error. Checking the data on line 13 and the lines that precede it should

lead to this discovery in a short amountof time.

The next six lines contain the design parameter values, namesand

dimensions. The value lines contain three numbers: I) the low estimate,

2) the high estimate, and 3) the initial estimate. At this point in the

solution, we know the least about the values to enter for these design

parameters. Let us guess ranges from zero to ten mmand initial values of

five mmfor the two design variables. The next line contains the numberof

design constraints, 3. Following are nine lines with the three constraint

limit types and values with their decimal points on the first lines, their

nameson the second lines and their units on the third lines.

The data for the objective function vector follows. The next line

contains the letters 'MIN' to identify minimization as the direction of

optimization. This is followed by a line with the single value of one to

indicate that the objective function has only one term. The last three lines

are the weighting coefficient value and the nameand units for the term.

This file is saved with a namesuch as NYLON].IN. The compiled program

BUSHING.EXEcan now be run by typing BUSHINGat the prompt. As shownin

Figure 4, the program will request the prefix for an input file, which should

be NYLONIin this case. Since "data points" is not in the first constant

description, the program will bypass this option and not try to open and read

a data file. After receiving the input, the program will run. It will echo

the input data to the screen, with several PAUSEs. Press the ENTERkey at

each PAUSEto continue execution of the program. For the input data of

Table 5, it turns out that the initial guess is too small and the ranges are

small also. The program will try to change this initial guess into a design
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which does satisfy the design constraints, but since the design ranges are

small also, the improvement steps are too small to reach the acceptable design

space in the twenty steps allowed by the program.

Table 6 is a listing of the output file for this trial. In this output,

one can see that the shaft diameter was tripled in an attempt to reach the

region of good designs. The PV limit was the major constraint, with values

twenty percent higher than the limit for the revised design and three times

the limit for the initial design. A second input file, NYLON2.1N can now be

made by copying the first and modifying the design parameter initial values.

In this second file the ranges of both design parameters are left at zero to

ten mm and the initial values are increased to twenty mm for the length and

thirty mm for the diameter. These are the only changes from the first input

file. Table 7 lists the new input file, NYLON2.1N.

The results of running the program again with the new input file are

listed in Table 8. An optimum design was found in 45 steps with a length of

14.28 mm and a diameter of 20.4] mm. The design has a friction torque of

1.53 N-m and satisfies all three constraints. The two limiting constraints

which are just satisfied are the PV factor limit and the length to diameter

ratio. These results are consistent with the graphical results of Figures 2

and 3.

Note that the input ranges of the design variables only set the

sensitivity of the search, they do not limit the design to have diameters less

than 10 mm. To make that a limit, one must add an upper limit of 10 mm to the

diameter as a fourth constraint. This would prevent the optimizer from

finding a solution, since no design with a diameter less than 10 mm can have a
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Table 6

First Bushinq Output Loq File

RADIAL NYLON BUSHING

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION

USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES.

FIXED DESIGN REQUIREMENTS:

I RADIAL LOAD 750.00000 NEWTONS

2 SHAFT SPEED 40.00000 RPM

3 FRICTION COEFFICIENT 0.20000

THERE ARE 2 INDEPENDENT DESIGN VARIABLES.

ESTIMATED VALUES:

LOW HIGH

I BUSHING LENGTH 0.00000 IO.O0000

2 BUSHING DIAMETER 0.00000 10.00000

THE 3 CONSTRAINT LIMITS ARE:

I CONTACT PRESSURE 14.00000 MPa

2 PV FACTOR 0.11000 MPa - m/s

3 LENGTH TO DIAMETER 0.70000 RATIO

MINIMIZE THE OBJECTIVE FUNCTION.

OBJ = FRICTION TORQUE IN N - m

INITIAL

5.00000 mm

5.00000 mm

TYPE

UPPER

UPPER

UPPER

TIMES 1.0000
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Table 6 Continued

First Bushinq Output Loq File

OPTIMIZATION COULD NOT BEGIN - BAD INITIAL VALUE.

THE INITIAL VALUE FOR THE PROBLEM VIOLATED

AT LEAST ONE INEQUALITY CONSTRAINT.

THE PROGRAM COULD NOT FIND ANOTHER VECTOR WHICH

SATISFIED ALL THE INEQUALITY CONSTRAINTS.

I BUSHING LENGTH
2 BUSHING DIAMETER

X INITIAL X MODIFIED

5.00000 12.07892 mm

5.00000 16.83625 mm

THE 3 CONSTRAINT VALUES FOR X INITIAL ARE:

I CONTACT PRESSURE

2 PV FACTOR

3 LENGTH TO DIAMETER

= 30.000 MPa

= .31416 MPa - m/s
= 1.0000 RATIO

THE 3 CONSTRAINT VALUES FOR X MODIFIED ARE:

] CONTACT PRESSURE

2 PV FACTOR

3 LENGTH TO DIAMETER

= 3.6880 MPa

= .13004 MPa - m/s
= .71744 RATIO

LIMIT

14.000

.11000

.70000

LIMIT

14.000

.11000

.70000

TYPE

UPPER
UPPER

UPPER

TYPE

UPPER

UPPER

UPPER
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Table 7

Second Bushinq Input File

RADIAL NYLON BUSHING

3

750.0

RADIAL LOAD

NEWTONS

40.0

SHAFT SPEED

RPM

0.2

FRICTION COEFFICIENT

2

0.0 10.0 2O.O

BUSHING LENGTH

mm
0.0 10.0 30.0
BUSHING DIAMETER

mm
3

UPPER 14.0

CONTACT PRESSURE

MPa

UPPER 0.11

PV FACTOR

MPa - m/s
UPPER 0.7

LENGTH TO DIAMETER

RAT I0
MIN

I

I.O

FRICTION TORQUE
N - m
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Table 8

Second Bushinq Output Locl File

RADIAL NYLON BUSHING

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION

USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES.

FIXED DESIGN REQUIREMENTS:

I RADIAL LOAD

2 SHAFT SPEED

3 FRICTION COEFFICIENT

THERE ARE

I BUSHING LENGTH

2 BUSHING DIAMETER

750.00000 NEWTONS

40.00000 RPM

0.20000

2 INDEPENDENT DESIGN VARIABLES.

ESTIMATED VALUES:

LOW HIGH

0.00000 10.00000
0.00000 10.00000

THE 3 CONSTRAINT LIMITS ARE:

1 CONTACT PRESSURE

2 PV FACTOR

3 LENGTH TO DIAMETER

MINIMIZE THE OBJECTIVE FUNCTION.

OBJ = FRICTION TORQUE

OPTIMIZATION SUCCESSFUL IN

THE FINAL DESIGN VECTOR IS:

14.00000 MPa

0.11000 MPa - m/s
0.70000 RATIO

IN N - m

45 STEPS

x(1)

I BUSHING LENGTH 14.28342 mm

2 BUSHING DIAMETER 20.40649 mm

INITIAL

20.00000

30.00000

TYPE

UPPER

UPPER

UPPER

mm

mm

TIMES I.O000

THE MINIMUM OBJECTIVE FUNCTION = 1.53049 , ITS COMPONENTS ARE:

] FRICTION TORQUE = ].5305 N - m TIMES

THE LAST CHANGE IN THE OBJECTIVE FUNCTION = -0.677109E-04

THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE = 0.390625E-03
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Table 8 Continued

Second Bushinq Output Log File

THE 3 CONSTRAINT VALUES ARE:

I CONTACT PRESSURE

2 PV FACTOR

3 LENGTH TO DIAMETER

LIMIT TYPE

= 2.5735 MPa 14.000 UPPER

= .10999 MPa - m/s .11000 UPPER
= .69989 RATIO .70000 UPPER

DESIGN CHECK

1 BUSHING LENGTH

2 BUSHING DIAMETER

X(1)

]5.00000 mm

21.00000 mm

THE MINIMUM OBJECTIVE FUNCTION = 1.57500

I FRICTION TORQUE = 1.5750

THE 3 CONSTRAINT VALUES ARE:

, ITS COMPONENTS ARE:

N - m TIMES I.O000

I CONTACT PRESSURE

2 PV FACTOR

3 LENGTH TO DIAMETER

LIMIT TYPE

= 2.3810 MPa ]4.000 UPPER

= .]0472 MPa - m/s .11000 UPPER
= .71429 RATIO .70000 UPPER

DESIGN CHECK

i BUSHING LENGTH

2 BUSHING DIAMETER

X(1)

15.00000

22.00000
mm
mm

THE MINIMUM OBJECTIVE FUNCTION = 1.65000

I FRICTION TORQUE = 1.6500

THE 3 CONSTRAINT VALUES ARE:

1 CONTACT PRESSURE

2 PV FACTOR

3 LENGTH TO DIAMETER

= 2.2727

= .10472

= .68182

MPa

MPa - m/s
RATIO

ITS COMPONENTS ARE:

N - m TIMES I.O000

LIMIT TYPE

14.000 UPPER

.11000 UPPER

.70000 UPPER
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PV factor less than 0.11MPa - m/s and a B less than 0.7. Repeated trials

such as the first one would tell us that.

However, another constraint on the solution was that the diameter and

length be in whole mm's. This can be obtained with the design check provision

of the program, which is shown in Table 8. Once the numerical optimum has

been found, the program lists the number of optimizing steps followed by: the

found design parameter values for bushing length and bushing diameter, the

objective function value and the three constrained variable values and limits.

Then the program re-lists the design variables with their found values and

offers the user the option to change them for a design check. Figure 5 shows

this interaction. The user responded with a 'Y' to the question on trying

another design and entered the two values of '15' and '21' for the bushing

length and diameter. The program then printed the results to the screen and

added them to the output file as shown in Table 8. This option is offered to

the user at the end of each analysis until the response to the first question

is 'N' which tells the program to close the output file and stop the program.

Increasing the length to 15 mm and the diameter to 21 mm increases the

friction torque slightly to 1.575 N-m but still does not satisfy the length to

diameter constraint. A second trial with a 15 mm length and a 22 mm diameter

has a friction torque of 1.65 mm and satisfies all three modeled constraints

and the additional requirement of standard sizes. This trial is the optimal

design and is shown in Figure 6.
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SPRINGOPTIMIZATION

In this example, consider the design of a steel helical coil compression

spring to support a varying load with a specified spring rate. The applied

load varies betweenminimumand maximumvalues in service and may be larger if

the spring is compressedsolid at assembly. For a given spring material, four

geometric parameters define the spring: I) the wire diameter, dw; 2) the mean

coil diameter, D; 3) the numberof active coils, Na; and 4) the height of the

spring when unloaded, hf.

In this design problem, one more requirement can be placed on the

performance of the spring: it could have a specified outside diameter, or work

over a rod of a given diameter or it could have a required height under load.

Instead, we will let the optimizer find a spring with a minimized property

which can support the specified loads with the given spring rate. Three

separate objective functions will be minimized: I) spring weight, 2) spring

height, and 3) spring coil volume. The resulting designs will satisfy the

load and deflection requirements, but they will be different.

For the spring design to have somepracticality, the wire size should be

selected from a finite list of available diameters and the meancoil diameter

should also be a standard size.

Theor_

A spring's performance is modeled by its strength and deflection. A

helical coil spring supports its axial load as a torsional shear stress in the

wire with a small additional direct shear stress. Figure 7 shows the axial

load and the internal wire torque and shear which support it. Due to the

curvature of the wire, Wahl determined a stress concentration factor, Kw,

which compares the maximumshear stress in the wire to the nominal torsional
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stress caused by the couple of the axial load through the center of the spring

and the supporting shear force through the center of the wire [I0,15]. The

shear stress and stress concentration factor are:

Kw Tq D 8.0 Kw F D 8.0 Kw F C

r - - dw3 - 2 (8)2.0 J u ud w

and

4.0 C - 1.0 0.615

Kw = + (g)
4.0 C - 4.0 C

where the spring index, C is:

D

C -

dw

(10)

The deflection of a helical coil spring at any load, F, is a result of

the twist in the wire due to the applied torque, T :
q

or

or

D D T L

6 - 0 - q (11)
2 2 JG

D/2 ( F D/2 ) ( u D Na ) 8 F D3 Na
6 = (12)

( u dw4/32 ) G dw4 G

8 F C3 Na
6 = (13)

dw G

The stiffness of the spring or its rate is thus:

F dw G
k - - (14)

6 8.0 C3 N
a

41



These basic equations for stress (8), deflection (13) and stiffness (14)

can be applied to the specified loads to model the performance of the spring.

To avoid yielding, the maximumstress in the spring should be less than the

shear yield strength of the wire divided by the design stress, or the static

design factor, Ns, should be greater than the desired design factor, where:

Ns - Ssy (15)
rsol

and the maximum stress in the spring, rso l, is found by using the solid height

force, Fso l, in equation (8). The shear yield strength of the wire can be

estimated as eighty percent of the ultimate shear strength of the wire. As

spring wire is drawn to a smaller diameter, its ultimate strength increases.

Using the octahedral shear factor of 0.577, the ultimate shear strength can be

estimated as a function of the drawn wire size as [15]:

Ssu = 0.577 Suc dwa (16)

In addition to having adequate strength to avoid yielding when

compressed solid, springs should be able to support an infinite number of

loading cycles without experiencing a fatigue failure. Figure 8 is a

Soderberg diagram of alternating shear stress versus mean shear stress, which

shows the reduction in alternating strength with increasing mean stress, for a

helical coil compression spring. Since the stress concentration affects the

alternating stress directly and does not affect the mean stress influence, the

Wahl factor is applied only to the alternating shear stress. An algebraic

trick, which allows all stresses to be calculated with equation (8), is to

multiply the stress concentration factor by the ultimate strength to divide it

out of the mean stress.
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In Figure 8, the negative sloped lines show the Goodman criteria for

fatigue strength with and without the design factor, Nf, and the positive

sloped line shows the load ratio of alternating stress, ra, to mean stress,

rm, for this application.

[is]:
1

Nf

The design factor equation for this criteria is

r m r a
+ (17)

Kw Ssu Sse

or

1.0

Nf = (18)
Tm r a

+

Kw Ssu Sse

The mean stress is calculated with equation (8) using the average applied

load:

Fmax + Fmin

Fm = (19)
2.0

And the alternating stress is calculated using the alternating applied load:

Fmax - Fmin

Fa = (20)
2.0

Unlike the ultimate wire strength, the fatigue strength of the steel wire,

Sse, is constant at these high strengths.

Figure g is a plot of the force on the spring versus the height of the

spring. Near the solid height, the axial load on the spring increases rapidly

as the coils close. In service, the spring operates between the working

heights of hmi n and hma x with loads of Fmax and Fmin, The unloaded height of

the spring is the sum of the deflection to solid height and the solid height:
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hf

Fsol
m

k
+ 1.0] dw ( Na + Ne ) (21)

Coil weight is a direct function of the volume of wire in the spring:

/7

Vw - dw2 ( Na + Ne ) n D
4

with:

(22)

Wt = w Vw (23)

The volume of the coil is the area of the outside diameter's circular disc

times the spring height:

Vcoil - OD 2 hf (24)
4

Proqramminq

Table 9 summarizes the design problem in terms of the constants which

define the problem, the design parameters which are to be found, the equality

and inequality constraints on the design and the three separate objective

functions which will be sought. In the initial formulation, there are two

equality constraints on the stiffness and the force at solid height, which can

be used to reduce the number of independent design parameters from four to

two. There are four active inequality constraints: I) that the number of

active coils be positive, 2) that the fatigue design factor be greater than

the desired design factor, 3) that the static design factor at assembly be

greater than the desired design factor, and 4) that the spring index be

greater than two, so a coil can be manufactured.
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Table 9

Initial Sprinq Optimization Parameters

Constants

Fmin

Fmax

Fsolid

k

Ne

Ndes

S
se

S
SU

G

W

Design

d w

D

Na

hf

Constraints

Equality Inequality

Na > 0.0

Nf > Nde s

Ns > Nde s

C >2.0

Parameters

k

Fsolid

Objective Function

(hf)min

or

(Wt)mi n

or

(VOl)mi n

Table 10

Revised Sprinq Optimization Parameters

Constants Design Parameters Inequality Constraints Objective Function

Fmin

Fmax

Fsolid

k

Ne

Sse

Suc

a

G

W

d w

D

Na>O.O

Nf > Nde s

Ns > Nde s

C >2.0

rmax>O.O

OD>O.O

Vw>O.O

(hf)mi n

or

(Wt)min

or

(Vol)min
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From the stiffness equation (I4), one can relate the numberof active

coils to the wire and meancoil diameters, the stiffness and the shear modulus

of the material:

dw G

Na - (25)
8.0 k C3

Equation (2]) relates the spring height to: the maximum force, Fsol; the

spring rate; the wire diameter; and the numbers of active and end coils.

