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Numerical study of boundary layer interaction
with shocks- method and code validation

By N. A. Adams

1. Motivation and objectives

A major problem in modeling of turbulent supersonic flows is the correct assess-

ment of viscous-inviscid interaction problems. Of particular interest is the interac-

tion of boundary layers with shocks. Present turbulence models give in most cases

unsatisfactory results in the region of rapid distortion and in the separation region

(if one is present) in particular with regard to mean flow profiles and turbulence

quantities (cf. Kline et al., 1981).

Recent direct numerical simulations (DNS) at moderate supersonic Mach num-

bers of boundary layers without interaction show that the effect of compressibility

in those cases is rather small (Guo & Adams, 1994). Even at those Mach num-

bers, however, compressibility can have a significant effect in case viscous-inviscid

interaction is present.

Compression corner flows are of great practical interest since they appear to be

omnipresent in aeronautical configurations (aircraft fuselage, fuselage-wing junc-

tion, engine inlet, etc.). On the other hand, they also give rise to a particularly

interesting combination of phenomena, which all are more or less confined to a

relatively narrow region about the corner. First, the turbulence in the oncom-

ing boundary layer responds to a rapid distortion. This is a generalization of the

problem of isotropic turbulence interacting with normal shocks (e.g. Lee, 1993) to

anisotropic turbulence with inhomogeneous mean shear. Second, for large enough

Mach numbers and deflection angles there is a shock-induced unsteady separation.

The separation bubble is contained by a detached curved shear layer, and fluc-

tuations in this shear layer, subject to high strain, are strongly amplified. Some

experiments report evidence for G6rtler-like vortices in the detached shear layer

(Smits &: Muck, 1987). Third, there is unsteady shock motion, which is suspected

to be triggered by bursting events in the oncoming turbulent boundary layer (An-

dreopoulos & Muck, 1987). And finally, the shock is generated at the wall. This
is favorable for direct numerical simulations since it relieves the need to accurately

introduce a shock at the outer boundaries.

The objective of the present work is the direct numerical simulation of shock

boundary layer interaction. This report summarizes the first phase during which

a numerical method suitable for this problem has been developed and a computer

code has been written and tested.

2. Accomplishments

The first part of this work focuses on the development of a new type of spati-,d

discretization scheme which combines the spectral-like wave-representation of sym-

metric compact finite difference schemes (Lele, 1999) with a suppression of aliasing
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errors by implicit dissipation at non-resolved wavenumbers and increased robustness

against generation of spurious waves at the boundaries. In an additional step the

scheme is made shock capturing by switching locally to an essentially non-oscillatory

(ENO) scheme near discontinuities (in case of weak solutions). In this report the

numerical method is merely outlined; for details the reader is referred to Adams &

Shariff (1994).

The newly developed spatial scheme is used to discretize the reduced hyperbolic

part of the Navier-Stokes equations while for the parabolic part a symmetric com-

pact finite difference scheme is used (ef. Adams, 1993). This report summarizes

the status after implementation and validation of the according computer code.

The performance of the present working code lies in between about 200 MFLOPS

and about 140#s per grid point and time step (pure 3rd order ENO, 2D) and about

500 MFLOPS and roughly 20ps per grid point and time step (pure eompact-FD,

3D) on a single CRAY Y-MP C90 CPU. These relations reflect the increased number

of logical instructions required for the non-linear ENO scheme.

2.1 Numerical method

Generalizing the formulation of compact finite-difference schemes (Lele, 1992),

a family of centered upwind-biased compact schemes of 5th order is introduced.

Numerical dissipation is used to suppress unresolved wavenumbers while an accurate

representation of the dispersion relation for resolved wavenumbers is required. This

requirement is formulated as a constrained optimization problem. A parameter

study allows for the generation of a whole family of locally optimal schemes, one

member of which, called P455/1, we are using in this study. The general formula
of the schemes is

t_r

= V Z • (I)

In this equation fj = f(xj) is the grid function, the derivative of order a of which

is searched for. For scheme P455/1 it is a = 1, pt = pr = ul = ur = 2 for interior

schemes, pt = ul = 1, Pr = 2, u_ = 3 for the left next-to-boundary scheme and

tq = ut = 0, p_ = 2, ur = 4 for the left boundary scheme (accordingly for the

schemes at the right boundary). The coefficients (_u and av are determined from

order conditions and the abovementioned optimization problem. For the numerical

values see Adams & Shariff (1994).

