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1 Introduction

In this research effort, the usefulness of hp-version finite elements and adap-

tive solution-refinement techniques in generating numerical solutions to op-

timal control problems has been investigated. Under NAG-939, a general

FORTkAN code was developed which approximated solutions to optimal

control problems with control constraints and state constraints [1, 2]. Within

that methodology, to get high-order accuracy in solutions, the finite element

mesh would have to be refined repeatedly through bisection of the entire

mesh in a given phase. In the current research effort, the order of the shape

functions in each element has been made a variable, giving more flexibility

in error reduction and smoothing. Similarly, individual elements can each be

subdivided into many pieces, depending on the local error indicator, while

othe1' parts of the mesh remain coarsely discretized. The problem remains to

reduce and smooth the error while still keeping computational effort reason-

able enough to calculate time histories in a short enough time for on-board

applications.
As an aid in evaluation of the error for use in solution refinement, in

optimal control problems, the integral of the boundary value problem (the

Hamiltonian) can be made to equal zero. Using this information alone, a

reasonable error indicator can be developed, but as is shown in later sections,

it is not consistently accurate and only tends to model parts of the error well.

However, the Hamiltonian can be used as a check of the more sophisticated

error estimators.

The error estimator currently being developed is based on work done by

Estep, et al., [3], for initial value problems. This will involve the solution of

a dual problem, a linear differential equation of the same order as the main

problem, the behavior of which indicates the overall level of error in the

main problem, hp-refinements will then be build around this error indicator

to attempt to equidistribute the error through the time interval and attempt

to provide a minimum of error for a given computational effort. It remains

to be investigated if this refinement process can be accomplished in a short

enough time

The rest of this paper describes the work that has already been done

in developing an adaptive scheme for implementing the hp-version of the

finite element method to solve optimatl control problems. The family of

optimal control problems that can currently be solved will be defined in
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section 2. Next in section 3, the variables of the problem will be modelled

using shape functions, thereby establishing the algebraic equations to be

solved. In section 4, some textbook-style problems will be solved using with

this method and the results will be analyzed. In section 5, the Hamiltonian

will be shown to be a reasonable, but inconsistent, error measure, along

with some preliminary results in adaptively refining solutions to textbook

problems. Following that will be the preliminary development of the residual

error indicator discussed above. Finally in section 6, an outline of future

research work will be given.

2 Optimal Control Problems

A FORTRAN code has been developed which uses hp-version finite elements

to approximate solutions to a particular subset of optimal control problems.

In this section this subset of problems will be defined, and the equations to

be solved using finite elements will be established.

2.1 Problem formulation

Systems being studied are governed by general, nonlinear differential equa-
tions

]c - f(x,u,t) x • Rn',u • R"',t • [t0,tf] (1)

where the state vector x describes the state of the system, u is a vector

of control variables, and t is the time. Although the methodology and the

code are not so restricted, for simplicity's sake, this discussion is confined

to problems with only a single set of differential equations in a single time

interval. Furthermore, the functions f are assumed to be differentiable with

respect to their arguments, and the states are assumed to be continuous,

from initial time to (presumed to be zero) to final time tf, where tf can be
fixed or free.

General boundary conditions on the states can be specified at the initial

time, the final time, or some combination of both, in the form

• [x(to),x(tf),tl] = 0 • • R"'" (2)

Let J be a cost functional to be minimized that can contain both a scalar

penalty on the states at the endpoints to or tI plus an integral penalty on



the states,controls, and time:

J = ¢[x(to),x(tl),tl] + L(x,u,t) dt (3)

The optimal control problem is then to find the control vector time history

u(t) which causes the system governed by Eq. (1) to meet the boundary con-

ditions (2) such that the given cost functional (3) is minimized. Admissible
control histories are assumed to be bounded and continuous.

This formulation also allows for inequality constraints of the form:

g(x,u) < 0 9 e n', (4)

no more than nu of which can be active at any one time. The function

g need not be a function of the states, but it must be a function of the

control vector. Otherwise it falls under the category of state constraints,

which require special handling that has not been developed yet under this

methodology.

The constraints in Eq. (4) are enforced through use of slack variables, k,

such that (4) is replaced by the equality constraints,

g_(z,u)+ k? = 0 i = 1...n_ (s)

To simplify notation, a vector of these squared slack variables is defined such
that

gi = k/2 i = 1...ng (6)

2.2 Calculus of variations

In using calculus of variations to minimize a cost functional subject to con-

straints [4, 5], the residuals of the differential equations, control constraints,

and boundary conditions are adjoined to the original cost function by means

of Lagrange multipliers A(t),/_(t), and u respectively. This yields a new cost

function J' such that

J' = ¢[x(to),x(tl),tl] + vr_[x(to),x(tI),tl]

+£' {L(x,,,,t)+ - +#Ttg(x,+Kl}dt
(7)
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which equals J if all the constraints are satisfied. The functions )_(t) are

known as the costates.