These two equations convert two design parameters from independent parameters

to dependent parameters and simplify the optimization. Table 10 is a second

pass at formulating the optimization problem in this simpler form. Three

inactive constraints have been added to the inequality constraint list to make

the optimizer report these properties. All properties are constrained to be

greater than zero, which they will be for all designs. The watched properties

are: 1) maximum static stress, Tmax; 2) outside diameter, OD; and 3) wire

volume, Vw. The final differences between the two formulations are in the

constant list: I) the elimination of the design factor from the constant list

since it is used in the constraint limit list and, 2) the replacement of the

ultimate shear strength of the wire by the ultimate tensile strength constant

and the wire power to enable the program to vary the strengths with wire size.

Figure 10 is a plot of the design space for this reformulated

optimization. The graph plots the two independent design parameters: the wire

diameter, dw, and the mean coil diameter, D, versus each other. On the graph

are drawn constraint lines for the four active constraints. The number of

active coils constraint, Na, is drawn for a limit of 0.1 coils to show its

shape. A limit of zero coils lies on the x axis. Designs which satisfy all
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constraints can be found in the region labeled acceptable designs which is

between the spring index limit, labeled C, and the solid stress limit, labeled

SOLID.

Each of the three objective functions are complex functions of these

parameters, so a single plot of the objective function versus mean coil

diameter is not possible. Contour plots for each objective function would

have to be drawn on the design space to obtain a graphical solution to the

problem.

Two analysis subroutines must now be written to operate on the constants

and design parameters of Table 10 and determine the constraint values and the

objective function values listed. Subroutine BOUNDS, which is listed in

Table 11, takes the constant array and the design parameter array from the

calling list and determines the constraint values. As with the bushing

example, this is done in three steps to clarify the calculations:

]) conversion of input arrays to variables, 2) calculation of the properties

and 3) transferring the property values to the constraint property array. The

analysis of equations (8) through (25) is used in the subroutine. Subroutine

VALUES, which is listed in Table 12, performs a similar determination of the

three objective function values. Once written, these two subroutines must be

compiled and linked to program SEEK to generate an executable program to

perform the optimization.

Numerical Example

For the example, consider the design of a spring to have a spring rate

of 4 kN/m. In use, the spring will see a load which varies from a minimum of

24 N to a maximum of 120 N. The spring should not go solid until the applied

load reaches a value of 150 N. The spring wire is to be selected from stock
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Table 11

Sprinq Constraint Evaluation Subroutine Bounds

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C
C

C

C

C

C

C

C

C
C

C

C

C

C
C

C

SUBROUTINE BOUNDS(CONST,NCO,X,NX,VCSTR,NCS)

BOUNDS DETERMINES THE PRESENT CONSTRAINT

FUNCTION VALUES

FOR A HELICAL COIL SPRING DESIGN

PARAMETERS:

CONST - FIXED DESIGN CONSTANT

NCO - NUMBER OF DESIGN CONSTANTS

NCS - NUMBER OF INEQUALITY CONSTRAINTS
NX - NUMBER OF INDEPENDENT DESIGN VARIABLES

VCSTR - PRESENT CONSTRAINT VALUES
X - PRESENT DESIGN VARIABLE VALUES

ALL VALUES ARE IN PROBLEM UNITS

CONST(1) = Fmin

CONST(2) = Fmax

CONST(3) = Fsol

CONST(4) = k

CONST(5) = Ne

CONST(6) = Sse

CONST(7) = Suc

CONST(8) = a

CONST(9) = G
CONST(IO) = w

- MINIMUM FORCE (NEWTONS)

- MAXIMUM FORCE (NEWTONS)

- MINIMUM SOLID FORCE (NEWTONS)

- SPRING RATE (kN/m)
- NUMBER OF DEAD COILS

- SHEAR FATIGUE STRENGTH (MPa)

- TENSILE STRENGTH COEFICIENT (MPa)
- TENSILE STRENGTH WIRE POWER

- SHEAR MODULUS (MPa)

- WEIGHT DENSITY (kN/m**3)

x(1) = dw
X(2) = D

- WIRE DIAMETER (mm)
- MEAN COIL DIAMETER (mm)

VCSTR(1) = Na

VCSTR(2) = Nf

VCSTR(3) = Ns

VCSTR(4) = C
VCSTR(5) = Tmax

VCSTR(6) = OD

VCSTR(7) = Vw

- NUMBER OF ACTIVE COILS

- FATIGUE DESIGN FACTOR

- STATIC DESIGN FACTOR

- SPRING INDEX

- MAXIMUM SHEAR STRESS (MPa)

- OUTSIDE DIAMETER (mm)

- SPRING WIRE VOLUME (mm**3)
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Table 11 Continued

Sprinq Constraint Evaluation Subroutine Bounds

C

DIMENSION CONST(NCO),X(NX),VCSTR(NCS)

PI = 3.]4]59265

FMIN = CONST(1)

FMAX = CONST(2)

FSOL = CONST(3)

RATE = CONST(4)

ZNE = CONST(5)
SSE = CONST(6)

CSUT = CONST(7)

ASUT = CONST(8)

G = CONST(9)
DW = X(1)

D = X(2)

C = D/DW

ZNA = DW*G/(B.O*C*C*C*RATE)
SSU = 0.577 * CSUT * DW**ASUT

SSY = O.8*SSU

FA = (FMAX - FMIN)/2.0

FM = (FMAX + FMIN)/2.0
SKW = (4.0"C - ].0)/(4.0"C - 4.0) + 0.615/C

TA = (8.0*SKW*FA*C/(PI*DW*DW))

TM = (8.0*FM*C/(PI*DW*DW))

ZNF = 1.0/(TM/SSU + TA/SSE)

TMAX = (8.0*SKW*FSOL*C/(PI*DW*DW))

ZNS = SSY/TMAX
OD = D + DW

ZNT = ZNA + ZNE
VW = O.25*PI*DW*DW*ZNT*PI*D

VCSTR(1) = ZNA
VCSTR(2) = ZNF

VCSTR(3) = ZNS

VCSTR(4) = C

VCSTR(5) = TMAX

VCSTR(6) = OD

VCSTR(7) = VW
RETURN

END
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Table 12

Sprinq Objective Function Evaluation Subroutine Values

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

SUBROUTINE VALUES(CONST,NCO,X,NX,OBJECT,NOB)

VALUES DETERMINES THE PRESENT DESIGN

OBJECTIVE FUNCTION VALUES

FOR A CANTILEVER BEAM DESIGN EXAMPLE

PARAMETERS:

CONST - FIXED DESIGN CONSTANT

NCO - NUMBER OF DESIGN CONSTANTS

NOB - NUMBER OF OBJECTIVE FUNCTION TERMS

NX - NUMBER OF INDEPENDENT DESIGN VARIABLES

OBJECT - PRESENT OBJECTIVE FUNCTION VALUES

X - PRESENT DESIGN VARIABLE VALUES

ALL VALUES ARE IN PROBLEM UNITS

CONST(I) = Fmin

CONST(2) = Fmax

CONST(3) = Fsol

CONST(4) = k

CONST(5) = Ne

CONST(6) = Sse
CONST(7) = Suc

CONST(8) = a

CONST(9) = G

CONST(IO) = w

- MINIMUM FORCE (NEWTONS)

- MAXIMUM FORCE (NEWTONS)

- MINIMUM SOLID FORCE (NEWTONS)

- SPRING RATE (kN/m)
- NUMBER OF DEAD COILS

- SHEAR FATIGUE STRENGTH (MPa)

- TENSILE STRENGTH COEFICIENT (MPa)
- TENSILE STRENGTH WIRE POWER

- SHEAR MODULUS (MPa)

- WEIGHT DENSITY (kN/m**3)

x(1) = dw
X(2) = D

- WIRE DIAMETER (mm)
- MEAN COIL DIAMETER (mm)

OBJECT(1) = Wt

OBJECT(2) = hf

OBJECT(3) = Vc

- SPRING WEIGHT (NEWTONS)

- SPRING HEIGHT (mm)

- SPRING CYLINDER VOLUME (mm**3)

DIMENSION CONST(NCO),X(NX),OBJECT(NOB)
PI = 3.14159265

FSOL = CONST(3)

RATE = CONST(4)

ZNE = CONST(5)

G = CONST(9)

W = CONST(IO)/IO00000.O
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Table 12 Continued

Sprinq Objective Function Evaluation Subroutine Values

C

DSOL = FSOL/RATE

DW = X(1)
D = X(2)

C = D/DW
OD = D + DW

ZNA = DW*G/(B.O*C*C*C*RATE)
ZNT = ZNA + ZNE

VW = O.25*PI*DW*DW*ZNT*PI*D

WT = VW*W

HF = DSOL + DW*ZNT*I.01

VC = O.25*PI*OD*OD*HF

OBJECT(1) = WT

OBJECT(2) = HF

OBJECT(3) = VC
RETURN
END
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sizes which have whole and half mmvalues. The meancoil diameter should also

have values with whole or half mmprecision. The springs are to be madeof

hard drawn spring wire with an ultimate strength constant of ]5]0 MPa, a wire

diameter strength variation exponent of -0.201, and a shear fatigue strength

of 465 MPa. The acceptable design factor is 1.5 and the spring ends are to be

squared and ground with one inactive coil at each end. The shear modulus of

steel is 79,000 MPaand its weight density is 76.5 kN/m3.

Table 13 is a listing of the input file for the minimumweight design

option. The file begins with the title for the output file. The second line

has the numberof constants to follow - ten. The next thirty lines contain

these ten constants in the order listed in Table 10 with their descriptions

and units. Following the constants is a line with the number two which

indicates that two independent design parameters will follow. These two

parameters are the wire diameter and the meancoil diameter. Low, high and

initial estimates are selected as 1.0, 15.0 and 5.0 for the wire size and

25.0, 500.0 and 100.0 for the meancoil diameter. The next line has the

single value of seven for the seven design constraints listed in Table 10.

All seven constraints happento be lower. Following the constraints is a line

with the letters 'MIN' to select minimization as the direction of

optimization, a line with the value of three to indicate that there are three

terms in the objective function. The last nine lines are the weighting

coefficients, names and units for the three objective function terms of

weight, height and volume. The weighting coefficient of the first is one and

the last two are zero. By changing which term has the unit coefficient, one

can change the optimization goal without changing the program.
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Table 13

Sprinq Desiqn Input File For Minimum Weiqht

HELICAL COIL SPRING - MINIMUM WEIGHT

I0

24.0

MINIMUM FORCE

NEWTONS

120.0
MAXIMUM FORCE

NEWTONS

150.0
MINIMUM FORCE WHEN SOLID

NEWTONS

4.0

SPRING RATE

kN/m
2
END COIL NO.

465.0

SHEAR FATIGUE STRENGTH

MPa

1510.0

TENSILE STRENGTH CONSTANT

MPa

-0.201

TENSILE STRENGTH WIRE POWER

79000.0

SHEAR MODULUS

MPa

76.5

WEIGHT DENSITY

kN/m**3
2

1.0 15.0 5.0

WIRE DIAMETER

mm
25.0 500.0 100.0

MEAN COIL DIAMETER

mm
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Table 13 Continued

Sprinq Desiqn Input File For Minimum Weiqht

7

LOWER 0.0

ACTIVE COIL

NO.
LOWER 1.5

FATIGUE DESIGN FACTOR

LOWER 1.5

STATIC DESIGN FACTOR

LOWER 2.0

SPRING INDEX

LOWER O. 0

MAXIMUM SHEAR STRESS

MPa

LOWER O. 0

OUTSIDE COIL DIAMETER

mm
LOWER O. 0

SPRING WIRE VOLUME

mm**3

MIN

3
].0

WEIGHT

NEWTONS

0.0
HEIGHT

mm
0.0

SPRING COIL VOLUME

mm**3
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This ASCII file can then be saved with a namesuch as 'WEIGHT.IN' and

used with the spring optimization program. Table 14 is the output file which

resulted from running the spring optimization program with this file. The ten

constants, two design parameters, seven constraints and three objective

function term are all listed with their values, names, units, limit

directions, and weighting coefficients at the start of the file. The

optimization reached a solution in 24 steps with a wire diameter of slightly

more than 3 mmand a meancoil diameter of 23.13 mm. The spring weight was

0.79 Newtons and the spring had 17.5 active coils with a height of 97 mma

spring index of 7.5 and a spring coil volume of 52,000 mm3. The static

overload stress was the limiting factor in the design with a static design

factor of 1.5 at the limit and a maximumshear stress of 370 MPa.

Following this output is a design check with a 3.5 mmwire diameter and

a meancoil diameter of 35 mm. With the larger standard wire size, the larger

coil diameter keeps the spring weight downby reducing the numberof active

coils needed to obtain the spring rate without lowering the design factors.

The weight increased to 0.86 Newtons, the numberof active coils dropped to

8.64 and the spring index increased to 10. In addition, the height dropped to

75 mmand the spring coil volume increased to 87,500 mm3. Although the spring

is slightly heavier than the initial optimum, it has standard wire and coil

dimensions, so it is a practical optimal solution to the posed problem.

Table 15 is the output file produced by running the spring optimization

program with a second input file which has two weighting coefficients changed

and the problem title changed in line one. The two numerical changes were to

the first and second weighting coefficient values to switch the object of

minimization from weight to height. As shownin Table 15, this optimum is
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Table 14

Sprinq Desiqn Output File For Minimum Weiqht

HELICAL COIL SPRING - MINIMUM WEIGHT

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION

USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES.

FIXED DESIGN REQUIREMENTS:

I MINIMUM FORCE

2 MAXIMUM FORCE

3 MINIMUM FORCE WHEN SOLID

4 SPRING RATE
5 END COIL NO.

6 SHEAR FATIGUE STRENGTH

7 TENSILE STRENGTH CONSTANT

8 TENSILE STRENGTH WIRE POWER

9 SHEAR MODULUS

10 WEIGHT DENSITY

24.00000 NEWTONS

120.00000 NEWTONS

150.00000 NEWTONS

4.00000 kN/m
2.00000

465.00000 MPa

1510.00000 MPa

-0.20100

79000.00000 MPa

76.50000 kN/m**3

THERE ARE 2 INDEPENDENT DESIGN VARIABLES.

ESTIMATED VALUES:

LOW HIGH INITIAL

I WIRE DIAMETER

2 MEAN COIL DIAMETER

1.00000 15.00000 5.00000 mm

25.00000 500.00000 100.00000 mm

THE 7 CONSTRAINT LIMITS ARE:

I ACTIVE COIL

2 FATIGUE DESIGN FACTOR

3 STATIC DESIGN FACTOR

4 SPRING INDEX

5 MAXIMUM SHEAR STRESS

6 OUTSIDE COIL DIAMETER

7 SPRING WIRE VOLUME

0.00000 NO.

1.50000

1.50000
2.00000

0.00000 MPa

0.00000 mm

0.00000 mm**3

MINIMIZE THE OBJECTIVE FUNCTION, WHICH HAS 3 TERMS.

OBJ = THE LINEAR SUM OF:

1 WEIGHT IN NEWTONS TIMES

2 HEIGHT IN mm TIMES

3 SPRING COIL VOLUME IN mm**3 TIMES

TYPE

LOWER

LOWER

LOWER

LOWER
LOWER

LOWER

LOWER

1.0000

0.0000

0.0000
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Table 14 Continued

Sprinq Design Output File For Minimum Weiqht

OPTIMIZATION SUCCESSFUL IN

THE FINAL DESIGN VECTOR IS:

24 STEPS

X(1)

1 WIRE DIAMETER 3.05491 mm
2 MEAN COIL DIAMETER 23.12969 mm

THE MINIMUM OBJECTIVE FUNCTION = 0.789480 ITS COMPONENTS ARE:

I WEIGHT =0.78948 NEWTONS TIMES

2 HEIGHT = 97.285 mm TIMES

3 SPRING COIL VOLUME = 52388. mm**3 TIMES

1.0000
0.0000
0.0000

THE LAST CHANGE IN THE OBJECTIVE FUNCTION = 0.596046E-07
THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE = 0.390625E-03

THE 7 CONSTRAINT VALUES ARE:

I ACTIVE COIL

2 FATIGUE DESIGN FACTOR

3 STATIC DESIGN FACTOR

4 SPRING INDEX

5 MAXIMUM SHEAR STRESS

6 OUTSIDE COIL DIAMETER

7 SPRING WIRE VOLUME

LIMIT

= 17.525 NO. .00000

= 2.1345 1.5000

= ].5035 ].5000

= 7.5462 2.0000

= 370.49 MPa .00000

= 26.070 mm .00000

= 10320. mm**3 .00000

TYPE

LOWER

LOWER
LOWER

LOWER

LOWER

LOWER

LOWER
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Table 14 Continued

Sprinq Desiqn Output File For Minimum Weiqht

DESIGN CHECK

] WIRE DIAMETER

2 MEAN COIL DIAMETER

X(1)

3.50000 mm

35.00000 mm

THE MINIMUM OBJECTIVE FUNCTION =

I WEIGHT

2 HEIGHT

3 SPRING COIL VOLUME

0.861137 , ITS COMPONENTS ARE:

=0.86114 NEWTONS TIMES

= 75.115 mm TIMES

= 87445. mm**3 TIMES

THE 7 CONSTRAINT VALUES ARE:

I ACTIVE COIL

2 FATIGUE DESIGN FACTOR

3 STATIC DESIGN FACTOR

4 SPRING INDEX

5 MAXIMUM SHEAR STRESS
6 OUTSIDE COIL DIAMETER

7 SPRING WIRE VOLUME

= 8.6406

= 2.1430

= ].5179

= ]0.000

= 356.97

= 38.500

= 11257.

