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1. INTRODUCTION

This is the initial release of a theoretical manual for Version 1.10 of the NASA Rolling Element
Bearing ANalysis System (REBANS) family of computer programs. Compared to other bearing
analysis codes, REBANS offers improved capability to determine the quasi-static response to
external loads or displacements for three types of high-speed rolling element bearings:

« angular contact ball bearings (single ball row),
o duplex angular contact ball bearings (dual ball row), and
e cylindrical roller bearings,

by including the effects of bearing ring and support structure flexibility. A finite element
representation, prepared using Version 4.4 of ANSYS, is used for structure modeling. The
current analysis system is composed of two main programs, the operation of which are referred to
separately in a companion user’s manual, are briefly described as follows:

PREBAN - PREprocessor for Bearing ANalysis, used to create and modify the two
necessary input files for FEREBA, the main analysis program. This
interactive code provides extensive on-line help for all model definition
commands and examines input data for validity.

FEREBA - Flexibility Enhanced Rolling Element Bearing Analysis, the main analysis
code, reads the files prepared by PREBAN and performs the requested
analysis. The program may be run either interactively (with command line
arguments) or batch, and prints a complete output file of results from the
analysis.

The primary focus of this technical manual is the description of the theory that enables the
flexibility enhanced quasi-static analysis. As such, all discussion in this manual is relative to the
main analysis code FEREBA, a complete operating description of PREBAN is given in the User’s
Manual.

1-1
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1.1 Development History

The genesis of FEREBA is taken from one the more recent computer programs developed to
perform rolling element bearing quasi-static analysis - SHABERTH [1]". This code was chosen
as the development platform for several reasons:

e modular organization of source,
e availability of program documentation,
e use of standard bearing kinematic relations, and

o ability to analyze the types of bearings required.

' SHABERTH; which is an acronym for SHaft and BEaRing THermal analysis, has a loﬁg history

of development, starting from the theory originally described by Jones [2], and subsequently
modified by Harris [3]. In addition to the fundamental bearing mechanics analysis, SHABERTH
also provides the capability for determining the load and temperature distribution for a shaft and
bearing system, including the effects of lubrication and friction. These additional analysis features
were not part of the development scope of FEREBA.

Although SHABERTH provides a sophisticated treatment of a shaft-bearing system, the only
flexibility in the bearing analysis is due to contact (Hertzian) deformation. For bearings that are
mounted into rigid housings, without any clearance radially or axially, considering only contact
deformation is probably reasonable. However, seldom is a bearing installed with such an
arrangement, and thus the question is raised regarding the influence of clearance and flexible rings
on the load-deflection characteristics.

Recognizing the limitations of the rigid-ring theory, several authors have developed extended
analyses that include the effect of ring flexibility. Filetti and Rumbarger [4] modeled the outer
ring of a roller bearing with what is essentially curved-beam finite elements. Their calculations
and experiments showed marked differences in roller load distribution between rigid and flexible
ring models. Davis and Vallance [5], in a precursor effort to REBANS, developed a method
using a finite element representation of the outer ring. Their results, for axial preload conditions
only, showed increased axial motion of the inner ring, compared with rigid-ring calculations.

REBANS extends these previous efforts to consider general race and housing flexibility, including
such effects as dead-band and preload springs. The intent of the analysis is to determine the load-
deflection relationship for system comprised of shafting, the inner and outer rings, the rolling
elements, and any significant supporting structure, all represented with 3D finite element models.
In a sense, this system can be thought of as a “control volume” for bearing analysis.

* Numbers in brackets refer to the reference list given in Chapter 9 of this manual

1-2
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1.2 Nomenclature

Throughout this theoretical description, the following symbols are used to describe physical
quantities. A brief definition of the terms is also provided. Where possible, common notation
used in traditional bearing mechanics has been retained.

CS,

" CS;

Fuy
F iljy F iry

Folj: Forj

Fore

G

IRCC
K

Ky, Ky
L, L,
M, My

n
ORCC
Py, Py
Py

Axial distance between ORCC and JRCC under load at ball j

Radial distance between ORCC and IRCC under load at ball j

Total curvature for ball bearings -

Initial distance between IRCC and ORCC in the unloaded mounted configuration

Crown drop (including roller crown and raceway crown) of k™ slice of all rollers
measured normal to roller

Global coordinate system fixed in inertial space with origin at the center of an
unloaded bearing, with Cartesian axes of X-Y-Z, cylindrical axes of X-R-®

Primary bearing coordinate system which moves with the inner ring and shaft relative
to the global inertial coordinate system (CS;) with five degrees of freedom (Ax, Ay, Az,
&, 6), with Cartesian axes of x-y-z, cylindrical axes of x-r-¢

Unloaded rolling element diameter

Diametral distance between rolling element centers in unmounted configuration (pitch
diameter)

Elastic (young's) modulus for ball and raceway, respectively
Centrifugal force on the j™* ball directed along the positive R axis
Component of F; directed along the x-axis

Component of F; directed along the r-axis

Radial force applied to left, right node in ™ azimuthal plane of inner raceway in inner
ring elastic model

Radial force applied to left, right node in j™ azimuthal plane of outer raceway in outer
ring elastic model

Specified total axial preload force

Vector of gap separation distances (either axial or radial dimension)

Curvature center of a ball bearing inner raceway groove

Jones axial deflection constant

Hertzian contact stiffness between the jth ball or roller and the inner, outer raceway
Effective roller length at inner, outer roller bearing raceway contact

Total tilt moment about centroid of j* roller due to local roller contact forces at inner,
outer raceway

Number of rolling elements in a single, primary or duplex bearing
Curvature center of a ball bearing outer raceway groove
Total radial force applied to centroid of ™ roller by inner, outer raceway

Initial diametral clearance
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Nomenclature, continued
Qui, Qo Local radial force applied to k" slice of j™ roller by inner, outer raceway

ri,ro

ch

Ri, R,

Xok » Xik

Oy
&,

Radius of curvature of a ball bearing inner, outer raceway grooves
Radial component of constraint relation that determines if inner race is unloaded

In the initially unloaded condition, locus radius of IRCC’s, ORCC'’s for a ball bearing;
radial distance from bearing center to inner, outer raceway for a roller bearing

Distance along roller axis from roller centroid to center of k™ slice measured along
inner, outer raceway

Axial component of constraint relation that determines if inner race is unloaded

Inertial axial distance from the CS; origin to the ORCC of a duplex bearing in the
unloaded condition (the duplex bearing is initially located a positive distance X.qalong
the X axis relative to the primary bearing)

Axial distance between ball center and ORCC under load
Radial distance between ball center and ORCC under load

Initial (positive) contact angle for the primary bearing in the unloaded mounted
configuration defined in CS;

Inner, outer race loaded contact angle at the j™ azimuthal ball location defined in CS:

Initial (positive) contact angle for the primary bearing in the unloaded mounted
configuration, defined in CS;, under the action of specified axial preload

Hertzian contact deflection of the ball and inner and outer race at the j® azimuthal ball

.location defined in CS;

Hertzian contact deflection along the line of contact due to axial preload
Radial elastic displacement of the JRCC at the " ball location defined in CS;

Radial elastic displacement of inner, outer ring due to axial preload averaged around
all ball locations :

Radial elastic displacement of the ORCC at the ™ ball location defined in CS;
Axial elastic displacement of the JRCC at the j®ball location defined in CS;
Axial elastic displacement of the ORCC at the j™ ball location defined in CS;

8&,i, &, Axial elastic displacement of inner, outer ring due to axial preload averaged around all

ball locations

4., 9.y Radial interference between inner, outer contact point at the k™ slice on the j* roller

and radially adjacent point on inner, outer raceway

duy; , éu, Elastic radial displacement of inner, outer raceway in | azimuthal plane
&, &, Radial interference between center inner, outer contact point on j roller and radially

adjacent point on inner raceway

&y, &ryy Elastic radial deflection of left, right node in j* azimuthal plane of inner raceway in

roller bearing inner ring elastic model

& .y, Oroy Elastic radial deflection of left, right node in j* azimuthal plane of outer raceway in

roller bearing outer ring elastic model

14
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Nomenclature, continued

Ae

Ap
AP,
Ar;
Auy

g

J

N

by, O
&, &

oy, 2
subscript d

subscript p

Inertial axial displacement of the CS; origin, relative to the CS, origin, required to
bring a ball into contact with both races during mounting (also the inertial axial
distance from the ORCC to the IRCC in the unloaded mounted condition)

Fixed axial displacement of inner ring due to axial preload
Change in radial clearance due to temperature effects
Inertial radial displacement of centroid of j* roller in ™ azimuthal plane

Total radial displacement of inner raceway in i azimuthal plane including elastic radial
displacement

Rigid-body displacement of the CS; origin in the X-direction related to shaft/inner ring
response to applied forces and moments _

Rigid-body displacement of the CS; origin in the Y-direction related to shaft/inner ring
response to applied forces and moments '

Inertial Y-axis displacement of inner ring and shaft

Rigid-body displacement of the CS; origin in the Z-direction related to shaft/inner ring
response to applied forces and moments

Inertial Z-axis displacement of inner ring and shaft

Total tilt rotation of inner raceway at j"* azimuthal plane (elastic plus imposed)
Poisson's ratio for ball and raceway, respectively

Inertial tilt rotation of centroid of j* roller in j* azimuthal plane

Azimuthal angle to the ™ ball or roller location in the quasi-static analysis measured
from the global inertial Y-axis (the planar kinematics used in the quasi-static analysis
permits @ to be considered identical in CS; and CS)

Elastic tilt rotation of inner, outer raceway in )" azimuthal plane

Rigid-body rotation of the CS, axes about the Y- or Z-axis related to shaft/inner ring
response to applied forces and moments

Rigid-body rotation of the inner ring and shaft about inertial Y- or Z-axis

Appended to any symbol related to the primary bearing, the subscript d distinguishes
the variable as being related to the duplex bearing

Appended to any symbol, the subscript p indicates the variable is related to axial
preload calculations
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2. ASSUMPTIONS AND LIMITATIONS

The theoretical development described in this manual makes assumptions on the bearing system
behavior and places limits on the extent of applicability as defined below:

1.

The single ball/roller bearing or duplex angular contact ball bearing being studied has a
nonrotating carrier with fixed supports and a single rotating shaft. The shaft rotates with
constant angular velocity as required for a quasi-static analysis.

The shaft interfaces with the inner ring by means of a shrink fit with no clearance. Except
for bearing systems with hollow shafts, elastic displacements of the inner ring and shaft are
generally considered to contribute negligibly to bearing kinematics.

Inner ring relative structural displacements are obtained from a linear flexibility matrix
constrained at the interface between the shaft and inner ring in the axial and tangential
directions. If the shaft finite-element model is sufficiently detailed, potentially significant
local radial deformations of a hollow shaft are accurately represented. Tangential elastic
deflections of the inner ring are considered negligibly small.

Force-displacement relations for the outer ring and carrier are described by a single
stiffness matrix with the associated assumptions such as small deflections and linear elastic
material properties. The outer ring is connected to the carrier by soft springs joining
coincident nodes across radial and axial gaps. These soft springs must have stiffnesses
which guarantee that the spurious forces generated across open gaps will be negligible,
and that the single stiffness matrix describing the outer ring and carrier can be inverted to
form a flexibility matrix [CO]. Outer ring “rigid-body” displacements result from
distortions of these soft springs.

Nonlinear effects due to radial and axial contact between the outer ring and the carrier are
treated with the flexibility matrix using kinematic constraint relations. Due to chamfering,
any point on the exterior of the outer ring can contact the carrier either in the radial
direction or in the axial direction, but not in both directions simultaneously.

All forces generated by the cage and all dissipative forces are neglected for the quasi-static
analysis. The quasi-static analysis, based on the classical approach of Jones [2] and Harris
[3], determines elastic forces and deflections with balls located in their evenly spaced
idealized positions.

No transient thermal effects will be considered. Steady-state thermal effects are
considered in the quasi-static analysis only to the extent of dimensional change.

Permitted motions of the inner ring consist of five degree-of-freedom (DOF) rigid-body motion
combined with elastic structural deflections of the inner ring relative to the shaft motions. Rigid-
body motion of the inner ring is described by small displacements (Ax, Ay, Az) and small rotations
(6y, 6z) of a reference frame (CS>) fixed at the shaft center and able to move relative to the fixed
global inertial reference frame (CS;). These five rigid-body freedoms are considered to result
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from general shaft bending and axial displacement. Elastic displacements of the inner ring relative
to (CS,) are determined from a flexibility matrix [C7].

2.1 Solution Methodology

The SHABERTH quasi-static iteration determines rolling element equilibrium and inner ring
deflections to match applied forces. To incorporate general structural flexibility into the analysis,
an iterative solution methodology is used that involves dividing the analysis into three sequential

steps:

1. With the outer ring fixed in inertial space and the elastic deflection of the inner ring
specified, ball forces on the inner and outer races are calculated in terms of assumed
values of the five rigid-body displacements of the inner ring and shaft. This step follows
essentially the classical quasi-static bearing analysis of Jones [2] and Harris [3] except that
all displacements, except for the Hertzian ball-race contact deflections, are considered
fixed during each iteration. The nonlinear equations are solved using a Newton-Raphson
technique with the required partial derivatives expressed numerically.

2. Calculated ball forces on the inner race are applied to the flexibility matrix of the inner ring
and shaft [CT] to determine the corresponding elastic deflections of the inner race
curvature centers. These ball forces on the inner race are also summed to determine total
forces and moments, at the origin of the global inertial reference frame (CS)), for
comparison in Step 3 with the input applied forces and moments. Calculated ball forces
on the outer race are applied to the flexibility matrix of the outer ring and carrier [CO],
using a nonlinear iterative procedure to identify points of contact. The result of this
iterative procedure is the “rigid-body” and elastic deflections of the outer race curvature
centers corresponding to the forces applied to the outer race.

3. Given the deflections of the inner and outer rings corresponding to the ball forces applied
to the inner and outer races, the differences between the input applied forces and moments
and the previously calculated forces and moments are used to revise the values of the five
rigid-body displacements of the inner ring and shaft. This step follows essentially the
tangent-compliance method of Davis and Vallance [5] except that the system compliance
matrix does not contain the outer ring flexibilities. Increments of the five displacements of
the inner ring and shaft corresponding to outer ring displacements are determined from
“rigid-body” displacements of the outer ring in terms of a least-squares fit.

Examining the flexibility enhanced iteration, as described by these three steps, at least one and
possibly two more iterative loops are required to obtain a solution. The outermost loop is
described by Step 3. If a nonlinear outer race model is used, another loop is required to
determine displacements with gaps. Thus a total of 4 nested iterations are performed by
FEREBA. Note that the elastic deflections of the inner ring and outer ring lag the calculated ball-
race forces by one iteration. If a reasonable error is given to the elastic displacement iteration,

this difference is minor.



2.2 Kinematic Relations

The kinematics of static contact between a rolling element and race require that, for a ball bearing,
each race curvature center be on a straight line extending from the ball-race contact point through
the ball center. A similar relationship holds for a roller bearing. For small displacements in the
tangential (azimuth) direction, a planar relation of both contact forces directed through the rolling
element center must hold. This planar kinematic relation is basic to the classical quasi-static
analysis, and is illustrated in Figure 2-1 for a ball bearing.

IRCC (loaded)
IRCC (unloaded) —f
Ball Center . 7 N e
(loaded) | 1 ‘_L

Ball Center (unloaded)

R (radial)

ORCC (fixed each iteration)

X (axial)

Figure 2-1 Planar kinematic diagram for ball bearings

Therefore, there are no first-order effects on kinematics of small motions in the tangential
direction. There are, however, second-order effects by which tangential displacements of the
inner ring affect slightly the radial and axial locations of the outer race curvature center in inertial
space when determined from the inner ring. The radial incremental displacement due to the inner

2-3
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The basic approach of Jones [2] and Harris [3] can therefore be followed with regard to the two-
dimensional kinematic relations expressed in their planar diagram. However, for the present
quasi-static analysis, several additional small terms involving rigid-body displacements and
structural deflections must be included among the primary & and & displacement effects.

2.3 Use of Finite Element Models

Flexibility effects of the inner ring and shaft and of the outer ring and carrier are represented by
structural finite-element models (FEMs) generated by Version 4.4 of ANSYS [5]. The FEMs are
input to the bearing mechanics code in the form of stiffness matrices in cylindrical coordinates.
The stiffness matrices are manipulated as required and inverted in the bearing mechanics code to
form the desired flexibility matrices in cylindrical coordinates.

The elastic deflections of the inner ring are determined from a flexibility matrix [C7] in which
points at the ring/shaft interface are constrained in the tangential and axial directions. The
resulting calculations for inner ring deflections due to ball-race contact forces are straightforward
and linear. Assuming a shrink fit without clearance for the ring/shaft interface precludes any
complicated nonlinear effects for this structural model.

The elastic deflections of the outer ring are determined from a flexibility matrix [CO] of the outer
ring and carrier constrained at the bearing supports. Three different models are considered for the

radial and axial interfaces between the outer ring and carrier:
1. A linear model has the outer ring rigidly

A VA connected to the carrier at the radial and

2 axial interface nodes, as shown in Figure
2-2 for a ball bearing. The outer ring
undergoes elastic motions influenced - by
the carrier flexibility.

16 ORCC
Figure 2-2 Outer Ring/Carrier Model 1

1
Figure 2-3 Outer Ring/Carrier Model 2

2. The first nonlinear model, illustrated in
Figure 2-3, has the outer ring connected
to a rigid carrier at the interface nodes by
soft springs, except for an optional
preload spring. The outer ring can
undergo general "rigid-body" and elastic
motions relative to the rigid carrier.

Preload Spring

; 3. The general nonlinear model, as shown in
AT AVA Figure 2-4, has the outer ring connected
' to the flexible carrier at the interface
nodes by soft springs, except for an
optional preload spring. The outer ring
then undergoes general "rigid-body" and
elastic motions influenced by the carrier
Preload Spring flexibility.
Figure 2-4 Outer Ring/Carrier Model 3

24
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For all three models, the outer ring and carrier FEMs are modeled with separate nodes across the
gaps at the interfaces. The first model has the outer ring and carrier FEMs rigidly connected (i.e.
grounded) at the interface nodes. The second model has the outer ring FEM connected to ground
by soft springs at the interfaces, except for the use of an optional preload spring. The third model
has the outer ring and carrier FEMs connected by soft springs at the interface nodes, with the
possible use of finite stiffness preload spring. Clearances between the outer ring and carrier are
input to the bearing mechanics code for the two nonlinear models. Gaps are positive clearances,
and interferences are negative clearances. '

For the general nonlinear structural model, the solution technique, as described in section 1 of this
chapter, initially identifies contact points in the radial or axial directions between the outer ring
and carrier. Using the contact points, linear outer-ring deflections are calculated from the ball-
race contact forces using the [CO] flexibility matrix with appropriate constraint relations using an
iterative procedure. This general method directly accommodates axial preload effects, centrifugal
force effects, and .nonlinear effects due to clearance between the outer ring and carrier
(deadband). Interference fits are evaluated by using negative clearance distances.
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3. REPRESENTATION OF BEARING FLEXIBILITIES

The structural flexibility characteristics of the bearing inner ring(s), outer ring(s) and carrier are
developed using Version 4.4 of the ANSYS structural analysis code [5]. A total of nine
configurations are defined for the outer ring(s) and carrier for single ball bearing, duplex ball
bearing set, and cylindrical roller bearing. A total of three configurations are defined for the inner
ring(s) and shaft of the same ball and roller bearings.

Stiffness matrices for the ball bearing configuations have a separate node for each outer race
curvature center (ORCC) in the outer ring model and for each inner race curvature center (/RCC)
in the inner ring model. These ORCC and JRCC nodes are connected to the ANSYS structural
model for the appropriate ring by two 3-D spar elements (STIF8) in each azimuthal plane. This
modeling concept allows a statically-determinate three-hinged arch to approximate the ORCC and
IRCC planar kinematics due to elastic distortions of the rings. The ORCC and IRCC elastic
deflections computed in this manner are then essentially independent .of the local Hertzian contact
deflections at the ball/raceway contact points. With this approach, the total bearing flexibility is
properly determined by combining the separate effects of Hertzian contact deflections with
ORCC/IRCC elastic structural deflections.