Next, to simplify notation, define quantities

H _ L+ATf+pT(g+K) (8)

_= ¢ + uT_ (9)

where H is known as the Hamiltonian of the system. Also define xf - x(tl)

and Xo - x(to), thus reducing jr to

f£' [H(x,u,t) _T;_] dt (10)J' = ¢(x0, x S, t f) +

To satisfy the first-order necessary conditions for a local minimum, the

authors of Ref. [5] find an extremal of jr by varying the control vector,

with the variation in the state vector (and other variables) being a result

of the variation in the control vector. Here instead, the development in [1]

is followed in which the first variation of jr is taken, allowing independent

variations in the states, state rates, controls, Lagrange multipliers, slack

variables, and final time, yielding

6J' = 61]T_ -_- -_xodx(to) + dx(ti) + -- + H - )_T:_ dt I
t!

rt [OH6x OH_u (11)
+ _J,o'L-_ + -_ _ _T_ + 6_T(f _ x)

+ _(g + K) + _g] at

where

6Ki -- 2ki_ki i = 1... ng (12)

This results in a weaker form of the equations, though as will be shown, the

equations developed in [5] are all still satisfied.

The variations denoted by _ are variations holding time fixed (appropriate

for variations of quantities under an integral), while those with a d are total

variations or differentials, which allow time to vary (appropriate for varying

quantities at an end point). These variations are related at the end points

by

dx(to) = _x(to) (13)

dx(tl) = 5x(tf) + _(tl)dt ! (14)



sincetf is allowed to vary while to is not.

In an attempt to group terms by their variational coefficient, one can

remove the time derivatives of variational parameters by integrating AT6_

by parts and expand the total variations at the end points. Eq. (11) then

becomes

6J' _vr _ -t- 6x(to) -i- 6x(t I) T tl

+ [0@_xf AT] ,, Jc(tl)dtf-t-(O--_ ÷H) ,, dtl (15)

[ OH sx OH _u

+ _pW(g + K) + #T6K] dt

Defining subscripts on H to denote partial derivatives and rearranging terms

gives:

_fJ' = _vTffE-I- (_---_ -I- H) dtf + ( O_Xo A T) _X(to)
t! to

)(°°)C_(_ AT k(tI)dt! Jr- OXf AT _X(tf)
+

-- t I tl

'[Hu6u H_6x _T_x &xT(f :_)+ + + + -

_{_6pT(g -F K) + i_T_K] dt

(z6)

Now, defining/:/and _ as

AT ------ O_
(17)

O(I)
/:/-

Or
(18)
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and combining terms yields:

+ + + + +

+ _fpT(g+K)+#TSK] dt

In an analagous way to finding the extremum of a scalar function of

many variables, the first order necessary condition for a extremal solution

to the functional J_ is that 5J_ = 0 for arbitrary independent variations in

the states, costates, time, slack variables and other Lagrange multipliers.

Since this includes the case where all the variations except any one are zero,

this condition implies that for this cost functional to have a minimum, all

the quantities multiplied by each of the variations must be zero. At the

boundaries, this results in the following equations:

_(t0)+ _(t0)= 0 (20)

_(ts) + _(ts)=0 (21)

• =0. (22)

Also, if the final time is indeed free to vary, then this relation must also hold:

H + H = 0 (23)

otherwise, dt I = 0 and Eq. (23) can be ignored. In appendix A the difference
between these two cases will be discussed.

The integral in Eq. (19) is made equal to zero in continuous time by

enforcing the following equations:

_T(t) + H.(x,)q u, t) = O

J:(t) -- f(x,u,t) = O

H.=O

(24)

(25)

(26)

(hereby refered to as the costate equations, state equations, and the optimal-

ity condition respectively), and the control constraint equations:

g + K = 0 (27)



21_iki= 0 i = 1... ng (28)

These equations are equivalent to the Euler-Lagrange equations developed

in [5] and define a two-point boundary value problem in x and A.

To approximately solve this problem using hp-version finite elements, a

form o[ these equations will be developed such that all the boundary condi-
tions are enforced weakly through the use of Lagrange multipliers. This will

allow shape functions to be chosen that do not need to meet the boundary

conditions, thus allowing the same set of shape functions to be used to solve

a wide class of optimal control problems. This way the number of equations

to be solved is not affected by the boundary conditions, except for fixed vs.

free t I.

To look at the equations on the interior of the time interval, first assume

the b,oundary conditions are satisfied. Eq. (19) then becomes:

ft0 t!5 J I - [ H u S u -_- H x S x - 5 :_T )_ -_- 5 )_T f at" 5 )_T x

._. _T(g .__ K) + #T_K] dt

(29)

At this stage, the analogy can be drawn between variational methods

and Galerkin methods. Interpreting the variations in the variables as test

functions, the equation 5J _ - 0 becomes the representation of the residuals

in meeting Eqs. (24 - 28) being orthogonal to the test functions (Sx, 5u,...).

This observation will become important when we later look at a posteriori

error estimators.

2.3 Discretization of the problem

Again looking at Eq. (29) as a variational problem, to solve 5J_ = 0, the

infinite dimensional problem is simplified by projecting the true unknown

solution onto a finite set of piecewise polynomials. The variations are then

approximated using piecewise polynomials of appropriate order to generate

a set of nonlinear equations.