NO.

MPa

mm
mm**3

LIMIT

.00000

1.5000

1.5000

2.0000

.00000

.00000

.00000

l.O000

0.0000
0.0000

TYPE

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER
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Table 15

Sprinq Desiqn Output File For Minimum Height

HELICAL COIL SPRING - MINIMUM HEIGHT

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION

USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES.

FIXED DESIGN REQUIREMENTS:

I MINIMUM FORCE

2 MAXIMUM FORCE

3 MINIMUM FORCE WHEN SOLID

4 SPRING RATE

5 END COIL NO.

6 SHEAR FATIGUE STRENGTH
7 TENSILE STRENGTH CONSTANT

8 TENSILE STRENGTH WIRE POWER

9 SHEAR MODULUS

10 WEIGHT DENSITY

24.00000 NEWTONS

120.00000 NEWTONS

150.00000 NEWTONS

4.00000 kN/m
2.00000

465.00000 MPa

1510.00000 MPa

-0.20100

79000.00000 MPa

76.50000 kN/m**3

THERE ARE 2 INDEPENDENT DESIGN VARIABLES.

ESTIMATED VALUES:

LOW HIGH INITIAL

I WIRE DIAMETER

2 MEAN COIL DIAMETER

I.O0000 15.00000 5.00000 mm

25.00000 500.00000 100.00000 mm

THE 7 CONSTRAINT LIMITS ARE:

! ACTIVE COIL

2 FATIGUE DESIGN FACTOR

3 STATIC DESIGN FACTOR

4 SPRING INDEX

5 MAXIMUM SHEAR STRESS

6 OUTSIDE COIL DIAMETER

7 SPRING WIRE VOLUME

0.00000 NO.

1.50000

1.50000

2.00000

0.00000 MPa

0.00000 mm

0.00000 mm**3

MINIMIZE THE OBJECTIVE FUNCTION, WHICH HAS 3 TERMS.

OBJ = THE LINEAR SUM OF:

I WEIGHT IN NEWTONS TIMES

2 HEIGHT IN mm TIMES

3 SPRING COIL VOLUME IN mm**3 TIMES

TYPE

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

0.0000

1.0000

0.0000
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Table 15 Continued

Sprinq Desiqn Output File For Minimum Heiqht

OPTIMIZATION SUCCESSFUL IN

THE FINAL DESIGN VECTOR IS:

14 STEPS

x(1)

I WIRE DIAMETER 6.30577 mm

2 MEAN COIL DIAMETER 195.96942 mm

THE MINIMUM OBJECTIVE FUNCTION = 53.5408 , ITS COMPONENTS ARE:

1 WEIGHT = 3.7045 NEWTONS TIMES

2 HEIGHT = 53.541 mm TIMES

3 SPRING COIL VOLUME =0.17205E+07 mm**3 TIMES

0.0000
1.0000
0.0000

THE LAST CHANGE IN THE OBJECTIVE FUNCTION = 0.381470E-04

THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE = 0.625000E-02

THE 7 CONSTRAINT VALUES ARE:

I ACTIVE COIL

2 FATIGUE DESIGN FACTOR

3 STATIC DESIGN FACTOR

4 SPRING INDEX

5 MAXIMUM SHEAR STRESS

6 OUTSIDE COIL DIAMETER

7 SPRING WIRE VOLUME

LIMIT

= .53093 NO. .00000
= 2.2086 1.5000

= 1.5438 1.5000

= 30.786 2.0000

= 312.12 MPa .00000

= 199.46 mm .00000

= 47506. mm**3 .00000

TYPE

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER
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Table 15 Continued

Sprinq Desiqn Output File For Minimum Heiqht

DESIGN CHECK

I WIRE DIAMETER

2 MEAN COIL DIAMETER

X(1)

6.50000

220.00000
mm

mm

THE MINIMUM OBJECTIVE FUNCTION =

I WEIGHT

2 HEIGHT

3 SPRING COIL VOLUME

53.3470 , ITS COMPONENTS ARE:

= 4.2351 NEWTONS

= 53.347 mm

=0.21495E+07 mm**3

THE 7 CONSTRAINT VALUES ARE:

= .41387

= 2.1515

= 1.5020

= 33.846

= 318.54

= 226.50

= 55361.

I ACTIVE COIL

2 FATIGUE DESIGN FACTOR

3 STATIC DESIGN FACTOR

4 SPRING INDEX

5 MAXIMUM SHEAR STRESS

6 OUTSIDE COIL DIAMETER

7 SPRING WIRE VOLUME

TIMES

TIMES

TIMES

NO.

MPa

im

mm**3

LIMIT

.00000

1.5000

1.5000

2.0000

.00000

.00000

.00000

0.0000

1.0000

0.0000

TYPE

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER
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different from the first. The spring has a wire diameter of 6.3 mmand a mean

coil diameter of 196 mmwith only 0.53 active coils and a spring index of 31.

The height is shorter at 53.5 mmbut the weight is higher at 3.7 Newtons and

the spring coil volume is muchhigher at 1.72"106 mm3. This design was also

limited by the static design factor.

However, it was reached in only 14 trials and the static design factor

was slightly higher than 1.5 at 1.54. These two facts indicate that this may

not be an absolute minimumheight design. Changing the starting position as

was done for the bushing design or changing the sensitivity ranges on the two

independent design parameters would give the optimizer a chance to search

longer and find a slightly better optimal design. However, since we were

going to change the wire size and meancoil diameter to standard values

anyway, the starting position and sensitivity ranges were not changed. The

design check chosen has a wire diameter of 6.5 mmand a meancoil diameter of

220 mmfor a height of 53.3 mm. This design is also heavy and large with a

fraction of an active coil at 0.41 and a spring index of 34.

Table 16 shows the output file for a design which minimizes the spring

coil volume. The only changes in the input file for this case were the

weighting coefficients in the objective function list to select spring volume

as the target for minimization and the problem title. This design was

achieved in 28 steps and has a wire diameter of 2.2 mmand a meancoil

diameter of 7.5 mm. The spring coil volume is the smallest of the found

designs at 26,300 mm3 which is about one-half that of the first design.

However it is heavier at 0.99 Newtonsand muchlonger at 355 mm. The spring

index is small at 3.4 and the numberof active coils is large at 140.

Changing the wire diameter to 2.5 mmand the meancoil diameter to 11.5 mm
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Table 16

Sprinq Desiqn Output File For Minimum Coil Volume

HELICAL COIL SPRING - MINIMUM COIL VOLUME

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION

USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES.

FIXED DESIGN REQUIREMENTS:

I MINIMUM FORCE
2 MAXIMUM FORCE

3 MINIMUM FORCE WHEN SOLID

4 SPRING RATE

5 END COIL NO.

6 SHEAR FATIGUE STRENGTH

7 TENSILE STRENGTH CONSTANT

8 TENSILE STRENGTH WIRE POWER

9 SHEAR MODULUS

10 WEIGHT DENSITY

24.00000 NEWTONS

120.00000 NEWTONS

150.00000 NEWTONS

4.00000 kN/m
2.00000

465.00000 MPa

1510.00000 MPa

-0.20100

79000.00000 MPa

76.50000 kN/m**3

THERE ARE 2 INDEPENDENT DESIGN VARIABLES.

ESTIMATED VALUES:

LOW HIGH INITIAL

I WIRE DIAMETER
2 MEAN COIL DIAMETER

I.O0000 15.00000 5.00000 mm

25.00000 500.00000 100.00000 mm

THE 7 CONSTRAINT LIMITS ARE:

TYPE

i ACTIVE COIL 0.00000 NO. LOWER

2 FATIGUE DESIGN FACTOR 1.50000 LOWER

3 STATIC DESIGN FACTOR 1.50000 LOWER

4 SPRING INDEX 2.00000 LOWER

5 MAXIMUM SHEAR STRESS 0.00000 MPa LOWER

6 OUTSIDE COIL DIAMETER 0.00000 mm LOWER
7 SPRING WIRE VOLUME 0.00000 mm**3 LOWER

MINIMIZE THE OBJECTIVE FUNCTION, WHICH HAS 3 TERMS.

OBJ = THE LINEAR SUM OF:

I WEIGHT IN NEWTONS TIMES

2 HEIGHT IN mm TIMES

3 SPRING COIL VOLUME IN mm**3 TIMES

0.0000

0.0000

1.0000
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Table 16 Continued

Sprinq Desiqn Output File For Minimum Coil Volume

OPTIMIZATION SUCCESSFUL IN

THE FINAL DESIGN VECTOR IS:

28 STEPS

X(1)

I WIRE DIAMETER 2.21384 mm

2 MEAN COIL DIAMETER 7.51284 mm

THE MINIMUM OBJECTIVE FUNCTION = 26353.6 , ITS COMPONENTS ARE:

1 WEIGHT =0.98587 NEWTONS TIMES
2 HEIGHT = 354.67 mm TIMES

3 SPRING COIL VOLUME = 26354. mm**3 TIMES

0.0000
0.0000
1.0000

THE LAST CHANGE IN THE OBJECTIVE FUNCTION = -0.781250E-02

THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE = 0.195313E-03

THE 7 CONSTRAINT VALUES ARE:

I ACTIVE COIL

2 FATIGUE DESIGN FACTOR

3 STATIC DESIGN FACTOR
4 SPRING INDEX

5 MAXIMUM SHEAR STRESS

6 OUTSIDE COIL DIAMETER

7 SPRING WIRE VOLUME

LIMIT

= 140.58 NO. .00000

= 2.2583 1.5000

= 1.5032 1.5000

= 3.3870 2.0000

= 395.29 MPa .00000

= 9.7067 mm .00000

= 12907. mm**3 .00000

TYPE

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER
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Table 16 Continued

Sprinq Desiqn Output File For Minimum Coil Volume

DESIGN CHECK

1 WIRE DIAMETER

2 MEAN COIL DIAMETER

X(1)

2.50000 mm

11.50000 mm

THE MINIMUM OBJECTIVE FUNCTION =

I WEIGHT

2 HEIGHT

3 SPRING COIL VOLUME

31196.3

=0.88738
= 202.66
= 31196.

THE 7 CONSTRAINT VALUES ARE:

= 63.408

= 2.2430

= 1.5367

= 4.6000

= 377.29

= 14.000
= I]600.

I ACTIVE COIL

2 FATIGUE DESIGN FACTOR

3 STATIC DESIGN FACTOR

4 SPRING INDEX
5 MAXIMUMSHEAR STRESS

6 OUTSIDE COIL DIAMETER
7 SPRING WIRE VOLUME

NO.

MPa

mm

mm**3

ITS COMPONENTS ARE:

NEWTONS TIMES 0.0000

mm TIMES 0.0000

mm**3 TIMES 1.0000

LIMIT

.00000

1.5000

].5000

2.0000

.00000

.00000

.00000

TYPE

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

68



with the design check provision gives a design with a spring coil volume of

31,200 mm3, a weight of only 0.89 Newtonsand a height of 203 mm. This spring

has 63.4 active coils with a spring index of 4.6.

Figure 11 showsall three optimumdesigns to the samescale for

comparison. In Figure 10, which was used earlier to describe the design

space, three crosses mark the locations of the three optimal designs in this

design space. Each design is at or near the static strength limit, and the

minimumweight design, with its cross between the other two, is the design we

expect from practice. It is the most economical in that it uses the least

material and it is not extremely long or large in diameter. However, the

other designs may still have their applications.
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SPUR GEAR OPTIMIZATION

The third example problem is that of a compact gear mesh, which is to

have a compact size at a given life, load, reduction and speed. For steel

involute teeth, the loading which may cause failure is dynamic due to the

variation in contact geometry and load sharing as the teeth enter and leave

the gear mesh. Three primary modes of failure are possible: 1) bending tooth

fracture, 2) tooth surface pitting, and 3) tooth tip scoring. When fracture

of the gear teeth due to bending is the primary mode of failure, the minimum

number of teeth which avoids interference offers the strongest gear set for a

given size [16]. However, as speeds increase, so do the prospects for pitting

and scoring modes of failure.

For a given combination of gear material and lubrication conditions, the

design problem can be formulated in terms of three independent design

variables: The number of pinion teeth, Np; the diametral pitch, Pd; and the

gear and pinion face width, f. Although many designs can transmit the same

power at the same input and output speeds, two designs will be sought. The

first will have the minimum center distance between the input and output

shafts for a specified reliability life. This design will also have the

minimum gear weight and volume. The second will have the maximum life for a

specified center distance.

Theor_

All acceptable gear designs avoid involute interference. For equal

pinion and gear addenda, involute interference will occur at the base of the

pinion tooth. As shown in Figure 12, involute interference can be measured by

the roll angle, 61 , which corresponds to the distance along the line of action

from the base circle of the pinion to the addendum circle of the gear.
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2 2
R2 sin q) - I Ra2 - Rb2

61 = tan ¢ + (26)

Rb]

This angle must be positive for the gear tooth tip to contact the pinion tooth

on its involute surface and avoid interference.

In performing the gear tooth load analysis, the tangential load on the

gear mesh, Ft, is the pinion torque divided by the pitch radius of the pinion.

This is the nominal force acting between the gears. The force along the line

of action is this force divided by the cosine of the pressure angle, ¢. The

pitch line velocity is the rotational speed of the pinion times its pitch

radius, which is the speed of the pitch circles.

To estimate the dynamic load, one can use the AGMA velocity factor

model [17]. In terms of a gear quality number, Qv' the AGMA estimate of the

sum of the transmitted load and the dynamic load is:

A +_/VFd = Ft (27)
A

where

[ 12 - Qv ]2/3 )A = 50 + 56 I - (28)
4

In equation (28), the gear quality number, Qv' may have a value between 6 and

]I with 11 corresponding to the higher quality gear. In this example, all

gear stresses and lives are calculated using this total dynamic load, Fd, with

a quality number, Qv = g"

As noted above, gear tooth bending fatigue, gear tooth pitting and gear

tip scoring are the three most probable modes of failure for gear teeth. The

bending fatigue model uses the AGMA J factor [17] to estimate the bending
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stress with the dynamic load at the highest point of single tooth contact on

the pinion, which produces the maximumtooth bending stress.

the bending stress is:

%

The formula for

_ Fd Pd (29)

f J

Figure 13 shows the dynamic load on the gear tooth and the Lewis parabola

which describes the strongest constant strength beam inscribed in the tooth.

Gear tooth pitting is a result of contact stress on the gear tooth

surface. The maximum contact stress and gear tip Hertzian pressure are

Fd I ] /Pl + 1/P2 I I
OH -- I 2 2 II

rr f cos ¢ ] - vI ] - v2
+

EI E2

calculated []8] as:

]/2

(30)

This maximum contact stress occurs at the lowest point of full load contact on

the pinion tooth. Figure 14 shows the two teeth in contact at this point and

their radii of curvature on which this stress is based. The small parabola on

the tooth surface shows this contact pressure distribution.

The gear tip Hertzian pressure uses one-third of the total dynamic load

since the load is shared unequally between two tooth pairs at this point due

to the elastic interaction of the two tooth pairs in contact. The gear tip

scoring model includes the pressure times velocity factor and the critical oil

scoring temperature model from lubrication theory. The normal pressure times

sliding velocity is proportional to the frictional power loss of the gear set.

This factor is the highest for contact at the gear tip, with the normal
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pressure equal to the gear tip Hertzian pressure. The sliding velocity at the

gear tip is given by:

Vs = w 2 Ra2 sin (¢ + aa2) - w I R1 sin (¢ + al) (31)

The lubricating oil flash temperature is another factor used to monitor

gear tooth scoring. One estimate of this temperature [18] is given by:

3/4

Tf TB ( XF Fd ) I 0"45MmXMXG_/V
= + I/4 i (32)

f (R] + R2)

The gear life model is based on surface pitting and is similar to the

model for rolling element bearings [19]. Its reliability estimation is based

on the two-parameter Weibull distribution:

= Ln( )kn

R 0.9 _I0

b

(33)

The life to reliability relationship of equation (33) is for a specific

load which determines the _10 life.

dynamic capacity, C, as:

This load, F, is related to the component

P

¢ ) (34)

where the dynamic capacity of the component, C, is the load which has a

90 percent reliability life of one million cycles.