Stiffness matrices for the cylindrical roller bearing configuration have two radial degrees of
freedom (DOFs) for each rolling element on its lines of contact with each raceway. These two
radial DOFs are the points of application of the equivalent roller Hertzian line contact forces and
the points where radial structural deflections are determined. At each azimuthal plane, the two
radial structural elastic deflections are converted to an elastic radial deflection and an elastic tilt
angle for subsequent use in kinematic constraint relations and roller contact force calculations.
To separate the effects of Hertzian line contact deflections from raceway structural deflections,
multiple adjacent nodes along the contact line near each retained raceway DOF are “coupled” in
ANSYS to move together in the radial direction.

For the inner ring(s) and shaft, stiffness matrices are generated in ANSYS using cylindrical
coordinates having the order (R4 6 Z.). These stiffness matrices have appropriate fixed
constraints imposed in ANSYS at the inner ring/shaft interface to permit the shaft/inner ring
flexibility influence coefficient matrix to be formed. A set of master nodes are specified and the

.substructure option is run to obtain a reduced matrix. In FEREBA, the constrained ANSYS and

substructured stiffness matrix is then transformed into the FEREBA cylindrical coordinates
system (Xz R 6) prior to eliminating unnecessary DOFs by another matrix condensation. After
the stiffness matrix is reduced, it is inverted to form the flexibility matrix [CI] which is then
partitioned for convenient use in subsequent computations.

Stiffness matrices for the outer ring(s) and carrier are generated in ANSYS in cylindrical
coordinates with outer ring(s) unconstrained. The carrier stiffness matrix, where applicable, is
supported with appropriate fixed constraints consistent with the design. After being
substructured, the total ANSYS stiffness matrix is read into FEREBA and then transformed into
FEREBA cylindrical coordinates.  The stiffness matrix for the outer ring(s) is connected to
ground or to the carrier by soft springs (3 DOF/node) at each candidate contact point except
preload spring locations and, where applicable, by axial preload springs at the preload location in

3-1
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each azimuthal plane. The constrained stiffness matrix is then reduced to eliminate unnecessary
DOFs and inverted to form the flexibility matrix [CO]. This matrix is then separated into four
partitions, in general, for convenient use in subsequent computations.

The substructure information written by ANSYS is in binary format, and in general, is ordered
along the wavefront pattern. The REBANS preprocessor PREBAN reads the binary data, and
sorts the information in ascending order. This substructure matrix is output from PREBAN in
ASCII format, using the highest precision available for 32-bit computers. The ASCII format was
selected to enable the stiffness matrix to be transferred between different computing platforms.

3.1 Bearing/Support Configurations

The nine bearing/support configurations for the outer ring and carrier are designated by IBSCOR
(index) values one through nine. The three bearing/support configurations for the inner ring and
shaft are designated by IBSCIR values one through three. In the following figures which define
these 12 configurations, master DOFs in both ANSYS and FEREBA are listed with referring to
the number of rolling element azimuthal planes. Node ordering and, where applicable, gap
ordering in each azimuthal plane are also indicated. These specified node and gap orderings
associated with the IBSCOR/IBSCIR indices are used in several subsequent numerical
computations.

1. Single ball bearing with flexible outer ring and/or carrier and no deadband (IBSCOR = 1).
This model is linear. There are no gaps between the outer ring rigid housing, and at each
azimuthal position, 2 master nodes are required. After reduction in FEREBA, four DOFs
remain at each ball location (2 axial, 2 radial).

Active DOFs
ANSYS 60 (X Y, Z)

¥ A A FEREBA 41 (X,R)

R I Active Nodes (DOFs)
1orce > X 1,2(1,4)
, R: 1,2(2,5)

Reduced DOFs
3* 6
* DOF 3 is deleted
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2. Single ball bearing, flexible outer ring with deadband, carrier assumed rigid (IBSCOR = 2).
This model is nonlinear due to deadband contact, which is dependent on ball loads applied to
the outer race. There are four gaps between the outer ring and rigid housing, and at each
azimuthal position, 6 master nodes are required. After reduction in FEREBA, eight DOFs

remain at each ball location (4 axial, 4 radial).

Preload Spring

Active DOFs
ANSYS 187 (X, Y, Z)
FEREBA 8n(X,R)

Active Nodes Fs)
X: 1,2,3,6(1,4,7,16)
R: 1,2,4,5(,5,11, 14)

Reduced DOFs
3%, 6,8,9,10,12,13,15,17, 18
* DOF 3 is deleted

3. Single ball bearing with flexible outer ring and carrier with deadband (IBSCOR = 3). This
model is nonlinear due to deadband contact, which is dependent on ball loads applied to the
outer race, and also due to the preload spring (nodes 6 - 10), which can bottom. There are
four gaps between the outer ring and carrier, and at each azimuthal position, 10 master nodes
are required (6 on the outer ring, 4 on the carrier). After reduction in FEREBA, twelve DOFs

remain at each ball location (6 axial, 6 radial).

/— Preload Spring

Active DOFs

ANSYS 30n(X, Y, Z2)
FEREBA 12-n(X,R)
Active Nodes Fs)

X: 1,2,3,6,7,10
(1,4,7, 16, 19, 28)

R: 1,2,4,58,9
2,5, 11, 14, 23, 26)

Reduced DOFs

3%,6,8,9, 10, 12, 13, 15,
17, 18, 20, 21, 22, 24, 25,
27, 29, 30

* DOF 3 is deleted
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. Duplex ball bearing set with flexible outer rings and carrier with no deadband (IBSCOR = 4).

The analysis is restricted to having n equal in both bearings. This model is nonlinear because
the preload spring (3 - 6) could bottom. There is only one gap between the outer rings, with
the primary bearing free to move axially (but not radially). At each azimuthal position, 6
master nodes are required (3 for each ring). After reduction in FEREBA, ten DOFs remain at
each ball location (6 axial, 4 radial).

Active DOFs
Preload Spring ANSYS 18.n (X, Y, Z)
Rl A
FEREBA 10-n (X, R)
Y6 v
primary 2 duplex Active Nodes Fs)

X: 1-6(1,4,7, 10,13, 16)

7\ 3 6 ‘
1¢ ORCC 4 » R: .la 2: 4: 5 (2) 5; lly 14)

R
—_X_" | Reduced DOFs
! > 3% 6,89, 12* 15,17, 18

* DOFs 3 & 12 are deleted

Note the relative positions of “primary” and “duplex” bearings.

5. Duplex ball bearing set with flexible outer rings with deadband and with carrier assumed rigid

(IBSCOR = 5). The analysis is restricted to having » equal in both bearings. This model is
nonlinear due to deadband contact and the possibility that the preload spring (6 - 9) could
bottom. There are seven gaps between the outer ring and rigid housing, and at each azimuthal
position, 12 master nodes are required (6 on each bearing). After reduction in FEREBA,
sixteen DOFs remain at each ball location (8 axial, 8 radial).

Active DOFs
ANSYS 36n(X, Y, Z)
FEREBA 16n (X, R)

Preload Spring
“ R, 4 Active Nodes (DOFs)
2% 3% %5 %6 X: 1,2,3,6,7,8,9, 12
4 , § 10 , 11 (1,4,7, 16, 19, 22, 25, 34)

3 6 9 12 R: 1,2,4,5,7,8,10, 11

! 1 ‘| , 7 2, 5, 11, 14, 20, 23, 29, 32)
R Reduced DOFs

X, 3% 6, 8,9, 10, 12, 13, 15, 17,
X 18, 21*, 24, 26, 27, 28, 30, 31,

33, 35, 36
* DOFs 3 & 21 are deleted

The relative positions of the “primary” and “duplex” bearings is the same as configuration 4.

34
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6. Duplex ball bearing set with flexible outer rings and carrier with deadband (IBSCOR = 6).

The analysis is restricted to having n equal in both bearings. This model is nonlinear due to
deadband contact and the possibility that the preload spring (6 - 9) could bottom. There are
seven gaps between the outer ring and carrier, and at each azimuthal position, 18 master
nodes are required (6 on each bearing and 6 on the carrier). After reduction in FEREBA,
twenty two DOFs remain at each ball location (10 axial, 12 radial).

Active DOFs

ANSYS  54n (X Y, Z)

FEREBA 22:n(X,R)

Active Nodes (DOFs)
Y

v ‘ /—PreloadSpring
” 5 ‘ 71 IR X: 1,2,3,6,7,8,9,12,13, 18
(1, 4, 7, 16, 19, 22, 25, 34,
37, 52)
R: 1,2,4,57,8,10, 11, 14,
15, 16, 17 (2, 5, 11, 14,
20, 23, 29, 32, 41, 44, 47,

RI 50)
Xl
X Reduced DOFs

3*. 6, 8,9, 10, 12, 13, 15, 17,
18, 21* 24, 26, 27, 28, 30, 31,
33, 35, 36, 38, 39, 40, 42, 43,
45, 46, 48, 49, 51, 53, 54
* DOFs 3 & 21 are deleted -
The relative positions of the “primary” and “duplex” bearings is the same as configuration 4.

7. Cylindrical roller bearing with flexible outer ring and carrier, no deadband (IBSCOR = 7).
This model is linear. There are no gaps between the outer ring rigid housing, and at each
azimuthal position, 2 master nodes are required. After reduction in FEREBA, two radial

DOFs remain at each roller location.
' Active DOFs
uva zvm ANSYS 6'n (X, Y, Z)
FEREBA 2:n(R)
N Active Nodes Fs)

X: none
R: 1,2(2,5)

=S
b N
=

Roller Reduced DOFs

''''''''''''''''''' 1,3,4,6
The radial force and corresponding moment about the axial centerline will be represented by
two unequal radial forces at master nodes 1 & 2.

3-5
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8. Cylindrical roller bearing with flexible outer ring with deadband and with carrier assumed rigid

(IBSCOR = 8). This model is nonlinear due to deadband contact. There are two gaps
between the outer ring and rigid housing, and at each azimuthal position, 4 master nodes are
required. After reduction in FEREBA, four radial DOFs remain at each roller location.

1 2

@

Roller

......... e me—e—

T,

X.

Active DOFs
ANSYS 120 (X,Y,Z)
FEREBA 4n(R)

Active Nodes (DQFs)
X: none

R 1,2,3,4(25,8,11)

Reduced DOFs
1,3,4,6,7,9,10, 12

. Cylindrical roller bearing with flexible outer ring and carrier with deadband (IBSCOR = 9).

This model is nonlinear due to deadband contact. There are two gaps between the outer ring
and carrier, and at each azimuthal position, 6 master nodes are required (4 on the bearing and
2 on the carrier). After reduction in FEREBA, six radial DOFs remain at each roller location.

&

&

;e

-
b N

<
T

Active DOFs
ANSYS 18n (X, Y, Z)
FEREBA 6:n(R)

Active Nodes (DOFs)

X: none
R: 1-6(2,5,8,11,14,17)

Reduced DOF
1,3,4,6,7,9,10, 12,

13, 15, 16, 18
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10. Single ball bearing with flexible or rigid shaft (IBSCIR = 1). This model is linear. The inner
ring is assumed to be fixed to the shaft. After reduction in FEREBA, four DOFs remain at
each ball location (2 axial, 2 radial).

Active DOFs
ANSYS  6n(X, Y, Z)
15IRCC < FEREBA 4 (X,R)
2 L’X Active Nodes (DOFs)
Shaft X: 1,2(1,4)
R: 1,2(2,5)

Reduced DOFs
3* 6
* DOF 3 is deleted

11. Duplex ball bearing set with

flexible or rigid shaft (IBSCIR = 2). The analysis is restricted to having n equal in both
bearings. This model is linear, with the inner rings fixed to the shaft. After reduction in
FEREBA, eight DOFs remain at each ball location (4 axial, 4 radial).

Active DOFs
R, 4 ANSYS 12n (X, Y, 2)

1 corcar 3 FEREBA 81 (X, R)
2 primary duplex 4

. Active Nodes (DOFs)
L Shaft
X, RI X: 1, 2, 3,4(1, 4) 7) 10)

""""""""""""""""""" X R: 1,2,3,4(2,5,8,11)

Reduced DOQFs
3* 6,9*% 12
* DOFs 3 & 9 are deleted

Note the relative positions of “primary” and “duplex” bearings.
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12. Cylindrical roller bearing with flexible or rigid shaft (IBSCIR = 3). This model is linear. The
inner ring is assumed to be fixed to the shaft.

Active DOFs
ANSYS  6n(X, Y, Z)
FEREBA 21 (R)

Active Nodes (DOFs)
X: none
R: 1,2(2,95)

Reduced DOFs
1,3,4,6

The radial force and corresponding moment about the axial centerline will be represented by
two unequal radial forces.

3.2 Inner Ring/Shaft Finite-Element Models

The ANSYS structural model of the inner ring(s) and shaft is generated in cylindrical coordinates
having the- ANSYS order (R4 6: Z,). The shaft/inner ring free-free stiffness matrix must be
constrained such that the relative elastic deflections from the flexibility matrix [C7] can subse-
quently be added properly to the rigid-body inertial displacements defined in the shaft coordinate
system CS,. For single ball or roller bearings or primary bearings of a duplex set, the axial and
tangential DOFs are fixed against displacement at the interface between the shaft and inner rings.
To represent a solid shaft without a finite-element model of the shaft, the radial DOFs could also
be constrained.

If the local radial flexibility effects of a hollow shaft are significant, the shaft must be modeled
with ANSYS general shell elements (STIF63) or equivalent. If elastic straight pipe elements
(such as ANSYS STIF16) or equivalent beam elements are used, local radial deformations are not
available. The shaft would be modeled most accurately with the same radial definition of elements
as used for the inner ring. This would probably require two to four shell elements between each
rolling element for each axial section. In the axial direction, the mesh refinement must be
compatible with the radial definition of elements.

The master or retained DOFs from the ANSYS inner ring/shaft stiffness matrix must be those
defined for the specific bearing/support configurations. Unnecessary DOFs not constrained at the
shaft/inner ring interface or those coupled along the roller/raceway contact line are eliminated in
ANSYS by static condensation.

For ball bearings, the inner raceway groove is a circular section for containing the spherical balls.
The candidate ball contact points within this circular race are defined by nodes corresponding to

3-8
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an assumed constant contact angle of, for example, £20°. Although the range of typical ball
contact angles is 0° to +40°, applying the ball contact force components to a single node is
sufficiently accurate for determining elastic deflections of the inner rings. By definition, the
positive contact angle for ball bearings corresponds to a single bearing or to the “primary” bearing
in a duplex set; the negative contact angle corresponds to the “duplex” bearing in a duplex set.

With regard to the ball bearing kinematic relations, the most important displacements generated
by the shaft/inner ring flexibility matrix are those describing the locations of the inner-race
curvature centers (JRCCs). It is therefore necessary to include a node for the IRCC at each ball
location. The three DOFs for each JRCC node are then connected rigidly to inner race nodes
adjacent to the ball contact node in the azimuthal plane using ANSYS 3-D spar elements (STIF8).
Note that the tangential DOF at each IRCC node has no stiffness normal to the azimuthal plane.

For ball bearings, forces applied to the inner race flexibility matrix [CI] are calculated in CS;
components at each rolling element contact point. The desired elastic deflections are then the

- product of matrix [CI] times the vector of forces applied to the inner raceways. Matrix [CI] is
_ used only to determine the elastic deflections of the inner ring(s) relative to the CS; shaft axes.

The static force balance for comparison with the applied forces and moments is determined from
the actual force direction and location and not from the nodal geometry of the flexibility matrix.

For roller bearings, all forces are defined directly in the inertial radial direction at each azimuthal
plane. The static force balance for comparison with the applied forces and moments is determined
using inertial radial directions only.

In a ball bearing, Hertzian contact deflections at the ball-race contact points are not represented
by the relatively coarse FEM mesh used to predict elastic deflections of the IRCCs. Using 3-D
spar elements connecting JRCC nodes with nodes adjacent to the ball-race contact points
generates structural deflections of the race independently of Hertzian contact deflections.
Therefore, the Hertzian contact deflections for ball bearings are calculated separately by
traditional bearing mechanics relations and superimposed on the /RCC elastic displacements for
the bearing kinematic equations. '

The rolling element contact points for applied forces with cylindrical roller bearings are identical
to the locations where elastic deflections are required. The radial line contact force and
misalignment moment between each roller and the inner raceway is approximated by two unequal
radial forces. These forces are applied at two nodes on the raceway, in each azimuthal plane,
which are symmetrically located on either side of the raceway centerline a distance equal to
approximately 30-percent of the roller effective length. This spacing, which must be considered
in defining the ANSYS mesh for the inner ring model, corresponds to a uniformly loaded beam on
two supports symmetrically located such that the negative moment at the support equals the
maximum positive moment between the supports. This spacing is one approach for representing a
continuous line contact force with two concentrated forces.

In thé roller bearing model, Hertzian line contact deflections are separated from elastic ring
deflections by means of a special feature in the ANSYS model. Along each line of contact
between roller and raceway, several nodes adjacent to the retained nodes are constrained radially

3-9



by the ANSYS “couple” command. By constraining several adjacent nodes to move radially
together, the Hertzian line contact force is essentially spread along the effective length of the
roller instead of being concentrated at the two retained nodes. The use of this modeling technique
is described and illustrated in the User’s Manual.

3.3 Outer Ring/Carrier Finite-Element Models

The ANSYS structural model of the outer ring and carrier is generated in cylindrical coordinates
having the ANSYS order (R4 84 Z4). The outer ring(s) are unconstrained, but the carrier support
DOFs are constrained to zero deflection. The master or retained DOFs from the ANSYS outer
ring/carrier stiffness matrix must be those defined for the specific bearing/support configurations.
Unnecessary DOFs not constrained at the carrier support DOFs or those coupled along the
roller/raceway contact line are eliminated in ANSYS by static condensation.

.For ball bearings, radial and axial gaps are defined in the ANSYS model by coincident but
separate nodes on the outer ring(s) and carrier. Specified initial gap values for each potential
contact are subsequently input to FEREBA. Because the outside corners of the outer ring(s) are
chamfered, the corner points on the outer ring cannot contact the carrier. Radial contact can
therefore occur only on a radial face, and axial contact can occur only on an axial face.
Cylindrical roller bearings are defined to have only radial contact.

In FEREBA, gap closure between the outer ring(s) and carrier causes contact forces between the

“two bodies. These contact forces are calculated from radial/axial constraint equations in which
the radial/axial displacements on both sides of a closed gap are constrained to move together.
The only nonlinear aspects of this approach are identifying which gaps are closed and nulling any
impossible tensile forces at the local axial preload springs for ball bearings. Once a set of gap
closures is assumed, the elastic displacement analysis is linear except for liftoff of the local axial
preload springs.

Contact forces between the outer ring and carrier are not calculated in terms of nonlinear Hertzian
contact force/displacement relations. Such calculations require assumptions of the ideal nature of
the contact which would not be appropriate for these conditions. In the radial direction, contact
between convex and concave cylindrical surfaces with essentially equal diameters constitutes
neither ideal point nor ideal line contact. In the axial direction, contact between two flat surfaces
can not be considered Hertzian contact. Including nonlinear Hertzian contact force/displacement
relations would therefore add unwarranted complexity to the analysis (including potential
Newton-Raphson convergence problems) without improving the fidelity of the bearing model.

For ball bearings, the basic purpose of the ANSYS model of the outer ring and carrier is to
produce elastic axial and radial deflections of each outer race curvature center (ORCC). Each
ORCC point is represented in the ANSYS structural model as a node located properly relative to
the raceway groove at each azimuthal position. The ORCC node is connected to the structural
model by two 3-D spar elements (STIF8) in the azimuthal plane as with the ANSYS model of the
inner ring and shaft. The spar elements connect ORCC nodes with nodes adjacent to the ball-race
contact points. The resulting elastic deflections are essentially independent of the Hertzian
contact deflections of the ball-race contact points.