The discrete derivative operator for a semi-discretized scalar advection equation

on a strip consists of interior and boundary schemes whose frequency responses are

shown in Fig. 1. It should be noted that the dispersion, Fig. la, is well approximated

up to wavenumbers larger than 2, significantly increasing the resolved-wavenumber

domain when compared with non-compact finite-difference schemes (e.g. that of

Rai & Moin, 1993). The numerical dissipation is shown in Fig. lb.

Moreover, the compact formulation allows for stable high-order boundary closures

avoiding the order-drop at the boundary as in Rai & Moin (1993). Note that it

has been shown by Gustafsson (1975) that for hyperbolic equations the boundary

closures must not be of order less than (r - 1) to maintain a global order r of
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FIGURE 1. Frequency response wr of scheme P455/1, (a) real part, (b) imaginary

part.- ....... scheme at left boundary; .... scheme next to left boundary; -- in-

terior scheme; --- scheme at right boundary; ---- scheme next to right boundary.

is the wavenumber normalized with the grid spacing.

the semidiscretization. The linear stability of this scheme is analyzed in Adams &

Shariff (1994).

Two different approaches of making an underlying compact scheme shock captur-

ing (nonlinearly stable) have been pursued initially. The first followed the approach

of Cockburn & Shu (1994), which required some minor modifications to be appli-

cable for our general type of upwind compact schemes. Numerical tests, however,

showed an unsatisfactory shock resolution. A Gibbs-like phenomenon could not be

suppressed satisfactorily without a significant smearing of the shock. The second

follows the guideline of Hou L: Le Floch (1994), who gave evidence that a noneon-

servative scheme converges to a weak solution (so a solution exists) if in the neigh-
borhood of discontinuities a conservative scheme is used. In our case scheme P455/1

is used in the smooth regions, while a 5th order ENO scheme in finite-difference

form (Shu & Osher, 1989) using Roe fluxes on local characteristics with entropy-fix

by switching to a local Lax-Friedrichs flux formulation is used near discontinuities.

Without being able to give theoretical evidence, numerical tests reported in Adams

& Shariff (1994) demonstrate that the hybrid scheme possesses the ENO property.

For integration in time two different 3rd order Runge-Kutta methods are used. A

pure ENO scheme as spatial discretization is combined with a TVD Runge Kutta

scheme (Shu, 1988). The hybrid scheme is combined with a low-storage explicit

Runge Kutta scheme (Williamson, 1980, case 7). The admissible time step is calcu-
lated from an estimated bound for the discrete convective and the discrete viscous

operator using a CFL (Courant-Friedrichs-Lewy) condition.

2.2 Discretization of the compressible conservation equations

The fundamental equations are the volume-specific conservation equations for
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mass momentum and energy

OU OF OG OH

ot - Ox +-N-y +z (1)

The flux vectors F, G, and H are given, for example, in Anderson et al.(1984).

The viscosity # is calculated from Sutherland's law. Z is a distributed forcing

which can be used to cancel the residual of a given basic flow (this is done in the

calculations of sections 2.4.1 and 2.4.2, otherwise Z = 0). For a discussion of this

term see, for instance, Adams (1993).

The fundamental systems of PDE are discretized in a method of lines manner, i.e.

the spatial derivatives of the fluxes are approximated by a spatial discretization. The

system thus becomes an ODE in t in terms of the grid point values and is projected

forward in time with a Runge-Kutta integration method.

The viscous fluxes are discretized in conservative form by a symmetric P346-

scheme used in Adams (1993). Note that although a conservative discretization of

a linear heat equation with this scheme would be asymptotically unstable (Adams,

1993), this kind of discretization remains bounded in the present case with an

upwind discretization of the convective terms. Since a conservative discretization

has significantly less operations, it has been given the preference over the non-

conservative discretization used in Adams (1993).