For a spur gear tooth, the dynamic capacity, Ct, can be expressed as a

function of Buckingham's load-stress factor [20], B, which is a material

strength constant:

77



Ct = B ( i ) (35)

I/Pl + l/P2

With the dynamic capacity expressed in this form, the material strength

constant serves the role of the surface fatigue strength, Sac, of the AGMA

design code. A relation for the material strength constant in terms of the

surface fatigue strength is:

B __. 2 ( I - vi2 I - v22
Sac EI + E2

(36)

The dynamic capacity of the whole gear is lower than that of a single

tooth due to the number of teeth subjected to the same load:

Ct

Cg - I/(b.p) (37)

Ng

The gear and pinion weights are modeled with solid discs which have

radii equal to the pitch radii of the two gears and thicknesses equal to the

face width.

Proqramminq

Table 17 summarizes this design problem in terms of the constants,

design parameters, inequality constraints and objective functions. There are

thirteen constants, three design parameters, fourteen constraints and two

objective functions in this list.

Included in the list of constants are: Poisson's ratio and the elastic

modulus for the gear material: the nominal pressure angle, ¢, and gear ratio,

n, for the mesh; the transmitted power, Hp, and pinion speed, w1; the material

weight density, y, surface constant, B, Weibull slope, b, and load-life
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Table 17

Spur Gear Mesh Optimization Parameters

Constants

V

E

¢

n

Hp

w]

Y

B

b

P

R

TB

Pm

Design Parameters

N1

Pd

f

Inequality Constraints

61 < 0.001

f/D I < 0.5

C > 0.0

WI + W2 > 0.0

TI > 0.0

Ft > 0.0

It > 0.0

Fd > 0.0

ob < 40,000.

oH < ]50,000.

OHt < 150,000.

P Vs < 100.

Tf < 275.

tm > 2.0

Objective Function

Cmin

or

(tm)max
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exponent, p; the desired reliability of the mesh, R; the lubricant base

temperature, TB; and the surface finish, Pm"

The three design parameters are: I) the number of teeth on the pinion,

NI; the diametral pitch, Pd; and the face width, f.

Design constraints listed are: active constraints for involute

interference and the width to diameter ratio; inactive constraints of being

positive for the center distance, weight sum, input torque, transmitted force,

pitch line velocity, and dynamic force; active bending and pitting strength

limits; active scoring limits of pressure times velocity and flash

temperature; and the mesh life bound.

The objective functions include the center distance which is to be

minimized and the mesh life which is to be maximized. In running the program,

these two functions will not be active in the same case. The listed values

are for the first objective function of minimum center distance. When the

program is run to maximize the mesh life, the center distance limit is changed

to an active limit of 2.5 inches and the mesh life constraint is changed to be

positive and thus inactive.

Subroutines BOUNDS and VALUES, developed for this example gear problem,

are listed together in Table 18. These two routines call a series of analysis

subroutines to evaluate the properties of the gear design. These subroutines:

DYNAM, MESH, GLIFE, GEARWT and TEMPER are also listed in Table ]8 along with

LEWIS which MESH calls. Subroutine DYNAM determines the dynamic load in the

mesh with the AGMA velocity factor calculation using equations (27) and (28).

Subroutine MESH performs a kinematic analysis of the gear mesh geometry and

calculates the bending stresses and Hertzian contact stresses on the teeth in

the mesh with equations (26) and (29) through (31). MESH also calculates the
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Table 18

Spur Gear Mesh Constraint and Objective Function Evaluation Routines

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C
C

C

C

C
C

SUBROUTINE BOUNDS(CONST,NCO,X,NX,VCSTR,NCS)

BOUNDS DETERMINES THE PRESENT CONSTRAINT
FUNCTION VALUES

FOR A SPUR GEAR LIFE DESIGN EXAMPLE

PARAMETERS:

CONST - FIXED DESIGN CONSTANT

NCO - NUMBER OF DESIGN CONSTANTS

NCS - NUMBER OF INEQUALITY CONSTRAINTS
NX - NUMBER OF INDEPENDENT DESIGN VARIABLES

VCSTR - PRESENT CONSTRAINT VALUES

X - PRESENT DESIGN VARIABLE VALUES

ALL VALUES ARE IN PROBLEM UNITS (UNSCALED)

CONST(1) = mu

CONST(2) = E

CONST(3) = PHI

CONST(4) = N

CONST(5) = Hp

- POISSON'S RATIO

- ELASTIC MODULUS (PSI)

- PRESSURE ANGLE (DEGREES)
- GEAR RATIO

- PINION POWER (HORSEPOWER)

CONST(6) = Np - PINION SPEED (RPM)

CONST(7) = GAMMA - MATERIAL WEIGHT DENSITY (LBS/IN**3)

CONST(8) = Bc - MATERIAL STRENGTH CONSTANT (PSI)

CONST(9) = b

CONST(IO)= p

CONST(ll)= Rel

CONST(12)= Tb
CONST(13)= RMS

- WEIBULL SLOPE

- LOAD-LIFE FACTOR

- DESIGN RELIABILITY

- OIL INLET TEMPERATURE (DEGREES F)

- TOOTH SURFACE FINISH (RMS)

VCSTR(1) = DELl - INVOLUTE INTERFERENCE ANGLE (RADIANS)

VCSTR(2) = LAMMIN - FACE WIDTH TO PINION DIAMETER RATIO

VCSTR(3) = C

VCSTR(4) = WT

VCSTR(5) = Tq

VCSTR(6) = Ft

VCSTR(7) = V

VCSTR(8) = Fd

VCSTR(9) = BDSTR

VCSTR(IO)= HZSTR
VCSTR(11)= TIPPR

VCSTR(12)= PVF

VCSTR(13)= Tf

VCSTR(14)= Lm

- CENTER DISTANCE (INCHES)
- PINION & GEAR WEIGHTS (POUNDS)

- PINION TORQUE (POUND - INCHES)

- TRANSMITTED FORCE (POUNDS)

- PITCH LINE VELOCITY (FT/MIN)

- DYNAMIC LOAD (POUNDS)
- AGMA BENDING STRESS (PSI)

- CONTACT PRESSURE (PSI)

- GEAR TIP HERTZ CONTACT PRESSURE (PSI)
- PRESSURE TIMES VELOCITY FACTOR

(10"'6 PSI-FT/MIN)

- FLASH TEMPERATURE (DEGREES F)

- MESH LIFE (10"'3 HOURS)
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C
C
C
C
C

Table 18 Continued

Spur Gear Mesh Constraint and Objective Function Evaluation Routines

X(l) : nl

X(2) : Pd

X(3) : Wd

- NUMBER OF PINION TEETH

- DIAMETRAL PITCH (1.O/IN)

- FACE WIDTH (INCHES)

DIMENSION X(NX),VCSTR(NCS),CONST(NCO)
REAL LM,LP,LG
PI : 3.14159265

POI = CONST(I)

E = CONST(2)

PHI = CONST(3)
RATIO = CONST(4)

HP = CONST(5)

RPM = CONST(6)
GAM = CONST(7)

BC = CONST(8)

B = CONST(9)

P = CONST(]O)

REL = CONST(]I)

TB = CONST(12)

RMS = CONST(]3)

TNI = X(1)

PD = X(2)

WD : X(3)
TN2 = RATIO*TNI
PHIR : PHI*PI/180.O
RP : O.5*TNI/PD
RG : RATIO*RP
C : RP*( 1.0 + RATIO )
V = RPM*RP*PI/6.0
TQ : HP*63025.0/RPM
FT = TQ/RP
CALL DYNAM(FT,V,DL)
TDQ : RP*DL
CALL MESH(PHI,PD,TNI,TN2,E,POI,WD,TDQ,RPM,CMP,DELI,RHI,

1 PVF,TIPHZ,TIPBS,HZSTR,BDSTR)
RH2 = C*SlN(PHIR) - RHI
CALL GLIFE(DL,WD,RHI,RH2,TNI,TN2,RPM,BC,B,P,REL,

I LM,LP,LG,CYLP,CYLG)
CALL GEARWT(GAM,GAM,RP,RG,WD,PW,GW)
CALL TEMPER(PD,PHI,TNI,TN2,WD,DL,V,TB,RMS,TF,CSN)
VCSTR(1) : DELl
VCSTR(2) = WD/(2.0*RP)
VCSTR(3) = C
VCSTR(4) = PW + GW
VCSTR(5) : TQ
VCSTR(6) : FT
VCSTR(7) = V
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Table 18 Continued

Spur Gear Mesh Constraint and Objective Function Evaluation Routines

VCSTR(8) : DL

VCSTR(9) : BDSTR

VCSTR(IO) : HZSTR

VCSTR(II) = TIPHZ

VCSTR(12) = PVF/IO00000.O

VCSTR(13) = TF

VCSTR(14) = LM/IO00.O
RETURN

END

SUBROUTINE VALUES(CONST,NCO,X,NX,OBJECT,NOB)

VALUES DETERMINES THE PRESENT DESIGN

OBJECTIVE FUNCTION VALUES

PARAMETERS:

CONST - FIXED DESIGN CONSTANT

NCO - NUMBER OF DESIGN CONSTANTS

NOB - NUMBER OF OBJECTIVE FUNCTION TERMS

NX - NUMBER OF INDEPENDENT DESIGN VARIABLES

OBJECT - PRESENT OBJECTIVE FUNCTION VALUES

X - PRESENT DESIGN VARIABLE VALUES

ALL VALUES ARE IN PROBLEM UNITS (UNSCALED)

CONST(1) : mu

CONST(2) = E

CONST(3) = PHI

CONST(4) = N
CONST(5) = Hp

CONST(6) = Np

CONST(7) = GAMMA

CONST(8) = Bc

CONST(9) = b

CONST(IO)= p

CONST(II)= Rel

CONST(12)= Tb

CONST(13)= RMS

- POISSON'S RATIO

- ELASTIC MODULUS (PSI)

- PRESSURE ANGLE (DEGREES)
- GEAR RATIO

- PINION POWER (HORSEPOWER)

- PINION SPEED (RPM)

- MATERIAL WEIGHT DENSITY (LBS/IN**3)

- MATERIAL STRENGTH CONSTANT (PSI)
- WEIBULL SLOPE

- LOAD-LIFE FACTOR

- DESIGN RELIABILITY

- BASE TEMPERATURE (DEG FAHR)

- TOOTH SURFACE FINISH (RMS)

OBJECT(1) : C

OBJECT(2) = Lm

- CENTER DISTANCE (INCHES)

- MESH LIFE (10"'3 HOURS)

X(I) : nl

X(2) : Pd

X(3) = Wd

- NUMBER OF PINION TEETH

- DIAMETRAL PITCH (I.O/IN)

- FACE WIDTH (INCHES)
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Table 18 Continued

Spur Gear Mesh Constraint and Objective Function Evaluation Routines

DIMENSION X(NX),OBJECT(NOB),CONST(NCO)
REAL LM,LP,LG
PI = 3.14159265

POI = CONST(I)

E = CONST(2)

PHI : CONST(3)
RATIO = CONST(4)

HP = CONST(5)

RPM = CONST(6)

BC = CONST(8)

B = CONST(9)

P = CONST(IO)

REL = CONST(11)

TNI = X(1)

PD = X(2)

WD : X(3)
TN2 = RATIO*TNI
PHIR = PHI*PI/180.O
RP = O.5*TNI/PD
C : RP*( 1.0 + RATIO )
V = RPM*RP*PI/6.0
TQ : HP*63025.0/RPM
FT : TQ/RP
CALL DYNAM(FT,V,DL)
TDQ : RP*DL
CALL MESH(PHI,PD,TNI,TN2,E,POI,WD,TDQ,RPM,CMP,DELI,RHI,

I PVF,TIPHZ,TIPBS,HZSTR,BDSTR)
RH2 = C*SlN(PHIR) - RHI
CALL GLIFE(DL,WD,RHI,RH2,TNI,TN2,RPM,BC,B,P,REL,

I LM,LP,LG,CYLP,CYLG)
OBJECT(1) = C
OBJECT(2) : LM/IO00.O
RETURN
END

SUBROUTINE MESH(PHI,PD,TNI,TN2,EL,POI,WD,TQ,RPM,CMP,DELI,ROB,

I PVF,SQA,AGBN2,SQB,AGBNI)

MESH

THIS ROUTINE CALCULATES THE GEAR TOOTH CONTACT GEOMETRY

INPUTS:
PHI
PD
TNI
TN2

- NOMINAL PRESSURE ANGLE (DEGREES)

- DIAMETRAL PITCH (I.0/INCH)
- NUMBER OF TEETH ON PINION

- NUMBER OF TEETH ON GEAR
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Table 18 Continued

Spur Gear Mesh Constraint and Objective Function Evaluation Routines

C

C

C

EL

POI

WD

TQ
RPM

- ELASTIC MODULUS OF TEETH (PSI)

- POISSON'S RATIO FOR TEETH

- TOOTH FACE WIDTH (INCHES)

- TORQUE APPLIED TO PINION (POUND - INCHES)
- SPEED OF PINION IN REVOLUTIONS PER MINUTE

OUTPUTS:

CMP

DELl

- MESH CONTACT RATIO
- DISTANCE FROM PINION BASE CIRCLE TANGENCY

TO TIP OF GEAR TOOTH ALONG LINE OF ACTION

MEASURED AS A PINION ROLL ANGLE

ROB - PINION TOOTH SURFACE RADIUS OF CURVATURE

AT THE LOWEST POINT OF SINGLE TOOTH CONTACT C

PVF - SCORING FACTOR (PSI-FT/MIN / 10"'6)

SQA - HERTZIAN CONTACT STRESS AT TIP OF GEAR TOOTH

(PSl)
AGBN2 - AGMA BENDING STRESS FOR HALF LOAD AT TIP

OF GEAR TOOTH (PSI)

SQB - HERTZIAN CONTACT STRESS AT LOWEST POINT OF

SINGLE TOOTH CONTACT (PSI)
AGBNI - AGMA BENDING STRESS FOR FULL LOAD AT

HIGHEST POINT OF SINGLE TOOTH CONTACT (PSI) C

ACS(A)=ATAN(SQRT(I.-A*A)/A)
ASN(A)=ATAN(A/SQRT(I.-A*A))

FINV(A)=SIN(A)/COS(A)-A
NW=O
PI=3.14159265

IT IS ASSUMED THAT THE PINION IS THE DRIVING GEAR

J=1
FJ=J

ADD=I.

DED=1.25

RFR=O.3

IF(PD.GE.20.O) DED=I. 2+O.O02*PD
ADDI=ADD

ADD2 =ADD

DDDI=DED

ADI=ADDI/PD

AD2=ADD2/PD

DDI=DDDI/PD

RF=RFR/PD

PC=PI/PD

RAD--180./PI

P=PHI/RAD

COP=COS(P)

SIP=SIN(P)
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Table 18 Continued

Spur Gear Mesh Constraint and Objective Function Evaluation Routines

C

C

C

C

C

C

C
C
C
C
C
C

PB=PC*COP

RI=O.5*PC*TNI/PI

R2=O.5*PC*TN2/PI
RBI=RI*COP

RB2=R2*COP

RAI=RI+ADI
RA2=R2+AD2*FJ

C=FJ*RI+R2

CI=SQRT(RAI*RAI-RBI*RBI)

C2=SQRT(RA2*RA2-RB2*RB2)

Z=CI+(C2-C*SIP)*FJ

CMP=Z/PB
AAI=(C2-R2*SIP)/RBI*FJ

AA2=(C2-R2*SIP)/RB2*FJ

DELI=SIP/COP-AAI

IF DELl LESS THAN O INTERFERENCE WILL HAPPEN

SET EQUAL TO A SMALL VALUE TO GENERATE
LARGE CONTACT STRESSES

IF(DELI.LT.O.O) DELl = O.00I*SIP/COP

AB2=(CI-RI*SIP)/RB2

DEL2=SIP/COP-AB2
IF(J.LT.O) DEL2=SIP/COP-AA2

IF DEL2 LESS THAN 0 INTERFERENCE WILL HAPPEN

SET EQUAL TO A SMALL VALUE TO GENERATE
LARGE CONTACT STRESSES

IF(DEL2.LT.O.O) DEL2 = O.00I*SIP/COP

BLI:(Z-PB)/RBI

BHI=(2.*PB-Z)/RBI
TLI=DELI+BLI
TUI=TLI+BHI

RAT=TN2/TNI

IF(J.GT.O) GO TO 5

TP=FINV(P)

PAI=ACS(RBI/RAI)
PA2=ACS(RB2/RA2)

TAI=FINV(PAI)

TA2=FINV(PA2)

BETAI=ACS((RA2*RA2-RAI*RAI-C*C)/(2.0*C*RAI))

BETA2=ASN(RAI*SIN(BETAI)/RA2)
GAMMAI=BETAI+TAI-TP

GLIM2=BETA2+TA2-TP

GAMMA2=TNI*GAMMAI/TN2
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Spur Gear Mesh Constraint and Objective Function Evaluation Routines

IF(GAMMA2.GT.GLIM2) GO TO 5

XINT=RA2*(GLIM2-GAMMA2)

