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ABSTRACT

In this report we compare the cost of an array of small antennas to that of a single large
antenna assuming both the array and single large antenna have equal performance and
availability. The single large antenna is taken to be one of the 70-m antennas of the Deep Space

Network.

The cost of the array is estimated as a function of the array element diameter for three
different values of system noise temperature corresponding to three different packaging schemes
for the first amplifier. Array elements are taken to be fully steerable paraboloids and their cost
estimates were obtained from commercial vendors. Array loss mechanisms and calibration
problems are discussed. For array elements in the range 3 to 35 m there is no minimum in the
cost versus diameter curve for the three system tempefatures that were studied.
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PREFACE

The motivation for this study can be traced entirely to the refusal of the 3.7-m antenna on
the Galileo spacecraft to deploy properly. That antenna was intended to transmit X-band science
data to Earth at a rate of 134 kbs as the spacecraft orbited the planet Jupiter and made successive
encounters with the Jovian satellites. Loss of this antenna means that only an omnidirectional S-
band antenna is available for mission support and represents a 47-dB reduction in
communications capability.

During the spring and summer of 1992, the Galileo team tried various "tricks" to coax the
antenna open but to no avail. The Galileo project manager asked the Tracking and Data
Acquisition (TDA) Office if other support options were available, just in case the antenna never
opened. A study team was formed, led by Leslie J. Deutsch, that quickly developed a list of
"wild ideas" by which the mission data return capabilities could be enhanced at S-band. The
most significant enhancements involved modifying the spacecraft in some way, such as using
data compression. On the ground, the enhancements involved arraying as many antennas as
possible and reducing the system temperature on each of these antennas.

As a member of that Wild Ideas team, along with Don Brown, Bruce Crow, and Dave
Rogstad, we investigated arraying possibilities. One of the first things we did was to review
what was then a 2-year-old study that estimated the cost of a new 70-m Beam Waveguide
antenna, and we calculated that the cost of new collecting aperture would be approximately
$26,000 per square meter, if it were purchased as individual 70-m apertures. It did not require a
mathematical whiz to estimate that new aperture to make up the 47-dB link loss would cost more
than the entire NASA budget for the next century, even assuming a generous discount for buying
70-m antennas in quantity, and therefore was unlikely ever to be funded.

I recalled a memo written by Barry Clark [1966] exploring something he called the
"Kilodish Array," as a possible configuration for what later became the Very Large Array.
Basically, he pointed out that by using TV dish antennas, a large collecting aperture could be
assembled inexpensively, but the electronics cost was large and restricted future expansion
capabilities. A quick scan of the Los Angeles Times revealed an advertisement touting a 3-m
satellite dish with receiver for $1699, or an aperture cost of roughly $239 per square meter. The
difference in aperture cost was intriguing, and I soon found that several of my colleagues had
previously noted this factor-of-ten cost discrepancy and wondered, as I did, if there might be a
cost advantage for the Deep Space Network to array small antennas—not just for Galileo but for
all the DSN's various activities.

The idea of a massive array of small antennas to address the Galileo problem disappeared
under the onslaught of restrictive budget and schedule realities, but it was decided to explore the
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concept further with a design study and cost estimate. Hence, this study was born and the
concept was nicknamed MOA A—the mother of all arrays. Like any conservative team leader, I
recruited people who were much smarter than I. We met weekly, parceled out assignments,
shared crazy ideas, told a lot of jokes, and generally had a good time. Everybody on the team
contributed, all criticism was constructive, and we all developed a deep respect for each other's
ideas. I count the experience as the most pleasurable job assignment I have had in my career at
JPL and hope that my fellow team members enjoyed it even half as much as I did.

The report is laid out in pretty much the temporal order in which we developed arguments
and analysis. As a result, the reader may notice some inconsistency in the development. For
instance, one of the requirements that we adopted was to synthesize the equivalent aperture of
three 70-m antennas. I think it is safe to say that all the team members began the study with the
belief that arraying small antennas would be much less expensive than building large 70-m
apertures, and it would then be possible to consider such a large undertaking. You will note that
in the end, the cost for synthesizing only one 70-m aperture is estimated.

During several of our initial team meetings there were questions as to how or why the
DSN does certain things a particular way, i.e., a questioning of the "conventional wisdom," and
the historical summary in the first chapter addresses these questions. In the current environment
there is much discussion of re-engineering the DSN, and I think that it would be helpful if more
people understood the historical development of the DSN before they begin to implement
fundamental changes. We agonized much more about uplink arraying than is indicated by the
short section in the text and discussed the cost aspects with colleagues in the transmitter group.
However, any follow-on effort should re-examine this issue with respect to cost effectiveness.

I owe a huge thanks to Les Deutch, William Rafferty, Charles Stelzried, and Hugh
Fosque for providing encouragement and financial support for this study. I suspect they knew I
wanted to do this study so badly that I would have worked for free but they paid me anyway. I
am particularly indebted to them for the understanding they have shown as to why this report is a
year late.

Don Brown, Rick Green, Richard Mathison, and Bruce Crow all provided early
encouragement that was both needed and appreciated. A very special thanks is due to Robert
Clauss and David Fort for their help and advice in several areas. Bob Clauss was a constant
source of provocation and constructive criticism. Some of his words are found verbatim in the
report in regard to low-noise amplifier performance and cost. Dave Fort was an active consultant
on questions concerning the correlator, combiner, and array performance. George Morris and
Jack Fanselow both contributed unconventional ideas and encouragement. Fred McLaughlin
reminded me that he and Bob Stevens had noticed that small antennas do not seem to follow the
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diameter to the 2.7-power law. Larry Rauch reviewed a draft of this report and suggested several
improvements and caught a host of errors—thank you Larry.

During the course of the study I received so many good suggestions and ideas from so
many people that I no longer remember all of them. If you are among this number, please accept
my apologies along with my sincere gratitude.

George M. Resch
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1.0 INTRODUCTION

This report documents the results of a design study whose objective was to develop a
quantitative understanding of the performance, cost, and technical risks associated with
synthesizing a large aperture from an array of smaller apertures. Such an array would support the
communication links to any spacecraft engaged in solar system exploration. The study represents
the conceptual exploration of a particular evolutionary path that is open to the Deep Space Network

(DSN).

The product of the study is a model that relates the total acquisition cost of an array to the
diameter of the elemental apertures in the array. This cost is a function of the total antenna gain
divided by total system temperature, i.e., denoted as G/T. The functional performance benchmark
used in the study is taken from DSN Document 810-5, Module TCI-10 [1991], for the 70-m
antenna network. The cost benchmark is taken from a previous study documented by Brunstein
[1990].

The rationale for this study is based on the premise that changing technology acts to reduce
the cost of the electronics as a function of time while the cost of a single large antenna is dominated
by steel and labor, which increase as a function of time at least as fast as inflation. It was reasoned
that as the fractional cost of electronics decreased, smaller antenna diameters would minimize the
total system cost. It follows that a study such as this one should be done periodically to determine
the optimum array element diameter.

The term "system" that is used throughout the document consists of antennas, radio- and
intermediate-frequency amplification, signal distribution, combiner electronics, and the monitor and
control needed to operate the array in a synchronous fashion. Although we believe the particular
array design that will be discussed would perform and support all DSN responsibilities (e.g.,
planetary radar, radio science, etc.), the functional requirements were dominated by telemetry
considerations. It must be kept in mind throughout this document that although much of the
discussion is focused on the performance and cost of a receive-only array, the total system concept
would more likely include a single 34-m-class antenna having both uplink and downlink
capabilities. For instance, the new 34-m Beam Waveguide (BWG) with an active uplink capability
would be arrayed with some number of receive-only antennas.

This section contains a very brief historical review of some of the factors that have
influenced the design of the current DSN. The rationale behind the study is discussed, and there is
a short summary of some of the reasons why the study avoided uplink capability in the array. The
overall requirements and goals of the array are outlined, and finally there is a description of the
approach used in the study and identification of who was primarily responsible for what.



1.1 HISTORY

"I know no way of judging the future but by the past”
-Patrick Henry

In the early 1960's, the National Aeronautics and Space Administration (NASA) began a
major expansion of the DSN in order to support the planetary exploration program. The primary
requirements for this network were: (1) support operations under all reasonably anticipated weather
conditions, (2) support continuous 24 hr/day communications, and (3) support both a low-
gain/broad-beam and a high-gain/narrow-beam communications link. The latter requirement arose
from the supposition that most spacecraft would be equipped with a high-gain/narrow-beam antenna
to support high data rate links, as well as a nearly omnidirectional/low-gain antenna to be used
during spacecraft emergencies.

These requirements were driven primarily by the then current state-of-the-art in spacecraft
design. The result was a network of deep-space stations spaced approximately 120° apart in
longitude that could provide 24 hr/day communications. The implication of communications gaps
were mission penalties in the form of increased spacecraft weight, complexity, and lower reliability
as a result of greater data storage requirements. In addition, there is the possibility that a spacecraft
emergency during a gap could lead to an unrecoverable failure. Perhaps more important, by the
early 1960's, a successful operations scenario was established for planetary missions that took full
advantage of continuous contact with a continuously operating spacecraft, a scenario that continues
to the present day.