The discretization of the convective terms has been a major objective. For the

details the reader is referred to Adams & Shariff (1994). Here, it is summarized in
a few words. At each t the fluxes calculated from the instantaneous solution are

processed by a discontinuity detector algorithm, and cells are marked for treatment

by the ENO scheme. In the present code this is done in each index space component,

and a whole plane is marked if at least one cell of this plane contains a transition.

This is favorable for vectorization but has the disadvantage that the ENO scheme

may be used in smooth regions, too. For the marked cells the fluxes are projected on

the local characteristics by a transformation with the left-eigenvector modal matrix

of the cell's Roe matrix. The flux derivatives at the cell faces (i.e. the nodes)
are reconstructed from the cell-centered numerical fluxes on local characteristics

obtained with a 5th order ENO scheme using a Roe-flux formulation with a local

Lax-Friedrichs flux as entropy fix. The numerical fluxes (after application of the

ENO procedure) are then projected back onto the computational space basis by a

transformation with the corresponding right-eigenvector modal matrix.

The flux derivatives in the smooth regions are calculated with the positive biased

and the negative biased compact schemes. This is done by projecting the fluxes

with the respective right-hand side matrices of the schemes onto a local average,

where the entries at the grid points at which the solution is to be taken from the

ENO procedure are replaced with the already known flux derivatives. The left-

hand side is modified accordingly by setting the respective submatrix to unity. In

the reconstruction step the so obtained linear equation systems (pentadiagonal) are

solved for the positive and negative biased fluxes. The upwinding is done by choos-

ing the flux derivative in upwind direction according to the direction of the local
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characteristics at each grid point. In case of a vanishing eigenvalue, the arithmetic

mean is taken as is for the flux derivatives obtained by ENO since they are already

upwinded. The advantage of this non-building block (though straight forward) flux

splitting is that the flux-approximation is smooth up to the order of the scheme at

sonic points• This would not be the case in general if split fluxes would be used.

2.3 Outflow boundary treatment

A major concern of direct numerical simulation methods for spatially evolving

convective problems is the correct formulation at the outflow boundary. Since this

boundary is artificial a prescription of the correct conditions would require the

knowledge about the solution at this plane. Several approaches are now in more or

less standard use. For incompressible flows there is the relaminarization method of

Kloker et al.(1993). In compressible flow Pruett et al.(1994) use a buffer domain

approach. Guo et al.(1994) suggested a much simpler method with the same effi-

ciency as the buffer domain approach. In this work we adopt the latter, though in

a different formulation, to account for the non-perturbation form of the equations
solved here since the basic flow residual is not compensated by a forcing term as

in Pruett et al., 1994, and Guo et al., 1994. Simpler approaches, for instance non-

reflecting conditions (e.g. Poinsot & Lele, 1992), treat viscous wave forms within

the boundary layer improperly and give rise to spurious reflected waves.
The basic idea follows closely the concept of a sponge layer according to Israeli

& Orszag (1981). From a simple model equation as

Ov Ov
- (2)

Ot Ox

it is seen that a(x) in the last term of the right-hand side has the character of a

Newtonian cooling coefficent.

We choose the following damping function (cf. Israeli & Orszag, 1981)

a(x) = As(Ns + l)(Ns +2) (X(LX_:)_+2x) (3)

• , L z

for xs < x < L.. It has the propert,es: (,) f_ a(x)dx = As and (ii) a(L.) = O.
The implementation is done readily by adding a term

zs = -o( x )(U - uo)

for xs < x < L_ to the fundamental equations (1). Herein U denotes the vector of

conservative variables and Uo = Ult=o. l_rom property (ii) of a it is clear that the

fundamental equations (1) are recovered at x = Lx where a perfect non-reflecting

condition is prescribed (Thompson, 1987).

2.4 Code validation

The computer code is validated using two kind of tests. The first is typical for

DNS codes where a known mean flow is enforced and the correct representation of a
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TABLE 1. Flow parameters.