3-10
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As with the inner ring/shaft model for cylindrical roller bearings, the two retained nodes defining
the contact points between roller and outer raceway are symmetrically located on either side of
the centerline a distance equal to about 30-percent of the roller effective length. The nodes
adjacent to these two retained nodes are coupled in ANSYS so that the radial DOFs move
together with the retained nodes. Refer to the User’s Manual for more details and examples of

this modeling technique.

3.4 Coordinate Transformations

The stiffness matrices generated in ANSYS must be transformed from the ANSYS cylindrical
coordinate system {g.} into FEREBA cylindrical coordinates {gr}. The definitions of cylindrical
and Cartesian coordinates for ANSYS and FEREBA are given in equations (3-1).

Rs = Rr
9,4 = 917 (3-1)
ZA = XF

where R, 6, and Z or X are the radial, azimuthal (tangential), and axial coordinates. The

corresponding DOF orderings are {gs} = {R4 64 Z4} and {gr}7 = {Xr Rr 6s}. Since the DOF
order is not the same, a transformation matrix to convert a stiffness matrix from ANSYS to

FEREBA cylindrical coordinates in matrix notation is given by

R4 01 ollxr
@4t =10 0 1{Rr (3-2)
Za 1 0 0)6r

which in terms of the generalized coordinates may be expressed as

{943 = [T] {qr} (3-3)

The transformation of the ANSYS stiffness matrix into FEREBA coordinates is accomplished by
the matrix triple product [7)7*[K]*[T] where matrix [7] is the transformation matrix of equation
(3-3). This matrix operation is performed in FEREBA by subroutine TRANAF, using an efficient
computational procedure to minimize storage requirements.
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3.5 Constraining Free-Free Outer Ring

Subroutine ADDSTF operates on the unreduced stiffness matrix of the outer ring(s) and carrier in
FEREBA cylindrical coordinates. The stiffness matrix for the outer ring(s) is connected to
ground or to the carrier by soft springs (3 DOF/node) at each candidate contact point except
preload spring locations and, where applicable, by axial preload springs at the preload location in
each azimuthal plane. The spring stiffnesses are added to the unreduced stiffness matrix in
locations specified for each of the nine bearing/support configurations.

The stiffness magnitude of the soft springs is calculated as a factor multiplied by a typical outer
ring stiffness term. The factor is currently selected as 1.0 x 10 consistent with a similar ANSYS
approximation. The typical outer ring stiffness term is the radial DOF at the first ball contact
point for ball bearings and the radial DOF at the second roller contact point for cylindrical roller

bearings.

For ball bearings only, the total axial preload spring stiffness input to FEREBA is divided by the

" number of rolling elements to give the magnitude of the individual preload spring stiffness at each

azimuthal plane. The individual preload springs are uncoupled from one azimuthal plane to
another. Preload springs are not allowed with a roller bearing.

3.6 Condensing and Inverting Matrices

After the stiffness matrices have been transformed to the FEREBA coordinate system, DOF that
are not used in the subsequent kinematic relationships are removed either by static condensation
or deletion. The unrequired DOF are listed with the 12 bearing/support combinations described in
section 3.1. An efficient static condensation procedure has been incorporated into FEREBA
which reduces DOF one at a time. In partitioned form, the general static condensation problem
for the stiffness matrix may be stated as

K, X, F,
[[ ] }J{{ }} {{ }} . (3-4)
{Kse}
where x; is the coordinate to be condensed and K; is the term to be eliminated from the stiffness
matrix. Note that submatrices {K,} and {K;} are vectors. For convenience, the DOF to be

condensed is the last term in equation (3-4), practical implementation of this algorithm proceeds
from the largest DOF to the smallest.

The second row of (3-4) may be written as

¥, = =(F - Ka)ix) 6-5)

which expresses the constraint relation between x; and {x;}. Normally, as is the case in FEREBA,
F is zero.
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Expanding the first row of (3-4), and substituting the relation given by (3-5) results in the
condensed expression for the statics problem expressed in (3-4) as

(K} {Kqa } {K)s 3
([K,-kl -k e Ry (3-6)
which by inspection, the reduced order stiffness matrix is obtained from (3-6) as
. {K; 3 Ky }
(Kl = [Kpl- — 5 —— 3-7

35

where [K j,:] is the condensed matrix. In FEREBA, subroutine MATRED performs this reduction
by sequenitially removing each required DOF and shifting the remaining rows and columns of the
matrix up and over by one term. »
For some of the ball bearing ring configurations, DOFs are deleted, rather than condensed.
Mathematically, this procedure applies a fixed constraint to the system, thus only unrequired
tangential DOF are treated in this manner. In FEREBA, deleted DOFs bypass the reduction
procedure and are eliminated by row and column shifts.

Once the stiffness matrices have been reduced, compliance matrices are obtained by using
standard mathematical subroutines for inversion. FEREBA uses the routine DLFIRG from the
commercially available IMSL® subroutine library, however, any routine capable of inverting
symmetric double precision matrices can be used instead.

3.7 Partitioning Compliance Matrices

After the stiffness matrices for the inner ring/shaft and outer ring/carrier have been reduced and
inverted, the resulting flexibility influence coefficient matrices are partitioned for convenience in
subsequent computations. Subroutine CIPART extracts influence coefficients from matrix [(7]
which define JRCC or roller deflections in terms of rolling element forces applied to the inner
raceway. Similarly subroutine COPART extracts influence coefficients from matrix [CO] required
for subsequent calculations.

The four required partitions of matrix [CO] are defined as follows:

COP12 = flexibility coefficients defining ORCC or roller deflections in terms of rolling
element forces applied to the outer raceway,

COP13 = flexibility coefficients defining ORCC or roller deflections in terms of
constraint forces between outer ring and carrier at the candidate contact points;

COP32 = flexibility coefficients defining deflections at the candidate contact points
(gaps) in terms of rolling element forces applied to the outer raceway;

COP33 = flexibility coefficients defining deflections at the candidate contact points
(gaps) in terms of constraint forces between outer ring and carrier at the
candidate contact points.

* The IMSL MATH/LIBRARY is available from Visual Numerics, Inc.
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Subroutines CODIM and CIDIM perform the functions of assigning dimensions for each of the
one-dimensional and two-dimensional arrays involved with the bearing flexibility computations.
The array dimensions are determined as the product of the number of rolling elements times
integers defined for each of the twelve bearing/support configurations. The current version of
REBANS limits the number of rolling elements to 20 for a single bearing row (40 total for a
duplex bearing system).

3.8 Defining Gap Clearance Vector

For seven of the nine outer ring configurations, a combination of axial and radial gaps are user
specified by entering values for clearance and diameters. This data is converted to the required
gap clearances (or interferences in special cases) by subroutine GAPDEF. Currently, this routine
applies constant radial and/or axial clearance values at all azimuthal positions. More general
versions can use nonuniform clearance values if desired. '

Depending on the configuration, from two to seven gap clearances require definition. With the
uniform gap limitation, only four gap values are possible, three axial and one radial. The axial
gaps correspond to the distance between the outer ring and carrier/housing in the load direction
for a ball or duplex bearing, denoted as Cj, the corresponding clearance on the unloaded side of
the bearing, set equal to unity (1.0), and the distance between outer rings in a duplex set, referred
to as Cp. The single radial gap is the radial clearance between the outer ring and carrier/housing,
represented as Cz. For the seven IBSCOR configurations which have gaps as numbered in section
3.1, the clearances are set to the following values:

IB R = 2 or 3 (ball bearing with deadband

Gap number and direction
1 (axial) | 2 (radial) | 3 (radial) | 4 (axial)
1.0 Cr Cr Cu

IBSCOR = 4 (duplex bearing without deadband)

Only one gap is required, between the two outer rings, equal to Cp

IBSCOR =5 or 6 (duplex bearing with deadband)
Gap number and direction
1 (axial) | 2 (radial) | 3 (radial) | 4 (axial) | 5 (radial) | 6 (radial) | 7 (axial)
1.0 CR CR CD CR CR CA

IBSCOR = 8 or 9 (roller bearing with deadband)

Gap number and direction
1 (radial) 2 (radial)
Cr Cr




4. COORDINATE SYSTEMS

This section describes the coordinate systems used to develop the kinematic relations for ball and
roller bearing analysis. For both bearing types, a fixed inertia system will be defined, from which
any local systems will be referenced.

4.1 Angular Contact Ball Bearing Coordinate Systems

Two separate coordinate systems are defined for the major elements of the ball bearing. One is
for the inner ring; the other is for the carrier and outer ring. The coordinate system describing the
outer ring and carrier is the global reference frame fixed in inertial space. The reference frame for
the inner ring can move relative to the global inertial frame.

Each coordinate system consists of both right-handed Cartesian (X-Y-Z) axes and cylindrical (X-
R-®) axes. The origins of each pair of Cartesian and cylindrical axes are coincident, and the X
axes of each pair are collinear. For all axis systems, positive X is defined in the general direction
of the applied axial thrust load. The transformations between each Cartesian and corresponding
cylindrical coordinates are defined as follows:

Y = R-cos(P)

Z = R-sin(®)

R =Y-cos(®D) + Z-sin(D)
® = tan'(Z77)

Note that X is identical for both Cartesian and cylindrical axes and that @ is measured from Y with
the positive sense defined by the rotation of Y into Z It should be noted that the azimuth angles
(&) defining ball locations are identical in both the global inertial reference frame (CS:) and the
shaft/inner ring moving reference frame (CS;). This is because the azimuth angles for the two
coordinate systems are coincident in defining the initial or reference ball locations before loading.
Subsequent elastic distortions resulting from loading are measured, for the small displacements
assumed in bearing mechanics theory, relative to the reference ball locations and do not involve
any change in the reference azimuth angles.

4.1.1 Global inertial reference frame (CS))

The global reference frame CS; is fixed in inertial space at the center of the unmounted bearing
and at the center of the carrier bore. X is directed along the unloaded shaft with positive X in the
direction of the applied axial thrust load. The locus of curvature centers for both inner and outer
rings is initially located in the Y-Z plane before mounting and loading.

The initial diametral clearance P, is defined in this reference frame, where P, is total clearance
across a diameter built into the bearing by the manufacturer. Half of Py is located on either side of

the origin by definition.
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The carrier and outer ring are located directly in this inertial reference frame. The carrier support
points are fixed in inertial space. Any initial clearance between the outer ring and the carrier in
the unloaded configuration is defined directly in this coordinate system. The general small
displacements of the outer ring and carrier are determined from a flexibility matrix defined in this
global inertial reference frame. The locus of outer-race curvature centers is considered part of the
outer ring. All applied forces and moments, including the centrifugal force on each ball, are
defined in the global inertial reference frame.

4.1.2 Shaft/inner ring reference frame (CS2)

The origin of CS;is fixed at the center of the loaded shaft during operation. The axial coordinate
x is directed along the loaded shaft and is positive in the general direction of the applied axial
thrust load. The origin is initially translated along the X-axis in the positive X direction a distance
(Ae) equal to half the "free play" of the bearing. This initial position, which has the balls in
contact with both races, is the starting point for the Jones and Harris bearing analysis. The initial
mounted contact angles at the inner-race and outer-race contact points are equal and given as
follows for the unloaded configuration: '

cos(a’) = (2BD - P,)/2BD
Ade = BD sin(a’)
BD =r,+ri-D

Here r, and 7; are the radii of curvature for the outer and inner races, respectively, and D is the
unloaded ball diameter.

The origin of this shifted moving coordinate system is located in the global inertial system (X-Y-Z)
by three small displacements (Ax+ Ae Ay, Az) and two small angles (6, 6z). These five DOFs
(excluding de) are the unknown independent variables in the nonlinear equations evaluated by the
iterative tangent-compliance solution technique. The relationship between these two coordinate
systems is illustrated in Figure 4-1.

The orthogonal transformation matrix from CS; to CS, is as follows with the small angle

assumption:
x 1 -8, 6,}|X
yi =|-0 1 0NVY
z

eyz o 1]lz

This coordinate system locates all points on the inner ring including the locus of points defining
the inner-race curvature centers which lie initially in the y-z plane. Note that the inner-race
curvature centers move out of the y-z plane under general loading due to elastic displacements of
the shaft/inner ring structure. The Hertzian contact deflections and the ball/race contact angles
are also defined in CS,. This coordinate system is the basic reference frame used by Jones and
Harris for defining their internal forces and kinematic relations. This coordinate system does not
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rotate with orbital speed, as it is not fixed to the shaft/inner ring structure. This reference frame
moves only with the five DOFs defined previously.

Y* X

JS T

/ | .
A

Ae

Figure 4-1 Coordinate Systems for Ball Bearing Analysis

4.1.3 Use of coordinate systems

Kinematic constraints leading to ball forces applied to inner and outer races are rigorously
developed from CS) and CS;. Ball forces applied to the inner race and the corresponding elastic
deflections are defined in CS», however, total forces and moments are assumed to be in CS;. This
simplifies the structural analysis by allowing the torque from ball forces to be zero. This
approximation thereby allows the bearing system to be defined by the standard five degrees of
freedom instead of six.

Ball forces applied to outer race for determining elastic deflections are assumed to be in CS;. This
simplifies the structural analysis by allowing tangential forces to be zero. This approximation
thereby allows the nonlinear structural analysis to be defined by radial and axial freedoms only.

These approximations are conventionally used in small-deflection structural analysis. The
increased kinematic precision used to determine ball forces in CS, is considered necessary to
evaluate the effects of structural flexibility.
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4.2 Cylindrical Roller Bearing Coordinate Systems

A single inertial reference frame is used to define radial displacements and tilt rotations in the X-R
azimuthal planes for all major roller bearing elements. All radial translations and tilt rotations of
the inner ring and shaft, the outer ring and carrier, and the rollers are defined directly in this single
inertial reference frame. The inertial reference frame consists of both right-handed Cartesian (X-
Y-Z) axes and right-handed cylindrical (X-R-®) axes. The origins of the Cartesian and cylindrical
axes are coincident, located at the center of the unloaded bearing, with half the diametral
clearance on each side of the origin. The X axes of both coordinate systems are collinear. Since
cylindrical roller bearings do not accept axial thrust loads, the positive X direction is defined
arbitrarily to complete the right-handed coordinate system. The transformations between the
Cartesian and cylindrical coordinate system are defined as follows:

Y = Rcos(®)

Z = Rsin(D)

R = Ycos(®) + Zsin(D)
@ = tan’'(Z'7)

Note that X is identical for both Cartesian and cylindrical axes and that ® is measured from ¥ with
the positive sense defined by the rotation of Y into Z.

For cylindrical roller bearings, the primary load direction is radial with secondary effects of
misalignment included. The quasi-static loads applied to the inner ring and shaft and the
corresponding deflections are represented by four degrees of freedom defined in the inertial
Cartesian coordinate system. The four displacement degrees of freedom are large Y and Z
translations and small Y and 6Z rotations. Thus small moments must be generated to enforce
angular misalignments, but the primary loading is by radial forces.

The radial displacement of the inner ring and shaft defined in each azimuthal plane is
Au, = AY cos(D) + AZ sin(D)

while the corresponding tilt rotation in each azimuthal plane is obtained from a coordinate
transformation based on the small-angle assumption:

46 = 6Z cos(D) — Y sin(D)

This equivalent small tilt angle (A6&) is measured with the positive sense defined by the rotation of
X into R. Radial translations and tilt rotations of the outer ring and carrier and of each rolling
element are defined directly in cylindrical coordinates of the inertial reference frame.

Kinematic constraints leading to rolling element forces applied to inner and outer races are
developed from large-angle trigonometry in each azimuthal plane of the inertial reference frame.
Roller/raceway interference is determined in the inertial radial directions leading to radial loads
only. Roller crown drop is assumed to be in the inertial radial direction although actually defined
normal to the roller. Maintaining the SHABERTH Hertzian contact equations, while using only
inertial radial forces and displacements, simplifies the quasi-static analysis.
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S. BALL BEARING KINEMATIC CONSTRAINT RELATIONS

Constraint relations for the flexibility enhanced kinematics with angular contact ball bearings will
be described in this section. The kinematic constraint relations vary only slightly for the case of a
duplex set. Two similar ball bearings installed back-to-back, as shown in Figure 5-1, are
kinematically equivalent except for a sign change in the contact angles. For convenience in the
following discussion, the bearing with the positive contact angles will be called the “primary”
bearing, while the bearing with negative contact angles will be called the “duplex” bearing. As
shown in Figure 5-1, the origin of the global inertial coordinate system (CS)) is fixed at the initial
location of the outer race curvature center (ORCC) of the primary bearing. The ORCC of the
duplex bearing is displaced along the inertial X axis a distance X, which is restricted to positive
values. Relative elastic deflections of the shaft between the two bearings are represented in the
structural model of the shaft and inner rings. :

R4 Preload Spring

duplex w

( primary

Axial
_ Preload

spacer

Xed
X

| -

Figure 5-1 Inertial Coordinates for Duplex Bearing Set (Unloaded Condition)

The basic constraint relations for a ball in contact with both races are first developed without axial
preload effects. Then modifications of the basic constraint relations to include preload effects for
a duplex set are discussed.

5.1 Contact with Both Races

The following development is applicable to a single ball bearing or to the primary ball bearing of a
duplex set, only because of an assumed positive initial contact angle. Otherwise the equations are
equally applicable to either the primary or the duplex ball bearing.

For each ball location, the kinematic constraint relations are obtained from two different
expressions for the location of the ORCC. One expression locates the ORCC directly in CS;. The
other expression locates the ORCC indirectly relative to the location of the inner race curvature
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other expression locates the ORCC indirectly relative to the location of the inner race curvature
center (JRCC) in the inner ring moving coordinate system (CS2). Both expressions represent the
ORCC radial and axial locations in CS, when the ball is in contact with both races under load.