WRITE (NW,122) XINT

122 FORMAT(//' SECONDARY INVOLUTE INTERFERENCE'/
I ' TOOTH TIP OVERLAP = ',F8.5,' INCHES AT ENTRY'/

2 ' INCREASE N2/NI TO AVOID THIS INTERFERENCE'/)
5 CONTINUE

FSIN = TQ/RI

FTIP = FSIN/3.0

EO=EL/(I.-POI*POI)
ROA=RBI*DELI
ROB=RBI*TLI

CAPI=I./(ROA*(I.-FJ*ROA/(C*SIP)))

CAP2=I./(ROB*(I.-FJ*ROB/(C*SIP)))

SBA=SQRT(2.*FTIP/(COP*PI*EO*WD*CAPI))

SQA=FTIP/(COP*PI*WD*SBA)

SBB=SQRT(2.*FSIN/(COP*PI*EO*WD*CAP2))

SQB=FSIN/(COP*PI*WD*SBB)

PUI=ATAN(TUI)*RAD

TC=PC/2.
CALL LEWIS(PHI,DDI,TC,RF,PD,TNI,PUI,YS,AKS)

SBNDI=FSIN*PD/(WD*YS)
AGBNI=SBND]*AKS

TTI=TUI+BLI

PTI=ATAN(TTI)*RAD

CALL LEWIS(PHI,DDI,TC,RF,PD,TNI,PTI,YT,AKT)

SBND2=FTIP*PD/(WD*YT)
AGBN2=SBND2*AKT

RTPI=RA2*SIN(AA2)/SIN(AAI)
OMEGA=RPM*2.*PI

VLG=(OMEGA/RAT)*RA2*SIN(P+AA2)
VLP=OMEGA*RTPI*SIN(P-AAI)

PVF=SQA*(VLG-VLP)/I2.
RETURN

END

SUBROUTINE LEWIS(PHI,B,TC,RF,PD,TN,PHIA,Y,AK)

LEWIS CALCULATES THE LEWIS FORM FACTOR FOR A PINION TOOTH

PHI = THE PITCH LINE PRESSURE ANGLE IN DEGREES

B = THE PINION DEDENDUM IN INCHES

TC = THE PITCH CIRCLE TOOTH THICKNESS IN INCHES

RF = THE CUTTER TIP RADIUS IN INCHES

PD = THE DIAMETRAL PITCH IN I./INCHES
TN = THE PINION TOOTH NUMBER

PHIA = THE PRESSURE ANGLE AT THE POINT OF CONTACT

FOR WHICH Y IS CALCULATED IN DEGREES
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Table 18 Continued

Spur Gear Mesh Constraint and Objective Function Evaluation

Y = THE LEWIS FORM FACTOR

AK = THE TOOTH FILLET STRESS CONCENTRATION FACTOR

FINV(X)=SIN(X)/COS(X)-X
PI=3.I4159265

NW = 0

ACC=.O01

P=PHI*PI/180.O

PHA=PHIA*PI/180.O

RP=TN/(2.*PD)
YB=B-RF

COP=COS(P)

SIP=SIN(P)

DELTA=PI/(2.*PD)-TC/2.0-YB*SIP/COP-RF/COP

RC=RP*COP/(COS(PHA-TC/(2.0*RP)-FINV(P)+FINV(PHA)))

BETA=PI/TN-DELTA/RP
ER=I.
DTH=.01

THETA=.O0

DO 3 I=1,500
THETA=THETA+DTH

XB=RP*THETA

RB=SQRT(YB**2+XB**2)

COA=COS(BETA+THETA)

SIA=SIN(BETA+THETA)

XE=(RP-YB)*SIA-XB*COA-(RF/RB)*(YB*SIA+XB*COA)

YE=(RP-YB)*COA+XB*SIA+(RF/RB)*(XB*SIA-YB*COA)
SLOPE=-((I.+(YB/XB)*(SIA/COA))/(YB/XB-SIA/COA))

ERR=SLOPE+ (2.*(RC-YE))/XE

IF(ABS(ERR).LT.ACC)GO TO 4

IF(ERR/ER. LT. O. )DTH=-DTH/2.
ER=ERR

CONTINUE

WRITE (NW, 1)
FORMAT('O ITERATION FOR THETA UNSUCCESSFUL')
Y=O.

AK=1.0

GO TO 5

Y=2. *((XE**2) /(RC-YE))*PD/3.
AP=O.4583662*P

AH=O.340-AP

AL=O.316-AP

AM=O. 290+AP

RAP=RF+YB*YB/(RP+YB)
BH=RC-YE

TR= (2.O*X E/RAP) **AL

TY= (2.O*X E/BH )**AM
AK=AH+TR*TY

Routines
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Spur Gear Mesh Constraint and Objective Function Evaluation Routines

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

5 RETURN

END

SUBROUTINE GLIFE(FORCE,WD,RHP,RHG,TNP,TNG,PINRPM,BC,B,P,REL,

I LM,LP,LG,CYLP,CYLG)

SUBROUTINE TO CALCULATE THE LIFE OF A GEAR MESH

INPUTS

FORCE

WD

RHP

RHG

TNP

TNG

PINRPM

BC

B

P

REL

= NORMAL TOOTH LOAD IN POUNDS

= EFFECTIVE FACE WIDTH IN INCHES

= PINION CONTACT RADIUS OF CURVATURE IN INCHES

= GEAR CONTACT RADIUS OF CURVATURE IN INCHES

= NUMBER OF TEETH ON PINION AS A REAL VARIABLE

= NUMBER OF TEETH ON GEAR AS A REAL VARIABLE

= PINION SPEED IN REVOLUTIONS PER MINUTE

= MATERIAL STRENGTH CONSTANT IN PSI

= WEIBULL SLOPE

= LOAD LIFE FACTOR

= DESIRED RELIABILITY AS A DECIMAL

OUTPUTS

LM

LP

LG

CYLP

CYLG

= MESH LIFE IN HOURS

= PINION LIFE IN HOURS

= GEAR LIFE IN HOURS

= PINION LIFE IN MILLION ROTATIONS

= GEAR LIFE IN MILLION ROTATIONS

REAL LM,LP,LG
CT = BC*WD/(I.O/RHP + I.O/RHG)

EX = I.O/(B*P)

CP = CT*(I.0/TNP)**EX

CG = CT*(I.O/TNG)**EX

PLIO = (CP/FORCE)**P

GLIO = (CG/FORCE)**P

BR = I.O/B

RATLF = (ALOG(REL)/ALOG(O.g))**BR
CYLP = PLIO*RATLF

CYLG = GLIO*RATLF

LP = CYLP*IOOOOOO.O/(60.O*PINRPM)

LG = CYLG*IOOOOOO.O*TNG/(60.O*PINRPM*TNP)

LM = 1.0/((I.O/TP)**B + (I.0/TG)**B)**BR
RETURN

END
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C

C

C

C
C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

Spur Gear Mesh Constraint and Objective Function Evaluation Routines

SUBROUTINE DYNAM (FT,V,DL)

DYLOAD CALCULATES THE DYNAMIC LOAD OF THE MESHING OF

THE GEARS USING THE AGMA VELOCITY FACTOR

DL = THE DYNAMIC LOAD DUE TO THE MESHING

INPUTS:

FT

V
= THE TRANSMITTED LOAD (POUNDS)

= THE PITCH LINE VELOCITY (FT/MIN)

OUTPUT:

DL = THE TOTAL DYNAMIC LOAD (POUNDS)

QV = 9.0

A = 50.0 + 56.0"(1.0 - (12.0 - QV)**(2.0/3.0))/4.0

VF = ( A + SQRT(V) )/A
DL = FT*VF

RETURN

END

SUBROUTINE TEMPER(PD,PHI,TNI,TN2,WD,DL,V,TB,RMS,TF,CSN)

TEMPER IS A SUBROUTINE THAT CALCULATES THE FLASH

TEMPERATURE, THE CRITICAL SCORING NUMBER AND THE MINIMUM
ELASTOHYDRODYNAMIC FILM THICKNESS FOR TWO GEARS IN MESH

PHI

TNI,TN2
PD

V

RMS

RA2

RB2

WD

DL

TB

C2

TF

FT

= PRESSURE ANGLE IN DEGREES

= NUMBER OF TEETH ON PINION AND GEAR

= DIAMETRAL PITCH

= PITCH LINE VELOCITY (FEET/MINUTE)

= TOOTH SURFACE FINISH (RMS)
= GEAR ADDENDUM RADIUS

= GEAR BASE RADIUS

= FACE WIDTH

= TOOTH DYNAMIC LOAD (POUNDS)
= INLET OIL TEMPERATURE

= RADIUS OF CURVATURE AT TIP OF GEAR TOOTH

= FLASH TEMPERATURE

= NORMAL TOOTH LOAD IN POUNDS

PI = 3.14159265

P = PHI*PI/I80.O

COP = COS(P)

SIP = SIN(P)

RI = TN]/(2.0*PD)
R2 = TN2/(2.0*PD)
C = R] + R2
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C
C
C
C
C
C
C
C
C

Table I8 Continued

Spur Gear Mesh Constraint and Objective Function Evaluation Routines

GR = TN2/TNI

RPM = 6.0*V/(PI*RI*COP)

RAT = RI + 1.0/PD
RBI = RI*COP

CI = SQRT(RAI*RAI - RBI*RBI)

TAT = CI/RBI

TAP = SIP/COP

GY = TAT/TAP - 1.0

FD IS THE NORMAL FORCE ON THE GEAR

FD = DL/3.0

CRITICAL SCORING TEMPERATURE OF THE GEAR

XM = 1.75

AX = ABS(SQRT(I.O + GY) - SQRT(I.O - GY/GR))

BX = ((1.0 + GY)*(GR - GY))**0.25

XG = 0.5I*SQRT(GR + 1.0)*AX/BX

SW = (FD/WD)**(0.75)

TI = SW*(0.027"50.0/(50.0 - RMS))*XM*XG*SQRT(V)/(C**O.25)
TF = TB + TI

CRITICAL SCORING NUMBER

CSN = SW*SQRT(RPM)/(PD**.25)
RETURN

END

SUBROUTINE GEARWT (RHOI,RHO2,RI,R2,WD,PW,GW)

GEARWT CALCULATES THE WEIGHT OF THE PINION AND GEAR

IN MESH

RHOI,RH02

RI,R2
WD

PW

GW

= MATERIAL DENSITY OF THE RESPECTIVE GEARS

= PITCH RADIUS OF THE PINION AND GEAR

= FACE WIDTH OF GEARS

= PINION WEIGHT

= GEAR WEIGHT

PI = 3.14159265
PW = RHOI*PI*RI**2 *WD

GW = RHO2*PI*R2**2 *WD

RETURN

END
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pressure times velocity at the gear tip to model potential scoring. In order

to calculate the bending stresses, subroutine MESHcalls subroutine LEWIS

which performs an interval halving iteration to determine the size of the

largest inscribed parabola in the tooth. Subroutine GLIFE performs a Weibull

analysis with equations (33) through (37) to estimate the life of the gear

mesh for the reliability specified in the constant list. Subroutine GEARWT

estimates the weights of the pinion and the gear and subroutine TEMPER

calculates the flash temperature for the meshusing equation (32) to determine

the potential for scoring damage.

Any permissible subroutine namesmay be used in programming for a

specific problem as long as the namesof the subroutines in SEEKare avoided.

These namesare listed in the file SEEK.DOC,which is Appendix A, and in

Table I of the programming section and are: BACK,BOUNCE,BOUNDS,CHECK,

GRADNT,MERIT, RESIZE,SCAN,SCOUT,SIZE, UNIT, VALUESand WALL. Once the

problem subroutines have been written, they need to be compiled and linked to

the compiled program SEEK.OBJto produce an executable program with a name

such as GEAR.EXE. With this program, various optimal gear designs can be

found using different input files.

Numerical Example

For an example, let us consider the design of a gear set to transmit

10 horsepower from a shaft turning at 4,500 RPM to an output shaft turning at

3,000 RPM. The center distance of the gears should be minimized for a mesh

life of at least 2,000 hours with a reliability of 90 percent. The face width

ratio is to be less than or equal to 0.5, the material strengths are

40,000 psi in bending and 150,000 psi surface endurance, the PV factor limit
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is ]00 million psi-ft/min and the flash temperature limit is 275 degrees

Fahrenheit.

Table 19 is a listing of the input file defining this example. Rules

for writing the input data file are given in "SEEK.DOC,"which is listed in

Appendix A. The data file starts with the problem title. On the next line is

the numberthirteen, and the following thirty-nine lines contain the problem

constants as listed in Table 17, their definitions and their units. The

material surface constant of 9,800 psi corresponds to a surface compression

endurance strength of 200,000 psi at 107 fatigue cycles and a reliability of

90 percent. The load-life factor of 8.93 is from the ANSI/AGMA2001 B88

Standard, and the Weibull slope of 2.5 is from the NASALewis gear test data

[21]. Following the constants is a line with the numberthree for the number

of independent design parameters, which are on the next nine lines with their

ranges, initial values, definitions and units. The number fourteen follows on

the next line, with the fourteen constraint limits, their directions and their

namesand units on the following forty-two lines. After these comesa line

with the optimization direction, MIN, and a line with the numbertwo for the

numberof objective function terms. The first term is the center distance

which has a weighting coefficient of one and the units of inches, and the

second is the meshlife with a weighting coefficient of zero and units of

thousand hours.

Running the program GEAR.EXEwith this data file produced the output

data file listed in Table 20. The first page lists the problem constants,

design parameters and constraint limits as provided by the input data file but

in a little more readable form. The second page lists the merit function

terms and notes that an optimumwas found in thirty-three steps. It then
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Table 19

Spur Gear Mesh Input File for Minimum Size

COMPACT SPUR GEAR WITH A REQUIRED LIFE

13

0.25

POISSON'S RATIO

30000000.0

ELASTIC MODULUS

PSI

20.0

PRESSURE ANGLE

DEGREES

1.5

GEAR RATIO

10.0
TRANSMITTED POWER

HORSEPOWER

4500.0

PINION SPEED

RPM

O.283

MATERIAL WEIGHT DENSITY

LBS/IN**3
9800.0

MATERIAL SURFACE CONSTANT

PSI

2.5

WEIBULL SLOPE

8.93

LOAD-LIFE FACTOR

0.90

RELIABILITY

120.0

BASE TEMPERATURE

DEGREES F

32
TOOTH SURFACE FINISH

RMS
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Table 19 Continued

3

10.0 100.0 40.0

PINION TEETH

Spur Gear Mesh Input File for Minimum Size

4.0 28.0 10.0

DIAMETRAL PITCH

I.O/INCHES
0.5 5.0 2.5

FACE WIDTH

INCHES

14

LOWER 0.001

INVOL. INTERFERENCE

RADIANS

UPPER O. 5

FACE WIDTH TO DIAMETER

RAT I0

LOWER O.0

CENTER DISTANCE
INCHES

LOWER O.0

GEAR AND PINION WEIGHT

POUNDS

LOWER O.0

PINION TORQUE
LB-IN

LOWER O.0

TRANSMITTED FORCE

POUNDS

LOWER O. 0

PITCH LINE VELOCITY

FT/MIN
LOWER O. 0

TOTAL DYNAMIC LOAD

POUNDS

UPPER 40000.0

AGMA BENDING STRESS
PSI

UPPER 150000.0

FULL LOAD CONTACT STRESS

PSI

UPPER 150000.0

GEAR TIP HERTZ PRESSURE

PSI

UPPER 100.0
PV FACTOR

M PSI-FT/MIN
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UPPER 275.0

FLASH TEMPERATURE

DEGREES F

LOWER 2.0

MESH LIFE

10"'3 HOURS

MIN

2

1.0

CENTER DISTANCE

INCHES

0.0

MESH LIFE

10"'3 HOURS

Table 19 Continued

Spur Gear Mesh Input File for Minimum Size
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Table 20

Spur Gear Mesh Output File for Minimum Size

COMPACT SPUR GEAR WITH A REQUIRED LIFE

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION

USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES.

FIXED DESIGN REQUIREMENTS:

I POISSON'S RATIO

2 ELASTIC MODULUS

3 PRESSURE ANGLE

4 GEAR RATIO

5 TRANSMITTED POWER

6 PINION SPEED
7 MATERIAL WEIGHT DENSITY

8 MATERIAL SURFACE CONSTANT

9 WEIBULL SLOPE

IO LOAD-LIFE FACTOR

11 RELIABILITY

12 BASE TEMPERATURE
13 TOOTH SURFACE FINISH

0.25000

30000000.00000 PSI

20.00000 DEGREES

1.50000

10.00000 HORSEPOWER

4500.00000 RPM

0.28300 LBS/IN**3
9800.00000 PSI

2.50000

8.93000

0.90000

120.00000 DEGREES F

32.00000 RMS

THERE ARE 3 INDEPENDENT DESIGN VARIABLES.