The overall goal of the expansion in the 1960's, and the goal that persists to this day, is to
achieve a design balance between Earth support equipment and spacecraft capability so as to provide
the most cost-effective total system cost to NASA. In such a balanced design, every dollar invested
in the ground stations would lead to an increase in returned data (integrated over the station
lifetime), that would be exactly the same as the increase in data resulting from the same dollar
investment in spacecraft development. While there is no readily available metric to measure
progress toward this goal, the sentiment is highly worthwhile.

In late 1965, P. Potter, W. Merrick, and A. Ludwig [1965] published a report documenting
the major considerations that had gone into the evolution of the DSN in the early part of that decade.
Their concerns were the economic balancing of ground antenna aperture with potential
improvements in spacecraft performance, the use of large single antennas versus arrays of smaller
antennas, and the optimum frequency of the communications link. Based on an approximately 2-yr.
study, they concluded that a single antenna of the 65-m diameter class was the most economically



feasible approach for the next 10 to 15 years. Further, either a steerable paraboloid of
approximately 65 m diameter or an array of such antennas would be the optimum aperture
implementation, depending on the number and capability of spacecraft launched in the 70's and
80's. It is relevant to note that this study considered arraying in some detail. Finally they judged
that the optimum frequency of operation would be approximately 2 GHz.

In the late 1970's, the DSN again considered a major expansion and embarked on a study of
what was termed the Large Advanced Antenna Station or LAAS for short, and was documented in a
status report issued in 1978 [Haglund, 1978]. Prior to 1977 it was thought that the next major
addition to the DSN would be implementation of a second subnet of 64- to 100-m antennas, as the
earlier study had concluded. However, in March 1977 it was postulated that an antenna array rather
than a single antenna aperture would be more cost-effective for the prospective LAAS, and the
study was expanded to include this possibility. On May 16, 1978, JPL recommended to what was
then the Office of Space Tracking and Data Acquisition (currently the Office of Space Operations)
that if a large advanced antenna station was to be built, it should be built with multiple apertures
(i.e., an array) because the life-cycle cost and technical risk were significantly less than for a single
large aperture.

The antenna diameters that were considered in the LAAS study were 100 m for the large
single aperture and 25 m to 38 m for the array elements. Three companies, E-Systems Inc., Ford
WDL, and Harris Corp., were contracted to provide detailed performance and cost estimates for the
antennas while electronics performance and costs were estimated internally at JPL. The study
report alluded to an attempt to investigate the cost advantages of even smaller antenna elements and
stated that "this approach did not prove practical due to antenna-related electronics costs."”

Brunstein [1990] documented a study that addressed the question, “Would an array of
smaller antennas with performance equivalent to a 70-m antenna be cheaper to build than a 70-m
BWG (Beam Waveguide) antenna?" The study considered an array of four 34-m antennas that was
functionally equivalent to 70-m capabilities for commanding, telemetry, radio science, and Very
Long Baseline Interferometry (VLBI). The study concluded that the array was not cheaper. The
total cost for the array and the 70-m antenna, including all electronics, was approximately the same
or at least within the estimation errors of the budgeting process.

In the discussions that followed the Brunstein memo, it was realized that the arraying
approach enjoyed an enormous practical advantage over the single large antenna. The array could
be constructed one element at a time and the capital investment spread out over several years. This
is the strategy that the DSN has planned for the next decade. A 34-m subnet of High-Efficiency
(HEF) antennas has already been constructed. The Construction of Facilities plan for the next
decade calls for new 34-m BWG antennas at Goldstone and Canberra. In principle, the 34-m
antennas at Goldstone could be combined to provide the equivalent capability of a 70-m antenna.



1.2 RATIONALE

"You can never plan the future by the past."”
- Edmund Burke

The primary reason that the DSN is evolving today is exactly the same as it was 30 years
ago —to support NASA's planetary exploration program. While some considerations remain the
same, there have been other fundamental changes in the forces that drive this evolution.

First, and foremost, the content and constraints on the planetary exploration program have
changed. The planetary program has almost transitioned from the reconnaissance stage to the
exploration stage. We have had flybys of all the planets except one, and have begun the systematic
discovery and understanding of processes, history, and planetary evolution. The next phase that
we must anticipate is intensive in situ study that will involve landers, rovers, atmospheric balloons,
sample returns, and possible landings by astronauts.

Second, the range of responsibilities assigned to the DSN has expanded. Near-Earth
missions that cannot be tracked by the Tracking and Data Relay Satellite System (TDRSS) and
international cooperative missions have greatly expanded the list of spacecraft that keep the network
busy. In fact, the missions in this category constitute the largest segment of future support
requests.

Finally, technology has changed. Thirty years ago the selection of 64 m as the "best”
antenna diameter was made largely on the judgment that 64 m was the largest antenna that could
safely be constructed within cost, performance, and schedule constraints. Furthermore, such an
antenna would be gain-limited at a frequency higher than S-Band, which was the frequency at
which spacecraft hardware could be implemented. Thanks to advances in technology, the diameter
of the DSN's largest antennas was extended to 70 m, the gain limit has been extended to a
frequency higher than X-Band, and complementary technology has been incorporated in the
spacecraft design.

These changes in the planetary program and expanded responsibilities and technology
improvements suggest several ideas. The growing list of spacecraft requiring ground support
implies that either more antennas are needed, or a change in the ground support strategy is required.
Many of the missions in the planning stage are near-Earth and have communications requirements
far less demanding than the deep space missions. Supporting this class of missions with 70-m
class apertures would constitute over-design of the communications link.



On the other hand, the deep space missions that are being planned are even more
constrained by cost, mass, and power than they were in the past. If reasonable data rates are to be
supported from these distant spacecraft, the link capability must be sustained by large G/T capability
on the ground. An array offers the flexibility to assemble an aperture that is tailored to the mission
requirement.

The strategy of providing continuous communications with a deep space mission has proved
to be highly successful in the past. It is clear that it will be very expensive to follow this strategy in
the future because it requires an active uplink for every spacecraft all the time, and the cost of
providing this uplink nearly doubles the electronics cost for the antenna system. The uplink is
needed to command the spacecraft and provide two-way Doppler measurements that are used to
navigate. While commanding is a relatively infrequent need, the quality of navigation depends
strongly on the quantity of two-way Doppler data and its spread over time. With the advent of
ultrastable oscillators on the spacecraft, it may be possible to utilize one-way Doppler or to
supplement the Doppler data with other data types in order to navigate in deep space. If true, there
would no longer be the need for one uplink for every downlink. Uplinks could be time multiplexed
and the DSN would enjoy a considerable savings in capital investment, maintenance, and operations
cost.

Another motivation for this study stems from the contrast between two observations. The
first observation, taken from the technical literature, suggests that the cost of large antennas is
proportional to antenna diameter D raised to some power 7y, where 2< ¥ < 3, with a most likely
value of 2.5. The second observation comes from the fact that the cost of electronics (for some
measure of functionality) is decreasing with time. Taken together, these observations would
indicate that the optimum diameter for an array element should decrease with time.

In order to quantify these observations, consider that the total system cost for an array Cr, is
the sum of the m subsystem costs C;;

m
CT=ZCi

i=1

where the antenna subsystem cost is merely one of the terms in the sum and the other terms
represents such subsystems as the radio frequency amplifiers, digital electronics, etc. The cost for
each subsystem can be separately modeled, and in general, each term (including the antenna
subsystem) will contain a nonrecurring cost (NRC;) and a recurring cost (RC;) per antenna element.
The NRC; represents the setup, design, and management required for any large project, while RC;
represents the production cost per unit, and N, represents the total number of elements in the array.
For the ith subsystem



Ci = NRC, + I\Ie . RCI

We will denote the antenna subsystem as i = 1 and assume that its recurring cost can be modeled as
a power law function of the antenna diameter De such that

C; =NRC, +N, -B-D!

where B and y are constants. The total system cost is then
m m
Crp =N, -B-D! + ¥ NRC; +N, - ¥R
1 2

In general, while the NRC; and RC;, are functions of the size of the total array, they can be
assumed not to be functions of the antenna diameter. The number of elements in the array Ne
depends on both the effective diameter of the aperture that is to be synthesized and the diameter of
the individual antennas, i.e., it takes four -m paraboloids to synthesize the aperture ofa2-m
paraboloid. If we are given the size of the aperture to be synthesized, then N = k(De)2, where k is
some constant. Taking the derivative with respect to De, substituting for Ne, and solving for the
value of the diameter that minimizes the total cost, yields
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We see that for y < 2, there is no real solution, which implies that the minimum cost isa
single aperture whose diameter was previously specified. However, for y.< 2, there is a distinct
diameter that minimizes the total system cost. As technology changes, particularly in the area of
high-speed digital signal processing, the recurring cost term in the above equation might be
expected to decrease and the optimum diameter for an array element would decrease with time.