An auxiliary equation may be
R4 A ; (radial) obtained from the two expressions
| of the ORCC radial inertial
i coordinate where the ball is
i unloaded but in contact with both

|

races:
o IRCC R, = R,— BD cos(c’)
l This expression may be rearranged
i as follows for a convenient
{')\_s BD cos(a°) identity:
. / “BDcos(@®) = R,—R,  (5-1)
EV This kinematic relation is shown
> R graphically in Figure 5-2.
R . -

‘ The corresponding equation for
the ORCC axial inertial coordinate
is null, because both curvature

! centers are initially in the X-R
! » Pplane and the ORCC does not

x(axial)  move during mounting. The axial

Figure 5-2 Mounted Ball-Race Configuration (Unloaded)  distance by which the JRCC and
CS, are initially displaced during

mounting from the ORCC and CS; is seen in Figure 2 to be
Ade = BD sin(a”) (5-2)

The initial distance between the ORCC and the JRCC in the unloaded mounted configuration is
seen in Figure 2 to be

BD = r+r-D (5-3)

And the initial (positive) contact angle for the primary bearing is related to diametral clearance by
a® = cos'[(2BD - P;- AP))/2BD] (5-4)

The initial room-temperature diametral clearance is modified by thermal effects to produce a
revised initial contact angle using an existing analytical method [1].
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When a ball at the j* azimuthal location is loaded with applled static and centrifugal forces, the
contact angles at the inner and outer races differ. The j* axial ORCC location under load is the

axial elastic displacement determined directly in global inertial coordinates as o,

The same axial coordinate expressed indirectly in terms of rigid-body and elastic displacements of
the inner ring and ball results in the following kinematic relation:
b, = det+ Ax + dOxy
— [ri— (D72 - 84d})] sin(ay) — [ro— (D/2 - 8d,)] sin(a&)
+ [ sin(@)) — & cos(BHI{R; + &
— [ri— (D/2 - &dy)] cos(ay) - [ro— (D/2 - &d,))] cos(ats)} (3-5)

The small angle assumption was used with & and & for transforrmng quantities defined in CS;

_into CS; for equation (5-5). Substituting equation (5-2) and rearranging equation (5-5) results in

the basic axial kinematic relation with the loaded ball in contact with both races:
0 = BDsin(a’) + 8X;
— [ri— (D72 - 84d})] sin(ay) — [ro— (D/2 - 8d,)] sin(oy) (5-6)
As seen from equations (5-5) and (5-6), some of the rigid-body and elastic displacements are
collected for convenience into
OX; = Ax + &x; — dxy
+ [&y sin( @) - 6z cos(P)R; + ory
— [ri— (D12 — &d)] cos(ay) — [ro— (DI2 - &d,)] cos(ay)} (5-7)
The corresponding kinematic relation in the radial direction is determined similarly. The ™ radial
ORCC location under load is the radial elastic displacement (&r,;) added to the unloaded location

(r,). The same inertial radial coordinate expressed indirectly in terms of rigid-body and elastic
displacements of the inner ring and ball results in the following kinematic relation:

R, + &aj = R+ Ay COS(@) + Az sm(@) + &'j
- [ri- (D12 - &d;)] cos(a) ~ [ro— (DI2 ~ &dy)] cos(ts)
+ [éz- cos(Dy) — & sin(Dj)]-{ bx;
i~ (D12 - 8] sin(a) - [ro= (D/2 = 8d,)] sinfa) 5-9)
The small angle assumption was again used with 6y and é for transforming quantxtles defined in

CS, into CS; for equation (5-8). Substituting equation (5-1) and rearranging equation (5- 8)
results in the basic radial kinematic relation with the loaded ball in contact with both races:

0 = BDcos(@’) + 6R;
— [ri~ (D/2 - &d))] cos(ay) — [ro— (D/2 — 8dy)] cos(ow) (5-9)



- As before, some of the rigid-body and elastic displacements are collected from equation (5-8) into
OR; = Ay cos(P) + Az sin(D) + & — Oy
- : + [z cos(@)) - & sin(@)] {dx;
~ [ri— (D/2 - 8dy)] sin(oy) — [ro— (D/2 - 8d)] sin(c)} (5-10)

The planar kinematic relations given by equations (5-6) and (5-9) are expressed graphically in
Figure 5-3 as done previously by Davis and Vallance [2], Harris [3] and Jones [4]. The latter
terms in equations (7) and (10), not found in the literature, should be included as they may be
comparable in magnitude to the ORCC and IRCC elastic displacements which are included.

w
4

nom

T

IRCC (loaded)

1

IRCC (unloaded)

EMW *

Ball Center

(loaded) \ . _
- - - - /\-; i

/’,

R

I

Ball Center (unloaded)

{ar

i

R (radial)

{!

_ ORCC (fixed each iteration)

|

X (axial)

Figure 5-3 Planar Kinematic Relations for Loaded Single Ball Bearing

5.2 Contact with Outer Race Only

In the unloaded area of its orbit, the j™ ball can lose contact with the inner race as it is compressed
against the outer race by centrifugal force. For this condition, the Hertzian contact deflection
between the j ball and inner race (&dj) is zero. Also for this condition, the outer race contact
angle (a.,;) and the outer race Hertzian contact deflection (&d,;) can be determined directly from
the centrifugal force components in CS,. With these restrictions, equations (5-5) and (5-8) are
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then the limiting relations for lost inner race contact, and the corresponding inequalities for
defining lost contact in the axial direction is

&, = de+ Ax + &xy
—Iri- (D2 - 8d,)] sin(oy) — [ro— (D/2 - 8d,)] sin(alo)
+ [ sin(®)) — €z cos(PHUR: +
— [ri— (D/2 - &d)] cos(ay) — [ra— (D2 - &d,)] cos(aty)} (5-11)

and in the radial direction
R, + &y = R+ Ay cos(P) + Az sin(P) + &y
1~ (D2 - &d,)] cos(ay) — [ro— (DI2 — &d,)] cos(ots)
+ [ 6 cos(®) — & sin(P)] { &,
_ [ri— (D/2 - )] sin(ay) — [ro— (D/2 - 8d,)] sin(ct,)} (5-12)

~ Substituting equation (5-2) and rearranging inequality (5-11) to isolate terms involving the

indeterminate inner race contact angle (a;) results in
X, < (ri- DI2) sin(ay) + [6y sin(P)) - 6z cos(P))] (ri— D/2) cos(ay) (5-13)

where
+ [6 sin(®)) - 6 cos(BDIR, + &y~ [ro— (DI2 - &dy)] cos(ay)} (5-14)

Similarly substituting equation (5-1) and rearranging inequality (5-12) to isolate terms involving
the inner race contact angle results in

R < (ri— D/2) cos(ay) + [62 cos(P) - & sin(P)] (ri— D/2) sin(ay) (5-15)
where |
R, = BD-cos(a’) + dy cos(P) + Az sin(®) + oy — Oy
— [ro— (DI2 ~ &d,)] cos(ts)
+ [62 cos(®)) — 6 sin(B)] {&e— [ro— (D2 - 8dy)] sin(t,)} (5-16)

Squaring both sides of inequalities (5-13) and (5-15) and adding the two inequalities eliminates
the indeterminate inner race contact angle and results in the desired constraint relation:

X2+R2 < (ri- DI2)* {1+ [ sin(®) - & cos(PI} (5-17)

When this inequality is satisfied, the ™ ball has lost contact with the inner race.
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The centrifugal force F,; on the i™* ball is defined in CS; and directed along the positive r-axis.
When this force is transformed into CS;, using the small angle assumption, the axial and radial
components are

Fay = Fy[6 cos(®) - & sin()] - (5-18)
Foy = Fy (5-19)

For the condition when the ball loses contact with the inner race, the outer race contact angle is
obtained directly from

tan(oly) = Feg/Foy= 6z cos(®) — & sin(P) (5-20)

Similarly, when the ball loses contact with the inner race, the Hertzian contact deflection between
the j ball and the outer race is obtained directly from

8y = (Fy/Ko)™ (5-21)

Because of the small angle assumption used in the coordinate transformations, the magnitude of
the centrifugal force is slightly larger in CS; than it is in CS;. The resulting error is considered
insignificant.

5.3 Modifications for Duplex Bearings

As discussed previously, the primary modification in the constraint relations for the duplex

-bearing is the change in sign of the contact angles. Note that the subscript d is used for variables

related to the duplex bearing.

Ordinarily, des-criptive geometrical and mass data for the two bearings in a duplex set are
identical. Thus the initial (negative) contact angle for the duplex bearing is obviously identical to
equation (5-4) except for a sign change, and is determined from

a% = —cos [(2BDg - Pus - AP43)/2BD) (5-22)

The negative initial contact angle for the duplex bearing in equation (5-22) results in a negative
value for the mounting axial displacement defined as the axial distance between ORCC and IRCC

and given by
Adeg = BD, SiI:I(CL‘D (5-23)

This equation is, of course, identical to equation (5-2) except that the data relates to the duplex
bearing. Note that a;and de, are both negative.

The only other modification besides contact angle and descriptive data regards the lateral rigid-
body displacements for the IRCC of the duplex bearing. The five DOFs describing the rigid-body
translations and rotations of the CS; origin are Ax, 4y, Az, 6y and 6z. The axial translation and
two rotations are identical for the two bearings. However, the IRCC of the duplex bearing is
displaced in the axial direction relative to the CS; origin.
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Therefore, the lateral displacements of the duplex JRCC differ from 4y and Az as follows:
Ayd = Ay + (/ch - Ade + Aed) & (5-24)
Az; = Az — (Xea— de + des) & (5-25)

With o% Ays Azs and descriptive data for the duplex bearing, the kinematic constraint relations
described previously relative to the primary bearing are completely valid for the duplex bearing.
Based on o the loaded contact angles, 0L and aig, are both negative.

54 Axial Preload Effects

The extension of the preceding development to account for axial preload effects for a duplex set
follows the approach of Harris [3] in which all ball forces and contact angles for a bearing are
assumed equal. Note that the axial components of the preload ball forces in the primary and
duplex bearings must be equal and opposite, but the radial ball force components and preload
contact angles could differ. It may also be noted that axial preload effects for single ball bearings
are accommodated merely by adding the preload force to the applied axial thrust force. For
duplex sets, an assumption of equal ball forces and contact angles would be valid for the usual
case where the primary, duplex, and carrier supports are "mirror images" as shown in Figure 5-1.
The two limitations of the present preload analysis are that the number of rolling elements in the
primary and duplex bearings are equal and that interference fits are not permitted between outer
ring(s) and carrier.

The two expressions of ORCC radial location, including elastic deflections due to axial preload,
produce the following constraint equation for the primary ball bearing:

Ry + 8rpo = Ri+ 8y — (BD + dn)cos(ay) (5-26)
Similarly, the two expressions of ORCC axial location after axial preload application produce the
following constraint equation with elastic structural deflections included:

&, = BD sin(a’) + 4p + &~ (BD + on) sin(a,) (5-27)

The ball Hertzian contact deflection (&) due to axial preload is related to the specified total
preload force by the following expression developed by Jones and presented by Harris [3]:

pre 05| On
— = -+ 5-28
n sin(c, ) K.D B (5-28)

For convenience, the axial deflection constant (K2), in units of psi, can be expressed in terms of
total curvature (B) and elastic constants of the raceway and ball by the following relation where
C, is determined from a least-squares fit of the data presented by Harris:

T/s

Bla-ud)  a-u "
N i -2

w
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where C; = 0.61884472 + 20.261267B — 286.157928°
+ 2306.14678° — 9258.9168B° + 14472.024B°

Here B is allowed to vary from 0.0 to 0.2. Note that the elastic constants for both raceways must
be identical for this representation to be valid.

Solving equation (5-26) for ball deflection and substituting into equation (5-28) results in the
following expression involving preload contact angle as the only unknown:

Fpre . ( { SurP BD]% (5 30)
= sin(a - -
g o e
where, with the identity of equation (5-1), - ‘
8u,, = BD cos(a®) +rpi— Spo (5-31)

~ Equation (5-30) may be solved iteratively using the Newton-Raphson procedure for given values

of elastic structural deflections. In closed form, the equation to be satisfied is

a = a-fa)f(a) (5-32)

where

F) Fp,e in {Sum BD)%
a = __I —
LA C

Su

f(o,) = —cos(a *_ _BD %— 158u,, tan® (o S _ BD '
p PA cos(et,) e P cos(a,)

A value of @, is determined from equation (32) when a, equals a, with sufficient accuracy. For a
given a,, the corresponding axial and radial ball force components due to axial preload can be
calculated directly:

Fop = Fodnt (5-33)

F, = Fy/tan(ay) (5-34)

The elastic structural deflections of the inner and outer race curvature centers are calculated from
the appropriate linear elastic flexibility influence coefficient matrices using the ball force
components given by equations (5-33) and (5-34). Since the fundamental assumption of the axial
preload calculation is that all balls behave the same under the applied axial preload, the desired
elastic structural deflections (i.e., 87po, 87pis OXpo, OX;:) are defined as the average values of the
corresponding deflections calculated from the flexibility influence coefficient matrices. The
average radial structural deflections are used to update 8u,, (equation 5-31) for the next iterative
solution of @, (equation 5-32). When the preload contact angle has been determined with
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sufficient accuracy, the axial displacement of the inner ring due to preload can be determined from
equation (5-27) using the expression for ball deflection from equations (5-26) and (5-31):

Ap = 8xp, — 8x,; + Suytan(ay) — BDsin(a®) (5-35)

The axial displacement (Ap) of the primary bearing due to axial preload is the essential result of
the preload calculations described with equations (5-26) through (5-35). The only change in the
basic kinematic constraint relations is the redefinition of the initial axial distance between CS; and
CS;. Analogous to equation (5-2), this initial axial distance due to mounting and preload is

Ae, = BD sin(a®) + Ap (5-36)

The kinematic constraint relations, when the ball is in contact with both races under load, are once
again obtained from two different expressions for the inertial location of the ORCC. With axial
preload, the ORCC is, of course, initially displaced axially by the distance dx,, due to preload,
whereas the JRCC is displaced the additional distance 3x,. However, if the axial elastic
displacements (8x,; and 8x;) are calculated with ball forces which include the preload force
components, then the preload elastic structural deflections (6x,, and 8x,,) will be included in 6x,
and 6x;. And the gap values defined initially, prior to preload, may be used unchanged with the
application of axial preload, since changes in the gaps due to preload deflections are determined
automatically. Similarly, the radial elastic displacements calculated with total ball forces will
include the preload radial structural deflections (675, and dr,;) as well.

Accordingly, the only change in the previously developed kinematic constraint relations, for the
primary bearing of a duplex set, is to replace Ae (equation 2) with Ae, (equation 5-36). Equation
(5-6) remains unchanged while equation (5-7) has only one added term (Ap) to account for the
preload axial displacement:

8X,= Ax + Ap + &, - &,
+[6 sin(D)) - 6z cos(D){R; + dry
— [ri- (D/2 - &d;)] cos(ay) — [r.— (D/2 — &d,)) cos(a,)} (5-36)

The radial kinematic relations given by equations (5-9) and (5-10) are unchanged.

For a primary bearing, the analogous discussion applies to the constraint relation for a ball
contacting the outer race only (inequality 5-17). For the axial component, de is replaced by de,
so that equation (5-14) becomes

Xy = BD sin(a”) + Ax + Ap + 8 — 8, — [r,— (D/2 - 6d,)] sin(0)
+ [ sin(®) - 6z cos(D)(R: + &, — [ro— (D2 - &dp)] cosla)}  (5-37)

Equation (5-16) for the radial component and inequality (5-17) are unchanged. When inequality
(5-17) is satisfied, the j™ ball has lost contact with the inner race.

Similar modifications are required to incorporate axial preload effects for the duplex bearing.
With negative contact angles and with reversed axial ball force components for the duplex
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bearing, the magnitude of the axial displacement of the inner ring due to axial preload becomes
analogous to equation (35):

Apy = 8%pdo — Xpai + Stippatan(Qpa) — BDsin(a 9 (5-38)

Here 8u,s and ag are obtained from equations (5-28) through (5-32) using descriptive
geometrical and mass data for the duplex ball bearing set. Ordinarily, both bearings of a duplex
set will be identical, but the only limitations in the preload calculation, as noted, are that both
bearings have the same number of rolling elements and that outer ring(s) and carrier have no

interference fit.

Analogous to equation (5-23), the initial axial distance between CS,s and CS; increases by the
quantity

Aeqy = BDasin(a%) + Apa - (5-39)

Of course, for the duplex ball bearing, Ae,, (equation 5-39) must replace Ae in equations (5-2)
and (5-14) to give kinematic relations for the duplex bearing analogous to equations (5-36) and
(5-37) for the primary bearing.

Also, for the duplex bearing, equations (5-24) and (5-25) must be changed to redefine the lateral
displacements of the duplex JRCC (4y and Az) as follows:

Ayqp = 4y + (Xea— dep + degp) & (5-40)
Azy = Az - (Xea— Aep + des) - (5-4))

These kinematic constraint relations are consistent with the prescribed axial preload force.
Therefore, ball forces resulting from these constraint relations will properly include the
corresponding preload force components. The radial preload force components are self-
equilibrating as are axial preload force components for duplex bearings. For single ball bearings,
as noted previously, the axial preload force is merely added to the externally applied axial force

component.

5.4.1 Requirements

Use of the preload spring option in FEREBA must conform to the following requirements:

1. Axial preload springs may be selected for most ball bearing configurations (IBSCOR =

" 23,..6) to represent distributed macroscopic preload effects. For the single ball
bearing, an axial preload spring is installed between the outer ring and carrier on one

side of the outer ring. For the duplex ball bearing set, an axial preload spring is
installed between the two ball bearings. For both configerations, the axial preload
force on the outer ring is transmitted through the rolling elements to the inner ring and
shaft as shown in the attached sketch. Note that there is positive clearance between

the outer ring and carrier for the bearings being considered. An interference fit is
permitted only between inner ring and shaft, not between outer ring and carrier when

axial ‘preload is involved.
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2. The following local loading capabilities are required for the idealized preload spring:
a. completely unloaded locally such that no force is developed,

b. compressed locally within a linear range such that a compressive force is
developed,

c. completely bottomed locally such that the full compressive constraint force is
developed.

3. The main function of the preload spring is to impose an axial force and two moments
on the outer ring. These applied macroscopic preloads remove all bearing free play
and increase the bearing stiffness. In addition to these effects of discrete axial forces
applied to the outer ring, corresponding Coulomb friction forces are developed which
minimize outer ring tangential rotation. :

5.4.2 Modeling Approach

The modeling approach is the simplest preload spring model which meets the above requirements:
uncoupled axial linear springs at each ball location. This model provides the three required
loading capabilities (unloaded, loaded and bottomed) as well as the macroscopic preload total
force and moments. The total preload spring force is simply the sum of the individual forces, and
the total moments are simply the products of the individual forces times their respective moment
arms. An individual force could be zero, the linear spring force, or the appropriate constraint
force, depending on local (and global) kinematic conditions.

This model does not represent theoretical stiffness coupling occurring around the circumference in
some types of actual preload springs, nor does it represent nonlinear behavior resulting from
Belleville springs. Since actual preload springs under consideration have stiffness terms on the
order of one percent of the outer ring stiffnesses, any error in the outer ring deflection due to
stiffness coupling or nonlinear behavior would be negligible. Local deflections of the preload
spring will be defined essentially by the axial displacement and tilt of the outer ring relative to the
carrier or to the other outer ring. The relatively soft preload spring linear stiffnesses will have a
small effect on outer ring deflection so long as bottoming of the preload spring is properly
represented.

The basic assumptions used in representing the preload spring forces are as follows:

a. The continuous preload spring is divided into n independent axial springs contacting
the outer ring at the n ball azimuthal locations. These separate springs are combined
with the finite-element model of the outer ring and carrier generated by ANSYS. This
combination of preload spring stiffnesses with the ANSYS stiffness matrix is
accomplished in FEREBA prior to the matrix condensation and inversion operations.

b. The prescribed total preload force, which is user specified, is developed by the
individual axial preload springs being compressed equally in their linear range.

c. The configuration corresponding to the mounted, preloaded ball bearing system has
inner ring, shaft and spacer all rigidly connected with no gaps separating these
components. This configuration results from an interference fit of the inner ring on the
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shaft and from the axial locking of the inner ring and spacer against the shaft shoulder
during preloading.

d. All initial clearances between the outer ring and carrier, including the gaps at the
preload spring locations, are defined before the preload is applied. By definition, the
initial gap separation distance at a preload spring is the minimum distance consistent
with zero initial force. Axial displacements required to generate the specified preload
are used to define the net axial clearances after mounting. Ball forces and bearing
outer ring radial structural flexibility are used to define the net radial clearances after
mounting. For single ball bearings, the specified initial preload force is simply added
to the applied axial thrust force. For duplex ball bearing sets, a preliminary preload
analysis is performed. This preliminary preload analysis determines ball forces, elastic
deflections of the inner and outer rings, and initial mounted contact angle; but the basic
result is simply the axial displacement of the inner ring relative to the outer ring due to
initial axial preload.

After mounting, the force in the preload spring is allowed to vary in response to the externally
applied forces and moments. The specified constant preload force is distributed to the » ball
azimuthal locations and applied as equal-and-opposite external forces. Preload force changes in
the linear range due to structural displacements are obtained with the basic solution procedure,
since the individual axial preload springs are included in the ANSYS model. The basic solution
procedure also determines the constraint forces when the preload spring bottoms locally.
Additional logic is required to monitor local lift-off of the preload spring and to cancel the small
incremental tensile force incorrectly generated by the ANSYS linear model.

5-12
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6. ROLLER BEARING KINEMATIC CONSTRAINT RELATIONS

The basic assumption of the quasi-static roller bearing analysis is that only forces in the inertial
radial direction are applied by each roller to the inner and outer raceways. Thus, although small
moments may be applied to the inner ring and shaft corresponding to angular (tilt) misalignment,
the primary loads are radial, and axial thrust loads are not permitted.