N. A. Adams

Case M_ Re_, Tw/T_ a _ Lz

A 2.5 12773 2.041 0.26 0.43 15

B 4.5 10000 4.38 2.25 0 10

linear eigensolution is required. The second is typical for CFD codes where a mean
flow is to be found.

In the first case we cheek for the efficiency and correct implementation of deriva-

tive and integration routines by marching eigensolutions of a temporally evolving

boundary layer (streamwise periodic) in time. The global growth rate (defined from

the mode energy Eq. (4)) is required to match the real part of the eigenvalue. Also,

since the amplitude function is only a function of the wall normal coordinate z, fre-

quency and growth rate at a given z should be close to the imaginary and real part

of the eigenvalue locally in z. Inflow and outflow boundary conditions are examined

by considering spatial instability in a parallel boundary layer. The spatial growth

rate is required to be sufficiently accurately represented and the outflow boundary

condition should have a limited upstream effect.

In the second test the steady problem of a shock impinging on a flat plate bound-

ary layer is investigated. Though none of the methods used here is suitable to obtain

steady state solutions efficiently, evidence is given that the (quasi time dependent)

solution marches toward a steady state. After a reasonable number of iterations

the computations are halted and compared with reference data.

2.4.I Eigensolutions of temporally evolving boundary layer

As test cases we choose cases B and C from Adams (1993, section 6.1). For

completeness the flow parameters are given in table 1. A combined algebraic-sinh

mapping is used in z; see Adams, 1993, section 6.1 for parameters. Boundary

conditions are periodic in x and y, non-reflecting at z = Lz, and isothermal no-slip

at the wall with the wall temperature set to the adiabatic wall temperature (Mack,

1984).

The unperturbed mean flow is calculated from the compressible similarity equa-

tions (Stewartson, 1964) with a shooting method (Adams, 1993). An unstable

eigenmode with streamwise and spanwise wavenumbers a and/3, respectively, as

given in table 1 calculated from a spectral solution method (Simen, 1993) (used

earlier in Adams, 1993) is superimposed. For case A the eigensolution is an oblique

vortical mode, for case B a two dimensional Mack mode (mixed vortical/acoustic).

In both cases the initial amplitude is A = 10 -4. The grid spacing in x and y is

uniform, the box dimensions are chosen consistently with the wavenumbers such

that the eigenmodes become (+ 1, =l=1 ) and (+ 1,0) Fourier modes, respectively.

For the calculations scheme P455/1 is used. Since the solution is smooth the
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ENO scheme is inactive. We define a modal energy as

L,E(k.,%;0 = (4)

uj stands for the three velocity components (sum over j).

Fig. 2 shows the growth-rate obtained from the modal energy for different dis-

cretizations for 1100 time steps each. The initial transient is an effect of different

solution methods and different meshes used for the initial eigenmode and for the

DNS.

Figs. 3 and 4 show the local growth rate and frequency across the boundary layer
for test cases A and B, respectively, making use of the fact that the eigenfunction

maintain their shape in a parallel boundary layer. The improvement from a dis-

cretization 10 x 50 to 20 x 100 is mainly due to the refinement in z which allows

for a better resolution of the region around the critical layer which is also a region

of high curvature of the mean-flow profiles.

2.4.2 Eigensolution_ of spatially evolving boundary layer

Since the y-discretization remains unchanged compared to the test cases in sec-

tion 2.4.1, we can restrict ourselves here to 2D-problems. The main concern is

the correct formulation of the inflow boundary condition and the efficiency of the

outflow-boundary condition given in section 2.3. The test case is the spatially evolv-

ing equivalent of case B of section 2.4.1. Also, since it has been found in section
2.4.1 that Nz = 51 is about sufficient to resolve the eigenfunctions in z, we focus

on the effect of changing Nx and the outflow boundary condition parameters. At

the inflow all primitive variables are prescribed (as function of t) according to the
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well-posedness requirement (Oliger & SundstrSm, 1978); at the outflow the sponge

layer of section 2.3 together with a non-reflecting condition at x = Lx is used. As

validation-test we check for the correct spatial growth rates in terms of primitive

variables at an arbitrary position z. The growth rates are obtained from the coeffi-

cients of the solution's Fourier transform in y and t. These coefficients assume the
form

a_(_, _) = A(z)P a_ (5)

where A(z) is the complex amplitude function of the linear eigensolution. From two
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successive x-stations the complex a can then be obtained by

z)] - ln[a, (xl, z)]
a = -i ln[fio_(x2' , (6)

X2 -- Xl

so that the growth rate is -Im(a) and the frequency Re(a).