An additional consideration is overall system reliability. A single large antenna represents a
potential single point of failure, whereas individual antennas in an array can fail with the result that
performance is gradually degraded and does not go immediately to zero. With each antenna in an
array providing a small quantized value of G/T together with the flexibility to combine any subset of
an array, a communications link could be tailored to the data rate requirements and capabilities of a
particular spacecraft. An array can be assembled of just a few elements for a near-Earth spacecraft
with a low data rate, or of all elements for a distant spacecraft in trouble. The aggregate G/T would
be determined by the combination of the most demanding link requirement and schedule loading.



However, the prospect of building new antennas for the DSN and arraying them on a
regular basis raises a new set of questions. Perhaps the first, and certainly the most timely, of these
questions is, Is there an optimum diameter for the elements of the array? This is the question that
this study attempts to address, but to do so requires optimization of the total system cost and
performance. One cannot replace a single large antenna with an array without first considering the
performance and cost of the electronics needed to process the outputs of array elements.

1.3 UPLINK ARRAYING

Consider two identical parabolic antennas, pointed at the same area of the sky, each
transmitting a power P, and driven by a coherent source. The far field is an interference pattern
consisting of fringes, i.e., alternating bands of constructive and destructive coherence. Where there
is destructive interference, the voltage from each antenna is completely out of phase and there is no
power. Where there is constructive interference, the voltage from each antenna adds in-phase to
produce 2 times the individual pattern voltage, or an effective power density of 4 times the
individual radiated power. Thus, if a 70-m aperture having a 20-kW uplink is synthesized using
four 35-m apertures (each has 0.25 of the gain of a 70-m), then 5-kW transmitters on each 35-m
antenna are needed plus the ability to control the phase of the uplink in order to ensure coherence in
exactly the direction we desire. If the synthesis utilized 500 3-m antennas, then a 40-W transmitter
on each of the small antennas would be required. Thus, there is no savings in the uplink power
requirement.

Superficially, the prospect of uplink arraying may appear to be economically attractive. The
cost of a transmitting amplifier is not a linear function of the power rating. At low power ratings,
amplifying elements can be radiatively cooled, thereby eliminating the circulating water systems
needed for high-power elements. This is a savings in capital investment as well as maintenance and
reliability. However, power conversion efficiency is likely to be lower for low power amplifiers,
so the total electric bill will be somewhat higher. In addition, the capital investment savings are
offset by the increased cost of the microwave components needed to protect the downlink low-noise
amplifier (LNA), which can also incur a penalty in receive system temperature, and increase the
number of small antennas needed to synthesize the receive aperture.

The technological problem in uplink arraying is phase control. The signal from each
radiating element must be in phase at the receiver. Phase differences arise due to: (1) the geometry
between radiating elements and receiver, (2) instrumental effects between transmit elements, and 3)
the propagation medium. The instrumental phase offset arises from differences in the phase delay
of separate electronic components and signal paths between radiating elements. These instrumental
effects can be minimized by using a homogeneous array of identical elements with identical signal
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paths so that differences cancel to first order. It may well be possible that these phase delays in the
transmit configuration can be made very stable and can be calibrated as is possible in the receive-
only configuration, but this remains to be demonstrated.

Note that just as in the case of a receive-only array, maintaining coherence becomes more
difficult as the distance between the antennas increases. However, for compact arrays the
geometrical portion of the phase difference can be calculated with high accuracy, as demonstrated
by arrays like the VLA. Furthermore, in the receive-only array there is the possibility of correcting
for phase errors in real time by correlating the signal from each antenna against another or against
the sum of all antenna signals, i.e., self-coherence. In the transmitting array case, the "correct”
instrumental phase for each antenna must be known absolutely (through the transmit electronics)
and another correction added for the fluctuating phase changes due to the propagation medium as
derived from the downlink signal. In the case of a spacecraft emergency when the downlink signal
might be nonexistent, any doubt at all in regard to uplink coherence of the arrayed transmit beam
would simply compound an already difficult situation.

It could be argued that the spacecraft signal acquisition problem could be reduced or
eliminated by design and/or strategy changes. For instance, the fringes from the transmit array
could be swept at a controlled rate across the point in the sky where the spacecraft it believed to be
located. In principle, the spacecraft radio could be designed to respond to an RF signal that is
amplitude modulated at the predetermined sweep rate. This necessitates close coordination with
spacecraft designers.

In summary, we see that the potential decrease in transmitter cost per antenna must be
balanced against the technological risk of maintaining uplink coherence. A very limited estimate of
the cost savings for a transmit array done here suggests that it would be small to nonexistent. The
technological risk cannot be quantified. Therefore, it was decided to limit this study to the receive-

only array.

1.4 REQUIREMENTS AND GOALS

* Synthesize a ground communications capability with a G/T ratio
equivalent up to 3 times the current DSN 70-m antenna capability.

If four 70-m antennas (the existing 70-m plus 3 new synthesized apertures) were arrayed,
they would provide 6 dB more link capability than currently exists. This additional capability could
be accomplished with 3 additional 70-m antennas, or the equivalent synthesized G/T from an array
of smaller antennas. If the DSN had 6 dB more G/T at X-band, this X-Band capability would be



competitive with what is expected to be gained by going to Ka-band on a single 70-m antenna. This
additional 6-dB link capability would service the Galileo S-Band mission and avoid the problems
and expense involved in arraying with non-DSN antennas. With sufficient G/T on the ground, both
the DSN and future missions could postpone Ka-band development, and thereby save development
resources.

* Plan for a single array at Goldstone with the option of
duplicating the capability at the overseas complexes.

If the DSN were ever to build an array of small antennas, it would most likely be at
Goldstone first as a feasibility demonstration. There would be an option to duplicate the design
overseas and expand it to whatever aggregate G/T is ultimately required by future missions. In
order to constrain this design study, the following additional general requirements and goals were
adopted:

* The total cost for comparable G/T should be substantially
less than equivalent 70-m parabolic antennas.

It seems unlikely that the DSN will be able to garner the facilities funding to construct new
70-m paraboloid antennas. The existing 70-m network is almost 30 years old, and inevitably
maintenance costs continue to increase while the time available for spacecraft support is decreasing.
There is a reluctance by mission planners to design a mission that is critically dependent on 70-m
support. According to Brunstein [1990], a 70-m beam waveguide antenna is estimated to cost
$106M in 1990 dollars (not including electronics), which would be a difficult fit in an already
overextended NASA facilities budget. If the cost of collecting area can be reduced by a factor of 1/2
to 1/5th, then funding might be more forthcoming.

» Simultaneous S- and X-Band receive.

Since all existing deep space spacecraft are either S- or X-Band (or both), even the Pioneers
10 and 11 and Voyagers could be serviced for many years into the future.

* Listen-only (no transmit capability) for the smaller apertures, to be arrayed with a single
34-m antenna having up- and downlink capability.

Current technology makes it possible to transmit high power from a single antenna (e.g., up
to 1 megawatt). For instance, an 80-kW transmitter from a 34-m antenna in the DSN would be the
functional equivalent of a 70-m antenna with 20-kW uplink capability. This suggests a ground
configuration of a single parabolic antenna for uplink purposes in conjunction with an array of
smaller antennas that provide a much larger collecting area to receive the weak spacecraft signal.



The array is then to be viewed as a supplement to existing DSN capabilities, not as a replacement.
Single antennas will continue to provide uplink service while the new aperture will provide greatly
increased downlink capability.

e Sidereal tracking for all sources above 10° elevation.

Spacecraft that are too far away to be serviced by TDRSS will appear to move in the plane
of the sky but their angular rates are nearly that of the "fixed" stars, i.e., the sidereal rate. A 10°
elevation limit is comparable to existing DSN antenna limits. Pointing and wind specifications were
taken directly from DSN Document 810-5 [1991].

s The synthesized aperture must be capable of operating
as independent subapertures or as a single unit.

Some future missions that are currently under discussion include multiple rovers or orbiters
around or on the Moon and Mars. A substantial payoff can be gained in reduced spacecraft cost by
keeping the communications capabilities of these rovers as simple and low-power as possible. In
order to do this, the Earth-based part of the link must be highly capable. It would be desirable to
transmit with the simplest, lowest possible power transmitter from the Martian surface. This calls
for high transmit power and large effective collecting area on Earth. An array of antennas would
provide important scheduling flexibility for this kind of scenario and provide backup capability to a
Mars orbiting relay.

» Each subaperture as well as the total aperture must be capable
of arraying with existing DSN antennas in real-time.

By operating as independent smaller apertures (i.e., roughly equivalent to a 34-m antenna),
all or part of the array can be concentrated either on a single weak source (e.g., Galileo) or assigned
independent targets.

1.5 THE APPROACH USED IN THE STUDY

"Never make forecasts, especially about the future."”
- Samuel Goldwyn

The team started with a very conventional array design, estimated performance and costs,

then redesigned based on what appeared to be performance or cost drivers. Each team member
assumed primary responsibility for an area or subsystem in the following categories:
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* Antennas subsystem (Tom Cwik)

* RF/TF subsystem (George Resch)

* Signal distribution (Ron Logan)

* Correlator/Combiner (Dave Rogstad)

* Monitor & Control (Bob Miller)

* Availability & reliability (Vahraz Jamnejad)

In practice, these areas were so cross-linked that all team members participated in all design areas.
As the design progressed, it was necessary to expand the requirements and the functional block
diagrams in successive levels of detail. This process continued to the point where it became
possible to model both performance and cost of each subsystem.