The classical roller bearing analysis by Jones [2] permits only radial loads and displacements with
no angular misalignment. Subsequent developments by SKF, as published by Harris [3] and Liu
[6], include the effects of angular misalignment (tilt) in approaches similar to that employed by the
SHABERTH computer code [7]. More comprehensive analyses, such as that recently developed
by SKF [8], include the axial degree of freedom for all types of roller bearings in a formulation
similar to that previously used for ball bearings. However, the scope of the present frictionless

- quasi-static analysis for cylindrical roller bearings is limited to the radial and tilt freedoms

consistent with SHABERTH, which serves as the development platform for this effort.

Figure 6-1 Unmounted Roller-Race Configuration

6-1
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A definition of basic geometrical relations is provided in Figure 6-1 for the unmounted roller
bearing configuration. As shown, the radial distance from the unmounted bearing center to the

outer raceway is
R, = Dn/2+ D/2+ PJ2 (6-1)

The radial distance from the bearing center to the inner raceway is
R = R,-D-PJ2 (6-2)

As used in SHABERTH, the analytical expressions for roller/raceway contact forces are defined
in terms of kinematic interference between roller and raceway. These kinematic constraint
relations are defined in terms of inertial radial displacements and inertial tilt rotations of the roller
centroid at each azimuthal roller position. Due to the shaft/bearing system modeling approach
used by SHABERTH, axial displacements of the roller centroid in a rigid body sense were
permitted. In the present development, the analysis of a single roller bearing eliminates the need
to consider rigid-body axial motion. Consistent with precluding axial roller displacements, the
raceway widths are assumed large compared with the roller lengths.

6.1 Interference Between Roller and Outer Raceway

The initial mounted (unloaded) position of roller and outer raceway at the j azimuthal plane has
contact between roller and raceway such that points 4o and B,, shown in Figure 6-2 for the
loaded condition, are initially coincident. Under applied load, the outer raceway in the )" azi-
muthal plane translates in the radial direction a distance Su,; and rotates in the tilt direction

through a small angle 6,,.

Simultaneously, the roller RA

centroid translates radially Initial Position of OR Final Position of OR

a distance Ar;, and rotates ~

through a small angle ¢: S

For each roller, Ar, = X(2) ___ _J ___________

and ¢ = XG) are the ___f ¥ o

independent variables in =

the FEREBA equilibrium B

-solution. The radial inter- - w0

ference between point 4o S -

on the roller and the S

radially adjacent point C, l

on the outer raceway is Y

dry, shown negative for

clarity in Figure 6-2 as a '

separation rather than an (

interference. \
e Y
\ \/ ) >

Initial Position of Roller X
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With radial translation but no rotation, the radial separation at point A, is the distance d; in
Figure 6-2 given by

The radial increments associated with the two inertial rotations are shown in Figure 6-2 as d>2 and
d3 and are given analytically by

d, = DI2 sin(gy) tan(6)

d; = D/2[1 - cos(¢)]

The total radial interference between points 4, and C, is then
Sy = dy—dy—ds = Ar;— Suy - DI2[1 — cos(¢; — 6,)/cos(6;)] (6-3)

The radial interference at the center of the k™ slice of the j™ roller (8ga) is shown negative in
Figure 6-2 as a separation rather than an interference for clarity. An analytical expression for this
interference, which includes a slight approximation for crown drop, is

Moty = Orop + Xok sin(¢ — 901')/008(90]) — CDx (6-4)

The crown drop approximation for the incremental decrease in radial interference is

CDy =~ CDy cos(¢;— 6y)/cos(6,) (6-5)

This simplifying approximation is, for the small angles expected,-accurate to several significant
digits. Probably the crown drop data, which can include raceway crown in addition to roller

-

crown, has significantly greater variability than the error due to this approximation.

The basic kinematic constraint relations for radial interference, equations (6-3) and (6-4), are
subsequently used to determine the Hertzian contact forces between the roller and outer ring.

6.2 Interference Between Roller and Inner Raceway

The initial mounted (unloaded) position of roller and inner raceway at the j*" azimuthal plane has
maximum radial clearance between roller and raceway at points Aj and B;, shown in Figure 6-3 for
the loaded condition. Under applied load, the roller centroid in the j* azimuthal plane translates
radially a distance 4r;, and rotates through a small angle ¢. As with the outer ring, 4r;, = X(2)
and ¢; = X(3) are the independent variables in the FEREBA equilibrium solution.

Simultaneously, the inner raceway translates in the radial direction a distance Au,; and rotates in
the tilt direction through a small angle A6, These two displacements of the inner raceway
combine the imposed inertial translations and rotations of the inner ring and shaft with elastic
distortions of the inner raceway in the j* azimuthal plane

Au,; = AY cos(®)) + AZ sin(@)) + duy (6-6)
A8 = 0Z cos(®) - OY sin(P) + 6; (6-7)
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The radial interference

between point A4; on the ﬁ R
roller and the radially /—- Initial Position of Roller l

adjacent point C; on the
A\ T

inner raceway is Oy
shown negative in Figure
6-3 as a separation rather
than an interference for
clarity. With radial trans-
lation but no rotation, the
radial separation at point
A; is the distance dy in
Figure 6-3 given by

"dy = Ary- Ay
+ P2+ AP,

The radial increments
associated with the two
inertial  rotations  are
shown in Figure 6-3 as ds  Figure 6-3 Interference Between Roller and Inner Raceway (Loaded)
and ds and are given

analytically by

ds = D/2-(1 - cos(¢))
ds = Ri[1 - cos(§))/cos(§) + DI2 sin(¢)-tan(6)

The total radial interference between points 4; and C; is then
&'y = dg—d4—d5 = Au,,-—Ar,-—P,JZ—APd
+ R, [1 - cos(8))/cos(§) — D/2-[1 - cos(¢ - 8)/cos(6)] (6-8)

The radial interference at the center of the k™ slice of the ™ roller (8qu) is shown negative in
Figure 6-3 as a separation rather than an interference. An analytical expression for this
interference, which includes basically the same approximation for crown drop as used for the

outer raceway, is
8qu = Ory + Xu sin(6 - g)/cos(6) - CDx (6-9)

The basic kinematic constraint relations for radial interference, equations (6-3) and (6-4) for the
outer raceway and equations (6-8) and (6-9) for the inner raceway, are subsequently used to
determine the roller Hertzian contact forces. The equations for roller forces and moments,
required to calculate elastic deflections of the outer and inner raceways, are developed in the

following section.
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6.3 Roller Forces and Elastic Displacements

The roller/outer race Hertzian line contact force on the k™ slice of the j" roller is

Qo = Ko (8905)"” : (6-10)
and the corresponding force at roller/inner race contact is
Qu = Ky (843" (&11)

Each slice along each roller is checked independently for interference with both raceways. With
positive interference, the Hertzian contact force is positive in compression. With negative
interference (separation), the Hertzian contact force is zero. Q.; may be defined as the radial
force applied to the outer raceway by the roller. Qixj may be defined as the radial force applied to
the roller by the inner raceway. '

' The total radial forces in the j™ azimuthal plane are obtained by summing the contact forces at

each slice:
Py = Z Qo (6-12)
Py = I Qu (6-13)

Here, again, P, is positive for a compressive force applied radially outward by the i* roller to the
outer raceway, while P; is positive for a compressive force applied rad_ially outward by the inner

. raceway to the i roller.

The total tilt moments applied to the ™ roller by the two raceways are similarly obtained by
summing the contributions of the contact forces at each slice:

My = - £ Qo X (6-14)
M; = ZQuxa ‘ (6-15)

These tilt moments are defined positively, by the rotation of X into R, about the roller centroid.

Radial forces and tilt moments applied to the outer and inner raceways are converted to two
statically equivalent radial forces on each raceway. These two forces are separated by a constant
distance defined as a percentage of the roller effective length. The two forces applied to the outer
raceway in the j* azimuthal plane for the right and left nodes of the outer ring finite-element
model are given as follows:

Forj = Po/z_Moj/(AoLo) (6-16)

Foj = Poj—Foy (6-17)
Similarly, the two forces applied to the inner raceway are given by

F,‘ ;= —PDIZ—MU/(A-,'L,‘) (6-18)

F,’[j = —P;_','—F,',j (6'19)
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The two dimensionless constants A, and A, in equations (6-16) and (6-18) are set to values of
0.60, making the length of the moment arm (4; L))in equation (6-18) equal to 60 percent of the
effective roller length. This value was chosen such that the maximum and minimum bending
moments are approximately equal for a uniformly loaded beam on two supports. The finite
element model master raceway nodes must be defined at locations established by this distance.

The forces applied to the inner and outer raceways (equations 6-16 through 6-19) produce
corresponding elastic deflections at the same locations when applied to the appropriate finite-
element model. These elastic deflections are then converted to the quantities required for the
kinematic constraint relations (equations 6-3 through 6-9) as follows:

Sy = (Oroy+ Oroy)/2 (6-20)
8y = (Orop— Oroy)(4o Lo) | (6-21)
Suy = (it ry)l2 (6-22)
Oy = (Ory;— Ory)l(A; L) (6-23)

This complete set of equations results in a consistent system of forces and compatible
displacements. The following sections outline the implementation of these equations into the

FEREBA code.
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7. NONLINEAR ELASTIC DEFLECTIONS OF OUTER RING AND CARRIER

The general finite-element model of the outer ring and carrier for single or duplex ball bearings
contains soft springs to accommodate deadband and preload springs to accommodate axial
preload effects. The corresponding flexibility matrix is partitioned as follows after the ANSYS
stiffness matrix is transformed from ANSYS cylindrical coordinates to FEREBA cylindrical
coordinates and reduced to eliminate the unnecessary DOFs:

u,| [co, co, co,l|o

Uyt =|COy COy COy |\ Fyo (7-1)

U, CO;; CO;, COulLF,
where {U,} = elastic axial (X) and radial (R) deflections of ORCCs, or for a roller bearing, the

raceway contact points,

{U} = elastic X and R deflections of rolling element/outer race contact points where
rolling element forces are applied, '

{Us} = elastic X or R deflections of candidate contact points or gaps between the outer
ring(s) and carrier,
{Fs} = X and R rolling element contact forces applied to the outer race, and

{F.} = X or R compressive constraint forces applied to contact points between the outer
ring(s) and carrier when the gaps are closed.

Note that vectors {U;}, {U.} and {F,,} have nodes in specific order for each of the outer
ring/carrier support configurations defined by the index /BSCOR. Each of the nodes specified at
the ORCC and ball/race contact points has an X and R DOF. The vectors {U;} and {F.} also
have specific nodes for a given configuration, but each node has either an X DOF or an R DOF
but not both. Note that the ball forces {Fs,} and the flexibility coefficients (CO;) are known, but
all the elastic deflections and the mc constraint forces {F.} are unknown.

Equation (7-1) may be written as follows with the unused partitions omitted:
U co,, Co F,
{ 1} =|: 12 13]{ bo} (7-2)
U; CO;; COyJLF,
In this form, the flexibility matrix is directly applicable to the three roller bearing support

configurations as well as to the six ball bearing configurations. The variables in equation (7-2) are
now defined more generally as follows:

{U;} = elastic bearing deflections required for subsequent kinematic relations

{U;} = elastic deflections of candidate contact points or gaps between the outer ring and
carrier

{Fs} = rolling element applied force vector

{F.} = compressive constraint forces applied to contact points between the outer ring and
carrier when the gaps are closed

7-1
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[CO.;] = flexibility coefficients relating desired bearing deflections {U;} to rolling element
forces {Fuo}

[CO;;s]= flexibility coefficients relating desired bearing deflections {U;} to constraint forces
{Fc} at closed gaps .

[COs;] = flexibility coefficients relating gap deflections {Us} to rolling element forces {Fro}
[COss] = flexibility coefficients relating gap deflections {Us} to constraint forces {F:}
It may be noted that the partitions of equation (7-2) comprise the entire flexibility matrix for the

roller bearing configurations. This is because the desired bearing deflections {U,} are the same as
the deflections {U.} of the points at which the rolling element forces are applied.

Each gap closure involves only a single axial or radial force magnitude which is normal to the
contact surface. Friction forces in the plane of the contact surface are neglected, and the DOFs

. corresponding to friction forces have previously been reduced out of the flexibility matrix.

The constant contribution to {U;} is the displacement vector {Us} corresponding to the known
rolling element forces

{Us} = [COs,]{Fbo} (7-3)

where matrix [CO3;] is of order mc by mbo. This constant deflection vector may be calculated
immediately. The basic linear elastic equation relating constraint forces to the corresponding

. elastic deflections is

{Us} — {Us} = [COssl{Fc} (7-4)

where matrix [COs;] is of order mc by mc. From the basic matrix relation of equation (7-4), the
row corresponding to the point on the outer ring at the k" gap is

Uy(0h) - Usn(Oy) = fflcoﬂ(o,q,) ) | (1-5)

where O, denotes the X or R elastic deflection of the point on the outer ring at the k™ gap, and j is
the index of all mc candidate constraint forces. Similarly, the row corresponding to the adjacent
point on the carrier at the k™ gap is

Uy(Co) - Un(C) = £C05(Cey) * EU) (7-6)
=
where C; denotes the X or R elastic deflection of the point on the carrier at the k™ gap.

Positive faces are defined as those faces on the outer ring for which positive deflections of the
outer ring initiate contact with a stationary carrier. By definition of the cylindrical coordinates, all
radial faces of the outer ring are positive faces. Roller bearings are defined to have only radial
DOFs. Ball bearings have both radial and axial DOFs. Axial faces on the positive X; side of the
ball bearing ORCC are also positive faces. Thus, for JBSCOR = 2 in section 3.1, the gaps
numbered 2, 3 and 4 are on positive faces. Axial faces on the negative X; side of the ball bearing
ORCC are negative faces. In the section 3.1 figure, gap number 1 is on the negative face. For
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duplex ball bearing sets, the face between the primary and duplex bearing is defined as positive or
negative with the same criterion as for single bearings. In all cases, positive contact forces are
compressive.

7.1 Kinematic Constraints for Positive Faces

When the k™ gap of a positive face is closed, the constraint forces on both sides of the gap are
equal and opposite: : '
FAO)) =-F{(Cp (7-7)

where F.(C,) is the positive (independent) constraint force applied by the outer ring to the carrier
at the k™ gap, and F,(O;) is the negative constraint force applied by the carrier to the outer ring at

the k™ gap.
When the k™ gap is closed, the points on both sides of the contact surface displace equally. This
results in the following kinematic constraint relation based on the small deflection approximation:
U0y = U{Cy) + Ge (7-8)
where G; is the input initial X or R clearance at the k™ candidate contact point between outer ring
and carrier. By definition, a positive value of G; indicates clearance, whereas a negative value of
Gy indicates interference.
For use in testing whether the k™ gap is closed, equation (7-8) may be written as
Ag(k) = Us(Co) + Gx— Us(Ox) (79
Then if Ag(k) <0, gap closure may be assumed and the corresponding constraint forces must be
calculated to enforce Ag(k) = 0.
A relation corresponding to equation (7-9) in terms of { U} is, for gaps at positive faces,
Agy(k) = Us(Ce) + Ge — Us(On) (7-10)
The variables Ags(k) may be calculated immediately since the terms are dependent only on known

quantities. Subtracting equation (7-6) from equation (7-5) and substituting the relations in
equations (7-8) and (7-10) gives the constraint equations in efficient computational form for

positive faces:

Agy (k) = Z[coﬂ(ok,) ~ COL(C * F0) (7-11)

7-3
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7.2 Kinematic Constraints for Negative Faces

When the k™ gap of a negative face is closed, the constraint forces on both sides of the gap are
equal and opposite but with signs reversed from equation 7-7):
FAC) = -F.0) (7-12)

where F.(Oy) is now the positive (independent) constraint force applied by the carrier to the outer
ring at the k™ gap, and F(C;) is now the negative constraint force applied by the outer ring to the
carrier at the k™ gap.

When the k™ gap is closed, the points on both sides of the contact surface displace equally. This
results in the following kinematic constraint relation based on the small deflection approximation:

U(Cy) = Us(Ox) + Gx (7-13)
For use in testing whether the k™ gap is closed, equation (7-13) may be written as
Ag(k) = Us(O) + G — Us(Co) (7-14)

" Then if Ag(k) <0, gap closure may be assumed and the corresponding constraint forces must be

calculated to enforce Ag(k) = 0.

The relation corresponding to equation (7-14) in terms of {Uss} is, for gaps at negative faces,
A4gi(k) = U. (0 + G — U 56(Ci) (7-15)

Subtracting equation (7-5) from equation (7-6) and substituting the relations in equations (7-13)
and (7-15) gives the constraint equations in efficient computational form for negative faces:

Agy (k) = gtcoﬂ(ck,) _ CO, O * F.() (7-16)

7.3 Solution Procedure for Assumed Gap Closures

Equations (7-11) and (7-16) may be written in matrix form as follows for only those mcgc gaps
assumed to be closed

{4g} = [-LI*[COs)* [T {Fec) (7-17)

This format relies on the fact that matrix [CO3s] is symmetric. Matrix [7;] is of order mcgc by mc
and is defined to extract vector {Ag, } from vector {Us} using equations (7-10) and (7-15). For
positive faces, matrix [7;] is a sparse matrix wherein the k™ row consists of all zeros except for a —
1.0 in the column corresponding to point O, and a +1.0 in the column corresponding to point Cj.
For negative faces, the signs of the coefficients corresponding to points O, and C are reversed.
Note that the sign of matrix [7;] must be reversed, as shown, for extracting the proper influence
coefficients using equations (7-11) and (7-16).

The modified force vector {Fcc} contains only mcgc non-zero independent constraint forces
defined in equations (7-7) and (7-12).. Note that there is only one independent constraint force
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per gap and that this constraint force is positive in compression. The relationship between {Fcc}
and {F¢} is expressed in matrix form as

{Fc} = [n]T* {Fec} (7'18)

The independent constraint forces required to satisfy the kinematic constraints of equations (7-8)
and (7-13) for the mcgc gaps assumed to be closed are then calculated simply by inverting
equation (7-17)

{Feo} = (CTIM[COsI*TY) ' * {485} ' (7-19)

The inverted matrix is generally not positive definite, but it is non-singular. The validity of the set
of assumed gap closures could be assessed by checking for impossible negative (tensile) in-
dependent constraint forces {F..} and impossible negative (overlapping) gap separation distances
{Ag}. Equation (7-20) for {Ag} is the matrix formulation of equations (7-9) and (7-14):

(48} = [TA{Us} +[CO)FY) + (G) (7-20)

where [T}] is the full matrix [T;]. The check relation actually used is slightly more complex than
equation (7-20) because of the nonlinear preload spring which has zero force when unloaded.

7.4 Preload Spring Unloading

For single ball bearings or duplex ball bearing sets which admit axial preload, the preload spring is
represented by appropriate axial stiffness terms at each azimuthal plane. These local preload
springs are treated like the fictious soft springs required to convert the stiffness matrix of the
outer ring(s) and carrier into a flexibility influence coefficient matrix. Therefore, the basic analysis
procedure will properly represent the preload force in each local spring both in the linear spring
range and after the preload spring has bottomed. However, when the separation distance at one
of the preload spring gaps exceeds the initial G, separation, the basic analysis procedure will
calculate an impossible tensile force in this local preload spring. Some modifications to the basic
procedure are then required to null the preload tensile force. This modification may be
summarized as follows for the conditions relating to a local axial preload spring.

At each azimuthal plane, the local preload spring is defined to have zero force when the initial
spring length equals G;. When the separation distance at a preload gap decreases from its initial
value, a compressive force is properly developed in the preload spring. When the separation
distance at a preload gap increases from its initial value, an impossible tensile force is developed
which must be nulled by a self-equilibrating pair of externally applied constraint forces with
magnitude F,.,. When the relative deflection between the two surfaces of a preload gap exceeds
zero Ag, > 0, the required compressive constraint force required to null the impossible tensile
force is

Fprg] = Kprel * Agp (7-21)

where K, is the linear stiffness coefficient of each local preload spring. For each ball bearing
configuration which accepts axial preload, the appropriate signs are given to Fprei to form the pair
of external constraint forces contained in vector {F.,}. These additional constraint forces are then
included in the solution procedure along with those constraint forces due to closed gaps obtained
from equation (7-18).