Obviously, different choices for these polynomials yield different sets of

equations. Previous work [2] used discontinuous, piecewise-constant poly-

nomials for the main variables. This choice is prudent for problems which

have discontinuities in the states or costates, which many optimal control

problems do, so in this effort, discontinuous shape functions will be used.
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Another advantageis that in using discontinuouspolynomials, the sim-
plest versionof those (piecewiseconstants)allowsthe integrals in Eq. (29) to
be doneby inspection rather than by numerical quadrature. Even the sim-
plest continuouspolynomial approximationswill require numerical quadra-
ture overan element.

As Eq. (29) stands though, with the _ and _ terms under the integral,
usingdiscontinuousshapefunctions results in jump-terms at eachnodepoint
when the time interval is discretized,adding to the complexity (specifically,
the dimension)of the problem. To avoidthis, continuousapproximations for
5x and 5A are used, and the terms JtT_x and 5AT_ are integrated by parts.

Eq. (29) then becomes:

,SJ' T ti T t! "_^!- 5)_ Xlto + + - += A 5X[to [H,,Su H=Sx _T_._ 6ATf

"4- 6j_Tx + 5ttT(g + K)"4-#TSK] dt

(30)

Next, the time interval is broken up into N not necessarily equal length

time elements, Ati, such that the time at each element boundary (or node)

ti is calculated as:

il = to (31)

ti = ti-1 + Ati i= 2,...,N+ 1 (32)

and the states and controls at these nodes are defined to be

Sci = x(ti) i= 1,...,N+ 1 (33)

fii = u(ti) i= 1,...,N+ 1 (34)

The time within the i th element, ti is expressed as tl = ti-1 + rAti where

O<r<land
m

ti - ii__ (35)7"--- "

At_

so that
d(.) 1 d(.)_ 1

m

dt Ati dr Ati
(.)' (36)



Substituting these relationships into Eq. (30) gives:

_jt _ ^T tl ^T tl.X _xlt o -x 6)_l, o

N /ol [ 6_ 6z_+ Z At, (H_),6,,,+ (H,), 6_,+ _ _, m,
i

+ 6_Tf,+ 6#T(g,+ g,) + _,T6K,]_,

- _,, (37)

In this equation, a subscript i on a variable refers to the value of that

variable within the i th element, while the subscript on a function indicates

the value of that function evaluated using variables within the i th element.

3 Shape Functions

In this section, the specific shape functions alluded to in the previous section

will be defined and used to solve Eq. (37). What will result is a set of

nonlinear algebraic equations to be solved numerically.

Following the work of [8], to avoid jump-terms while also keeping the

shape functions as simple as possible, C o shape functions for the variational

quantities are implemented in each element. These are in terms of nodal

values (:) and polynomial coefficients on element interiors (=).

nb--I

6A, = 6_,(1 - T) + 6ii+1T + Z (1 - T)r_j('r)6_,j (38)
j=l

rib--1

6xi = 6_,(1 - T) + 6Xi+l T + Z (1 - T)v_j(_')6£,j (39)
j---1

Here nb is the order of the shape function polynomial being used, with

nb = 1 the summation would be ignored, and this represents what is used

in the h-version development. The functions _j(T) are Jacobi polynomials of

order (j - 1) as detailed in [9].

The time derivative of these expressions is of the form

d6x_

dT

nb--i

---- 6X_ -- /'_ti_'_'i --" --6.:r,i + 6xi-t-1 4;- Z "_j(7)6xij

j=l

(40)
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where
7j(r) = [(1 - r)rSj(r)]' (41)

Similar expressions hold for the costates.

For the states and costates shape functions are chosen that are only con-

tinuous within the element:

nb

x_ = a_(r)_j O< r < l _ = a_(r)_ij O < r < l

&+l r = 1 )_i+l r = 1

(42)

where the functions at(r ) are polynomials of order j - 1 as derived in [8] to

simplify the algebraic equations later on. Note that :_i and Ai are discrete

values, distinct from the shape functions within the element. The boundary

conditions on the states and costates will be enforced weakly through these

nodal values.

For the controls, control constraint Lagrange multipliers, slack variables,

and their variations, again no time derivatives exist in Eq. (37), so the same

shape functions are used:

rl b

j=l

(43)

nb

ap_= _ _,(_)aP_
j=l

nb

ui = Y_ ai(r)_ij
j=l

rib

&i = __, aj(r)akij
j=l

O<r<l

rib nb

(44)

(45)

_, = __, aj(r)pi1 0 < r < 1 k, = _ aj(r)k 0 0 < r < 1 (46)
j=1 j=l

No nodal values of the controls,slack variables,or control constraint

Lagrange mulipliersare needed in this problem formulation. They can be

calculated as needed afterthe fact through the optimality condition and the

control constraint equations of the previous section,Eqs. (26) - (28).
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Substituting the shape functions from Eqs. (42) - (46) into the integral

which remains in the cost function (37) gives

_fJ' = _N+lCSXN+I --

n,-1
+(g.), _,(1 - _) + _,+_ + _ _j(_)_,_

j=l

rib--1

+ _i+lr + Y_ _j(r)_ij
j=l

-k/:

)n. }
j=l

rib-1

j=l

rib--1

+ _e_+x + _ "r_(r)_e_
j=l

dT

T
nb

j=l

T
nb

j=l

(47)

where

Ej(r) _=(1 - r)rSi(r) (48)