Fig. 5 shows the effect of the sponge layer. From the experience with a symmetric

compact scheme (Guo et al., 1994) we choose the sponge layer thickness to be one

wavelength of the eigenmode. The minimum necessary sponge-layer thickness is

problem dependent and is therefore not further investigated here. Spurious reflected

waves penetrate into the computational domain further upstream in the case of a

pure non-reflecting boundary condition, Fig. 5b, than in the case of a non-reflecting

boundary condition plus a sponge layer, Fig. 5a. Though this effect is not so

pronounced for the low amplitude linear perturbation in the present case, it is

expected to be stronger for large amplitude turbulent fluctuations. Note that non-

reflecting boundary conditions are not consistent with the evolution of a boundary

layer eigensolution. This reflects in large oscillations near the outflow boundary of

a sensitive measure as the local growth rate, Fig. 5b.

From Fig. 6 it is evident that increasing the order Ns of the cooling function

polynomial in Eq. (3), (making the damping more localized) or increasing the cool-

ing intensity As has no noticeable effect on the growth rate or the extent of the

valid domain. Thus it is expected that an increased damping is able to extinguish

stronger turbulent fluctuation efficiently without increasing the invalid part of the
domain.

Fig. 7a shows the same case as Fig. 5a, but the integration time is increased

to seven periods so that the wave can travel about two times the width of the

computational box. Obviously the region of upstream influence of the boundary
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condition did not increase, so that the shorter integration times used before lead

to correct conclusions about the upstream extent of the invalid part of the domain.

In Fig. 7b both streamwise and vertical number of grid points are doubled, which

results in a more accurate approximation of the growth rate as expected.

Two remarks are in order. Firstly we note that the setup used in the above

test calculations is quite severe, allowing for only 4 wavelengths _ of the primary

wave in x, which finally results in about 2.5_ for the extent of the valid part of

the domain. Second, inflow transients are apparently unavoidable (as the initial

transients were in the preceding section) since the inflow perturbation is taken

from a linear stability solution obtained with a different method and on a different
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TABLE 2. Flow parameters.

quantity value comment

T* 221.6K

M_¢ 2
* 9178.79PaPoo

Pr 0.72

t¢ 1.4

R 287.03

#* 1.449.10-Skg/m/s
S 0 l10.4K

Redo 140000

Re_l 450000

Re_ 909.9053

_ 1.5309 lO-4m

6_ 4.7325 10-4m

_o 82.7559

L_ 415

Lz 200

estimated

estimated

at _0, from sim. sol.

99.9% thickness

mesh. Other DNS results (e.g. Pruett et al., 1994, Guo et al., 1994) confirm this

observation.

It can be concluded that the outflow boundary treatment has no upstream effect

further than roughly 1.5A upstream of Lx for (Lx - xs) = A. The findings in this

section resemble the experiences made by Guo et al.(1994) with a different spatial

discretization and a different cooling term. Pruett et a/.(1994) report that their

buffer domain approach spoils an upstream region of about 2A. The sponge layer

approach thus allows for a much simpler formulation with a comparable performance

of a well-tuned buffer-domain approach.

2.4.3 Laminar boundary layer interacting with an impinging _hock

The following test example is a standard case for the validation of steady state

Navier-Stokes solvers. Experimental data are provided by Hakkinen et a/.(1959).

Although the experimental evaluation is limited and the comparison suffers from

incompletely reported flow parameters, the experiment's favorable feature is that

the flow is laminar, although it should be noted that the test section extends into

the region where the laminar fiat plate boundary layer is unstable.