7-5
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8. PROGRAMMING IMPLEMENTATION

This section is provided as a guide to installing and maintaining the FEREBA software. Sections
C o= are also included that describes the nonlinear iteration methodology incorporated in the program.
For reference, a flowchart is provided which lists all the subroutines in the code.

- 8.1 Flowchart

- A flowchart displaying the subroutine names and execution hierarchy is contained in Figures 8-1

- and 8-2. In the first figure, routines that read the analysis file (READAF module), perform
- problem initialization (CALCON module), and create the compliance matrices (FEMFLX module)
- are listed. '

= FEREBA
. . [ _DBLSET sets double precision arrays to a constant (used in many routines)

- —R]i‘._A_(D;AF reads analysis variables and bearing data from analysis file written by PREBAN
ETARG returns command line arguments (note - system specific routine)

= —DATOUT prints analysis summary - geometry, loads, fits, materials, temperatures
FDATE writes analysis time and date to output file (note - system specific routine)
— ROLDAT prints data on rolling elements specific to ball or roller bearing

L_CALCON calculates general constants relevant to all bearing types
—BCEEN defines parameters specific to ball bearings

ABDEL calculates dimensions and elastic constants for point contact
L_CRCON defines parameters specific to roller bearings
SLICES calculates slice constants and crown drops for cylindrical roller bearing
SETGAP sets gap between roller flange and roller end depending on flange type
ABRDEL calculates dimensions and elastic constants for line contact
|_SPRING determines approximate spring compliances for axial, radial, and angular loads
|_INDEL makes initial guess on inner ring global deflections
l_TMPFIT calculates change in clearances due to differential temperature effects

|_FEMFLX reads finite element substructures and converts to reduced flexibility matrices
s | _ETIME elapsed time counter (note - System specific routine)
= L _RDBASC reads ASCII format ANSYS substructure matrices, storing stiffness only

__MATPRT prints out matrices 12 columns per page (for diagnostics)
__TRANAF reorders DOFs in stiffness matrices to FEREBA system

= _ADDSTF adds 'dummy’ springs for preload & deadband
e __MATRED condenses DOF out of cylindrical stiffness matrices
it L_SHIFTS shifts rows and columns of stiffness matrices over removed DOF
L DLFIRG IMSL routine to obtain solution to linear equation set
D= L_DLFTRG IMSL routine that computes LU factor of a matrix
- = L_CODIM sets dimensions of outer ring/carrier flexibility matrix
i L_COART stores required partitions of outer ring/carrier flexibility matrices
_CIDIM sets dimensions of inner ring/shaft flexibility matrix
__CIPART stores required partitions of inner ring/shaft flexibility matrices

I

o

continues
Figure 8-1 FEREBA Flowchart (Initialization & Matrix Manipulation Routines)
[FEREBA) '

STATE drives solution of quasi-static equilibrium problem
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Rt [ ETIME elapsed time counter (note - system specific routine)
L_GAPDEF sets values of gaps depending on ring configurations
o | _PRELOD determines axial displacement of inner ring due to axial preload
OLV determines axial preload contact angle using a Newton-Raphson iteration
- . DEFLOP calculates average linear elastic ORCC deflections due to axial preload
DEFLIP calculates average linear elastic IRCC deflections due to axial preload
L -DO 1, NITER iteration loop on elastic displacements (NITER set by user)
C SLVBEQ directs solution of bearing inner ring force equilibrium equations
R [—DO 1, NITRF iteration loop on inner ring force equilibrium (NITRF sct by user)
| -DO 1, NBRG loop on each bearing (maximum of 2) to get loads or deflections
JESS get initial guesses of cage and ball/roller unknowns
[ GROLLB sets roller positions, rotational and orbital speeds
|__GBALLB sets ball positions, rotational and orbital speeds
|__GUESCG estimates cage-ring relative motion & assigns cage DOFs*
BRGFOR determines bearing loads to match assumed or given deflections
|_PREPAR initialize rolling element, cage variables, and arrays
BALLIN calculates curvature center distances (ball bearing)
UNLODB determines if ball is out of contact with inner race
e UNLODR determines if roller is out of contact with inner race
oo MAXMIN  sets max/min values for cage and rolling element variables
= | L DNEQNF  IMSL solution for nonlinear equations with numerical partials
L_BEAREQ sets up equilibrium equations depending on bearing type
| | BALLEQ defines ball bearing equilibrium equations
o I:FMIX calculates frictional load components*
BDRAG calculates drag coefficient*
__ROLLIN transforms coordinates for interference calculations
FLNDEF calculates roller/flange interference
LLEQ defines roller bearing equilibrium eqns
TPNORM calculates loads about roller CG
FINORM determines flange loads
FMIXR calculates frictional load components*
FLMIX calculates flange frictional loads*
L_BRGAX calculates rolling element acceleration terms*
L_CAGEEQ defines cage-clement interaction®
—CALFOR calculates forces acting on outer ring
L_SUMFIR sums forces and moments acting on inner ring
| _DLSLRG IMSL routine to solve set of linear force equilibrium equations
l_GUESS get final values of cage and ball/roller deflections and speeds
—DI FLOR calculates elastic deflections of outer ring/carrier

i

il

e

CLSD  produces a set of assumed gap closures (based on current deflections)
STIF computes constraint transformation matrix (for gap closures)
|l: LFTOFF modifies constraint forces to null tension

=
A=

DLINRG IMSL routine to invert constrained flexibility matrix
DEFLIR calculates elastic deflections of inner ring/shaft
ERRCAL checks values of elastic deflections, revises if necessary
—LIFE calculates bearing fatigue life
FLMFAC lubrication film factor for life adjustment*

= L_OUTRSP writes solution data to print file
RELOUT writes rolling element output
REFLOT writes output for roller bearing flanges

= Figure 8-2 FEREBA Flowchart (Main Calculation Section Routines)

. In Figure 8-2, which illustrates the primary quasi-static equilibrium modules, several routines are
C = marked with an asterisk (*). These routines are not required for the current version of FEREBA,
o and were included for future editions which intended to add friction to the calculations. In the
- " present code, these routines are simple shells, and perform no functions.
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8.2 Nonlinear Elastic Deflection Implementation

The nonlinear elastic deflection solution is one of the more significant features of FEREBA. The
solution procedure described in section 7 is implemented in subroutine DEFLOR using rolling
element forces {F»} and initial gap separation distances {G} input from subroutine QSTATE and
using flexibility influence coefficient partitions. The output of DEFLOR is the elastic deflections
{Up), designated {U,} in equations (7-1) and (7-2), of the ORCC or roller bearing desired for
subsequent use in the kinematic constraint relations. Subroutine DEFLOR is called iteratively
until the rolling element forces {Fs} and the corresponding elastic deflections {Un} are
consistent with the kinematic constraint relations.

The solution procedure leading to outer ring elastic deflections with deadband is accomplished in
subroutine DEFLOR with the following 13 steps:

1. Calculate the constant elastic deflection vector {Uss}, using equation (7-3) with given
{Fs} and [CO3;}, for all candidate contact points or gaps.

2 Obtain the full constraint transformation matrix [77] for all gaps from subroutine
CNSTIF. The elements of sparse matrix [T, (ie, 0, -1, +1), are obtained
immediately from the definitions of the various possible bearing support
configurations. Matrix [7], used primarily in equations (7-18) and (7-19), is a subset
of [T corresponding only to the trial set of assumed gap closures.

3. Calculate the full vector of gap separation distances {4g/} from equations (7-10) and
(7-15) using matrix [Tj]. {A4g} relates to all gaps, opened and closed, whereas {Ags}
is the subset of {Ag} corresponding only to the trial set of assumed gap closures.

4. Assume the first trial set of assumed gap closures using subroutine CNCLSD. All
radial gaps in the azimuthal plane nearest to the resultant applied radial force are
initially assumed closed for both ball bearings and roller bearings. For the first pass
with ball bearings, all axial gaps corresponding to the direction of the resultant axial

load are assumed closed. Thus, for a positive axial load, gaps at positive outer ring
faces are closed while gaps at negative faces remain open.

5. Given the trial set of assumed gap closures, select the corresponding elements from
matrix [7] to form matrix [T}]. Using the same procedure, select the appropriate
elements from vector {Ags} to form vector {4gs}. Thus matrix [7;] and vector {Ags}
correspond to closed gaps only.

6. Solve for the constraint forces {F..} at each gap assumed closed using equation (7-
19). Note that some of these constraint forces could be tensile (negative) if gaps are
incorrectly assumed closed. This situation is corrected subsequently when a new set
of assumed gap closures is defined. Note that equation (7-19) produces the exact
linear solution for the given set of assumed gap closures.

7. Expand the independent constraint force vector {F.;} into the full vector {Fc} using
equation (7-18). Note that {Fc} and {F.} could contain the effects of impossible

tensile preload spring forces.
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8. Calculate total gap separation distances {Ag} from equations (7-9) and (7-14) using
matrix [7;] with the matrix notation of equation (7-20). This {4g} could contain the
effects of impossible tensile preload spring forces.

9. Calculate {A4g,} as the relative deflections at each preload gap obtained from the

preliminary {4g} calculation. Check for positive values of {4g,} at preload gaps. If
Ag,(k) > 0, calculate additional constraint forces {F.,} required to null the impossible
tensile forces in the preload spring. These operations are performed in subroutine
LFTOFF using equation (7-21).

10. Recalculate {Ag} with the additional constraint forces {F.,} which null any preload
spring tensile forces. This calculation uses the equation (8-1) below, rather than
equation (7-20).

{4g} = [TA{Us} + [COsl{F. + Fop}) + {G} - (3D
11. Determine an updated trial set of gap closures based on two criteria: '

(a) A gap is closed if Ag(k) is less than or equal to a specified tolerance value
which accommodates round-off error in calculating {Ag}. From equation (7-
19), the constraint forces {F..} are calculated to enforce Ag(k) = O at the gaps
assumed closed. Because of round-off error, Ag(k) is usually calculated as a
very small positive or negative number. The tolerance value is therefore a
small positive number which may be machine dependent.

(b) The trial set of gap closures determined from test (a) is modified to open any
gap which has an independent constraint force F.(k) less than zero. As noted
previously, impossible tensile constraint forces can be generated by equation
(7-19) if gaps are incorrectly assumed closed when they are actually open.

These two tests attempt to define as closed those gaps which are in contact and
which have contact compressive forces of zero or greater.

12. Compare the updated set of assumed gap closures with the prior set of gap closures.
If the two sets of gap closures differ, return to step 5 and repeat the calculations with
the updated set of gap closures. When all F.(k) = 0 and all Ag(k) > 0, continue to step
13.

13. When the closed gaps have been properly identified, calculate elastic deflections {U}s}
using {Fs} and, where applicable, {F.} and {F.,} using equation (8-2).

(U} = [COn){Fro} + [COisN{Foep + Fop} (8-2)

Return to QSTATE to recalculate rolling element forces consistent with the kinematic
constraint relations which now include the updated outer ring deflection vector {U;s}.
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8.3 Iterative Solution Methodology

The outermost iteration loop, as shown in Figure 8-2, determines overall elastic deflections of the
outer and inner ring configurations in response to applied loads or specified displacements. The
iteration is managed by QSTATE, in conjunction with subroutine ERRCAL, which checks
assumed elastic deflections against user specified limits and revises the displacements using a
nonlinear solution methodology.

The methodology incorporated into ERRCAL for the solution of the system of nonlinear
equations uses a scheme from [9]. This procedure is an acceleration method which does not use
partial derivatives as with a Newton-Raphson approach. The calculation of partials was explicitly
avoided due to the potential for large Jacobian matrices to be formed. For instance, if a
configuration with an outer ring of IBSCOR =6 and 15 elements was used, the Jacobian would be
22 x 15, containing 330 evaluations per iteration step. The procedure does calculate implicit
partials, and employs a secant type estimate for the next root. '

This acceleration procedure attempts to minimize the difference between assumed and calculated
elastic deflections at iteration 7 and n+/ based on the following relationship:

="'y = {g(ix"} (8-3)
which in the program, is implemented with the following algorithm
1y = {(FHg(" DY + (T - (TN} (8-4)
where {I} is a unity vector and {6} is a weighting factor, which for a single term is expressed as
1
0, = —— o (8-5)
1 - g,;({x"})

where gi; = 0g/ox; is the partial derivative for the term under evaluation. In FEREBA, the actual
value of any 6, is limited to 0.25, which was set to prohibit large changes in assumed values. It
was found that excessive corrections in iterates resulted in non-convergence for problems with
many elastic displacement DOFs.

‘During development testing of FEREBA, significant effort was placed in the selection of this
elastic displacement iteration routine. Initially, it was theorized that setting the first loop values to
zero, then calculating terms with DEFLOR and using these finite values for the second iteration
would be sufficient. For linear ring configurations, this is valid, however, for the nonlinear
IBSCOR types, the first set of displacements were “close” but not within a reasonable error
amount. As such, the entire iteration problem can be stated as a refinement of the initial values

determined in DEFLOR, and thus the limit on 6, to avoid large changes.
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8.4 Variable List

FEREBA uses a storage scheme similar to SHABERTH, in that all of the primary problem
variables are contained in several arrays. This section lists the contents of the arrays AVAR,
BVAR, and BDAT, which in conjunction with the compliance matrices, store all of the significant
program variables. Terms in these matrices can be printed for diagnostic purposes using the
routine SYSCON, which is supplied with the source code. The first matrix listed is AVAR, which
stores analysis variables.

variable

AVAR (1)

AVAR (2)

AVAR (3)

AVAR (4)

AVAR (5-6)

AVAR (7)
AVAR (8)
AVAR(9)

AVAR (10)

AVAR (11)

AVAR (12)
AVAR (13)
AVAR (14)
AVAR (15)
AVAR (16)
AVAR (17)
AVAR(18)
AVAR(19)

The following p

AVAR (20)
AVAR (21)
AVAR (22)

AVAR (23)
AVAR (24)
AVAR (25)

AVAR (26)
AVAR (27)

AVAR (28-30)

Description

Type of analysis requested, read in READAF
NSLOT, type of quasi-static iteration run, set in READAF

= 0 -> no iteration (normally not set)

= 1 -> iteration without friction

= 2 -> jiteration with friction
Number of requested elastic deflection iteration loops, read
in READAF, used in QSTATE
Required accuracy of elastic deflection iteration, read in
READAF, used in QSTATE

Number of requested inner ring force iteration loops, read
in READAF, used in SLVBEQ

Required accuracy of inner ring force iteration, read in
READAF, used in SLVBEQ

Flag to indicate if displacements {(= 0) or loads (= 1) are
specified, set in READAF

NPRINT, print flag for main analysis program, read in READAF
IBSCOR, outer ring configuration (0, ..., 9), read in READAF
IBSCIR, inner ring configuration (0, ..., 3), read in READAF
MBO, outer ring force vector FBO size (defined in CODIM)
MBI, inner ring force vector FBI size {(defined in CIDIM)

MC, outer ring‘constraint vector FC size (defined in CODIM)
MCG, total number of outer ring gaps (defined in CODIM)
Number of elastic deflection iteration loops, set in QSTATE
Obtained accuracy in outer ring elastic deflection iteration
Obtained accuracy in inner ring elastic deflection iteration

ositions are control integers for rolling element quasi-static

jteration (first five formerly stored in IBD in SHABERTH)
IBRG, current bearing number being analyzed, set in BRGFOR
ISTEP, current solution index , set in BRGFOR

NARE, number of active rolling elements, set in BRGFOR &
PREPAR (normally equal to total number of rolling elements
except if cage only solution desired)

IMAX, index of most heavily loaded rolling element with
frictional solution, set in BRGFOR

IRE, loop variable, current rolling element being analyzed
(depends on ISTEP), set in BRGFOR

Number of iterations made in SLVBEQ

Accuracy in force iteration obtained in SLVBEQ (ERRMAX)
Number of times BEAREQ called by DNEQNF
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~ The next matrix listed is BVAR, which stores specific rolling element variables. BVAR is a 3-
dimension array. The first dimension is the pertinent term, as described below. The second

e dimension is the particular rolling element, maximum of 20. The third dimension is bearing
el number, maximum of 2.
Element Description
BVAR (1) X-component of rolling element center position
B BVAR (2) Y-component of rolling element center position
- BVAR (3) X-component (axial) of rolling element rotational velocity
BVAR (4) Y-component of rolling element rotational velocity
T BVAR (5) Z-component of rolling element rotational velocity
-— BVAR (6) Orbital speed of rolling element
BVAR (7-8) Outer/inner race-rolling element contact load
- " BVAR(9-10) For ball bearing, sine of outer/inner race rolling element
= : " contact angle. Zero for roller bearing.
) BVAR(11-12) For ball bearing, cosine of outer/inner race rolling element
_ .contact angle. Unity for roller bearing. i
BVAR (13-14) For ball bearing, constant component of raceway groove

curvature center distances ACON(1l) and ACON (2), calculated

i

in BALLIN. Blank for roller bearing.
- BVAR(15) UXP in center distance calculation for duplex bearing only
= BVAR(16)
BVAR (17-20) Elastic deflections of master nodes, either axial or radial,
- depending on bearing type:
= Element] Ball Bearing Roller Bearing

17 ORCC axial - UXORCC | Left outer race radial - UROL
18 ORCC radial - URORCC |Right outer race radial - UROR
19 TRCC axial - UXIRCC | Left inner race radial - URIL
20 IRCC radial - URIRCC |Right inner race radial - URIR
calculated in DEFLOR & DEFLIR, checked in ERRCAL
1 EH BVAR (21-24) Outer/Inner ring rolling element forces, (axial or radial),
depending on bearing type (i refers to rolling element}):
Element| Symbol Ball Bearing Roller Bearing
21 FBO (i) Outer ring axial | Left outer race radial
22 FBO(i+1) | Outer ring radial |Right outer race radial
23 FBI (i) Inner ring axial | Left inner race radial
24 FBO(i+1) | Inner ring radial |Right inner race radial
calculated in CALFOR/SUMFIR, stored in FBO/FBI in SLVBEQ.
BVAR (25) FW (gyro force) for outer ring, (not used), refed in SUMFIR
BVAR (26) ZM for outer ring, calculated in ROLLEQ, used in CALFOR
BVAR (27-30) Friction force components acting on inner ring; FW, FZ, YM,
ZM, used in SUMFIR (refed but not used)
BVAR (31-32) EED film thickness at most heavily loaded outer/inner
raceway/slice, calculated in FMIX/FMIXR (not used)
BVAR (33-34) Outer/inner raceway contact area, used in FMIX and FMIXR
BVAR (35-36) PMAX - in BALLEQ, maximum hertz stress, and in FMIXR, max
hertz stress at most heavily loaded slice

(r
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The main storage of problem variables is in matrix BDAT, as listed below

Variable
BDAT (1)

BDAT (2)
BDAT (3)
BDAT (4)
BDAT (5)
BDAT (6)
BDAT (7)
BDAT (8)

BDAT (9)
BDAT (10)
BDAT (11)
BDAT (12)

Description

Bearing type (0, 1, 2, for ball, roller, or duplex)
Orientation angle of first rolling element (always 0)
Rotation speed of inner ring/shaft

Rolling element diameter

Pitch diameter to rolling element center

Number of rolling elements

Diametral clearance

Initial unloaded contact angle for ball bearing, based on
diametral clearance, calculated in CALCON

Roller length end to end
Roller end sphere radius
Roller included angle

. The next six items are not used in quasi-static code, but the positions are

retained for use in future frictional analyses

BDAT (13)
BDAT (14)
BDAT (15)
BDAT (16)
BDAT (17)
BDAT (18)

BDAT (19)

- BDAT (20)

BDAT (21)
BDAT (22)

BDAT (23)
BDAT (24)
BDAT (25)
BDAT (26)

BDAT (27-30)

BDAT (31)
BDAT (32)
BDAT (33)
BDAT (34)
BDAT (35)

Outer race CLA surface roughness
Inner race CLA surface roughness
Rolling element CLA surface roughness
Quter race asperity slope