Note that the only nodal values of the states and costates that appear here

are at the endpoints of the time interval. The other internal nodal values

can be generated from the state equations once the other nodal and interior
values have been solved for.
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Becausethe polynomials a(r) and 7(r) were chosento be orthogonal,
Eq. (47) reducesto

= -- _ XN+I6)_N+ I +

. 1{+ _ At,fo (n_), _j(_)6_,_
i

+ a_T(H:),(I - r) + aZT+,(H:),r+ aSTI,(I - r) + 6£T+,I,r
rib--1

j=l

j=l

• j=2 /

)
• j=2

(49)
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Arranging terms by their variational coefficientgives

i=2

_.,_1[ /o1 ]-t- _ _ e_ T -'_id+] -t- Atl Q(T)fi dT
i=l j=l

, +.;[_,__,,,_A,,/o,__.//,,._,_,1
[ /o'+ _2 _T -i,,1 - At, (1- _)(H,), d_

i=2

-}- _i-1,1 -- mti-1 _lT(Hz)i-1 dT]

_,_1 [ /o1 ,]+ _ _ 6e T _,Z+, + At, Q(T)(H=), d
i=1 j=l

+_cT+I [--_N+I + _N,1-- AtN _IT(H.)N dTl

N n, 1

i j=l

I/; /

(50)

N nb 1 nb nb _

E E _kiJ Ati fO 2_j(T) O_j(T)Pij olj(T)kij dr+

i j=l

The variational coefficients are independent and arbitrary, due to the

weak form of the equations. Therefore, for the variation of J' to be zero,

the expressions multiplied by the coefficients must be identically zero. In

this way, the first-order necessary conditions for optimal control are approx-

14



imated. To supplementthe equationsderived from setting Eq. (50) equal
to zero, the boundary conditions needto be enforced,as provided in the
previoussection:

0¢ T 0_IJ

^ 0¢ ur O_v
ATN+I COX/ COX/

0¢ vr co¢
g(tl) + "_I + Ot I

• (_co,_N+,, tl)

= 0 (51)

- 0 (52)

= 0 (53)

= 0 (54)

Thus, the two-point boundary value problem (20) - (28) is approximated

by the set of nonlinear algebraic equations (50) - (54). When a problem

has multiple phases (whether by discontinuity of the states or the differential

equations, or both), the equations are similar and can also be handled by the

code. The differences are that the user has to specify extra boundary con-

ditions, including whatever will trigger the discontinuity, and then the code

handles the corresponding jump conditions for the costates and Hamiltonian

automatically.

In the following sections, how these equations are implemented will be ex-

plained, and example problems will be shown which demonstrate the use and

performance of hp-version finite elements. Following that will be a discus-

sion of how to improve the solution adaptively by gauging the error in each

interval, followed by some preliminary results using this refinement technique

4 Implementation and Results

A numerical solution which makes the expressions from Eq. (50) equal to zero

is found using a restricted-step Newton-Raphson method, implemented in a

FORTRAN code. A restricted-step Newton-Raphson method differs from a

standard Newton-Raphson method in that if the full Newton step yields a

higher value of the objective function than the starting point, the step size

is halved repeatedly until an improving step is achieved.

The determination of the Newton step requires the solution of a linear

system of equations. The Jacobian of these equations can be very large as
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shown in Figure 1, which is for the problem defined in section 4.1. The
equations for the most part only depend on neighboring elements, so the
Jacobianendsupbeingquite sparse,asseenin Figure 2for the sameproblem.
That feature is exploited by the useof sparselinear systemssolversfrom the
Harwell subroutine library [11]. These routines usea special sparseversion
of Gaussianelimination with partial pivoting, where information is retained
betweencalls to the routine, sosubsequentlinear systemsto be solvedusing
the sameJacobianstructure (as is commonin determining different Newton
steps)or simply different right-hand sides(as is commonin repeatedly step
halving) take considerablylesstime.

The symbolic-manipulationpackageMACSYMA developedby Symbolics
[12]is usedto generateanalytical partial derivatives of the system equations,

boundary conditions, and control constraints for use in the Jacobian. MAC-

SYMA is also used to generate the a(r) and e(r) polynomials from Eq. (50),

which come from a recursion formula involving derivatives and integrals of

polynomials, as developed in [8]. The user specifies the order of the poly-

nomials, and MACSYMA generates the necessary expressions, but the user

does have to supply initial guesses at the polynomial coefficients.

The integrals in the equations are approximated using Gauss-Legendre

integration [10], with the user selecting the number of Gauss points, which

at this time is constant for all of the integrations. No fewer Gauss quadrature

points should be chosen than the order of the shape functions being used plus

one. This is because the zeros of the shape functions correspond to zeros of

polynomials used in Gauss-Legendre integration. More Gauss points may be

used, and that has shown to be more accurate in some problems, but not

all, nor has the value of this extra computational effort been established. In

Refs. [6] and [7], it is established that the minimum error (or most accurate

stresses) in finite element approximations occur at the Gauss points.