An extensive numerical investigation of this particular problem has been done

by Katzer (1989). We emphasize here that for the results presented in this section

time-accurate and low-dissipation methods have been used. The computations have

thus been halted before a true steady state has been reached. The flow parameters

are given in table 2 (reference lengttl is 6_, dimensional quantities are marked with

a star).



350

2_

N. A. Adam8

z 100

,,, , , iiiiii ., ....

[ t r I [ i I
82 100 150 200 250 300 350 400 450 498

X

FIGURE 8. Quasi-Schlieren plot (intensity proportional to norm of density gradi-
ent).

Fig. 8 shows a quasi-Schlieren plot (merely the norm of the density gradient)

when the computations were halted. A shock, introduced at the inflow boundary,

impinges at /3 = 32.6 ° on the laminar boundary layer along a flat plate. At the

boundary layer edge it is reflected as a decompression wave. The shock-induced

boundary layer separation gives rise to a compression wave in front of the separation
region and a compression wave behind.

As initial condition we take the solution of the inviscid shock-reflection problem

outside of the boundary layer, while near the wall a boundary layer from a similarity

solution is given. The shock is to impinge on the plate at Xsh = 325.2041 for the
inviscid problem.

As boundary conditions we fix at the inflow the initial condition for all primitive

variables (giving the correct number of 5 conditions for the Navier-Stokes equations

according to Oliger & SundstrSm, 1978). At the outflow we prescribe perfectly

non-reflecting boundary conditions (Thompson, 1987), and no viscous conditions

are imposed. In fact the imposition of weak viscous boundary conditions in terms

of derivatives of the viscous fluxes (Poinsot & Lele, 1992) was found to have no effect,

while the imposition of boundary conditions in terms of stresses (Dutt, 1988) re-

sulted in an outflow boundary-layer due to the inconsistency between boundary con-

dition and solution. At the wall we prescribe a no-slip adiabatic condition. At the

upper boundary all flow variables are prescribed corresponding to the state behind

the impinging shock. Non-reflecting conditions at the upper boundary (Thompson,

1987) were found to give rise to a viscous (heat-equation like) instability emerging

from the corner between inflow and upper boundary. The reason for that behavior

is that the presence of the shock close to the upper boundary at the inflow leads

to non-negligible viscous terms near the edge of the computational box, and inflow
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and boundary conditions which are well posed only in the inviscid limit become

invalid.

We perform a calculation with Nx = 151 and Ny = 100. First, the meaningless

transient caused by the initial condition is spanned by marching a 3rd order ENO

scheme 5500 iterations in time (method A). Note that since we use a time accurate

solution procedure and since the ENO-stencil changes in time, the residual does not

reach machine zero but merely the truncation error of the spatial discretization.

This has been confirmed by continuing the calculation with method A for 5500

additional iterations (not shown). After the residual settled down the computation

is continued for another 5500 iterations with the hybrid scheme (method B). Since

the Reynolds number is small, the shock is resolvable by the scheme and the ENO-

scheme is only active in z in the outer 4.95% of the domain (in the average over

all iterations), where the grid spacing is wide (shock detector parameter settings

: /3x = 1, /3, = 0.05). Fig. 9 shows the evolution of the residual for the four

conservative variables.

Figs. 10 and 11 show pressure contours after 5500 iterations with method A and

method B, respectively. The hybrid scheme appears to represent the reflected com-

pression and decompression waves more accurately than the pure ENO scheme. This

suggests that the internal phenomena of the boundary layer are better represented.
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FIGURE 10. Pressure contours after 5500 iterations, method A (rain = 0.16,

max = 0.26, inc = 0.002).
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FIGURE 11. Pressure contours after 5500 additional iterations, method B (rain =

0.16, max = 0.26, inc = 0.002).

This finding is confirmed if we compare numerical and experimental results.