It was realized early in the design process that the team was severely handicapped in regard
to estimating cost for the antenna structures and it was decided to tender two small contracts to
commercial antenna builders in order to establish cost estimates for these subsystems. Appendix A
is a portion of the statement of work that was used to solicit this supporting study. Two companies
responded and produced both performance and cost estimates for antenna elements ranging from 3
to 35 m in diameter.

In order to reduce the uncertainty of cost estimates, a ground rule of using "off-the-shelf"
technology was adopted, i.e., it was decided that the design should not depend on something that
had to be discovered or developed. The final section of this report lists those areas where additional
development of new technology has the potential to either increase performance or decrease array
cost.

11
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2.0 ARRAY SPECIFICATIONS

The gain of an antenna divided by its system temperature (G/T) is one of the parameters that
determines how much data can be sent over a communications link. Our goal is to determine if there
is an optimum antenna diameter that minimizes the total system cost for an array. In order to
calculate this cost we must first know how many elements are required to achieve the given level of
G/T performance. Secondly, we must recognize the bounds on performance achievable with current
technology and attempt to parameterize both performance and cost in a way that can be related to
antenna diameter. Finally, we must understand how the overall reliability and availability of an array
is related to cost and how it compares to a single large aperture.

2.1 THE NUMBER OF ANTENNAS NEEDED FOR A GIVEN G/T

The gain G, of an antenna is given in terms of its effective collecting area Ae, at an operating

wavelength A, as
G=—"A (2-1)

The effective collecting area can be written as the product of the physical aperture area Ap times a
factor 7, that is termed the aperture efficiency, i.e., < 1. If we let N7g be the number of 70-m
antennas that we wish to synthesize, then for an array of smaller antennas having the equivalent G/T,

we can write:

(E) =_N7_0(9)
T)ey Le\T g

where L is the average combining loss and is an expression of the fact that the output of the
individual antennas can never be combined with perfect coherence. Assuming Ne identical array
elements, having diameter D, aperture efficiency ne, and total system temperature Te, then

NmeDf IT, = N70(T]70D§0 /Tm)/Lc

and the required number of elements in the array is

2
N = Noof M | [T ).f70 (2-2)
‘ LC ne T’/O De
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Table 2-1 summarizes the performance of the DSN 70-m antennas at S- and X-band that will be our
benchmark.

If we take De as the independent variable, then we must specify both the performance and
cost models for ne, Te, and L¢. If we further assume that maximum tolerable arraying loss is 0.2
dB, then using the values in Table 2-1 yields two equations, one for S-band and one for X-band.

T, | 1
N.(S)=208-N1y| =% |—= 2-3
e( ) 70[116]133 (2-3)
ne DC

TABLE 2-1: Summary of 70-m performance specifications.

S-Band
Antenna Gain (dB) 63.3
Aperture efficiency (45° Elev.) 0.75
Zenith System Temperature (K) 18.5

2.2 GAIN LIMITS FOR AN ANTENNA AND ARRAY

Equation (2-1) gives the relationship between the physical collecting area and gain of an
aperture. Ruze [1952] pointed out that various mechanisms cause deviations in the reflector surface,
which result in a systematic or random phase error. These errors can be mapped into the aperture
plane and lead to a net loss of gain such that the relative gain is given by the expression

G 4no
G—o = exp{—(Tj } (2-5)

where 62 is the variance of the phase error in the aperture plane. While Eq. (2-1) predicts that the
gain of an antenna should increase as the square of the frequency, Eq. (2-5) predicts that when
(o/A)>1, the gain drops rapidly. It is straightforward to show that the gain will be a maximum at a
wavelength Amin, Which is approximately equal to 13 times the rms surface error . This point is
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known as the gain limit of the antenna. Note that the concept of gain limit is equally valid for a
synthesized aperture.

The phase error in the aperture plane is composed of several components; the surface
"roughness" of the reflector(s), mechanical distortions from a strict parabolic shape, and the
atmosphere. All of these components grow as De increases but at differing rates. In general it is
easier (i.e., less expensive) to build a small antenna that has (and can keep) a very good surface
accuracy than it is to build a large antenna with comparable accuracy. However, the large number of
different technical approaches to reducing these errors makes for a complex cost estimation process.
In order to simplify this process, we have restricted this study to "off-the-shelf" antenna technology.

One of the potential disadvantages of an array is due to the fact that its physical extent is
always larger than the equivalent single antenna aperture that it synthesizes. As a result, phase errors
due to atmospheric fluctuations, which grow as the distance between individual elements increases,
can effectively gain limit the array.

2.3 SYSTEM TEMPERATURE

The performance numbers in Table 2-1 reflect large capital investments made over the years
to improve collecting area efficiency and the use of state-of-the-art in low-noise amplifier (LNA)
technology. The DSN 70-m antennas have very good gain performance at S-band and good gain
performance at X-Band. Overall G/T performance is distinguished by the exceptionally low system
noise temperatures, due to the use of traveling wave maser (TWM) amplifiers.

While TWMs have been procured from industry, they are not exactly an "off-the-shelf” item.
In general, they are custom built in-house for the DSN. Mounted on the tipping structure of an
antenna, they operate in a vacuum jacketed 4-K cryogenic environment that has a mean time between
failures (MTBF) of approximately 2000 hr. Highly skilled technicians are required to maintain the
entire package. The total cost of the entire TWM package is variously estimated to be between $400k
to $1M each. The combination of high unit cost and high maintenance requirements makes these
devices unsuited for a large array of small antennas.

An alternate LNA to the TWM is the new generation of transistor amplifiers, specifically
High Electron Mobility Transistors (or HEMTs for short). Figure 2-1 illustrates the state of this
technology in 1989. In this figure the effective noise temperature of an X-Band HEMT amplifier is
plotted against the physical temperature of the device. It can be seen that the noise temperature of the
amplifier varies almost linearly with the physical temperature. The data were fit with a straight line
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(shown as the solid line) which indicates that the amplifier noise improves at the rate of 0.4 Kelvin
per Kelvin or 0.44 in the region where the physical temperature is > 150K. If it were possible to
derive a simple expression for the cost to cool these devices, the array design task would be
considerably easier. Unfortunately, refrigerator technology is not that simple.

Figure 2-2 shows HEMT amplifier noise performance versus frequency for 3 common
cooling configurations. The first is at room temperature, the second cooled to approximately —50
deg C with a Peltier effect cooler, and the third using a closed-cycle helium refrigerator capable of
lowering the device temperature to 15 K. Note that cooling has the most benefit at the higher
frequencies. It is also important to remember that this technology has been highly dynamic for the
past several years. Like most areas of microelectronics, there have been rapid improvements in
performance accompanied by reduced costs.

Table 2-2 lists the various noise contributions to the total system temperature we might expect
for a HEMT RF package at both S- and X-bands. The atmospheric contribution comes from thermal
noise generated by atmospheric gases and varies as the amount of atmosphere along the line-of-sight,
i.e., as the secant of the zenith angle Z. The cosmic blackbody background is a constant 2.7 K.
Spillover and scattering will depend on antenna (e.g., prime focus, Cassegrain, or BWG), feed, and
support structure design.

Equations (2-2) and (2-3), taken together with the data in Table 2-2, indicate that the X-band
requirements drive the size of the array, due to the higher estimated system temperatures. For
instance, if we assume De = 3m, with an efficiency of 50%, then by using uncooled LNAs, we will

need 4121 antennas and LNAs per 70-m aperture that is synthesized. The sensitivities of number to
antenna temperature at the two frequencies are

dN,(S) 208Ny

2
dT, Ne ' D& 2-6)
dN,(X) 169 Ny
dT, 1, - D2
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TABLE 2-2 Range of Total System Temperature

2.3 GHz 8.4 GHz
Atmosphere (K) 2.0 sec(Z) 2.8 sec(Z)
Cosmic background 2.7 2.7
Spillover, scattering 4-8 4-8
Microwave Losses 4-12 4-16
subtotal 13-25 14-30
RECEIVER TEMPERATURE:
Room temperature (290 K) 40 95
Peltier (210K) 33 70
Cryogenic (15K) 3-6 8-10
TOTAL (zenith)
Room temperature 53-65 109-114
Peltier 46-58 85-98
Cryogenic (15 K) 16-25 22-38

While it may appear that a larger benefit accrues by improving the S-Band system temperature, in
reality there is no benefit if the minimum array size is dictated by X-Band requirements. Using the
above example of a 3-m antenna to synthesize one 70-m aperture then suggests that reducing the
system by just one Kelvin could save 37-38 antennas in the array.

It is clear that the higher expected system temperatures at X-Band will set the number of
elements in the array. Figure 2-3 plots Ne as a function of element diameter for the three different
zenith system temperatures, assuming an aperture efficiency of 50% for each array element at the X-
Band frequency. It is obvious that the number of elements gets very large for a small element

diameter.