4.1 Unconstrained problem

In perhaps the simplest representation of an aerospace problem with non-

linear system dynamics, this first problem involves the maximum velocity

transfer to a particle of mass m to a specified horizontal flight path in a fixed

time (see [5], pg. 59). The mass is acted on by a force of constant magnitude

ma and variable heading _(t). The states for this problem are position of

the particle x (horizontal) and y (vertical) and the corresponding velocity
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componentsu and v. The differential equations for this system are then:

_:---- ¢t

y=v

= acosfl

7) = asin_

(55)

with initial conditions corresponding to a zero velocity at the origin and with

terminal constraints that the particle is in horizontal flight at a given height

(assumed here to be 1), yielding a boundary condition vector,

_1 = u(0)

• 2= v(0)
• 3 = z(0)

• 4= y(0)
_5= Y(tf)-I

• 6= v(tl)

(56)

The final horizontal position x(tf) is unspecified, and the final horizontal

velocity u(tf) is to be maximized. The cost function is then

J=u(tl) (57)

with the boundary conditions enforced by setting • - 0.

Reference [5] gives the analytic solution in terms of the initial force head-

ing angle, the final time, and the final altitude in unspecified units. These

values were chosen to be 75 °, 1, and 1 respectively.

The code was run for this problem for a variety of combinations of finite-

element parameters. Figures 3 and 4 show the square root of the integral

of the squares (i.e. the two-norm) of the relative error time histories for the

states and controls as a function of the CPU time involved in calculating

solutions. The data points correspond to the 2-, 4-, 8-, 16-, and 32-element

solutions. The initial guess for each case was extrapolated from the con-

verged solution for the case of half as many elements (or for one fewer shape

function coefficient if only 2 elements). All of the specified boundary condi-

tions were met to within 10 -12 for the case when all the elements are evenly
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spaced.Figures 5 and 6 show the the same error data vs. the number of free

parameters in the problem, which equals the dimension of the Jacobian.

Once an initial solution was obtained for a low-order shape function and a

small number of elements, the code converged easily as the parameters were

changed. Not surprisingly, the overall errors reduced as the order of shape

functions increased and as the number of elements increased.

What is surprising is the particularly good performance of the first-order

shape function through the higher error regions. It isn't until errors get below

10 -6 in the states that the higher shape function orders get significantly

better, with each of the other shape function orders being best for each

subsequent 2 orders of magnitude error. That pattern gets pushed even
further down and wider with the control variables. First-order is best all the

way down to 10 -s with each subsequent higher-order shape function being

best seemingly for another 3 or 4 orders of magnitude, until the code runs

into problems with round-off error.

Later these results will be compared with those when the mesh is refined

using an adaptive scheme. For now these results show the increase in accuracy

that is possible using higher-order shape functions in solving optimal control

problems.

4.2 Example with control constraint

Next a problem with a control constraint was studied, again from Ref. [5].

The problem is to minimize the cost function

1 2 1 for1 u2 dtJ = _x(ts) + (5s)

where x and u are scalars. The system dynamics are governed by

 =h(t)u (59)

for some function h(t), subject to two control inequality constraints,

gl = u- 1 < O, and

as= -(u + 1)< 0 (60)

An exact solution is available [2] if the final time is chosen to be 10, the

initial condition is a given constant, and

h(t) = 1 + t - 3t2 (61)
/1
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The exact value for the state at the final time is x(ti) = -17/39 and the

optimal control is

{ -=(ts)h(t) o< t < 2
u(t) -" 1 2 < t < 11/3

-x(tf)h(t) 11/3 < t < 8
-1 8<t<10

(62)

This problem is not as well-behaved numerically as the previous problem,

and so solutions are not readily available for the sequences of distributions

of elements. Errors do reduce significantly as the mesh is refined and the

shape function orders are increased, but showing those results will be deferred

to Section 5 when they will be compared to results using adaptive error-

reduction techniques.

The penalty of increased CPU time associated with using higher-order

shape functions could be serious enough to thwart using this methodology to

solve problems in real time. However, many of the element interior unknowns

can be eliminated at the element level by solving a small set of nonlinear

algebraic equations in which the nodal values are taken as given, splitting

the problem (and hence the Jacobian) into outer and inner loops for the

nodal and interior values to an element respectively. The scheme may then

turn out to be especially powerful in a parallel computing environment since

a different processor could be assigned to each element. The number of

processors, strictly speaking, would not be required to be any larger than

the number of sub-regions which are free of discontinuities.

Another way to bring down the computational effort while still reducing

and smoothing errors is by more prudent selection of the element mesh and

shape function orders. Starting with a coarse discretization, the optimal

distribution of elements and higher-order shape functions could be found

that minimizes the error for a given number of parameters. In the next

section some indicators available to gauge error for use in such a process will

be examined.
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5 Implementation and Results with Adap-

tivity

To develop a means of adaptively adjusting mesh and shape function pa-

ramete[s, subroutines were developed to split a given element or raise the

shape function order if a certain error criterion was met. Initial guesses are

then determined for any new parameters, and then the new (larger) set of

equations is solved again using the Newton-Raphson iteration.

This section describes two possible error indicators, one involving the

calculation of a single function and one more elaborate method involving

the solution to an adjoint problem. The simpler one has been implemented,

and the corresponding results will be described first. The more elaborate

error .indicator is still in development, so the development of it will be more

sketchy.