Fig. 12 shows surface pressure and skin friction. In both cases method B gives

a better representation. Note that the experimental values downstream of the sepa-

ration region appear to be affected by the particular method of measuring the skin

friction with a pressure probe (Hakkinen, 1959). The accurate numerical solutions

of Katzer (1989) show that the experimental values in this region are somewhat too

large.
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The correspondence between experimentally and numerically obtained velocity

profiles is reasonable for method B and less satisfactory for method A, figure 13.
Two remarks are in order. First, as can be seen from Fig. 9, the residual is

still decreasing when the computation with method B was halted, though with a

shallow slope as expected for a time-accurate method. Thus the results should not
be considered as converged. Second, the residual level after the computation with
method A was halted does not decrease if the computation is continued with method
A. The further decrease of the residual and the improvement of the solution is due

to method B.

We finally note that for the present 2D calculations the code performance of the
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pure 3rd order ENO scheme was 228 MFLOPS and 143/_ per grid point and time

step, while the 5th order hybrid scheme performed at 354 MFLOPS and 23 ps per

grid point and time step (CRAY fpp and eft77 optimization only, single processor
Y-MP C90).

3. Future plans

In the next step the computational code will be extended to generalized coor-

dinates (in (x,z)). This requires the characteristic transformation routines to be

adapted and an extension of the flux calculation routines.

The final objective is to simulate a compression corner flow according to a suitable

experiment. Experiments presently considered are those of Smits & Muck (1987)

(having the advantage of relatively detailed turbulence data, the disadvantage of a

quite large Reynolds number Re6_ = 78000) of Ardonceau et al.(lacking the details

of the previous one but having a smaller Reynolds number of roughly Re62 = 7700),

and of Zheltovodov et al.(at about Re62 = 9720 for the incoming boundary layer
with the problem that mean flow and turbulence data have been obtained in different

wind tunnels). The Mach number range of those experiments is between 2.25 and

3, the turning angles go from 8 ° to 25 ° .

Acknowledgments

I acknowledge the preparatory work of K. Shariff, NASA ARC, concerning hybrid

schemes, and his help by reviewing a draft of this report. For graphics postprocess-

ing the package COMADI by H. Vollmers, DLR GSttingen, has been used.

REFERENCES

ADAMS, N. A. 1993 Numerische Simulation yon Transitionsmechanismen in kom-

pressiblen Grenzschichten. Doctoral Dissertation, Technical University of Mu-

nich, Germany. Also DI, R-FB 93-29, DLR, Germany (in German).

ADAMS, N. A. & SHARIFF, K. 1994 A high-resolution hybrid compact-ENO

scheme for shock-turbulence interaction problems. CTR Manuscript in prepa-
ration.

ANDERSON, D. A., TANNEHILL, J. C. _: PLETCHER, R. H. 1984 Computational

Fluid Mechanics and Heat Transfer. Hemipshere Publ. Corp., New York.

ANDREOPOULOS, J. & MUCK K. C. 1987 Some new aspects of the shock-wave

/ boundary-layer interaction in compression-ramp flows. J. Fluid Mech. 180.
405-428.

ARDONCEAU, P., LEE, D. H., ALZIARY DE ROQUEFORT, T. & GOETHALS, R.

1979 Turbulence behavior in shock wave / boundary layer interaction. A GARD
CP-_71, paper 8.

COCKBURN, B. _: SHU, C.-W. 1994 Nonlinearly stable compact schemes for shock

calculations. SIAM J. Numer. Anal. 31, 607-627.



Boundary layer interaction with shockn 355

DUTT, P. 1988 Stable boundary conditions and difference schemes for Navier-

Stokes equations. SIAM J. Numer. Anal. 25, 245-267.

Guo, Y. & ADAMS, N. A. 1994 Numerical investigation of supersonic turbulent

boundary layers with high wall temperature. Proe. 1992 Summer Program,

CTR, Stanford Univ. - NASA ARC.

Guo, Y., KLEISER, L. & ADAMS, N. A. 1994 A comparison study of an im-

proved temporal DNS and spatial DNS of compressible boundary layer transi-

tion. AIAA-paper 94-2371 (sub. to AIAA Journal).

GUSTAFSSON, B. 1975 The convergence rate of difference approximations to

mixed initial boundary value problems. Math. Comput. 29, 396-406.