ESTIMATED VALUES:

LOW HIGH INITIAL

I PINION TEETH

2 DIAMETRAL PITCH

3 FACE WIDTH

10.00000 100.00000 40.00000

4.00000 28.00000 I0.00000 1.0/INCHES
0.50000 5.00000 2.50000 INCHES

THE 14 CONSTRAINT LIMITS ARE:

I INVOL. INTERFERENCE

2 FACE WIDTH TO DIAMETER

3 CENTER DISTANCE
4 GEAR AND PINION WEIGHT

5 PINION TORQUE
6 TRANSMITTED FORCE

7 PITCH LINE VELOCITY

8 TOTAL DYNAMIC LOAD

9 AGMA BENDING STRESS
IO FULL LOAD CONTACT STRESS

11 GEAR TIP HERTZ PRESSURE

12 PV FACTOR

13 FLASH TEMPERATURE
14 MESH LIFE

40000

150000

150000

I00

275

2

O.OOlO0

0.50000

0.00000

0.00000

0.00000

0.00000

0.00000

0 00000

00000

00000

00000

00000

00000
00000

TYPE

RADIANS LOWER

RATIO UPPER
INCHES LOWER

POUNDS LOWER

LB-IN LOWER

POUNDS LOWER

FT/MIN LOWER
POUNDS LOWER

PSI UPPER

PSI UPPER

PSI UPPER

M PSI-FT/MIN UPPER
DEGREES F UPPER

10"'3 HOURS LOWER
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Table 20 Continued

Spur Gear Mesh Output File for Minimum Size

MINIMIZE THE OBJECTIVE FUNCTION, WHICH HAS 2 TERMS.

OBJ = THE LINEAR SUM OF:

! CENTER DISTANCE IN INCHES TIMES

2 MESH LIFE IN 10"'3 HOURS TIMES

1.0000

0.0000

OPTIMIZATION SUCCESSFUL IN

THE FINAL DESIGN VECTOR IS:

33 STEPS

X(1)

] PINION TEETH 20.39544

2 DIAMETRAL PITCH 13.91159 ].O/INCHES
3 FACE WIDTH 0.73295 INCHES

THE MINIMUM OBJECTIVE FUNCTION =

I CENTER DISTANCE

2 MESH LIFE

].83259 , ITS COMPONENTS ARE:

= 1.8326 INCHES TIMES

= 2.0065 ]0**3 HOURS TIMES
l.O000
0.0000

THE LAST CHANGE IN THE OBJECTIVE FUNCTION = -0.326633E-04

THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE = 0.976563E-04

THE 14 CONSTRAINT VALUES ARE:

I INVOL. INTERFERENCE

2 FACE WIDTH TO DIAMETER

3 CENTER DISTANCE

4 GEAR AND PINION WEIGHT

5 PINION TORQUE
6 TRANSMITTED FORCE

7 PITCH LINE VELOCITY

8 TOTAL DYNAMIC LOAD

9 AGMA BENDING STRESS

10 FULL LOAD CONTACT STRESS

11 GEAR TIP HERTZ PRESSURE

12 PV FACTOR

13 FLASH TEMPERATURE

14 MESH LIFE

LIMIT

= .10861 RADIANS .I0000E-02
= .49980 RATIO .50000

= 1.8326 INCHES .00000

= 1.1376 POUNDS .00000

= 140.06 LB-IN .00000

= 191.07 POUNDS .00000

= 1727.1 FT/MIN .00000
= 4]8.72 POUNDS .00000

= 25097. PSI 40000.
= .14999E+06 PSI .15000E+06

= .]2518E+06 PSI .15000E+06

= 92.633 M PSI-FT/MIN IO0.O0
= 216.49 DEGREES F 275.00

= 2.0006 10"'3 HOURS 2.0000

TYPE

LOWER

UPPER

LOWER

LOWER

LOWER
LOWER

LOWER

LOWER

UPPER

UPPER

UPPER

UPPER

UPPER

LOWER
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Table 20 Continued

Spur Gear Mesh Output File for Minimum Size

DESIGN CHECK

I PINION TEETH

2 DIAMETRAL PITCH

3 FACE WIDTH

x(1)

22.00000
14.00000

0.75000
].0/INCHES
INCHES

THE MINIMUM OBJECTIVE FUNCTION = 1.96429 , ITS COMPONENTS ARE:

I CENTER DISTANCE = 1.9643

2 MESH LIFE = 7.8155

INCHES TIMES 1.0000

]0**3 HOURS TIMES 0.0000

THE ]4 CONSTRAINT VALUES ARE:

LIMIT TYPE

I INVOL. INTERFERENCE

2 FACE WIDTH TO DIAMETER

3 CENTER DISTANCE

4 GEAR AND PINION WEIGHT

5 PINION TORQUE
6 TRANSMITTED FORCE

7 PITCH LINE VELOCITY

8 TOTAL DYNAMIC LOAD

9 AGMA BENDING STRESS

10 FULL LOAD CONTACT STRESS

11 GEAR TIP HERTZ PRESSURE

12 PV FACTOR

13 FLASH TEMPERATURE

14 MESH LIFE

= .12489 RADIANS .I0000E-02 LOWER

= .47727 RATIO .50000 UPPER

= ].9643 INCHES .00000 LOWER

= 1.3379 POUNDS .00000 LOWER
= 140.06 LB-IN .00000 LOWER

= 178.25 POUNDS .00000 LOWER

= 1851.3 FT/MIN .00000 LOWER
= 398.15 POUNDS .00000 LOWER

= 22845. PSI 40000. UPPER

= .I3873E+06 PSI .15000E+06 UPPER

= .I0980E+06 PSI .15000E+06 UPPER

= 81.164 M PSI-FT/MIN 100.00 UPPER
= 206.59 DEGREES F 275.00 UPPER

= 7.8155 10"'3 HOURS 2.0000 LOWER
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lists the found design parameter values, the objective function values and the

constrained variable values with their limits. Although it is an "ideal"

design with 20.395 teeth on the pinion, this theoretical optimum identifies

the region of good designs. The smallest center distance for a life of

2,000 hours is about one and seven-eights inches and the limiting constraints

were: the face width to diameter ratio, the full load contact stress and the

mesh life. The watched variables in the constraint list tell us the weight of

the design and its loads and velocities.

The third page is a design check for a design with 22 teeth on the

pinion and a diametral pitch of 14 with a face width of 0.75 inches. This

design has a slightly larger center distance of 1.964 inches, but all

constraints are satisfied and the meshlife is about 7,800 hours. The gear

and pinion weigh 1.34 pounds, the pinion torque is 140 pound-inches, the

transmitted force is 178 pounds, and with a pitch line velocity of 1850 feet

per minute, the dynamic load is estimated to be 400 pounds. Figure 15 is a

drawing of this design showing the pinion and the gear with its 33 teeth in

mesh.

With a few changes in the input data file, one can find a design with

the greatest life for a given center distance. As can be seen in the second

output file of Table 21, five changeswere madein the input data file: 1) the

problem title was changed, 2) the center distance limit was changed from a

lower bound of zero to an upper bound of 2.5 inches, 3) the direction of

optimization was changed from MIN to MAX,and 4 & 5) the two weighting factors

in the objective function were switched to multiply the center distance

objective term by zero and the meshlife objective term by one.
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C = 1.964"

PINION

22 TEETH

GEAR

33 TEETH

MINIMUM SIZE SPUR GEAR DESIGN

FIGURE 1 5
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Table 21

Spur Gear Mesh Output File for Maximum Life

MAXIMUM LIFE SPUR GEAR WITH A FIXED SIZE

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION
USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES.

FIXED DESIGN REQUIREMENTS:

I POISSON'S RATIO

2 ELASTIC MODULUS
3 PRESSURE ANGLE

4 GEAR RATIO

5 TRANSMITTED POWER

6 PINION SPEED

7 MATERIAL WEIGHT DENSITY

8 MATERIAL SURFACE CONSTANT

9 WEIBULL SLOPE

10 LOAD-LIFE FACTOR

11 RELIABILITY

12 BASE TEMPERATURE

13 TOOTH SURFACE FINISH

0.25000

30000000.00000 PSl

20.00000 DEGREES
].50000

10.00000 HORSEPOWER

4500.00000 RPM

0.28300 LBS/IN**3
9800.00000 PSI

2.50000

8.93000

0.90000

120.00000 DEGREES F
32.00000 RMS

THERE ARE 3 INDEPENDENT DESIGN VARIABLES.

ESTIMATED VALUES:

LOW HIGH INITIAL

I PINION TEETH

2 DIAMETRAL PITCH

3 FACE WIDTH

lO.O0000 I00.00000 40.00000

4.00000 28.00000 10.00000 ].0/INCHES
0.50000 5.00000 2.50000 INCHES

THE 14 CONSTRAINT LIMITS ARE:
TYPE

I INVOL. INTERFERENCE

2 FACE WIDTH TO DIAMETER

3 CENTER DISTANCE

4 GEAR AND PINION WEIGHT

5 PINION TORQUE
6 TRANSMITTED FORCE
7 PITCH LINE VELOCITY

8 TOTAL DYNAMIC LOAD

9 AGMA BENDING STRESS

10 FULL LOAD CONTACT STRESS

11 GEAR TIP HERTZ PRESSURE

12 PV FACTOR
13 FLASH TEMPERATURE

14 MESH LIFE

0.00100 RADIANS LOWER

0.50000 RATIO UPPER

2.50000 INCHES UPPER

0.00000 POUNDS LOWER

0.00000 LB-IN LOWER

0.00000 POUNDS LOWER

0.00000 FT/MIN LOWER
0.00000 POUNDS LOWER

40000.00000 PSI UPPER

150000.00000 PSI UPPER

150000.00000 PSI UPPER

100.00000 M PSI-FT/MIN UPPER
275.00000 DEGREES F UPPER

0.00000 10"'3 HOURS LOWER
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Table 2] Continued

Spur Gear Mesh Output File for Maximum Life

MAXIMIZE THE OBJECTIVE FUNCTION, WHICH HAS 2 TERMS.

OBJ = THE LINEAR SUM OF:

I CENTER DISTANCE IN INCHES TIMES

2 MESH LIFE IN 10"'3 HOURS TIMES

0.0000

1.0000

OPTIMIZATION SUCCESSFUL IN

THE FINAL DESIGN VECTOR IS:

48 STEPS

X(1)

I PINION TEETH 26.19858

2 DIAMETRAL PITCH I3.09929 ].O/INCHES
3 FACE WIDTH 1.00000 INCHES

THE MAXIMUM OBJECTIVE FUNCTION =

I CENTER DISTANCE

2 MESH LIFE

4689.19 , ITS COMPONENTS ARE:

= 2.5000 INCHES TIMES

= 4689.2 10"'3 HOURS TIMES

0.0000
1.0000

THE LAST CHANGE IN THE OBJECTIVE FUNCTION = 0.976563E-03

THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE = 0.953674E-07

THE 14 CONSTRAINT VALUES ARE:

I INVOL. INTERFERENCE

2 FACE WIDTH TO DIAMETER

3 CENTER DISTANCE

4 GEAR AND PINION WEIGHT

5 PINION TORQUE
6 TRANSMITTED FORCE

7 PITCH LINE VELOCITY

8 TOTAL DYNAMIC LOAD

9 AGMA BENDING STRESS

10 FULL LOAD CONTACT STRESS

II GEAR TIP HERTZ PRESSURE

12 PV FACTOR

13 FLASH TEMPERATURE

14 MESH LIFE

LIMIT TYPE

= .15891 RADIANS .I0000E-02 LOWER

= .50000 RATIO .50000 UPPER

= 2.5000 INCHES 2.5000 UPPER

= 2.8895 POUNDS .00000 LOWER

= 140.06 LB-IN .00000 LOWER

= 140.06 POUNDS .00000 LOWER

= 2356.2 FT/MIN .00000 LOWER
= 334.97 POUNDS .00000 LOWER

= 12766. PSI 40000. UPPER
= 96590. PSI .15000E+06 UPPER

= 70072. PSI .15000E+06 UPPER

= 56.012 M PSI-FT/MIN 100.00 UPPER
= 175.53 DEGREES F 275.00 UPPER

= 4689.2 10"'3 HOURS .00000 LOWER
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Table 21 Continued

Spur Gear Mesh Output File for Maximum Life

DESIGN CHECK

I PINION TEETH

2 DIAMETRAL PITCH

3 FACE WIDTH

X(1)

24.00000

12.00000
1.00000

1.O/INCHES
INCHES

THE MAXIMUM OBJECTIVE FUNCTION = 4432.67 , ITS COMPONENTS ARE:

! CENTER DISTANCE = 2.5000

2 MESH LIFE = 4432.7

INCHES TIMES 0.0000

10"'3 HOURS TIMES 1.0000

THE 14 CONSTRAINT VALUES ARE:
LIMIT TYPE

I INVOL. INTERFERENCE

2 FACE WIDTH TO DIAMETER

3 CENTER DISTANCE

4 GEAR AND PINION WEIGHT

5 PINION TORQUE
6 TRANSMITTED FORCE

7 PITCH LINE VELOCITY

8 TOTAL DYNAMIC LOAD

9 AGMA BENDING STRESS

10 FULL LOAD CONTACT STRESS

11 GEAR TIP HERTZ PRESSURE

12 PV FACTOR

13 FLASH TEMPERATURE

14 MESH LIFE

= .14243

= .50000

= 2.5000

= 2.8895

= 140.06

= 140.06

= 2356.2

= 334.97

= 12009.

= 97085.

= 73216.
= 63.518

= 180.12

= 4432.7

RADIANS .I0000E-02 LOWER
RATIO .50000 UPPER

INCHES 2.5000 UPPER

POUNDS .00000 LOWER

LB-IN .00000 LOWER

POUNDS .00000 LOWER

FT/MIN .00000 LOWER
POUNDS .00000 LOWER

PSI 40000. UPPER

PSI .15000E+06 UPPER

PSI .15000E+06 UPPER

M PSI-FT/MIN 100.00 UPPER
DEGREES F 275.00 UPPER

10"'3 HOURS .00000 LOWER
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For this new objective of maximizing the life of a larger gear set, the

program found an optimum design with a life of 4.69 million hours in 48 steps.

This design was bounded by the center distance limit of 2.5 inches and the

length to diameter ratio limit of 0.5. This optimum also had an unrealistic

number of teeth on the pinion of 26.2 and diametral pitch of 13.1. The last

page of Table 21 shows the results of a nearby design check using 24 teeth on

the pinion, a diametral pitch of 12 and a face width of one inch. This design

is shown in Figure 16 with 24 teeth on the pinion and 36 teeth on the gear and

the requested 2.5 inch center distance.

The realistic design has a slightly lower life of 4.43 million hours, a

gear and pinion weight of 2.9 pounds, a pinion torque of ]40 pound-inches, a

transmitted force of 140 pounds, a pitch line velocity of 2356 feet per

minute, and an estimated dynamic load of 335 pounds. Since it is larger than

the minimum size design, it also has lower loads and stresses.
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GEAR
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MAXIMUM LIFE SPUR GEAR DESIGN

FIGURE 1 6
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WEIBULL DATA FITTING

The fourth example application is the use of the optimizer to fit

experimental life data to a two-parameter Weibull distribution. With its

abilities to iterate in n independent variables and provide an easy check of

the performance of alternate solutions, the computer program SEEK.FOR offers a

variety of uses. One valuable application is that of fitting a curve to

experimental data.

Theor_

A nonlinear least squares fitting procedure compares the measured data

to the fitted curve at each point. The sum of the squares of the errors

between the measured data and the values on the fitted curve is a positive

definite scalar measure of the scatter of the data about the curve. Taking

the square root of this squared error sum divided by the number of data points

less one gives a dispersion with the same dimension as the measured quantity

[22]. For the two-parameter Weibull relationship of equation (33), this

dispersion would be:

OD = ( (Rc - RD)2 11/2 (38)

ND - I

where RC is the reliability on the curve, RD is the median rank reliability of

the measured life and ND is the number of data points.

Thus one can use SEEK.FOR to determine the ninety-percent reliability

life, _I0' and Weibull slope, b, from a set of life test data. Table 22

summarizes this problem in the design optimization format with: the lone

constant being the number of data points; the two design parameters, _I0 and
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Table 22

Spur Gear Mesh Optimization Parameters

Constants

ND

Design Parameters

tlO

b

Inequality

ND > 0

Constraints Objective Function

(°D)min

Table 23

Median Ranked Life Data

Life

103

190

250

310

340

410
450

510

550

600

670

710

770

79O

830

880

Hours

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0

Reliability

0.95484

0.89060

0.82568

0.76061

0.69548

0.63033

0.56517

0.50000
0.43483

0.36967

0.30452

0.23939

0.17432

0.10940

0.04516
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b; the inequality constraint of having a positive number of data points; and

the objective function of minimizing the dispersion, oD.

For a group of identical units subjected to an identical life test,

different units will fail at different times. By recording the times to

failure and ranking them from the shortest to the longest, one can use a

median rank table [23] to list the median reliability and test life in a table

or data file similar to the numerical values in Table 23. This table lists

the time to failure and the corresponding median reliability for a life test

of fifteen units.