5.1 Hamiltonian as error indicator

The Hamiltonian is a logical choice for an error criterion since it is a first

integral of the two point boundary value problem derived from the first-order

necessary conditions for optimal control. In the problems under considera-

tion, it contains all of the controls and costates, at least some of the states,

and all of the state rates. Thus looking at how the Hamiltonian varies from

its optimal value can be a valuable gauge for the magnitude of the error in

the variables in the problem.

The development in appendix A shows how the optimal control problem

can be cast such that the Hamiltonian at the optimal solution is always zero.

With the Hamiltonian having been transformed in this way, the difference

between H(t) and the optimal (namely zero) can now easily be measured.

What remains to be seen is how good of an indicator of error (either pointwise

or integrated) in the solution that the Hamiltonian is.

The two criteria for parameter adjustment that have been looked at most

closely are the deviation from zero of the Hamiltonian at any given node and

the jump that the Hamiltonian makes between two adjacent nodes.

The two problems studied were the same as in Section 4. The first set of

results is for the unconstrained problem in Section 4.1. The problem was first

solved for 2 elements. At this point, the Hamiltonian was a non-zero constant
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acrossboth elements,soboth elementsweresplit. The resulting Hamiltonian
and relative error distributions are shownin Figure 7. The "Total Error" is

the two-norm of the relative errors in all the states, costates, and control; the

"x-u error" includes only errors in the states and controls; and the "u error"

includes only the error in the control. Relative error was unavailable at the

endpoints for the states since they were constrained to be zero. Similarly,

the optimal value of the control at the midpoint of the time interval is zero,

so that data point will also be missing in each of these plots.

As can be seen, the Hamiltonian jumps the most in the two central el-

ements. Using a criterion that elements should be split if the Hamiltonian

jump across them was 10% of the maximum jump along the trajectory, the

code split these two central elements, resulting in the smoother Hamiltonian

distribution in Figure 8.

At this point, all the Hamiltonian jumps were about the same, so all

the elements were split, resulting in the 12-element solution shown in Figure

9, where again some peaks developed, which were smoothed out in the 16-

element solution of Figure 10. This process can continue until point the
Hamiltonian and the overall error in all variables is below 10 -1°.

In each case, the Hamiltonian peaks near the middle elements picked up

the peak error in the control in that region. Meanwhile the peak in the

overall state error (including the two states which did not appear in the

Hamiltonian) seemed to correspond to a secondary peak in the Hamiltonian.

The total error was dominated by the error in one of the costates which was

a constant. Even so, the total error was in the same order of magnitude as

the error in the Hamiltonian.

In the second example with the control constraints from Section 4.2,

jumps in the Hamiltonian seem to better highlight regions where the mesh

should be refined. Starting with 7 elements, so as not to have a node fall upon

an optimal entrance or exit point for a control constraint, the Hamiltonian

is constant within each phase of the problem, whether on or off the control

constraint, as shown in Figure 11. The code senses the jumps in the Hamil-

tonian near each of the switching points and put more nodes there, resulting

in the 16-element solution in Figure 12. To compare, Figure 13 shows how

the error and nodes would be distributed with 17 uniformly spaced elements.

The errors are an order of magnitude higher. Figure 14 shows the results of

a couple of optimizing runs done on the results from Figure 13.

In all the plots for this problem, the control error is necessarily zero
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alongconstrainedarcs. Similarly, the Hamiltonian error wasalways zero in
the last constrainedarc sincethe Hamiltonian is actually enforcedto be zero
at the final time. With a constant control in that region, the equationscan
be integrated exactly. The plots show that to bring the error down in the
early regions, the switching points have to be nailed down precisely,which
is exactly what happenswhenoptimization is basedon Hamiltonian jumps.
Unfortunately, the codeca_ only make one set of elementsplits before re-
solving the problem. This bisectiontechniquewould take along time to reach
the switching points exactly. When state constraint capability is added to
the code,the endpointsof a control constraint arc can then becomevariables.

Thus, elementsplitting basedonHamiltonian jumps seemsto doareason-
able job of smoothing and reducing error, and the Hamiltonian itself seems
to be a reasonablemeasureof errors within the elements,but the results
are not consistant enough. The Hamiltonian, while easy to calculate from
given information and a reasonablegauge for error, lacks the information
about howwell the differential equationsarebeingapproximated. Also lack-
ing is a senseof how finely to discretize a given element, as demonstrated
in the control constraint problem. The next a posteviori error estimator to

be investigated is being designed to gauge the residual errors in meeting the

equations within each element.

5.2 Residual error technique

As mentioned in section 2.2, the variational equations can be interpreted

as residuals multiplied by test functions, the definition a Galerkin method.

Since Galerkin methods minimize the two-norms of the residual errors, for-

mulating the problem in this framework will help greatly in determining an

error estimator. In this section, the preliminary work done in analyzing this

system to find adequate residual error estimators will be presented.