2.4 RELIABILITY AND AVAILABILITY

In Equations (2-3) and (2-4), we calculated the number of array elements required to
synthesize a given G/T. However, the specification of a deep space communications link requires
knowledge of the availability of the link components, one of which is the reliability of the ground
aperture or array elements. If we were to operate an array whose size was dictated by Eq. (2-3) or
(2-4) with no link margin, we would find that increasing the array size beyond some number Nmax.
leads to the interesting conclusion that the total data return is decreased!
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In order to clarify this assertion, consider the following simplified argument. Define the
availability of a system AT to be the percentage of time that the system is operable for scheduled
support. Thus, the downtime required for maintenance is not counted. We should keep in mind that
the overall availability is a product of all subsystem availabilities, although for the remainder of this
discussion, we will focus on the antenna availability. The total data return D, from a deep space
mission can be written in terms of the system availability A, and the integral of the data rate

Dy = A [DR(t)- dt

where the integral is taken over the interesting portion of the mission. Suppose that the data rate
DR(t), is adjusted to the highest level that can be supported by the total ground aperture used to
receive the signal. If we use an array on the ground of N elements, each having availability p, and
the total signal from the array is near the detection threshold, then the total data return can be written

Dy =N-p" -f(t)

where f(t) is some function of time and includes all of the factors that enter into link performance
(e.g., distance, antenna gain, duration of an encounter, etc.), and pN is the availability of the entire
array. Very often the f(t) cannot be increased and the total data return can only be increased by
increasing the ground array. For instance, in a planetary encounter f(t) is limited either by the
duration of the encounter or by how much data can be stored on-board the spacecraft. Sincep <1,
we see that Dt has a maximum value at the value of N given by

-1

Numax o8 ()

A graph of Nyiax as a function of the individual array element availability p is shown in Fig.
2-4 and we see for an array whose size is greater than Nyjax that the data return drops precipitously.
This result stems directly from our assumption that the data rate would be increased to take advantage
of all the ground aperture—that is how it is done with a single antenna. In fact, use of an array
requires that we consider antenna availability in a different way than we do for a single antenna. Ina
link with a single antenna, the antenna is a single point of failure. In an array, the concept of
availability must be merged with that of link margin.

Consider an array of n+m elements where n are required for successful operation as
discussed by Barlow and Heidtman [1984] and Jamnejad, Cwik, and Resch [1993]. The
availability for each element is assumed to be equal to, but independent of the availability of the other
elements. No correlation is assumed among the failure rate or timing of different elements. Then the
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probability that at least n—m elements are operating successfully at any given time can be calculated as
follows: The probability that all the elements are operating successfully, as was given above, is

Po=p"
and probability that n—1 elements are operating successfully is equal to:
P;=n(1-p)p ™!

since this is the sum of n conditional probabilities for the case when one element is not functioning
but the rest are. The probability that n—2 elements are operating successfully is then given by:

P, = [n (n—1)/2] (p-1) 2 p 12

This can be repeated until the case when only n—m elements are operating, for which case we

have
P, = C(n,m) (p-1) M pn-m
in which
C(n,m) =n!/[(n—m)! m!] 27

is the number of combinations of m elements taken from a pool of n elements, and the ! sign
designates the factorial of a number.

The total probability of success for the array is then the sum of all the above cases

P= §C(n +m,k)(1-p)<p" (2-8)
k=0

which is also a form of the cumulative Bernoulli or binomial probability distribution function. Note
that we are comparing array elements having the same overall G/T, or assuming that T is more or
less constant for the array, for the array elements of equal G, or equivalently, equal collecting
aperture. Thus, for a total collecting aperture area of A, the individual element aperture of an array
of n elements can be written as

A,=A/n
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By adding m marginal elements of aperture A, the incremental increase in the collecting aperture is
m A,, and the percentage increase in the collecting area is given as

mA,/nA,=m/n.

Therefore, in order to make a comparative assessment of the various arrays' performance, the
number of marginal elements are given as a percentage of the minimum required array elements. In
Fig. 2-5, the array availability is plotted as a function of the number of extra elements that are
devoted to margin. The number of extra elements is expressed as a percentage of the minimum
number of array elements, for three array sizes, and for a fixed element availability of p =0.9. From
the above considerations, the following interesting observations can be made.

*» The availability of the array can be increased by increasing the number of marginal
elements.

* The array availability starts with a value much below the element availability, but
increases rapidly and surpasses the element availability for a margin of less than about 30
percent or 1 dB.

* The rate of increase is much faster for arrays with a larger number of elements, even
though the availability starts with a much smaller value.

* At some point as the margin level increases, all the arrays with a different number of
elements reach the same availability level, beyond which a given margin results in
higher availability for larger arrays than for smaller arrays.

* For larger arrays the margin can be increased more gradually, since each additional
element constitutes a smaller fraction of the total array. For an element availability of
0.9, for example, the minimum availability of a 2-element array is 0.81, which increases
to 0.972 by the addition of one element, which is the smallest increment and constitutes
a 50% increase in the collecting area or a 1.76-dB margin. In contrast, for a 10-element
array with the same element availability, the minimum array availability is 0.349, but

by the addition of 3 elements (a 30% increase or a 1.1-dB margin), an array availability
of 0.966 is achieved.

* Typically, for a given margin or percentage increase in the collecting aperture, a higher
array availability is achieved in arrays with a larger number of elements.

This demonstrates some of the advantages of large array of smaller apertures in comparison
with a small (few elements) array, in terms of providing a more graceful way of increasing the
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performance margin, and conversely, a more graceful degradation in case of element failure.
Furthermore, the fact that for a given margin or percentage increase in the collecting aperture, a
higher array availability is achieved in arrays with a larger number of elements, can be used in
trading off element reliability in larger arrays for cost, while still maintaining the same overall
reliability as that of an array with a smaller number of elements with higher individual reliability.
Interestingly enough, the smaller elements used in larger arrays typically have a much larger
reliability than their larger counterparts to begin with, since they are less complex and easier to

maintain.
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3.0 ARRAYING CONCEPTS

Technology provides a variety of solutions to the telemetry arraying problem. We have not
attempted to determine the "optimum" solution for the DSN in this regard—that would be the subject
of a separate study. In order to simplify the cost and performance modeling, we adopt one
technique—termed full-spectrum combining, that is the most general solution for all of the various
DSN responsibilities and offers the best performance in the lowest snr (signal-to-noise ratio)
situations [Mileant and Hinedi, 1990].

The major telemetry-combining techniques are briefly outlined in order to provide context for
the choice. Some of the problems involved with full-spectrum combining are discussed, particularly
in regard to those involving small antennas. It should be noted that although the DSN does not have
experience with this technique, the radio astronomy community does. However, there are three
major differences between what drives the DSN and the radio astronomical communities in this area.
First, the DSN knows that the spacecraft of interest is a point source and there is no need to resolve
it. Second, sensitivity is at a premium and single-bit quantization is not worth the loss in sensitivity
it entails. Third, there is a continuing requirement to have the data in near real-time in order to
monitor the health and safety of the spacecraft, which implies that tape recording and mailing the data
is an unacceptable operations scenario.

3.1 ARRAYING TECHNIQUES

There are four basic signal-processing schemes that can be employed to combine the output
of separate antennas that are observing a spacecraft-type signal. These schemes have come to be
known as: (1) symbol stream combining (SSC), (2) baseband combining (BC), (3) carrier arraying
(CA), and (4) full-spectrum combining (FSC). Mileant and Hinedi [1990] have analyzed the
performance of these techniques and have discussed the complexity in regard to the reception of
spacecraft signals. Their analysis will merely be summarized here. It should be noted that the first
three of these schemes (SSC, BC, and CA) work only with a signal that has well-defined modulation
characteristics. They utilize the fact that the signal source has a unique spectral characteristic and
process accordingly. The fourth scheme (FSC), works equally well with radio sources whose
output is noiselike.

All of the arraying techniques fall in the general category of signal processing. The overall
snr is set by the capture area of the antenna and the thermal noise generated by the first amplifier. In
the current DSN signal-flow diagram, the low-noise amplifier is followed by open-loop
downconverters (2 stages) that heterodyne the portion of spectrum occupied by the spacecraft signal
to a frequency that can be easily digitized. Digital signal-processing techniques are then employed,
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and ultimately an estimate is made of the data bits impressed on the carrier at the spacecraft. The data
are then delivered to the project that operates the spacecraft. Although the front end of the signal-
flow diagram is identical for all of the arraying techniques and the ultimate goal is the same, the
details of implementation vary, and this results in very different capital investment and operations
costs. These differences make it extremely difficult to unambiguously determine the "best" arraying
technique. The general characterization of these techniques is as follows:

Symbol Stream Combining (SSC) - The block diagram is shown in Fig. 3-1. The signal from each
antenna is used to track the carrier, subcarrier, and perform symbol synchronization. Once symbol
synchronization is achieved, it is a relatively straightforward matter to delay one data stream in order
to align the symbols in time. The symbols are then combined with the appropriate weights to form
an estimate of a "soft" symbol, i.e., the raw telemetry data, before the decision is made as to whether

a given bit is +1 or —1.

The two primary advantages of this technique are that combining loss is negligible and data
are transmitted to some central combining site at the symbol rate. The symbol rate is some multiple
of the data rate, which for most deep space missions is relatively modest. The rate at which data are
communicated to a central site is an important cost consideration since most deep space projects want
their data in real time. In addition, there are no stringent requirements on instrumental phase
stability.