Proqramminq

Inside SEEK.FOR is the additional capability to read a second data file

in addition to the input data file. This action is enabled by setting the

first constant in the constant array to the number, n, of data point pairs,

(XDi,YDi), in the data file and including the words, "DATA POINTS," in its

description. When this is combined with the presence of a data file of n

lines with n point pairs; XD i , YDi; and a name which has the same prefix as

the ".IN" file but the extension ".DAT;" SEEK will open and read the ".DAT"

file after it has read the ".IN" file. The data pairs will be placed in a

common block, COMMON/CURVE/XDP(2OO),YDP(200), for use in subroutine VALUES.

If the limit of 200 data pairs is too low, changing this dimension in the

program will allow larger data sets to be fit.

Table 24 lists subroutines BOUNDS and VALUES which will fit a two-

parameter Weibull distribution to the data in the ".DAT" file. Subroutine

BOUNDS checks that the number of data points is positive, since it has to do

something to permit the overall program to execute. Subroutine VALUES uses
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Table 24

Two-Parameter Weibull Fittinq Analysis Subroutines

SUBROUTINE BOUNDS(CONST,NCO,X,NX,VCSTR,NCS)

INPUT

CONST(1) = THE NUMBER OF DATA POINTS

OUTPUT

VCSTR(1) = THE NUMBER OF DATA POINTS

DIMENSION X(NX),CONST(NCO),VCSTR(NCS)
VCSTR(1) = CONST(1)
RETURN

END

SUBROUTINE VALUES(CONST,NCO,X,NX,OBJECT,NOB)

MINIMIZE THE SUM OF THE FITTED ERRORS SQUARED

INPUTS

CONST(I) = THE NUMBER OF DATA POINTS

X(1) = RL - THE SOUGHT 90% RELIABILITY LIFE
OF THE DISTRIBUTION

X(2) = B - THE SOUGHT WEIBULL SLOPE

OUTPUT

OBJECT(1) = THE DEVIATION IN THE ERRORS

DIMENSION X(NX),CONST(NCO),OBJECT(NOB)

COMMON/CURVE/TDP(2OO),RDP(200)

N = CONST(1)

RL = X(I)

B = X(2)
ERS = 0.0

DO 10 I = I,N

R = I.O/EXP(ALOG(].O/O.9)*(TDP(1)/RL)**B)

E = R - RDP(1)
ERS = ERS + E*E

10 CONTINUE

XN = N - I

OBJECT(]) = SQRT(ERS/XN)
RETURN

END
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equations (33) and (38) to determine the dispersion of the measured data about

the trial distribution.

Numerical Example

To illustrate this data fitting process, the fifteen data points of

Table 23 and the analysis subroutines of Table 24 will be used. A listing of

the input data file "W.IN" which will initiate the curve fitting is given in

Table 25. In this file; the first line is the problem title; the second line

is the number of constants, which is one; and the next three lines are the

number of data points, 15; the description "NUMBER OF DATA POINTS" which

includes the words "DATA POINTS" and a blank line for the units. Following

this is a line with the number of independent parameters, two. The next six

lines give the two distribution parameters, with their low, high and initial

estimates. This is followed by the number of design constraints, one, and

three lines which describe the lower bound on the number of data points. On

the next line are the three letters "MIN" to signal that the objective

function is to be minimized and four lines which give the number of object

functions as one and the weighting coefficient, description and units for the

reliability error dispersion. Once again, the unit line is blank.

Compiling the subroutines of Table 24, linking them with SEEK.OBJ, and

running the resulting program with the two data files W.DAT which holds the

numbers of Table 23 and W.IN which is listed in Table 25 yields the output

file of Table 26. This file echoes the input file information and reports a

successful curve fit in 43 steps. The fitted curve has an _IO life of

238.8 thousand hours and a Weibull slope of 2.296 with a dispersion

reliability of 0.0317.

lll



Table 25

Two-Parameter Weibull Fittinq Input Data File

WEIBULL RELIABILITY DISTRIBUTION FIT

I

15
NUMBER OF DATA POINTS

2

100.0 2000.0 500.0

90% RELIABILITY LIFE
10"'3 HOURS

0.0 6.0 2.0

WEIBULL SLOPE

I

LOWER O.0

NO. OF DATA POINTS

MIN

I

1.0

RELIABILITY ERROR DISPERSION
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Table 26

Two-Parameter Weibull Fittinq Output Data File

WEIBULL RELIABILITY DISTRIBUTION FIT

DESIGN WITH MODIFIED GRADIENT OPTIMIZATION

USING A MAXIMUM STEP LIMIT AND SCALED VARIABLES.

FIXED DESIGN REQUIREMENTS:

I NUMBER OF DATA POINTS 15.00000

THERE ARE

I 90% RELIABILITY LIFE

2 WEIBULL SLOPE

2 INDEPENDENT DESIGN VARIABLES.

ESTIMATED VALUES:

LOW HIGH

100.0000 2000.0000

0.0000 6.0000

THE I CONSTRAINT LIMITS ARE:

INITIAL

500.0000

2.0000

I NO. OF DATA POINTS

MINIMIZE THE OBJECTIVE FUNCTION.

OBJ = RELIABILITY ERROR DISPERSION IN

15 POINTS READ FROM TABULAR DATA FILE

0.00000

TIMES

10"'3 HOURS

TYPE

LOWER

1.0000

OPTIMIZATION SUCCESSFUL IN

THE FINAL DESIGN VECTOR IS:

l 90% RELIABILITY LIFE

2 WEIBULL SLOPE

43 STEPS

X(1)

238.80429

2.29637

10"'3 HOURS

THE MINIMUM OBJECTIVE FUNCTION = 0.316652E-01 , ITS COMPONENTS ARE:

I RELIABILITY ERROR DISPERSION =0.31665E-01 TIMES 1.0000

THE LAST CHANGE IN THE OBJECTIVE FUNCTION = -0.372529E-08

THE LAST STEP CHANGE SIZE FOR THE DESIGN VARIABLE = 0.610352E-05
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Table 26 Continued

Two-Parameter Weibull Fittinq Output Data File

THE I CONSTRAINT VALUES ARE:

I NO. OF DATA POINTS = 15.000

LIMIT

.00000

TYPE

LOWER

DESIGN CHECK

I 90% RELIABILITY LIFE

2 WEIBULL SLOPE

X(1)

240.00000

2.30000

THE MINIMUM OBJECTIVE FUNCTION = 0.315955E-01 ,

I RELIABILITY ERROR DISPERSION =0.31596E-01

THE I CONSTRAINT VALUES ARE:

I NO. OF DATA POINTS = ]5.000

10"'3 HOURS

ITS COMPONENTS ARE:

TIMES

LIMIT

.00000

1.0000

TYPE

LOWER
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As shown in the design check, rounding the £10 life to 240 thousand

hours and the Weibull slope to 2.3 changes this dispersion to 0.0316. This

rounded function fits the data slightly better than the "ideal" function as

found by the optimizer due to the finite step size procedure of the gradient

algorithm. Selecting a different starting position or sensitivity ranges for

the two Weibull parameters could result in an "ideal" solution which is

slightly better than the rounded solution, but it would not be significantly

different. A good fit is achieved with two digit precision parameters, using

the combination of the optimizer and the design check.

Figure 17 is a two-parameter Weibull graph of the measured data with its

median rank reliability plotted as crosses. On this plot is drawn the rounded

two-parameter Weibull distribution which has been fit to the data. It is

always a good idea to draw the fitted curve with the data points to which it

is fit. Since the dispersion is a single value representing the overall fit

of the curve, some local anomalies may exist in a fitted curve. A graph shows

these. If the data does not have the general shape of the fitted function,

either a partial fit in the region of interest or a more sophisticated

function should be used.

By changing the ranking from median to both low and high reliability

ranks, the program can be run twice more to determine confidence bounds on the

distribution. These two runs would give the user a low reliability fit to the

test data and a high reliability fit to the same data. Plotting these two

curves on the graph of Figure 17 would show the confidence range for the

distribution.

To investigate the potential improvement in fitting the data with a

higher order Weibull distribution, a three-parameter Weibull distribution
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could be fit to the same data by changing the reliability equation and adding

a third independent parameter to the optimization.

parameter Weibull distribution is:

The equation for the three

b

Ln [ 1 1 _ - _o

R 0.9 _I0- _o

where the minimum life, _o' is the additional independent parameter. The

third parameter, _o' replaces zero as the minimum life that all units would

realize.

Modifying the program and the input data file would enable one to obtain

a three-parameter Weibull distribution fit to the same data. Comparing the

two dispersions would indicate whether the additional complexity of the three-

parameter distribution is justified in the life model. A small minimum life

would confirm the adequacy of the two-parameter Weibull distribution as well.
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OPTIMIZATION METHOD

Parameter Scalinq

As illustrated in the examples, the optimization procedure begins with

several vectors. An optimization solution is the design variable vector, X,

which minimizes or maximizes the objective function value, M, with all

constraint values, Vk, bounded by their specified limits. A procedure starts

with a guess for the design variables, X, and iterates using gradients to find

the optimal values. Opportunity is then given to the user to try alternate

solutions and compare their properties.

To maintain balance among the independent design parameters, the design

space is scaled into a dimensionless design space [3]. The scaled design

parameters, Yi' vary from - 1.0 to + I.O as specified by upper and lower

bounds on the independent design parameters, X

as

such that:
i'

- 1.0 < Y. < + 1.0 (40)
1

XLi < Xi < XUi (41)

This linear transformation, which is shown in Figure 18, is:

where

Yi : di Xi + bi (42)

and

d. = (43)
l

XUi - XLi

Xui + XLi

bi = - (44)

XUi - XLi
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FIGURE 18
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The actual design variable, Xi, can be retrieved from the scaled variable, Yi'

by the inverse transformation:

X °

l

_ Yi - bi (45)

di

Gradients

Central to this method is the gradient calculation which is performed

with small perturbations in the design variables from the nominal position.

The gradient in the merit function, VM, is calculated {I] as:

VM (46)

where,

aM M(YI'"Yi+AY'"Yn) - M(YI'"Yi'"Yn) (47)

: AY

In the program, the small change AY, which is made in each Yi' is set at 0.001

which is 0.05 percent of the full range of a scaled design parameter.

The magnitude of the gradient vector is given by:
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vMl;(Z:(aM

i=! _Yi

2 i/2

(48)

In the program, the step size is separated from the gradient magnitude but for

minimization its direction is opposite to the gradient direction, so negative

unit gradient vectors are determined:

VM

V m = (49)

JVMI

For maximization, the sign in equation (49) reverses. This sign reversal

also occurs for the constraint gradient when the limit is a lower bound.

Search Directions

In the simple gradient method which is used in the acceptable design

region, equation (49) defines the direction of change in the scaled design

vector, Yj.

Yj+I = Yj + _S • Vm (50)

If no constraints are violated, this will be the next value for Yj in the

search.

For stability and directness, a nominally fixed step size, /t_, is used

in this optimization. Initially, the step size is 0.1, which is five percent

of the range of a single design parameter. Then, whenever a local minimum is

reached or the search is trapped in a constraint corner, the procedure halves

the step. To complete the search procedure, the program declares a solution
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when the percent change in the merit function is less than a pre-set limit of

0.0001:

Mj+ I - Mj < 0.0001 (51)

M.
3

Two other modes of searching are used in the procedure: I) poor guess

correction when constraints are violated initially, and 2) feasible direction

searching near constraint boundaries.

These modes are enabled with a second gradient. Just as one can

calculate the gradient in the objective function, one also can calculate the

gradient in a violated constraint variable:

V Vk (52)

VVk = I VV k I

For upper bound constraints, moving through the design space in the direction

of V vk will reduce the constraint value Vk. For lower bound constraints, a

sign reversal in equation (52) produces an increase in the constraint value,

for motion in the gradient direction. The vector sum of the gradients inVk,

the violated constraints, V h, is the second gradient of the algorithm:

Vv k

k
V h = (53)

vVkl
k

The gradient in the violated constraints, V h, points towards the

acceptable design space from the unacceptable design space. By itself, it
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enables the algorithm to turn an unacceptable initial guess into an acceptable

design trial by a succession of steps:

Yj+I : Yj + AS' V h (54)

Once inside the acceptable design region, the algorithm proceeds along

the steepest descent direction with equation (50) until the calculated step

places the next trial outside the acceptable design space. To avoid this

condition, the algorithm selects a feasible direction for the next step.

Figure 19 shows a sloped constraint intersecting vertical contour lines of the

objective function. This figure is an enlargement of a small region in

Figure 2, which is a plot of the length versus diameter for a bushing. In

this example, the objective function is directly proportional to the bushing

diameter and independent of its length. So a steepest descent direction is

always horizontal for the problem. The sloped constraint curve is the length

to diameter upper bound. Figure 19 showsvertical contour lines in the

frictional torque objective function and unit gradient vectors in this

objective function, Vm, and the impending constraint, V h. The two gradient

vectors are added at the last viable design step. The feasible direction

selected, V f, is the unit vector sumof these two gradients:

Vm+Vh
V f : (55)

IVm+Vh I

And the next step becomes:

Yj+I = Yj + AS • V f (56)
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Proqram Structure

In writing the optimization code, subroutines were used to modularize

the programming and perform the vector calculations in a structured way.

Table I, which is cited in the PROGRAMMING section of this report, lists the

subroutines which compose this program with short descriptions of their

functions. Each subroutine's name is related to its operation to describe its

use.

The scaling and unscaling of the design parameter vector are performed

by two routines: SIZE and RESIZE, so that this linear transformation can be

performed anywhere in the program with relative ease. Subroutines GRADNT and

UNIT evaluate and normalize any gradient vector. Subroutine BOUNCE finds the

gradient sum of the violated constraints at any design position. Subroutine

CHECK compares a constraint value to its limit and subroutine WALL evaluates a

specific constraint in the same way that subroutine MERIT evaluates the

objective function.

At a higher level in the program structure, subroutine BOUNCE directs

the search for the acceptable design space when the initial design guess

violates at least one constraint. Subroutine SCAN performs the search for

better designs within the acceptable design space and subroutine SCOUT checks

the next potential design for constraint violations. Finally, subroutines

BOUNDS and VALUES are the user supplied, problem specific routines which

evaluate the design constraints and the objective function values for the

design.

Figure 20 is a logic flow chart for the optimization program which

includes: I) the reading of the input data files, 2) the echoing of the input

data file information at the start of the output data file, 3) the initial
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I READDATA& SETCONSTANTS I
WRITEINPUT DATATO OUTPUTFILEI

I

I FOR FIRST CONSTANT OF "DATA POINTS" IREAD TABLE OF XDP. YDP VALUES I

ICHECK CONSTRAINT & MERIT FUNCTION VALUESl

I
IARE ALL CONSTRAINTS SATISFIED ?J

yes !

CALCULATE Vm & LOCATION OF NEXT POINT
ALONG Vm & CONSTRAINT VALUE THERE

IARE ALL CONSTRAINTS SATISFIED ?I

no

no

ITAKE STEP IN Vm DIRECTIONI

I DID MERIT FUNCTION IMPROVE ?

DID MERIT FUNCTION BECOME ZERO ?
IS ITS PERCENT CHANGE SMALL ?

OR HAVE 500 TRIALS BEEN MADE ?

JMOVE ALONG Vhl

7"I"OA NEW POINTI

yes 
IWRITE FOUND DESIGN AND ITS PROPERTIESI

1
IOFFER CHANCE TO CHANGE DESIGNI

y°81
IACCEPT NEW DESIGN PARAMETER VALUESI

[ANALYZE DESlGNI

-i CALCULATE Vfl

IS AT IA#E EAL L#T O##TR A/N TSSTEP? I no

ITAKE STEP IN Vf DIRECTION I
I

no

no

no

SEEK PROGRAM FLOW CHART

FIGURE 20
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search for a good starting design, 4) the main optimization loop, and 5) the

design verification loop.

The search for a good starting design which satisfies all constraints is

performed in a DOloop with a limit of twenty corrections. If a valid design

is not found in twenty trials, both the first and twentieth trials are written

to the output file with an analysis of all constraints, the file is closed and

the program is stopped.

Once a good starting design is found, the search for the optimal design

is conducted in the main DOloop with a limit of five-hundred iterations. In

this DOloop, subroutine SCOUTchecks the constraint values at the next design

point using the objective function gradient increment as shown in

equation (50) to locate the next design point. If all the constraints are

satisfied, the full design step is taken in the direction of the objective

function gradient using equation (50). If at least one constraint is not

satisfied, subroutine SCANincrements the design along the feasible direction

gradient using equation (56). If all the constraints are still not satisfied,

the step size is reduced and the half step is taken in the feasible direction.

After a step is taken, the objective function value is then checked. If

it increased, the step size is divided by two. Otherwise, no change is made.