As a starting point, the analysis will not treat complete optimal control

problems, but rather two point boundary value problems (TPBVP) without

controls, using the work of Estep et al. [3] in initial value problems as a

basis. The extra constraints of the optimality condition and any control

constraints will be added later. Likewise, only time-varying linear systems

have been examined thus far, and each state must have exactly one given

boundary condition. Dr. Estep's continued collaboration in developing this

error estimator is acknowledged and appreciated.
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The states are first split dependingon at which endpoint the boundary
condition is specified.For this case,the systembeing analyzedhas the form

ii= A(t)y

yL(O)= Yo
YR(tl)=Yl

where y E R" is partitioned as

o<t<t I
(63)

YL ) (64)Y = Yn

Using the continuous Galerkin finite element method, the object is to find

the polynomial Y E C q such that:

fo" - 4(t)y,.] = o Vv e D q-1

(65)YL(O)= yO

where C q is the set of all piecewise polynomials on [0, tf] of order q which are

continous across element boundaries. D q is the set of all piecewise polynomi-

als on [0, tf] of order q which are not continuous across element boundaries.

Subtracting Eqs. (63) and (65), and defining the error as e = Y - y, one

Vv e D q-1

yields

--]ot' [_ - A(t)e, v] dt = 0

eL(O)=0
en(t/) = 0

where e is partitioned similarly to y as

(66)

(67)

-i_- A(t)Vvl-- ' dt

(68)

Integrating Eq. 66 by parts yields:

J(o" [_- A(t)e,v] dt = e(tl)Tv(t/)--e(O)Tv(O) + fO" ie'
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where
e(tf)Tv(tf) = eL(tf)rvL(tl)
e(0)%(0)= eR(0)_vR(0)

Now let v be the solution of

--iJ-- A(t)rv = e(t)

VL(tl)= o
vR(o)= o,

O<t <t I

reducing the right hand side of Eq. (68) extensively:

A" Ilel12dt = foo" [_ - A(t)e, v] dt

(69)

(70)

(71)

Adding in Eq. (63) gives:

fot' Ilell2 dt = fo" [_" - A(t)Y,v] dt (72)

Defining rq as a projection operator into the space of polynomials of order

q, Eq. (65) implies that nq_lV is orthogonal to Y - A(t)Y, and hence it can

be added to the right hand side of the dot product:

for' Ilell2 d, = fot' [Y- m(t)Y,v- rq_lV] dt (73)

Now, Y E D q-1 so it is orthogonal to v - _rq_lV, reducing the above to:

f0" 11_112dt = fo" [-A(t)Y, v- rq_av]
dt (74)

By a similar argument, any other function in D q-1 can be added on the left

side of the dot product, so in order to make the term on the left small, add

in the projection of A(t)Y:

f0" 11_112dt = fo" {_q-_ [-A(t)Y] - A(t)Y,-%_iv + v} dt (75)

Using standard calculus integral inequalities plus the inequality that

ff' (v - rq_lv) dt < if' I1_11dt, (76)
dO JU
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Eq. (75) becomes:

/0 /0" [ ]" Ilell dt < I1' 11dt.max kin. m_axllA(t)g - %- A(t)YII
- ,,,<n tel., (77)

-- S" max(kin. P_)
m(_n

where k,, is the length of the ruth element,/,1 (out of n), 5' is the sensitivity

function, and Rm is the residual on the ruth element. Note that different

choices for inequalities to use result in different error estimators, which may

happen to suit optimal control problems better. That will be examined as

work continues.

With a target integral error of TOL, the original finite element problem

(65) is solved once, and the residuals are calculated. At the first iteration,

the new time interval lengths k_) can be computed for each m as

k_---7 = (TOL)2/ (S k_ ) . R, 0 Vm E [1,n] (78)

with 5" assumed to be one. For subsequent iterations, the dual problem

(70) is solved with the forcing function e(t) approximated as the difference

between the approximate solutions from the previous two iterations. Then 5'

is calculated and used in calculating the next mesh refinement. In this way

the solution is refined, equidistributing the error.

This methodology has been implemented into FORTRAN and tested on

two time-varying, linear systems, but the results are still preliminary. The

next step will be to include nonlinear dynamics, but from previous work

of Estep [3], the main difference will be that the Jacobian of the system

dynamics will replace the A(t) matrix in the dual problem, retaining its linear

nature, and indeed making it a reasonably trivial calculation compared to

solving the huge system of nonlinear equations. Once that is working, the

next step is to add scalar functions and constraints to the two-point boundary

value problem, which should also be a straightforward extension.

6 Summary and Future Work

An updated version to GENCODE, developed by Hodges and Bless [1], (but

without state constraints) has been developed to solve a variety of opti-
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mal control problems using hp-version finite elements with adaptive mesh-

parameter adjustment. Textbook problems with non-linear system dynamics

and control constraints have already been solved for a variety of combinations

of finite element parameters, including adaptively modifying the distribution

of mes_, parameters with the Hamiltonian as an error indicator. The Hamil-
tonian has been shown to be an inadequate error indicator in and of itself,

necessitating more sophisticated measures if optimal mesh-parameter design

is to be done. The first steps toward a residual error measure have been

taken and look promising.

To that end, research will need to continue to be done concerning the

techniques for error estimation and adaptive adjustment of mesh parameters.

The residual error techniques will have to be further refined and tested,

while analysis needs to be done to verify the experimental evidence already

obtained regarding the use of the Hamiltonian as an error indicator.