The disadvantages of SSC stem from the requirement that a carrier, subcarrier, and symbol-
tracking device must be provided for each antenna. Given that the cost per unit of complexity for
digital electronics is rapidly decreasing with time, it may well be possible to build a "receiver on a
chip" for just a few dollars, so the cost impact may be negligible. However, the performance is
another matter. The fact that all of the tracking loops must be locked implies that the combination of
signal strength and integration time puts you in the strong snr regime. For small antennas with
inherently low signal strength, the implied integration time (i.e., narrow loop bandwidths) becomes
impossibly large and the technique is impractical.

Baseband Combining (BC) - The block diagram is shown in Fig. 3-2. In BC, the signal from each
antenna is carrier locked. The output of the carrier loop is at a baseband frequency and consists of
the subcarrier harmonics. The baseband signal is digitized, delayed, weighted, and then combined.
The combined signal is used to achieve subcarrier lock and symbol demodulation.

In effect, the carrier signal from the spacecraft is used as a phase reference so that locking to
the carrier eliminates the radio-frequency phase differences between antennas imposed by the
propagation medium. The information bandwidth containing the subcarrier and its harmonics is
relatively narrow and can be heterodyned to baseband. The low baseband frequency then imposes
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instrumental stability requirements that are relatively easy to compensate for. The baseband data that
must be transmitted to a central combining site contain all of the significant subcarrier harmonics and
can therefore be more of a cost consideration than SSC.

The disadvantage of this technique is that carrier lock is required on the signal from each
individual antenna. As the antenna diameter decreases, the carrier snr is reduced and must be
compensated for by either longer integration time or having the spacecraft increase the amount of
power in the carrier. Halving the carrier snr implies four times more integration time (or equivalently
a narrower bandwidth in the phase-locked tracking loop), which is sometimes possible but cannot be
carried out indefinitely because of lack of signal stability either due to the transmitter, receiver, or
propagation medium. If the spacecraft is programmed to increase the carrier power there is less
power available for the data, and the data rate must be reduced.

Carrier Arraying (CA) - The block diagram is shown in Fig. 3-3. In carrier arraying, the individual
carrier tracking loops on each array element are "coupled” in order to enhance the received carrier snr
and thereby decrease the "radio” loss due to imperfect carrier lock on a single antenna [Butman, et.
al., 1981].

In effect, all of the carrier tracking devices are used to arrive at a "global” estimate of the best
carrier synchronization. Alternatively, a single large antenna can provide carrier lock information to
a number of smaller antennas. The actual combining can then be done either at an intermediate
frequency or at baseband with the attendant advantages and disadvantages of each. However,
carrier lock information must be transmitted to a central site and the global solution must be
transmitted back to each antenna. For antennas separated by a large distance the carrier lock
information must be corrected for different geometries.

Full Spectrum Combining (FSC) - The block diagram is shown in Fig. 3-4 and has been analyzed by
Rogstad [1991]. In FSC the signals from each antenna are heterodyned to baseband, sampled, and
transmitted to the combining site where they are combined. To ensure coherence, the signals must
be delayed and phase adjusted prior to combining. An estimate of the correct delay and phase is
normally accomplished by correlating the signal streams.

The primary advantage of FSC is that it can utilize the spectral characteristics of the signal
source but does not crucially depend on them, i.e., the received spectrum can be filtered if the
spectral characteristics are known, or accepted in total if the spectrum is unknown or noiselike. FSC
can be used when the carrier is too weak to track, or is not possible to track with a single antenna. In
this case, the gross relative delays and phases between antennas are determined a priori from
geometry calculations. Then the residual relative delays and phases are determined by cross-
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correlation of the signal arriving at each antenna. These delays and phases are used to correct the
signal from each antenna and the signals are then combined.

The main disadvantage with FSC arises when the signal spectrum is unknown or noiselike.
The entire signal bandwidth must then be transmitted to the combining site. If the transmission is
analog, then the link must have high phase stability and low dispersion set by the requirement to
maintain phase coherence at the radio frequency. If the link is digital, it must have relatively large
bandwidth (assuming multibit digitization). Depending on the compactness of the array and the cost
to install fiber-optic cabling, this may not be a disadvantage.

3.2 COHERENCE

In general, the wave front of an electromagnetic signal from a distant source arrives at each
element of an array at a different time. Some fraction of the energy contained in the wave front is
captured by the collecting area of each antenna. The captured energy generates a voltage that is
amplified and guided to a point where combining takes place. This voltage, as a function of time, is
simply a phasor and the process of combining can then be thought of as an exercise in phasor
alignment.

Suppose that we use two antennas to track a radio source. If we use ﬁ;‘ to denote the vector
baseline between them (measured in wavelengths) and § to denote the unit vector in the direction of
the source, then the phase difference between the signals received at these two antennas as a function
of time can be written as [Thompson, Moran, and Swenson, 1986]

b(t) = znﬁk ® 8+ Ojng + O prop (3-1

where the term ®jnst is the instrumental phase difference between the two signal paths and {prop is the
phase difference due to the propagation medium. If we knew ¢(t) exactly, it would be a relatively
straightforward matter to apply it to the signal stream so that the combined signal from both antennas
would be perfectly coherent.

Unfortunately, it is quite impossible to know ¢(t) exactly. Both the baseline and the source
position are measured quantities and have an associated measurement error. If these errors are small,
and we can calibrate the instrumental phase, and the propagation-medium phase difference is small,
then we can compute ¢(t) and combine. This is called a priori combining. Obviously, if any of these
quantities varies without our prior knowledge, then the combining will involve some loss of signal
strength, as discussed in the next section. A priori combining places stringent limits on baseline and

24



source position knowledge as well as instrumental stability. Propagation medium errors are
uncontrolled and set a limit on the size and/or operating frequency of the array.

The alternative to a priori combining is to estimate the phase difference between the antennas
in real time and use this estimate to correct the phase of one of the antenna signals. This is termed
self-coherence, and the phase estimate is derived by computing the complex cross correlation of the
signals. Self-coherence reduces the sensitivity to systematic errors in baseline, source position,
instrumental phase, and even fluctuations in phase due to the propagation medium. However, the
phase estimate is a measurement whose accuracy is subject to the limits set by the snr.

3.3 ARRAYING LOSS

For an array of Ng identical elements, Ulvestad [1988] has shown that the average power

from the combiner is
(P)=N¢(N, = )V2{exp(iag;;)) + NV

where the bracketed term is the expected phase between the ith and jth elements, and V is the voltage
amplitude from a single element. Dewey [1992] derives a similar expression for a non-
homogeneous array, but with weighting factors in the summation that are appropriate for array
elements having various values of G/T. In order to simplify the discussion, we will consider only
the case of array elements with identical G/T. For perfectly coherent combining Adjj =0, the
exponential term in the above equation is unity and the average power becomes

2+52
<P)coh = NCV = Pmax

The ratio of summed power from the combiner to the maximum possible power is simply

=2
252l 5

max € <€

where it is assumed that the phase difference between the i and k elements is a Gaussian distributed

random variable with variance Eﬁ(. The effective combining loss between two identical array
elements for various values of the phase difference A¢ is shown in Fig. 3-5.

The combining loss L, can then be defined as
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For large N, the loss rapidly approaches
L = exp[-03/2| forN>>1

where Oy is the average phase difference between elements. Of course, the similarity of this
expression with Ruze's formula in Eg. (2-5) is no accident. Both are derived from a model of
combined phasors that suffer random Gaussian phase shifts. If the phase shifts are due to
irregularities of a parabolic surface, then the phase shift is doubled due to reflection. Figure 3-6
shows the combining loss for the array for Ne from 2 to 1000 and three different values of G¢.

The implication of these calculations is that we should seek to keep the phase difference
between array elements to less than 12° if we require combining loss to be less than 0.1 dB. This
amount of phase error is equivalent to 0.047A, or a physical distance of 0.6 cm at S-band and 0.17
cm at X-band. Typically, instrumentally induced phase errors are related to the temperature stability
of various electronic components and cabling, while propagation effects occur randomly. Very
often, instrumental stability problems are characterized by a diurnal phase variation. For a priori
combining this means that (a) the instrumental phase shift should be determined at the start of an
observation with precision better than 12° and (b) we cannot accumulate more than 12° of differential
phase between elements in a worst-case (i.e., a priori combining) observation time of 12 hr. (42300
sec.). This sets a differential stability requirement on the instrumentation of

_A_q_>’~ 12 ~ 10716
o 360-8.4-10°-43200

which is stringent but nevertheless achievable. It must be emphasized that this requirement is for
differential stability, not absolute. For an array of identical elements, many components of the
instrumental error budget will cancel because they are common among elements. The DSN regularly
achieves a stability in its receive electronics on the order of a few parts in 10-15 and there is evidence
[Armstrong and Scramek, 1982] that the Very Large Array (VLA) has instrumental differential
stability on the order of a few parts in 10-17. For most of the combining schemes that we will
discuss, the differential phase between array elements is estimated in real time and used to correct
and combine antenna outputs. In these schemes, the time scale over which phase stability is required
is set by the integration time necessary to obtain adequate snr for phase estimation. This integration
time is typically 1 to 100 sec, and the resulting differential phase-stability requirement stated above is
reduced by two to four orders of magnitude.
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However, as shown in Eq. (3-1), instrumental effects are not the only cause of differential
phase errors between elements of an array. As the wavefront travels through different portions of
the Earth's atmosphere before reception at the various array elements, it experiences differing
degrees of phase retardation due to refractivity fluctuations in the atmosphere. The static portion of
the atmosphere can be well-modeled so that the average phase ¢prop = constant, but the fluctuation
along the different ray paths leads to a dispersion 6¢. These fluctuations are dominated by water
vapor in the troposphere (i.e., the lower ~ 2 km of the atmosphere).