Finally, the percent change in the objective function is checked using MERIT.

If this change is below the desired limit, a solution is declared and the

procedure leaves the DOloop. If the change is greater than the desired

limit, the DOloop indexes and the iteration process is repeated.

If the merit function criteria are not satisfied after five-hundred

iterations, the program writes the five-hundredth design to the screen and the

output file with an error messageand provides the user with the opportunity
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to change the design and have it re-analyzed. This documentation and

opportunity for modification are also given to the user at the end of a

successful design optimization search. The final design modification loop is

controlled by the user with no termination count. Additional designs maybe

evaluated until the user chooses to end the program.
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DISCUSSIONOF RESULTS

In this report, a computer program, 'SEEK.FOR,' is described and its use

is illustrated with four different examples. SEEKhas been written to make

optimization available to the general technical community with only the need

for modeling the applied problem. The program is a general purpose optimizing

tool which can find the best combination of design parameter values which

satisfy a series of constraints placed on calculable properties of the design

parameters. The set of design parameter values is 'best' in that it maximizes

or minimizes a linear sumof objective function terms.

Although the computer program requires the user to write two analysis

subroutines and an input data file for his or her application, it is written

to be interactive and to communicateclearly to the user. By requiring text

labels for all variables, the program is able to label its restatement of the

problem and all results in the words of the user. In the input file, the user

is able to change the starting design values and the relative sensitivity of

the individual design parameters by changing the low and high estimates of

these values.

Based on a boundedstep gradient method, the program searches with

gradients in three functions: ]) the objective function, 2) the violated or

nearly violated constraints and 3) a vector sumof the first two. The first

gradient provides a rapid solution path whenno obstacles are present. The

second gradient permits the user to start with an initial trial design which

maynot satisfy all constraints. And the third gradient allows the algorithm

to continue improving the objective function even whenthe direct path is

blocked with one or more constraints.
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To enable the gradient calculations, the provided models for the

objective function terms and the constrained variables need to be continuous.

Discrete values can be entered later in a design check modewhich the program

enters once a numerical optimum has been found in the continuous design space.

This design check modeis part of the interactive operation of the program.

By allowing the user to try alternate designs after the numerical optimum has

been found, the program assists the user in finding practical optimums which

satisfy discrete requirements which can not be treated in the continuous

models. An output file is written during the session to document the design

problem and all solutions which are displayed on the screen. In this file,

each solution has its design parameter values, objective function values, and

constrained variable values and limits listed with the users descriptions as

labels.

This report illustrates the model preparation and programming required

to use 'SEEK.FOR'for four examples: I) a bushing design, 2) a spring design,

3) a gear design, and 4) a curve fit. The bushing design problem illustrates

the determination of two parameters: the bushing length and its diameter

subject to three inequality constraints, a single objective function and

discrete size requirements. The example also shows the program's ability to

overcome a poor initial trial design.

The spring design problem illustrates the conversion of equality

constraints to simplify the problem by taking a four-parameter problem and

treating it as a problem with two independent parameters. The number of

active coils in the spring and the free length of the spring are shownto be

dependent parameters and the wire diameter and meancoil diameter are left as

independent parameters. The example finds three separate designs which all
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have the samestiffness and design factor under the sameloading but which

satisfy three separate objective functions. By changing the objective

function for the samedesign constraints, the program finds the lightest

spring, the smallest volume spring and the shortest spring in separate runs.

A visual comparison of the three springs showstheir obvious differences.

The gear design problem illustrates a three parameter design problem

which requires considerably more analysis than the first two. The three

parameters are the numberof teeth on the pinion, the diametral pitch and the

face width of the gears. Designs are obtained for a minimumsize at a given

life and for a maximumlife at a given size. The example illustrates the use

of additional subroutines by the two analysis routines: BOUNDSand VALUES.

The curve fit problem illustrates the use of the optimizing program as a

tool for minimizing the dispersion of the data from a modeled function.

Although the program can minimize the overall error between a fitted curve and

the experimental data, it is recommendedthat a plot of the fitted curve and

the original data be madeto verify that the function truly models the data

closely in the region of highest interest. One feature of this use of the

program is the ability in the design check modeto quickly see the influence

of curve coefficients on the goodness of fit.

No optimization program can solve all problems. The use of this program

is limited to solving problems which can be modeled continuously with finite

constraint and objective function values over the search area. The program

contains arbitrary size limits of forty for the constants and constraints and

fifteen for the design parameters and objective function terms. As the number

of independent design parameters increases from the low numbers of these

examples, gradient searching becomesmore difficult. More steps are required
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to find a solution and more calculations are required for each step. Design

parameters, which do not change, can dilute the effectiveness of the method

with additional calculations. Often, a large optimization problem can be

reduced to a simpler one which permits a more rapid and direct solution by the

removal of design parameters which do not change from the design parameter

vector.

For any problem which can be modeled continuously, the program

'SEEK.FOR' offers an easily used, interactive tool for the determination of a

practical optimum solution. The program is small with an object code size of

46 k bytes and runs quickly on a 486 personal computer running DOS.
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SUMMARYOFRESULTS

In this report, the use of a computer program, 'SEEK.FOR'is

demonstrated with four optimization examples. The program is written to work

with two user-provided subroutines and an input data file. Its purpose is to

perform a gradient search optimization of a user's problem. The method of

optimization uses a modified feasible directions gradient in addition to

simpler gradients in the objective function and the violated constraints. The

program is written in ANSI standard Fortran 77, is about ],200 lines long and

has an object size of about 46 K bytes for the optimizing code for use on a

personal computer running DOS.

To illustrate the use of the program, this report documents four

optimization examples: a bushing design, a helical coil spring design, a gear

meshdesign and a two-parameter Weibull life-reliability _urve fit. In each

example, the theory of the problem is described, the organization of the

problem into an optimization framework is given, the programming of the

modeling subroutines is explained and a numerical example is shownwith the

input and output data files explained.

In the bushing design problem, two independent design parameters are

found which minimize a single objective function subject to three inequality

constraints. In the spring design problem, four design parameters are reduced

to two independent design parameters and three separate objective functions

are minimized with three separate runs of the sameprogram. The designs

satisfy seven inequality constraints. For the gear design problem, two sets

of three independent design parameters are found in two separate runs to

satisfy two opposing objective functions. In this model, fourteen inequality

constraints are satisfied. For the curve fitting example, a table of x and y
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data points is read into the program and two parameters are found which fit a

curve to the data with minimized dispersion. One innocuous inequality

constraint is used to allow the program to run, since the program requires the

subroutine to be in place. As written, the program accepts problems with up

to forty input data constants and forty inequality constraints. The limit on

the number of independent design parameters is fifteen as is the limit on the

number of objective function terms.

This report describes the use of the optimizing program, gives four

examples of its use and discusses the program and method themselves. The

program 'SEEK.FOR'is an adaptable, analytical tool for finding optimal

solutions to technical problems.
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APPENDIXA

SEEK.DOCFILE

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PROGRAMSEEK.FOR

MODIFIEDGRADIENTOPTIMIZATIONPROGRAM

WITHINEQUALITYCONSTRAINTAVOIDANCE

LINK THIS PROGRAMWITHTWOPROBLEMSPECIFICANALYSIS
SUBROUTINESANDRUNWITHA PROBLEMSPECIFICDATAFILE.

"NAME".IN DATAINPUTFILE REQUIRED

FORMAT:

LINE I : NTITLE(50 CHAR.MAX)
FORTHECONSTANTS

LINE 2 : NCO
IN SETSOFTHREELINESEACH

LINE 3 - (IA) : CONST(1)
LINE 4 - (2A) : NCON(30 CHAR.MAX)
LINE 5 - (3A) : NUCON(12 CHAR.MAX)

THENFORTHEINDEPENDENTVARIABLES
LINE 3 + 3*NCO : NX

IN SETSOFTHREELINESEACH
LINE (IB) : XLOW(1), XHIGH(1) , XZ(1)
LINE (2B) : NVAR(30 CHAR.MAX)
LINE (3B) : NUVAR(12 CHAR.MAX)

THENFORTHECONSTRAINTS
LINE 4 + 3*NCO+ 3*NX : NCS

IN SETSOFTHREELINESEACH
LINE (IC) : LIMIT(1) , CSTR(1)
LINE (2C) : NCSTR(30 CHAR.MAX)
LINE (3C) : NUCSTR(]2 CHAR.MAX)

THENFORTHEOBJECTIVEFUNCTION
LINE 5 + 3*NCO+ 3*NX+ 3*NCS : DIR
LINE 6 + 3*NCO+ 3*NX + 3*NCS : NOB

IN SETSOFTHREELINESEACH
LINE (ID) : WGHTF(1)
LINE (2D) : NOBJ(30 CHAR.MAX)
LINE (3D) : NUOBJ(12 CHAR.MAX)

TOHAVEACCESSTOA TABLEOFX ANDY DATAVALUES,
LET THEFIRSTCONSTANTBE THENUMBEROFDATAPOINTS
ANDINCLUDETHEWORDS"DATAPOINTS"IN ITS DESCRIPTION.

A DATAFILE WITHX,Y DATAPAIRSANDTHENAME"NAME".DAT
SHOULDALSOEXIST IN THESAMEDIRECTORY.
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UPTO 200 DATAPAIRSWILL BE PLACEDIN THECOMMONBLOCK
COMMON/CURVE/XDP(2OO),YDP(200).

TWO ANALYSIS SUBROUTINES ARE REQUIRED

BOUNDS(CONST,NCO,X,NX,VCSTR,NCS) ; AND
VALUES(CONST,NCO,X,NX,OBJECT,NOB)

BOUNDS EVALUATES THE INEQUALITY CONSTRAINTS

VALUES DETERMINES THE OBJECTIVE FUNCTION'S

COMPONENT PROPERTIES

DEFINITIONS:

CONST

CSTR

DIR

LIMIT

NCO
NCS

NOB

NX

NCON

NUCON
NVAR

NUVAR

NCSTR

- FIXED DESIGN PROBLEM CONSTANT
- CONSTRAINT LIMIT VALUE INCLUDING DECIMAL POINT

- OPTIMIZATION DIRECTION ( MIN , MAX )

- CONSTRAINT LIMIT BOUND TYPE ( UPPER , LOWER )
- NUMBER OF PROBLEM CONSTANTS

- NUMBER OF INEQUALITY CONSTRAINTS
- NUMBER OF PROPERTIES IN MERIT FUNCTION

- NUMBER OF INDEPENDENT VARIABLES

- CONSTANT NAME

- CONSTANT DIMENSION UNITS
- VARIABLE NAME

- VARIABLE DIMENSION UNITS

- CONSTRAINT NAME

NUCSTR - CONSTRAINT DIMENSION UNITS

NOBJ - MERIT FUNCTION COMPONENT NAME
NUOBJ - MERIT FUNCTION COMPONENT DIMENSION UNITS

NTITLE - DESIGN PROBLEM TITLE

OBJECT - MERIT FUNCTION COMPONENT VALUES

VCSTR

WGHTF

X

XHIGH

XLOW

XZ

- CONSTRAINT FUNCTION VALUES

- WEIGHTING COEFFICIENT FOR COMPONENT IN

LINEAR MERIT FUNCTION SUM

- INDEPENDENT DESIGN VARIABLE

- HIGH VARIABLE VALUE

- LOW VARIABLE VALUE

- INITIAL VARIABLE VALUE

AT PRESENT, THE ARRAY SIZE LIMITS ARE:

MAX NCO = 40,

MAX NCS = 40,

MAX NOB = 15, AND
MAX NX = 15.

136



C
C
C
C
C
C
C
C
C
C
C
c
C
C
c
C
C
c
c
c
C
C
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C
C
C

AVOID THE USE OF SUBROUTINE AND COMMON BLOCK NAMES

WHICH ARE ALREADY USED BY SEEK.

THE SUBROUTINE NAMES USED BY SEEK ARE:

BACK ........... FSUBRT

BOUNCE .......... FSUBRT

BOUNDS .......... extern

CHECK .......... FSUBRT
GRADNT .......... FSUBRT

MERIT .......... FSUBRT

RESIZE .......... FSUBRT

SCAN ........... FSUBRT

SCOUT .......... FSUBRT

SIZE ........... FSUBRT

UNIT ........... FSUBRT

VALUES .......... extern

WALL ........... FSUBRT

THE COMMON BLOCK NAMES USED BY SEEK ARE:

CURVE .......... common

PAR ........... common

VAR ........... common

UNITS .......... common

TO PRINT OUT INTERMEDIATE RESULTS FROM BOUNDS, VALUES

OR ANY SUBROUTINE CALLED BY BOUNDS OR VALUES, INCLUDE THE

COMMON BLOCK "UNITS" IN THAT SUBROUTINE, AS FOLLOWS:

COMMON /UNITS/NW,NR,NF,ND

WHERE:

NW = WRITE NUMBER FOR WRITING TO THE SCREEN

- WRITE(NW,...)
NR = READ NUMBER FOR READING FROM THE KEYBOARD

- READ(NR,...)
NF = WRITE NUMBER FOR WRITING TO THE OUTPUT FILE

- WRITE(NF,...) ,AND
ND = READ NUMBER FOR READING FROM THE INPUT DATA FILE

- READ(ND,...).
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Vari abl es

A

b.
1

B

C

C2

C

Cg

Ct

d.
I

d w

D

E

i

F

Vf

G

hf

Vh

J

k

Kw

R

_o

APPENDIX B

SYMBOLS

- AGMA velocity factor constant

- independent design variable scaling constant

- material surface strength constant (psi)

- center distance (in)

- minimum gear tooth curvature (in)

- dynamic capacity (Ibs)

- gear dynamic capacity (Ibs)

- tooth dynamic capacity (Ibs)

- independent design variable scaling slope

- wire diameter (mm)

- shaft or mean coil diameter (mm)

- elastic modulus (psi)

- face width (in)

- applied force (N)

- normalized feasible direction gradient

- shear modulus (MPa)

- unloaded spring height (mm)

- normalized violated constraint gradient

- polar moment of inertia (mm4) or AGMA bending stress factor

- spring rate (N/mm)

- Wahl stress concentration factor

- life (h)

- minimum life (h)
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_m

L

M

Vm

_M

Na

Ndes

ND

Ne

Nf

Ng

Ns

OD

P

Pd

PV

Qv

R

R

Rc

RD

Sac

S
se

S
SU

Ssy

Suc

- mesh life (103
h)

- bearing length (mm)

- objective function vector

- normalized objective function gradient

- unscaled objective function gradient

- number of active spring coils

- design factor

- number of data points

- number of inactive end coils

- design factor in fatigue

- number of gear teeth

- static design factor

- outside coil diameter (mm)

- contact pressure (MPa)

- diametral pitch (in-])

- pressure times velocity scoring factor (MPa - m/s)

- AGMA surface quality factor

- gear radius (in)

- reliability

- calculated reliability

- measured reliability

- surface compression strength (psi)

- shear endurance strength (MPa)

- shear ultimate strength (MPa)

- shear yield strength (MPa)

- tensile strength constant (MPa)
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AS

TB

Tf

If

T
q

V

- step size

- base temperature (°F)

- flash temperature (°F)

- friction torque (N-m)

- applied torque (Ib-in)

- shear force (N)

Vcoil - spring coil cylinder volume (mm3)

Vk

Vw

V

Vs

Vv k

W

W

Wt

X

XD.
1

XL

XU

XG

x.

XF

Y

AY

YD i

Q

- single violated constraint

- wire volume (mm3)

- pitch line velocity (ft/sec)

- sliding velocity (m/s) or (ft/sec)

- single violated constraint gradient

- weight density (kN/m3)

- gear weight (Ibs)

- spring weight (N)

- independent design parameter vector

- life test data value (]03 h)

- independent design parameter lower value

- independent design parameter upper value

- geometric temperature factor

- thermal-elastic temperature factor

- load sharing temperature factor

- scaled independent design parameter vector

- incremental step change in scaled design parameter vector

- reliability data point value

- gear tooth involute angle (radians)
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B

6

61

0

/1

Pm

V

P

%

%

%

GHt

r

o)

- length to diameter ratio

- spring deflection (mm)

- involute interference angle (radians)

- spring wire rotation angle (radians)

- coefficient of friction

- surface roughness (RMS)

- Poisson's ratio

- radius of curvature (in)

- bending stress (psi)

- dispersion of data from fitted curve

- Hertzian contact stress (psi)

- Hertzian contact stress at the gear tooth tip (psi)

- shear stress (MPa)

- pressure angle (radians)

- gear angular velocity (rad/sec)

- shaft speed (RPM)

Subscripts

a - alternating

al - pinion addendum

a2 - gear addendum

bl - pinion base

b2 - gear base

d - dynamic

i - independent design parameter index

j - optimization step index
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k - violated constraint index

m - mean

max - maximum

min - minimum

sol - solid height

] - pinion

2 - gear

10 - 90 percent reliability

Superscripts

a

b

P

- wire strength exponent

- Weibull slope

- load-life exponent
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