The methodology to handle state constraints, a realistic part of many

aerospace applications, will have to be developed and implemented. Once

that capability is added, control constraints will be able to be handled with

variable endpoints as zeroth order state constraints, if desired, greatly im-

proving the accuracy in solving those kinds of problems. That way any

adaptive routine will not have to iterate as much to determine the optimal

switching points.
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A Reformulating the Hamiltonian

In this section, we will develop the properties of the Hamiltonian and re-

formulate it to become a convenient measure of error in the system. The

Hamiltonian will be studied for the general class of optimal control prob-

lems studied in section 2, but without control constraints as that simply

complicates notation.
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Borrowing notation from section2, definethe Hamiltonian in the standard
way as

H = L(x,u,t) + )i Tf(x,u,t) (79)

From the first order necessary conditions for optimality (see section 2),
the condition on the Hamiltonian at the final time is determined from

0¢ .T 0¢ ]H(tf) + -_l + _ll] dtf = 0 (80)

If tl is fixed, then dt I = O, and the Hamiltonian can remain free at the

final time. Otherwise dt I is a free variation and thus

at .T a_.._ (81)
H(tl)= Off Or!

at the optimal solution. In either case, no conditions are imposed on the

Hamiltonian at any time other than the final time. Often t! is not constrained

or penalized. In this case, Eq. (81) reduces to

H(tf) =0 (82)

In the case when tf is a fixed number T, the code is set up to assume that

t! is still a free variable. This way the same set of equations is solved by the

code for any general problem. The user has to add the extra constraint

_p+l -" tl -- T

and Eq. (81) becomes the dummy equation

(83)

H(tf ) = Vn+l , (84)

where Pp+l is the associated extra dummy unknown. Whatever the code

decides the optimal value of H should be at the final time from the other

equations, vp+l will be set to that.

To get an idea of the behavior of the Hamiltonian along the optimal

trajectory, take the time derivative:

OH & OH _ + OH iz OH (85)
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For the optimal trajectory, the first two terms cancel,and the third is
zero, reducing(85) to

[4- OH : H, (86)
at

By definition,ifthe system isautonomous, H, - 0,which impliesthat [/= 0,

and thus

H(t) = H(tl) , (87)

though that's not an enforced constraint.

If H(tf) were a known quantity, this could be used as an independent
check on the error in an obtained solution. Thus we would like to make

S(tl) equal to a known constant and make H(t) equal to S(tl) for a general

problem formulation.

One solution to both problems is to make time a state in the problem,

i.e.,

=.+, = t (88)

which changes the cost function to:

J - ¢[x(ts)l+ L(x,u) dr, (89)

where x here includes both the old states plus time, with constraints

_c, = f,(x, u) i e 1...n (90)

_.+, = 1 (91)

_,[x(to),x(ti) ] = 0 i e 1...p (92)

_p+l = x,+l(to) = 0 (93)

Now if tf is a fixed constant % we add:

_p+2 = X.+l(tl) - r = 0 (94)

In any case, qJ is not dependent on t I explicitly, so we always enforce:

H(tl) =0. (95)

Similarly, since explicit dependence on time has been removed from the prob-

lem,
OH

=0, (96)
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even for a non-autonomousproblem, so H(t) = H(tf) = 0 over the whole

trajectory.
The new state equation for the time state is enforced with a new costate.

This costate is not as meaningless as one might assume at first glace. To find

an interpretation for it, we first define a psuedo-Hamiltonian, H.

n

= L(x, u) + __, AJi(x, u). (97)
1

Since along the optimal trajectory the states, costates, and control will

be the same in either formulation and the new state simply substitutes for

the running time,/_/(t) is the same as the Hamiltonian before the time state

was added. The time derivative of the new Hamiltonian is then

,U

/:/= H + ,X,.,+x = 0 (98)

and the enforced boundary condition is:

H(tf) = #(tl) + )t,+l(tI) = 0 (99)

These two equations imply that

in+l = -H (100)

and

A.+,(tl) = -[-I(tf ) (101)

which indicates that the extra costate obtained by adding a time state is in

fact the old Hamiltonian. This relationship boils down to something very

simple if the problem is autonomous.

From the necessary conditions for optimality, the costate equation and

boundary conditions for the new costate are

•Xn+l(tO) -- Vp+l

_n+l(tl) = t,'p+2 t! fixed

= 0 tf free

For an autonomous problem,

OH

OXn+l
-o. (lO9,)
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,i

i'

This implies both that

_.'1-1 = 0 --_ _n+l(t) = )kn+l(tf) (103)

and that _.+l(t/) will not appear in the other costate equations or the opti-

mality equation, H, = 0 (and of course not the system dynamics.) Thus the

only place A,+l(t/) enters the problem is by balancing S(t/) in Eq. (101).

Comparing this to Eqs. (84) and (82) it is clear that for autonomous prob-

lems, free- or fixed-time, that the additional costate associated with the time

state simply acts as a dummy Lagrange multiplier. So in adding the time

state, effectively the Hamiltonian absorbs the right hand side of its terminal

boundary condition so that the new Hamiltonian can always be zero. This is

essentially what happens in non-autonomous problems except that it is not

a constant being absorbed.
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