The calculation of G, due to atmospheric effects is given by Treuhaft and Lanyi [1987] who
derived the structure function of delay fluctuations for two ray paths through the atmosphere when
the ray paths are separated by a distance p (i.e., the baseline length). Figure 3-7 shows the standard
deviation of the phase difference between array elements versus their separation due to atmospheric
fluctuations for zenith ray paths. It was assumed that these fluctuations are described by
Kolmagorov turbulence, whose strength is characterized by the parameter Cy, a scale height h, and
the turbulence pattern that is transported by the wind while retaining its spatial distribution (i.e., the
"frozen-flow" model).

One interpretation of Fig. 3-7 is that it represents an ensemble average. If there were an
ensemble of antenna pairs, each with identical separations, observing a source at the zenith, and if
we measured the instantaneous phase difference between them, then the scatter in this set of phases
would be 6,,. Alternatively, if we had just one antenna and measured the phase as a function of
time, then the resulting time series would be characterized by 6,. The top axis in Fig. 3-7 illustrates
the time axis assuming a wind speed of 10 m/s. In effect, it indicates that the phase of the signal as
received at a single station, integrated for the period along the x-axis, would have a standard
deviation as given along the y-axis.

The dashed line in Figure 3-7 is drawn at 12° of phase difference corresponding to
approximately 0.1 dB of gain loss. For X-band zenith observations, this suggests a distance scale of
350 m and a time scale of 35 sec. The structure function is a function of both elevation and azimuth,
and in the worst case the phase variance will increase approximately as the secant of the elevation
angle. For a minimum elevation angle of 10°, the secant represents a factor of approximately 6, the
critical linear scale becomes 145 m, and the integration scale is reduced to 15 sec. An array of fully
steerable antennas is necessarily larger than the single aperture it synthesizes. Further, the smaller
the array element is, the longer the required integration time is for a given target. Therefore, an array
will suffer more gain degradation as a function of elevation angle than the corresponding single
aperture.

In order to quantify further the atmospheric effects on an array, additional information must
be specified. We need to know the cumulative probability distribution of the turbulence parameter
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Cp and the spatial distribution of array elements. The quantity Cy can vary from day to night, season
to season, and is site-dependent. Knowledge of the probability of these variations would allow us to
calculate the average gain loss or gain-versus-elevation angle profile. The spatial distribution of
array elements is important because the quantity required in Eq. (3-2) is the average phase error, G, .
An array of Ne elements contains Ne(Ne—1)/2 indepéndent baselines so that the computation of the
average phase error depends on the array geometry, i.e., &, is a weighted average. The weighting
factors for the o, are obtained from the transfer function of the array [Christiansen and Hogbom,
1985], which represents a map of all spacings contained in the array and their relative weights.

Thus, the inner spacings of a compact array are weighted more heavily that the fewer large spacings.

It should be noted that Edwards [1990] has demonstrated that this level of residual error can
be obtained on baselines as long as 20 km at X-band using a 26-m and a 34-m antenna. This
suggests that phase errors due to both instrumental and propagation effects are tolerable for
telemetry-arraying purposes.

34 ARRAY CALIBRATION

Whether the array is combined solely on the basis of a priori information or the elements are
self-cohering, there is a need for accurate baseline calibration. Typically, baseline calibration is done
after initial installation and repeated whenever a major component in the signal path is moved or
replaced. In the case of a priori combining there is the additional need for instrumental phase
calibration, i.e., generally it must be repeated on a time scale that is short compared to the time rate of

change of djpst.

Phase Calibration:
The precision of a phase measurement is given by

G4 = l/snr (radians)

where snr is the signal to noise ratio. Thompson et. al. [1986] derives the snr = R for an unpolarized
source as

172
_8[AsAy aft
k| TgTg; 2
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where Agj is the effective collecting area of the ith antenna, Ts; is the total system temperature of the

ith antenna; 7 is the integration time (= 1/Af] ) of the lowpass filter; Af is the intermediate frequency
bandwidth, k is Boltzmann's constant; and S is the flux density of the radio source.

An snr of 5 ensures reliable signal detection and provides a phase measurement precision of
Ap ~11°, i.e., below the 0.1-dB loss criterion. Figure 3-8 illustrates a calculation of the minimum
integration time needed to achieve this snr-versus-antenna diameter for 2 cases. The interferometer
in both cases consists of two elements, each having Tg = 85K (e.g., Peltier cooled X-band LNA),
an IF bandwidth of 16 MHz, and a source strength of 1 Jy. In the first case, the two elements are
assumed to be equal in diameter, and in the second case, an element of diameter d is paired with an
aperture having an effective diameter of 70 m. Since the antenna diameter, system temperature, and
bandwidth are set by design specifications, the only way to increase the snr is to lengthen the
integration time, or use stronger sources.

Patniak et al. [1992] lists 800 compact sources whose positions have been measured with an
rms accuracy of 12 milliarc seconds (mas) at X-band for the declination range 75° < § < 35°. Figure
3-9 shows this data extrapolated to the solid angle of the celestial sphere observable from Goldstone
(e.g., within a 24-hr period). It also shows the number of sources one can expect to find that have a
strength greater than the value listed along the x-axis of the graph. Thus, we would expect to find
approximately 167 radio sources having S > 1 Jy, 49 with S > 2 Jy, etc. A similar catalog is not
readily available for S-band, however it should be noted that most of the sources in the X-band list
are likely to be stronger at S-band.

The positional accuracy of these sources is more than sufficient for phase calibration. For a
square array the largest baseline components are approximately 2 km or 6 x 109 wavelengths at X-
band. The maximum systematic error in phase due to a 12-mas error in source position is less than
1.2° at X-band and less than 0.3° at S-band. We conclude that positional accuracy of the calibration
sources is not a major factor in calibrating the instrumental phase.

However, the observation must be made with enough snr to provide a phase error < 10° and
it would be preferable for the radio source used for calibration to be close to the source of interest to
minimize array motion.

Baseline Calibration:

In practice, conventional surveying measurements cannot measure the vector baseline ﬁk
with the accuracy required for a priori tracking of delay and phase. Instead, interferometric
observations are used to derive a self-consistent set of baseline estimates. If we were to observe 4
sources having known positions, then in principle we could solve the resulting 4 simultaneous
equations resulting from Eq. (3-1) for the baseline components X, Y, Z, and the instrumental phase
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offset Oinst, assuming that ding is constant for the time it takes to make the 4 measurements. The
error in the phase measurement is typically used to weight the data in a least-squares fitting
procedure.

A high-quality baseline determination has two requirements: (1) observations along each
baseline component, as much as possible, in order to minimize the geometric dilution of precision
and (2) high-precision (i.e., large snr) phase data. In order to achieve the first goal, we can adopt a
strategy of observing multiple sources at very different positions in the sky. Achievement of the
second goal is limited by the snr considerations discussed previously. The initial calibration of the
array might take many days of observing spaced over weeks in order to get good source geometry
and to understand the instrumental phase stability.

Conclusions:

Summarizing the above considerations leads to the conclusion that an array of small antennas
(i.e., De < 10 m), in which the elements are individually correlated, is impractical. The lack of
strong radio sources implies impossibly long integration times to obtain sufficient snr for either
instrumental phase calibration or baseline calibration. However, an array in which each element is
correlated against the sum of all other elements appears to be quite feasible. A somewhat similar
scheme was demonstrated in software at the VLA with telemetry signals during the Voyager
encounter with Neptune, where the phases on all 351 baselines were used to solve for the 26 phase
offsets between a reference antenna and the remaining elements of the array. Total power arraying is
often done in radio astronomy experiments (e.g., using the summed VLA as one element in a VLBI
experiment).

A scheme illustrating how the feedback could be implemented in hardware will be discussed
in Section 4.5. The combined signal is fed back to be correlated against each individual element and
the autocorrelation function of the signal from that element is subtracted. An interesting but unsolved
problem is whether the process then converges to a fully coherent array and if so, how rapidly it
would converge.
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4.0 SUBSYSTEM COST MODELS

Several variations in the design were discussed during the study. Only the final version is
presented here. The high-level block diagrams are shown to illustrate the functional partitioning of
the system, the data flow, and the interfaces between subsystems. The detailed cost model for each
subsystem is then discussed.