Inner race asperity slope

Rolling element asperity slope

Roller crown radius

Roller flat length or ball bearing outer race curvature

Ball bearing inner race curvature or number of
roller/raceway axial slices (maximum of 20, set in READAF)
Roller outer raceway effective length

Roller inner raceway effective length

Roller outer raceway crown radius

Roller inner raceway crown radius

Cylindrical roller bearing outer ring flange angle
Cylindrical roller bearing inner ring flange angle
Cylindrical roller bearing outer ring end play
Cylindrical roller bearing inner ring end play
Cylindrical roller bearing flange inversion flag

The next six items are not used in quasi-static code, but the positions are
retained for use in future frictional analyses

BDAT (36)

BDAT (37)
BDAT (38)
BDAT (39)
BDAT (40)
BDAT (41)

Cage type (-1, 0, +1) for outer ring land, inner ring land,
or rolling element riding

Cage rail land diameter

Cage single rail width

Cage rail land diametral clearance

Rolling element cage pocket diametral clearance

Cage weight
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Contents of main problem variable storage matrix BDAT, continued

Variable

BDAT (42-43)

BDAT (44-45)
BDAT (46-50)

BDAT (51)
BDAT (52)
BDAT (53)
BDAT (54)
BDAT (55)
BDAT (56)
BDAT (57)
BDAT (58-65)
BDAT (66-70)

BDAT (71-75)
BDAT (76-80)
BDAT (81-85)

BDAT (86-87)
BDAT (88-92)

Description

Input (42) and output (43) values of cage degrees of
freedom, set in PREPAR

Life multipliers for outer/inner ring

Input values of applied displacements (x-trans, y-trans, 2z-
trans, y-rot, z-rot}

Inner ring mean outer diameter

Outer ring mean inner diameter

Outer ring mean outer diameter

Carrier mean inner diameter

Axial gap between outer ring and carrier

Initial axial distance between duplex ball bearing centers
Initial axial gap between duplex bearing outer rings

Elastic Moduli for shaft, inner ring, rolling elements,
outer ring, and housing
Poisson's ratio for shaft, inner ring, rolling elements,

outer ring, and housing
Density for shaft, inner ring, rolling elements, outer ring,

and housing
Thermal Expansion Coefficient for shaft, inner ring, rolling

elements, outer ring, and housing

Input values of applied forces (Fx, Fy, Fz, My, Mz)

The next.eighteen items are not used in quasi-static code, but the positions
are retained for use in future frictional analyses

BDAT (93)

BDAT (94)
BDAT (95)
BDAT (96)
BDAT (97)
BDAT (98)
BDAT (99-101)
BDAT (102)
BDAT (103)
BDAT (104)
BDAT (105)
BDAT (106)
BDAT (107)
BDAT (108)
BDAT (109)
BDAT (110)

BDAT (111)
BDAT (112-113)
BDAT (114)
BDAT (115)

Lubricant code - if = 0, implies no friction

= +1 to +9 lubricant codes (friction)

= $10 implies dry friction
the + refers to traction mod (see SHABERTH manual)
Kinematic viscosity at 100° F
Kinematic viscosity at 210° F
Density at 15.5° C
Lubricant coefficient of thermal expansion
Lubricant thermal conductivity
calculated data from LUPROP and LUBCON
Outer raceway lubricant replenishment layer thickness
Inner raceway lubricant replenishment layer thickness
Percent lubricant in bearing cavity
BDAT (104) /100, also XCAV in BCON & CRCON
Raceway-Rolling element asperity friction coefficient
Cage friction coefficient
Outer race flange replenishment layer thickness
Inner race flange replenishment layer thickness
Flange-Roller end friction coefficient

Inner ring speed in rad/sec, calculated in CALCON

Rolling element y-axis inertia, calculated in CRCON
Rolling element x-axis inertia, calculated in BCON
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Contents of main problem variable storage matrix BDAT, continued

Variable

BDAT (116)
BDAT (117)
BDAT (118)

BDAT (119)
BDAT (120-121)

BDAT (122)
BDAT (123)

BDAT (124)
BDAT (125-126)
BDAT (127-128)

BDAT (129-130)

 BDAT (131-132)

BDAT (133)
BDAT (134)
BDAT (135-136)
BDAT (137)

BDAT (138)
BDAT (139)
BDAT (140)
BDAT (141-142)
BDAT (143-144)
BDAT (145-146)

BDAT (147)
BDAT (148-152)
BDAT (153)
BDAT (154-155)
BDAT (156)
BDAT (157)
BDAT (158-159)
BDAT (159)
BDAT (160)
BDAT (161-163)
BDAT (164)
BDAT (165)
BDAT (166-167)
BDAT (168)
BDAT (169)

BDAT (170)
BDAT(171-175)

BDAT (176-180)

Description

Rolling element mass, calculated in BCON

Sine of initial contact angle BDAT(8) calculated in CALCON
Total curvature of ball bearing (B), calculated in CALCON,
used for contact angle calculation and in PRELOD

Storage for variable EMOD in SHABERTH s/r CONS, calculated
in CALCON, used in FMIX et al routines

RMS values of surface roughness, array RMS in CRCON

sum of BDAT(127) and BDAT(128), variable CRVS in BCON (= A
or BD), RMS(2) in CRCON

Cosine of initial contact angle BDAT(B8) calculated in CALCON
Sine of roller bearing flange angles, array SINF in CRCON
Osculation parameters, array CRV in BCON; Cosine of roller
bearing flange angles, array COSF in CRCON

Array ZEMA in BCON (See Jones 13.189 & 13.190); Flange
height parameter, array ARMS in CRCON

Raceway/rolling element contact moduli calculated in CALCON
Variable 210 defined in CALCON

Variable GP = BDAT(4) / BDAT(5) calculated in BCON & CRCON

Variable Y calculated in BCON (initial IRCC radius, eqn
13.177 in Jones); WN2 = BDAT(22)/2 in READAF

Ball drag constant 21, used in BALLEQ

Ball drag constant Z2, calculated in BCON & CRCON

Ball drag constant 23, used in BALLEQ

Array W in CRCON, slice width

Ratio involving raceway curvatures, array RDEF in BCON
Ratioc involving raceway curvatures, array REX in BCON;
raceway array C2 in CRCON

Delta angular position of each rolling element

Contact deformation values CDEF(3,2), calculated in ABDEL

Array RX in CRCON

Variable PREF in BCON, equal to .05 * rolling element dia
Relative inner ring speed (WREF), calculated in CALCON
Variable TF & TM in CALCON (see BRGAX for more details)
Variable TM in CALCON

Variable WREFYZ in BCON & CRCON, .2 * WREF (BDAT(157))
Equated to BSC(1-3) in SPRING

Variable RPZ in CALCON, used in GUESCG

Variable CRP in GUESCG, could be number of cage DOF
Variable DELYZ in GUESCG, vector sum of cage radial
displacements

Variable THETA in GUESCG, angle of cage radial displacement
Calculated b5-axis inner ring displacements (x-trans, Y-
trans, z-trans, y-rot, z-rot)

Calculated 5-axis inner ring forces (Fx, Fy, Fz, My, Mz)
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Contents of main problem variable storage matrix BDAT, continued

Variable

BDAT (181-184)
BDAT (185)

BDAT (186)
BDAT (187)
BDAT (188-189)
BDAT (190)

BDAT (191)

-BDAT (192)

BDAT (193-200)

Description

Change in bearing diametral clearance due to temperature,
calculated in TMPFIT, used in CALCON, GROLLB, ROLLIN
Operating diametral clearance = BDAT(7) + BDAT (185) [not
used]

Change in clearance between outer ring OD and housing for
IBSCOR configurations with deadband, calculated in TMPFIT,
used in GAPDEF

Specified axial preload force, used only with duplex
bearings :

Specified axial preload spring stiffness, used with ball
bearings

Resulting elastic axial displacements due to preload (UXP2),
used only with duplex bearings

The next thirty items are not used in quasi-static code, but the positions are
retained for use in future frictional analyses

BDAT (201-202)
BDAT (203-204)
BDAT (205-206)
BDAT (207-208)
BDAT (209-210)
BDAT (211-213)
BDAT (214)

BDAT (215)

BDAT (216-218)
BDAT (219-220)
BDAT (221-222)
BDAT (223-224)
BDAT (225)

BDAT (226)
BDAT (227)
BDAT (228)
BDAT (229)
BDAT (230)

BDAT (231-232)
BDAT (233-234)
BDAT (235-236)
BDAT (238)

BDAT (239-240)
BDAT (241-242)
BDAT (243-244)
BDAT (245-246)
BDAT (247-248)
BDAT (249-270)

Maximum EHD film thickness HMAX defined in FMIXR

Miniscus distance variable DIST defined in FMIX & FMIXR

EHD reduction starvation factor PHIS defined in FMIX & FMIXR
EHD reduction thermal factor PHIT defined in FMIX & FMIXR
Outer/inner raceway lubrication life factor

Quter/inner raceway and overall bearing fatigue life

Equated to BDAT(215) in GUESCG

Variable WCAGE in GUESCG, angular speed of cage

Array XCGF in CRCON

Composite raceway surface roughness, calculated in CALCON
Composite raceway asperity slope, calculated in CALCON

Outer ring flange CLA surface roughness (array SIGF in
BCON/CRCON)

Inner ring flange CLA surface roughness

Rolling element end CLA surface roughness

Outer ring flange asperity slope (array SGF in BCON/CRCON)
Inner ring flange asperity slope

Rolling element end asperity slope

Array HT in CRCON

Array RACE in CRCON

Array RCFY in CRCON

Variable XLCG in CRCON (half roller length)

Array RRFY in CRCON

Array RRF in CRCON

Array RCFX in CRCON

Array GAP in SETGAP, roller end gap
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Contents of main problem variable storage matrix BDAT, continued

Variable

Description

The next thirty items are not used in quasi-static code, but the positions are
retained for use in future frictional analyses

BDAT (271-274)
BDAT (275-278)
BDAT (279-282)
BDAT (283-286)

BDAT (287-294)
BDAT (295-298)

BDAT (299-300)

BDAT (301-330)
BDAT (331-360)

vVariable FLFAC(1) in ROLLEQ passed to FLMIX as DISTH,
miniscus diatance variable

Variable FLFAC(5) in ROLLEQ passed to FLMIX as PHISH, EHD
film reduction starvation factor

Variable FLFAC(9) in ROLLEQ passed to FLMIX as PHITH, EHD
film reduction thermal facor

Variable FLFAC(13) in ROLLEQ passed to FLMIX as RATIOH,
QASP/QTOT for roller bearing

Flange/roller conductivity terms
Outer/inner film thickness to surface roughness ratio,
calculated in LIFE

Sine of rolling element angular position, set in CALCON
Cosine of rolling element angular position, set in CALCON

In the next six items, the first 20 positions refer to the roller bearing
outer race, the last 20 positions refer to the inner race

BDAT (361-400)
BDAT (401-440)
BDAT (441-480)
BDAT (481-520)
BDAT (521-560)
BDAT (561-600)

BDAT (601-605)

BDAT (606)

BDAT (607-650)
BDAT (651-690)

BDAT (691-750)

Array DK in SLICES, roller slice radius

Roller bearing crown drops CD, calculated in SLICES

Slice half width constant BMI, calculated in SLICES

Array HM in SLICES, called from CRCON

Product of terms used to calculate film thickness (not used)
Array RK in SLICES

Temperatures of shaft, inner ring, rolling elements, outer
ring, and carrier/housing. Note that flange and lube
temperatures used in SHABERTH are not defined here.
SHABERTH initially stores temperatures in an array TB, then
transfers to these locations in routine SHABE.

Reference temperature for fit calculations, set to 70°F in
CALCON, used in TMPFIT

Variable HZ in ROLLEQ, hertz contact stress, first 20 are
for outer raceway, second 20 are for inner raceway
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ENCLOSURE (1)
STATIC LOAD-DISPLACEMENT TEST OF SINGLE BALL BEARING

D. H. Merchant 23 July 1994

TEST DESCRIPTI AND RE T

A discussion of the special relations between forces
applied to the test rig and the statically equivalent forces
and moments input to FEREBA is provided in Attachment 1.
Attachment 2 is a listing of the FEREBA input data file used
for the pretest analysis for the no-deadband configuration.
The axial preload spring stiffness of 73,400 1b/in
represents the slope of the nonlinear load-displacement
curve for small loads. This Belleville spring bottoms with
a maximum load of about 3800 1lb at a maximum stroke ("Outer
Ring/Hsg Axial Gap") of 0.093 in. For the deadband test
configuration, the carrier inner diameter exceeds the outer
ring outer diameter by 0.0002 in; this results in a measured
radial deadband of 0.0001 in.

Attachment 3 comprises the informal notes, for both
bearing tests, prepared by the Test Engineer. Raw data
consisting of applied forces, measured by four load cells,
and corresponding displacements, measured by four Bently
probes, are listed on page 3-4 for Test 1 and on page 3-7
for Test 2. The XF-YF-ZF coordinates for the transducer
locations listed in Table 1 apply to the FEREBA analysis.
To order the test rig locations for consistency with those
for the FEREBA analysis, it is necessary to interchange the
values for B2 and B3 and for L2 and L3.

As noted in Attachment 1, the forces applied to the

- test rig are the carrier support reactions in the FEREBA

analysis. The FEREBA input 1loads must thereforce be
calculated from the applied test rig loads (plus distributed
carrier weight) by appropriate transformation relations.
These equations are coded, for example, in Attachment 4a for
Case 6 of the deadband configuration (Test 2). The
corresponding forces and moments input to FEREBA for this
case are listed in Attachment 4b. A complete set of test-
rig applied forces and statically equivalent FEREBA forces
and moments are listed in Tables 2 and 3 for both tests.
Forces for the five runs for each load case are averaged.
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For comparison with FEREBA calculated displacements,
the test rig displacements must be converted to equivalent
translations and rotations relative to the shaft inner ring.
This conversion is accomplished by the transformation
equations coded, for example, in Attachment 5a for Case 1 of
the no-deadband configuration (Test 1). The corresponding
equivalent shaft displacements for the case are listed in
Attachment 5b. A complete set of these test rig "measured"”
displacements are listed in Tables 4 and 5 for both tests.
Displacements for the five runs for each load case are
averaged.

The displacements measured on the test rig by the
Bently probes do not include the initial axial displacement
due to the carrier weight of 24 1b. For comparison with
test rig "measured" displacements, the axial displacement
due to preload (Ux = 0.0006 in) must be subtracted from the
FEREBA displacements calculated with applied loads plus 24-
1b axial preload. The resulting relative shaft displacements
are listed in Tables 4 and 5 as FEREBA output displacements.

CONCLUSIONS:

1. The forces applied to the test rig for both tests
show very small run-to-run variations from the intended
forces.

2. The displacements measured for the no-deadband
configuration show acceptably small run-to-run variations.
In particular, the four runs without applied load (Case 0)
show excellent repeatability.

3. The displacements measured for the 0.0001-inch
deadband configuration show rather large run-to-run
variations. In particular, the six runs without applied
load (Case 0) show poor repeatability. This probably
indicates stiction in the bearing load path.

4. One variable which could not be accounted for
between test and analysis is the alignment of radial force
relative to ball locations. The potential magnitude of this
effect was not evaluated.

5. FEREBA did not converge to input forces and moments
for several cases. Correlation between test "measured"
displacements and FEREBA output displacements is difficult
to assess because of the relative errors in translation and
rotational displacements.
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6. An alternate procedure is available with FEREBA to
correlate measured and calculated data. It is possible to
input "measured" displacements to FEREBA and calculate
corresponding shaft forces to comparé with test values
designated as FEREBA input forces. This procedure would
avoid the previously noted convergence problems since no
convergence is involved with the displacement input option.
Whether assessing correlation becomes easier with this
procedure was not determined.
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ATTACHMENT 1
REPRESENTATION OF TEST RIG FOR FEREBA PRETEST ANALYSIS

Version 1 D. H. Merchant 12-15-93

COORDINATE SYSTEM AND CONSTRAINTS:

In FEREBA, the thrust force is applied in the + X
direction to the inner ring and shaft at the center of the
unmounted bearing. This corresponds to the + 2 direction in
the ANSYS finite-element model. FEREBA then automatically
transforms the ANSYS reduced stiffness matrix in cylindrical
coordinates from the ANSYS coordinate system (RA-6A-ZA) to
the required FEREBA cylindrical coordinate system (XF-RF-
_ ®F). .- The constraints applied to the ANSYS carrier model

must be consistent with the FEREBA coordinate system.

The solution procedure in FEREBA is predicated on a
bearing system which has the carrier fixed in inertial space
and which has forces or displacements prescribed at the
inner ring and shaft. Whether forces or displacements are
prescribed, the inner ring/shaft undergoes five independent
small displacements to result in rolling element forces.
For the test rig, the inner ring and shaft are fixed in
inertial space a&and forces are applied to the carrier to
result in rolling element forces.

To represent the bearing and carrier of the test rig
using the FEREBA solution procedure, it is necessary to
replace the forces applied to the test rig carrier by
reaction forces at the carrier supports of the ANSYS/FEREBA
model. By constraining six degrees of freedom on the ANSYS
carrier in a statically determinate manner and by applying
appropriate forces and moments at the center of the
unmounted bearing, the reaction forces on the FEREBA carrier
can be made identical to the forces applied to the test rig
carrier. Four of the six constrained degrees of freedom in
the ANSYS model must be exactly those at which the three
axial forces and one radial force are applied to the test
rig carrier. And the forces and moments applied at the
center of the FEREBA bearing must exactly equilibrate the
forces applied to the test rig carrier.

The deflections measured by the test rig are relative
deflections between the fixed inner ring and the movable
carrier. The measured deflections are therefore equivalent
to those calculated by FEREBA so long as there is negligible
elastic deflection of the test rig’s shaft connecting the
inner ring to ground. Since this shaft is solid steel with
diameter exceeding that of the inner ring, the shaft elastic
deflections are justifiably neglected.
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ATTACHMENT 2

FEREBA INPUT DATA FOR PRETEST ANALYSIS

Rig 8all Besring, IBSCOR/IBSCIR = 3/1, Fa = 828, fr = 600
Date this enalysis file written: Thy feb 3, 19%

Time this snalysis file written: 10:34:50

fembor.asc
CONTROL

8. 0000000€ - 06
TEMP DATA

LOADS

fembir.esc

Analysis Type

Searing Type (0, 1, or 2)
Analysis Units

Ring Disp Iteration Loops
Ring Disp Iteration Error (X)
Force lterstion Loops

Force iteration Error (X)
Analysis Print Fleg

Outer Ring Configuration
Inner Ring Configuration

Shaft Speed

Bearing Pitch Dismeter
usber of Rolling Elements
Outer Ring Life Multiplier
Inner Ring Life Multiplier
Inner Ring Outer Diameter
Outer Ring Inner Diemeter
Outer Ring Outer Diameter
Corrlc;{llsn lmer‘b{l;:;er
Outer Ring/Hsg Axiae
Preload Spring Stiffress

Satl Diameter

Dismetral Clearance
Outer Racewsy Curvature
Inner Receway Curveture

Shaft Nateriatl

Inner Ring Materist
Elements Haterial

Outer Ring Kateriel

Car/M Rateriel

Shaft Elastic Modulus
Inner Ring Elastic' Modulus
Elements Elastic Modulus
Outer Ring Elastic Modulus
Cor/Mang Elastic Modulus
Shaft Poisson Ratie

Inner Ring Poisson Ratle
Elements Poisson Ratio
Outer Ring Poisson Ratie
Car/Msng Poisson Ratio
Sheft Dersity

Inner Ring Dersity
Elements Density

Outer Ring Density
Car/¥sng Density

Shaft Thermsl Exp Coeff
Inner Ring Thermal Exp Coeff
Elements Thermal Exp Coeff
Outer Ring Thermel €xp Coeff
Car/¥sng Thermal Exp Coeff

Shaft Temperature
Inner Ring Temperature
Elements Tempersture
OQuter Ring Tempersture
Cor/isng Temperature

X-Axis (Thrust) Force
Y-Axis Force

2-Axis Force

X2-plane Moment (About V)
XY-plane Moment (About 2)
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The two bearing tests were conducted at A zone in €Ed Mack’s lab. The first
one on &-17-94, the second on 6-21-94,

Calibration of load cells by using voltage substition. O mvdc and 1800 1bf
eqivalent voltage were sent to the DATRONIC adc set up. A FC was used to
capture test data. After O and 1800 1bf cal, with all load off - zero all
load channels. 1800 lbf cal voltage = load cell sensitivity /7 3000 X 1800
with exitation adjusted to 10.00vdc.