HAKKINEN, R. J., GREBER, I., TRILLING, L. & ABARBANEL, S. S. 1959 The

interaction of an oblique shock wave with a laminar boundary layer. NASA

Memorandum 2-18-59W.

Hou, T. Y. & LE FLOCH, P. G. 1994 Why nonconservative schemes converge to

wrong solutions: error analysis. Math. Comput. 62_ 497-530.

ISRAELI, M. & ORSZAG, S. A. 1981 Approximation of radiation boundary condi-

tions. J. Comp. Phys. 41, 115-135.

KATZER, E. 1989 On the length scales of laminar shock/boundary-layer interac-

tion. J. Fluid Mech. 206, 477-496.

KLINE, S. J., CANTWELL, B. J. _ LILLEY, G. M. (EDS) 1981 Proe. 1980-81

AFOSR-HTTM Stanford Conf. Complex Turbul. Flow, Vol. III. Thermosci.

Div., Stanford Univ., CA.

KLOKER, M., KONZELMANN, U. _ FASEL, H. 1993 Outflow boundary condi-

tions or spatial Navier-Stokes simulations of transition boundary layers. AIAA

Journal 31, pp. 620-628.

LEE, S. S. 1993 Effects of shock strength on shock turbulence interaction. In

Annual Research Brief_ - 1993. CTR, Stanford Univ. - NASA ARC, 329-345.

LELE, S. K. 1992 Compact finite difference schemes with spectral-like resolution.

J. Comp. Phys. 103, 16-42.

MACK, L. M. 1984 Boundary-layer stability theory. In Special Course on Stability

and Transition of Laminar Flow. AGARD Rep. No. 709, 3-1-3-81.

OLIGER, J. _: SUNDSTRC'SM, A. 1978 Theoretical and practical aspects of some

initial boundary value problems in fluid dynamics. SIAM J. Appl. Math. 35,

419-446.

POINSOT, T. J. _: LELE, S. K. 1992 Boundary conditions for direct simulations

of compressible viscous flows. J. Comp. Phyn. 101,104-129.

PRUETT, C. D., ZANG, T. A., CHANG, C.-L. & CARPENTER, M. H. 1994 Spa-

tial direct numerical simulation of high-speed boundary-layer flows - part I:

algorithmic considerations and validation. Theor. Comput. Fluid Dyn. 6.



356 iV. A. Adams

RAI, M. M. & MOIN, P. 1993 Direct numerical simulation of transition and tur-

bulence in a spatially evolving boundary layer. J. Comp. Phys. 109, 169-192.

SHU, C.-W. 1988 Total-variation-diminishing time discretizations. SIAM J. Sci.

Star. Comput. 9, 1073-1084.

SHU, C.-W., &: OSHER, S. 1989 Efficient implementation of essentially non-

oscillatory shock-capturing schemes. II. J. Comp. Phys. 83, 32-78.

SIMEN, M. 1993 Lokale und nichtlokale Instabilit£t hypersonischer Grenzschicht-

str6mungen Doctoral Dissertation, University of Stuttgart, Germany. Also

DLR-FB 93-31, DLR, Germany (in German).

SMITS, A. J. _5 MUCK, K.-C. 1987 Experimental study of three shock wave /

turbulent boundary layer interactions. J. Fluid Mech. 182,291-214.

STEWARTSON, K. 1964 The Theory of Laminar Boundary Layers in Compressible

Fluids. Oxford University Press, London.

THOMPSON, K. W. 1987 Time dependent boundary conditions for hyperbolic sys-

tems. J. Comput. Phys. 68, 1-24.

WILLIAMSON, J. n. 1980 Low-storage Runge-Kutta schemes. J. Comp. Phys. 35,
48-56.

ZHELTOVODOV, A. A., ZAYLICHNY, E. G., TROFIMOV, V. M. & YAKOVLEV, V.

N. 1990 An experimental documentation of supersonic turbulent flows in the

vicinity of sloping forward and backward facing steps. In Settles, G. S., & Dod-

son, L. J. 1994 Supersonic and hypersonic shock / boundary-layer interaction

database. AIAA Journal 32, 1377-1383.