Calibration of EBently probes by applying various thickness of shims and
record output voltages. Shims used : 0.010", 0,015", 0,020", 0.029", 0.03%9
0.048" and 0.039".

Test data were taken S times on each load condition(case). Loads were
applied incrementally to improve repeatability. Light taps were made to
cable, supports to release any stiction. Max load was reduced from 3000 to
1800 1bf due to cable yielding at about 2000 1lbf. -

_ Wil Halgmann

Dave Merchant and Witk reviewed the raw Bently voltage outputs on each
case after the lst bearing test. It was determined that the data seemed to

consistant enough that we will go into the Znd bearing test.

Removal of 1st bearing was difficult. LN2 was used to freeze the center
shaft but not conduct enough to the bearing mounting area. 3 screws were
used in the fixture to force the outter race of the bearing. Eventually
the outter race broke off with the inner race not responding. Finally a
hub puller was found and used to pull off the rest of the bearing.

The 2nd bearing was installed after freezing the mounting shaft in LNZ for
30 minutes. The bearing slided into place with no apparent effort.

Calibration of the load cells went smoothly just like the first one.

But the calibration of the Bently was not successful. It was determined
that the probe when back off close to its mounting location would induced
interference in calibration. Thinner target disc was used to minimize
backing when cal to thicker shims. This approach seemed to improve reading’
except the 0.048" and 0.059" cals looked "round off". With the probes set
at about 0.029" to begin testing - the probes are stationary with respect
to their mounting environments. This condition was later discussed with
Wilt and agreed that the last 2 calibration points would normalized to the
ist bearing cal, then process the test data.

It is discoverred that the two bearing test set up were slightly different.
There was no aluminum retaining ring on the first bearing. Pointing the
Rently probes directly at the alunimum ring resulted in very large step
voltage output, e.g. at 0.020" read 12.27V and at 0.029" read 156.16V.

There for the thin target discs were used.

The following is the brief description of files generated:

READ.ME - This file.

BEENTCAL.WQ{ - The Quarttro file of the 2 bearing test’s Eently probe cals.

RAWBEAR! .DAT - Raw data taken on PC for bearing test 1.

BEARING1.DAT - Raw data “clean up" to just one data entry per load case sin
data is very stable during each case load. Test 1.

LINEEARL.FRN - Linearized data after ran through Russ Miller'’s BENT_LIN.bas
program using calibration file BCAL.cal. Test 1.

RCAL1.CAL - Bently cal. Test 1.

EEARING1.WQ1 - Quattro file with LINEEAR1.FRN imported with headings. Test

BCAL2.CAL - Bently cal. Test 2 with the last two thickness shim output

reading "normalized" from the first calibration.

e - s hant ORIGINAL PAGE 18
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File: BCALI .CAL 306 .a.. 6-21-94 Fage 1
0.0195 0.02 , 0.029 , 0.039 , 0.048 , ©0.059
6.70 7.96 , 10,03 , 12.12 , 13.89, 15, 31
6.65 7.90 , 10.26 , 12.26 , 14,00 4 15.72
.96 , &£.83 .37 , 11.42 , 12.96, 14,350
2.37 3.44 , $.50 , 7.41 .26, 11.38

ORIGINAL PAGE IS
OF POOR QUALITY
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File: LINBEAR!.FRN

5T613.4
£8178.7
58692.9
59903.0
275S.1
63128.2
63377.7
&£639S4.9
L£4485.8
65201.4
66303, 3
646790.8
66917.1
67328.5
68044, 3
68425.8
69455.8
&9764.4
70216.0
TO426.0
TOTSE4.3
T1145.6
T1434.0

0.0293
0.0241
0.0213
Q.0457
0.0230
0.0197
00,0292
0.0236
0, 0207
0, 0459
Q, 0229
00,0198
G.0291
0.0233
0.0204
0.0452
0.0231
0.0197
0.0237
0. 0207
0.0453
0., 0232
0.0196
O, 0292
0.0240
0, 0212
0.0456
0.0238
0, 0201
0.,.0292

0.0261
0.0287
0.0296
0. 0221
00,0257
0.0272
0.0280
0.0289
0.0299
0, 0220
0.0257
0.0272
0.0281
00293
O.0302
0.0221
0.0258
00,0273
0.0291
0, 0301
0.0221
0. 0257
0.0273
0.0281
0.0289
0.0298
0.0221
0. 0253
0,027

0. 0280

-~ =
2,951 .a..

0.0281 ,
0. 0328 ,
0.0341 ,
00,0227
0.0291 ,
0.0317
0.0313
0.033% ,
0.0347
0.,0226 ,
0.0293 ,
0.0316
0.0317
0.0335 ,
0.0349
00227
0.028% ,
0.0316 ,
0.0332 ,
0.0345 ,
0.0227
0.0289
0.0317
0.0316 ,
0.0330 ,
0.0342 ,
Q,0227
0.0287
0.0312
0.0316 ,
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-22-94

0.0340
0.0267
0.0237
0.0Q0502
0.0280
0.0238
0.0318
0, 0260
00,0231
0.0505
0.0279
0.0240
0©.0315
0.0258
0.0226
0. 0499
0.0282
0.0239
0.0261
0. 0230
0.0499
0,0282
0.0238
0.0316
0.0265
0. 0235
0.0501
0.0289
0.0244
0.Q0317

Fage |

&2

s9

61
600
301
301

61
&0
S99
301
300
61
61
LOO
300
301
&0
S9
602
300
301

61
60
S99
3ol
302

“““““-‘““““““!l“““

61
s9
61
116
300
301

60
s9
114
301
300

&0
&0
113
299
302
60
S8
115
300
301

60
60
115
298
299

ORIGINAL PAGE 15
OF POOR QUALITY
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61
S9
b1
116
302
301
(3]
s9
S9
114
300
301
0
s9
60
114
299
301
59
60
114
301
301
0
60
61
115
258
301
O

‘-l‘ql“-l“““1-‘-‘“““-‘-“‘“‘

&
18¢
&i
&
1 8¢

&
18¢
&

=z

18¢C

&
17~
&'
6
18¢C
&0
16\
&l
150

6L
16

eJ

18«



{l

"

‘No DEADBAND
BEARING TESTNO. 1 @ AZONE 6-17-94
(5 runa were performed on each case )

- B1....B4 converted to INCH

L1..L4inLBF
TIME B1 B2

$7649-4—0.0293-—00261 - ~
58178.7 0.0241  0.0287
535929 0.0213 0.0296

595030 00457 0.0221
62755.1 00230  0.0257
631282 0.0197 0.0272
633777 0.0292  0.0280
639549 0.0236  0:0289
644858 0.0207  0.0299
§5201.4 0.0459  0.0220
663033 0.0229 0.0257
667908 00198 00272
66917.1 0.0291  0.0281
673265 0.0233 0.0293
66044.3 00204 00302
684258 00452 0.0221
694558 0.0231  0.0258
697644 00197 00273
702160 00237 0.0291
704260 0.0207  ©0.0301
707543 0.0453  0.0221
711456 0.0232 0.0257
714340 0.0196 0.0273
715727 0.0292  0.0281
71837.0 0.0240 0.0289
723617 0.0212 0.0292
727958 00456 00221
733552 0.0238 0.0253
738315 0.0201  0.0271
739610 0.0292 0.0280

ORIQINAL F

L. — fecad cells

B — defl€tion 30995

B3 B4 L1 L2 L3 L4
0.0281-— 0034002 — ~ B} - = — &+ — b=
00328 00267 59 59 59 600
00341 00237 61 61 61 1801
00227 00502 600 116 116 602
00201 00280 301 300 302 600
00317 00238 301 301 301 1803
00313 00318 0 0 0 0
00336 0.0260 61 50 59 601
00347 0.0231 60 59 59 1802
0.0226 00505 599 114 114 604
00293 00279 301 301 300 599
00316 00240 300 300 301 1800
00317 00315 0 0 0 0
002335 00258 61 60 59 601
00349 00226 61 60 60 1798
00227 00499 600 113 114 601
0.0289 0.0282 300 299 299 600
00316 00239 301 3c2 301 1802
00332 00261 60 60 59 600
0.0345 00230 59 58 60 1801
00227 0.0409 602 15 114 600
00289 00282 300 300 301 602
0.0317 0.0238 301 301 301 1800
00316 00316 O 0 0 0
0.0330 0.0265 61 60 60 600
00342 00235 60 60 61 1801
00227 00501 599 115 115 601
0.0287 0.0289 301 298 298 599
00312 0.0244 302 209 301 1800
00316 00317 0O 0 0 0

AOE S

CF POOR QUALITY
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File: ECALZ .CAL 306 .a.. 6-22-94 Fage 1
5,7
0.01 , 0.015 , 0.02 , 0,029 , 0.039, 0.048 , 0.059
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BEARING TESTNO 2@ A ZONE 6-20-94

i

(5 runs were performed on esach case.)
81...B4 converted to INCH
_ L1...Ld4inLBf
L4
L_—> lvad c= s
- B —>deflection 3"935
TIME B1 B2 B3 B4 L1 L2 L3 L4 CASE
491219 00250 00272 00305 00275 0 0 0 0 0
- 495333 00239 00252 00280 00252 61 60 59 600 5
T 499786 00233 00260 00271 00228 6! 61 59 1800 4
-~ 50636.8 00462 00107 00000 00000 601 113 114 601 6
512676 00345 00189 00155 00438 302 208 299 600 2
518860 00244 00247 00207 00289 301 298 208 1800 1
- 520120 00260 00268 00275 0.0292 0 0 0 0 o
— 523243 00228 00271 0.0257 00254 61 59 59 601 5
= 508560 00225 00275 00254 00229 &0 59 60 1802 4
7 532421 00460 0.0114 00000 00000 602 115 113 601 6
f 54267.9 00200 0.0209 00166 00401 303 297 299 600 2
. 546486 00230 00254 00205 00278 299 299 299 1799 1
- — 547659 00265 00260 00276 0.0301 0 0 0 o ¢
= . 8560859 00229 00270 00260 00257 61 60 59 599 5
554270 00227 00274 00257 00232 60 60 59 1801 4
B 55797.6 00459 00102 0.0000 000006 599 115 114 601 6
. 553983 00316 0.0197 00164 00416 302 300 299 601 2
- 567821 00239 00245 00206 00268 301 301 300 1801 1
- 569313 00282 00280 00233 00335 0 0 0 0 0
571416 00234 00265 00259 00264 61 80 59 599 5
: 574607 00224 00273 00256 00230 61 59 61 1800 4
=~ 57748.7 00461 0.0108 00000 0.0000 600 115 115 602 6
580417 00316 0.0203 00159 00415 302 300 300 600 2
- sa2166 00217 00257 00208 00262 301 300 298 1802 1
583386 00252 00281 00265 0.0291 0 0 0 0 0
= 58734.0 00238 00267 00257 00267 61 60 59 601 5
- 539733 00249 00270 00254 00256 60 60 59 1802 4
592839 00458 00118 0.0000 00000 602 113 114 603 6
- 50657.1 00385 00177 00127 00486 302 300 209 599 2
60050.6 00280 00240 00183 00353 302 300 301 1803 1
 60181.3 00294 00253 00243 0.0350 0 0 0 0 0

1"
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ATTACHMENT 4a

GAUSS CODE TO CALCULATE FEREBA INPUT LOADS

/*
file BFORCE.PRC DHM 7-16-94

This GAUSS code transforms the forces applied to the bearing
tester to FEREBA forces and moments at the inner ring/shaft
for post-test correlation as part of the ROLLING ELEMENT
BEARING MECHANICS contract with MSFC.

INPUT

*/
R = ZEROS (4,4);
R{1,1] = 1.0;
R[1,2] = 1.0;
R[1,3] = 1.0;
R[2,4] = 1.0;
R[3,1] = 3.600;
R[3,2] = -1.800;
R[3,3] = -1.800;
R{3,4] = -0.15;
R{4,2] = -3.118;
R[4,3] = 3.118;

L = ZEROS(4,1);

L{1,1] = 608.8; AVG L1 PORCE FOR CASE 6 TEST 2 */
L({2,1] = 122.0; /* AVG L3 FORCE FOR CASE 6 TEST 2 */
L[3,1] = 122.2; /* AVG L2 FORCE FOR CASE 6 TEST 2 */
L[4,1] = 601.6; /* AVG L4 FORCE FOR CASE 6 TEST 2 */

»

/*
CALCULATE FEREBA FORCES AND MOMENTS
*/
FFM = R*L;
/t
OUTPUT DATA
*/

OUTPUT FILE = BFORCE.OUT;
OUTPUT RESET;
FORMAT /M1 /RD 12,4;

PRINT FFM;
PRINT;
PRINT;
PRINT;
PRINT R;
PRINT;
PRINT L;
QUTPUT OFF;
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ATTACHMENT 4b

CALCULATED FEREBA INPUT LOADS FROM GAUSS CODE

FILE BFORCE.OUT DHM 7-18-94

FEREBA APPLIED FORCES AND MOMENTS FOR TEST 2 (CASE 6)

FFM
853.0000°
601.6000

1661.8800
0.6236

R

1.0000 1.0000 1.0000 0.0000
0.0000 0.0000 0.0000 1.0000
3.6000 -1.8000 -1.8000 -0.1500
0.0000 -3.1180 3.1180 0.0000

L
608.8000
122.0000
122.2000
601.6000
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ATTACHMENT 5a

GAUSS CODE TO CALCULATE "MEASURED®" SHAFT DISPLACEMENTS

/%

file BDEFLAl.PRC DHM 7-16-94
This GAUSS code calculates the inner ring/shaft deflections
in FEREBA coordinates from positions measured in the bearing

static test performed as part of the ROLLING ELEMENT BEARING
MECHANICS contract with MSFC.

This program is hardwired for load case 1 of test A without
deadband.. :

INPUT

*/
R = ZEROS(4,4); /* MRDV = R*FDEFL x/
R[1,1) = 1.0;
R[(2,1] = 1.0;
R[3,1] = 1.0;
R(4,2] = 1.0;
R[{1,3] = - 1.993;
R[213] = 0.997;
R[{3,3] = 0.997;
R{4,3] = - 2.10;
R[2,4]) = - 1.726;
R[3,4] = 1.726;

RINV = INV(R);

B = ZEROS(4,5); /* LOADED POSITIONS FOR 5 TRIALS IN
LOAD CASE 1 IN FEREBA COORDINATES */

B[1,1] = 0.0197; /* POSITION AT GAGE Bl */
B[1,2] = 0.0198;

B[1,3] = 0.0197;

B[1,4] = 0.0196;

B[1,5] = 0.0201;

B[2,1] = 0.0317; /* POSITION AT GAGE B2 */
B[2,2] = 0.0316;

B[2,3] = 0.0316; /* GAGE B3 IN TEST */
B[2,4] = 0.0317;

B[2,5] = 0.0312;

B[3,1] = 0.0272; /* POSITION AT GAGRE B3 r/
B[3,2] = 0.0272;

B[3,3] = 0.0273; /* GAGE B2 IN TEST */
B{3,4] = 0.0273;

B[3,5] = 0.0271;
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*

CALCULATE MEAN RELATIVE DEFLECTION VECTCR FOR

*/

/*

B(4,1] = 0.0238; /
B[4,2] = 0.0240;
B(4,3] = 0.0239;
B(4,4] = 0.0238;
B[4,5] = 0.0244;

B0 = ZEROS (4,

S)y; /%

*

POSITION AT GAGE B4 */

UNLOADED POSITIONS

FOR 5 TRIALS

OF ALL LOAD CASES IN FEREBA COORDINATES */

BO[1,1])
BO[1,2]
BO[1,3]
BO (1, 4]
BO[1, 5]
BO[2,1]
BO[2,2]
BO[2,3]
BO[2,4]
BO[2,5]
BO[3,1]
BO[3,2]
BO[3, 3]
BO(3,4]
BO[3,5]
BO(4,1]
BO [4,2]
BO [4, 3]
BO (4, 4]

0.
0
0
0
0
0
0
0
0
0.
0
0
0
0
0
0
0
0
0
BO [4,5] 0

0292;

.0291;
.02918;
.0292;
.0292;
.0313;
.0317;
.03155;
.0316;

0316;

.0280;
.0281;
.02805;
.0281;
.0280;
.0318;
.0315;
.03165;
.0316;
.0317;

MRDV = ZEROS(4,1);

i=1;

DO WHILE i LE 4;

sl;

SUM = 0.0;

DO WHILE

j LE 5;

/t

/t
/*

/i
/i

/i

POSITION AT GAGE

POSITION AT GAGE

GAGE B3 IN TEST

POSITION AT GAGE

GAGE B2 IN TEST

POSITION AT GAGE

SUM = SUM + BO[i,3] - BIi,Jl;

j=13
ENDO; :
MRDV (i, 1]

+ 1;

= SUM*0.2;

i=i+1,'

ENDO;

B1 ¥/
B2 */
*/
B3 */
*/
B4 */

THIS LOAD CASE

CALCULATE FEREBA DEFLECTIONS FOR THIS LOAD CASE

*/

FDEFL = RINV*MRDV;
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/t
OUTPUT DATA FOR THIS LOAD CASE
*/
OUTPUT FILE = BDEFLA1l.OUT;
OUTPUT RESET;
FORMAT /M1 /RD 12,4;

PRINT FDEFL;
PRINT;
PRINT;
PRINT B;
PRINT;
PRINT MRDV;
PRINT;
PRINT R;
PRINT;
PRINT BO;
PRINT;
OUTPUT OFF;
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ATTACHMENT 5b

CALCULATED "MEASURED" SHAFT DISPLACEMENTS FROM GAUSS CODE

FILE BDEFLA1.OQUT

DHM

7-18-94

"MEASURED" SHAFT DEFLECTIONS FOR TEST 1

FDEFL
0.0034
0.0014

-0.0030
0.0002

B
0.0197
0.0317
0.0272
0.0238

MRDV
0.0094
-0.0000
0.0008
0.0077

1.0000
1.0000
1.0000
0.0000

BO
0.0292
0.0313
0.0280
0.0318

[eNeNoNo

HOOO

QOO0

.0198
.031e
.0272
.0240

.0000
.0000
.0000
.0000

.0291
.0317
.0281
.0315

.0197
.0316
.0273
.0239

OO0 O0O

-1.9930
.9970
.9870
.1000

N OO

.0292
.0316
.0280
.0316

OO0

10-22

(CASE

OO0 O0OOoO

'
=Wl e

[oNeNeNo]

1)

.0196
.0317
.0273
.0238

.0000
.7260
.7260
.0000

.0292
.0316
.0281
.0316

[eNeNoNo

[eNeoNoNo

.0201
.0312
.0271
.0244

.0292
.0316
.0280
.0317
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TABLE 1

TRANSDUCER LOCATIONS FOR BEARING TEST RIG

TRANSDUCER
L1
L2
L3
14
B1
B2
B3

B4

Notes:

DIRECTION
Axial
Axial
Axial
Radial
Axial
Axial
Axial

Radial

XF LOCATION
N/A
N/A
N/A
0.15
N/A
N/A
N/A

2.10

YF LOCATION
0.000
3.118

-3.118
N/A
0.000
1.726

-1.726

N/A

ZF LOCATION

3.600
-1.800
-1.800
N/A

-1.993
0.997
0.997

N/A

(1) Li refers to load cell while Bi refers to deflectioﬁ transducer.

(2) The origin of the FEREBA coordinate system is at bearing center.

(3) YF and ZF coordinates obtained from drawings and checked on rig.

(4) XF coordinates measured from rig and subject to +/- 0.10" error.
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