4.1 SYSTEM BLOCK DIAGRAMS

Figure 4.1-1 shows the overall block diagram of the array. Each antenna is equipped with a
low-noise amplifier (LNA) that amplifies the radio frequency (RF) signal collected by the aperture.
The system temperature is usually determined by the noise contribution of this LNA, with smaller
contributions from the remaining elements of the electronics chain. There is at least one output,
possibly several (depending on number of subarrays selected), that represent the coherently
combined sum of all or some subset of array elements. This output consists of a digital data stream
that would be routed to a DSN telemetry receiver for demodulation.

The block diagram of Fig. 4.1-1 also indicates that the RF signal from the LNA directly
modulates a fiber-optic link which routes the signal to a central location. A more conventional design
would include a downconverter on each antenna containing a local oscillator (LO), intermediate
frequency (IF) amplifiers, and possibly bandpass filters. However, the diagram of Fig. 4.1-1
represents a considerable cost-and-complexity advantage. First, there is less equipment on the
antenna, a particular advantage for very small antennas. Less equipment on the antenna also means
there is less likelihood of equipment failures in the field, where repairs are more difficult and time-
consuming.

Another advantage is that only one cable is required to return the signal, whereas a
conventional approach requires a cable for the IF signal and a separate cable for a reference to phase-
lock the local oscillator. Very often, the reference signal cable must be separately stabilized with the
attendant penalty in cost and complexity. In the scheme shown here, we rely on the inherent stability
of the buried fiber-optic cable to minimize unwanted instrumental phase drifts. One of the design
aspects associated with the scheme shown in Fig. 4-1 is that 70 to 80 dB of RF gain is required to
drive the modulator of the fiber-optic link, as compared to 30 to 40 dB of gain required for a more
conventional scheme that would have a downconverter at each antenna.

Once the analog fiber-optic signals are brought to a central location, they are demodulated,
and the resulting RF signal must be heterodyned with a coherent LO to some intermediate frequency.
Design of the fixed LO distribution subsystem is simplified because of the proximity of all the
signals. Also, thermal control, the main culprit of unwanted phase drifts, is less of a problem than
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with the conventional design. If all mixers and IF amplifiers share the same environment and have
similar phase-versus-temperature characteristics, then temperature effects tend to cancel in the
common mode.

The heterodyne operation translates the RF bands 2.0 — 2.3 GHz and 8.1 — 8.5 GHz to an IF
center frequency of 300 MHz. The signal is amplified again at IF and passed to the Correlator
subsystem where it is downconverted to baseband using a tunable LO and filtered to limit the
bandwidth to approximately 16 MHz. The correlator adjusts the delay using an a priori model of the
geometry and then performs a complex cross-correlation to find the phase shift between the ith
element and the rest of the array. This phase is then used to counter-rotate the phase of the signal
from the ith element so that all elements are in-phase. Each signal is then passed to the combiner,
which adds them with the appropriate weighting factor in groups corresponding to the subarray
specification.

Each antenna is assumed to have its own pointing computer that understands the directives to
TRACK, SLEW, etc. Operation of the array is coordinated by the Monitor and Control subsystem,
which presents a "familiar" interface to the Signal Processing Center. In effect, the array would
appear as one or more antennas in a link, or the subarrays could be present in different links, and
accept the same set of commands and scheduling information that is currently used in the station
Monitor and Control.

The output of the array consists of one or more (depending on the specified number of
subarrays) data lines that are digital but could be converted to analog. As digital signals, a new
interface to the Block V receiver would be required, but the cost has not been estimated in this study.

4.2 ANTENNA COST MODEL

The antenna system is an obvious and major component in the overall array cost model. As
will be detailed, the antenna system will be divided into subsystems that include all mechanical and
structural components, the foundation, and microwave optics (including the feed system), but does
not include any electronic packages. To simplify the cost-estimation process within a limited time
and budget, off-the-shelf technology was used for each subsystem. It was decided to contract to two
companies specializing in antenna—ground station design and fabrication so that detailed antenna
subsystem costs could be supplied and the estimated costs would not be speculative. These two
companies are TIW Systems, Inc., Sunnyvale, CA (TIW), and Scientific Atlanta, Inc., Atlanta, GA
(SA). The two companies have previously supplied JPL with antenna systems, and therefore they
are familiar with the specific requirements and procedures of the DSN. The specific tasks that the
contractors were to complete are as follows:
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» For eight diameters ranging from 3 to 35 meters, production techniques will be investigated and
a preferred design for each antenna subsystem will be specified.

* The design will include specifying antenna optics for each antenna size based on cost,
manufacturability, and performance.

» Each subsystem will be further divided into nonrecurring and recurring costs.

» Because of the large number of antennas that could be fabricated (especially at the smaller
diameters), it is expected that an economy of scale will be encountered. This cost study should
outline breakpoints in production where costs drop for a given diameter as more antennas are
fabricated.

» To assist in the probabilistic determination of the number of antennas needed to maintain a
prescribed G/T margin, the cost estimates should outline antenna components which critically
affect reliability, and detail the costs of critical components as a function of reliability.

Due to the limited time and budget of the contracts, the last three items were not examined in
great detail. The costs in this section therefore do not reflect any reductions that may be gained by
mass production of antenna systems specifically designed for this DSN array application. It is also
noted that Scientific Atlanta has supplied antennas ranging from 2-21 m and presently manufactures
antennas ranging in size from 3-18 m. TIW has supplied antennas ranging from 9-34 m.

4.2.1 ANTENNA SPECIFICATIONS

As outlined in Section 2.1, the number of antennas needed to synthesize the G/T of a 70-m
aperture with an array is a function of the array element diameter and the system noise temperature.
Since three LNA configurations were modeled, each having a different system noise temperature,
there is a large spread in the number of antennas required. Shown in Table 4.2-1 is the range of the
number of antennas needed for each of the eight diameters specified to the contractors. The column
of minimum units corresponds to cooled amplifiers and enough antenna elements to comprise one
station, while the maximum number of units corresponds to uncooled amplifiers and enough
elements to comprise three stations. This range was specified to allow for economies of scale in
production methods to surface, and for a complete parameterization of the antenna-amplifier system,
based on system noise temperature and antenna diameter.

Common sense dictates that an array of inexpensive 3-m antennas using expensive cooled

amplifiers, as well as expensive 35-m antennas using inexpensive uncooled amplifiers, should
produce extremes in the cost model. These extremes would be expected to bound the cost model.
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Note that the numbers in Table 4.2-1 were calculated on the assumption of perfect efficiency and are
therefore slightly smaller than what would be calculated by using the equations in Section 2.
However, they are sufficient to set the manufacturing scale for the contractors who supplied the
detailed cost estimates.

Table 4.2-1. Minimum and Maximum Antenna Elements.

Units
Diameter (m) Minimum Maximum
3 545 27,000
5 196 10,000
10 49 2,500
15 22 1,100
20 12 615
25 8 394
30 5 274
35 4 201

The antenna optics are broken into two regimes. For small-diameter antennas, a frequency-
selective subreflector is used to separate S-band—arranged as a prime focus system—from X-band,
which is arranged in a Cassegrain system. For larger diameter antennas, both bands operate in a
Cassegrain system, with the bands separated by either a dual-frequency (concentric) feed or a
frequency-selective surface (FSS) diplexor. It was expected that the break would occur in the range
of 10 — 20-m antenna diameters. This breakpoint option and frequency-combining method were left
to the contractor. TIW arrived at designs which used prime-focus S-band designs, including an FSS
subreflector for diameters up to and including 10 m and Cassegrain configurations with a dual-
frequency feed for diameters of 15 m and larger. SA arrived at similar designs but with a breakpoint
where the dual-frequency feed is used for diameters greater than 21 m.

To gain a better understanding of the antenna-system cost model, the antenna was broken
into eight subsystems described as follows:

» Antenna Support Structure: The designs for all antenna sizes were conventional elevation-over-
azimuth configurations. Due to the range of antenna sizes considered, modifications based on
production, shipping, and assembly were made to arrive at a final design.

« Main Reflector Surface: Again, based on antenna diameter, different panel-production methods
were used in the final design.

e Axis Drive: Includes actuators, drive gearboxes, and bearings.

» Position Control: Includes encoders, motors, cabling and controls.
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* Feed System, including FSS: As noted above, different feed systems were used at the diameter
breakpoints specified by the contractor.

* Foundation: No below-ground enclosure was supplied.

* Power Supply: Includes distribution on site.

* Shipping, Installation and Testing: Different strategies for installation and testing were used,
based on antenna diameter.

Summaries of the designs, as well as the cost information, are contained in final reports supplied by
the contractors.

4.2.2 PERFORMANCE REQUIREMENTS
The performance requirements specified to the contractors are those contained in DSN

Document 810-5, Volume 1: Existing DSN Capabilities [1991]. The necessary specifications for
this study are listed in Table 4.2-2.

4.2.3 THE ANTENNA COST MODEL

Traditionally, antenna cost models have followed a power law

C=a+B-D; (4.3-1)

where o represents a constant fixed cost, B is a constant, and De is the dish diameter. The exponent

v is the critical parameter in the cost model, which drives costs as the antenna size increases. This
parameter has been previously estimated by examining costs of existing antennas and fitting the
above power law to the data. One early estimate [Potter, Merrick and Ludwig, 1965] gave vy as 2.78,
and this number has been widely quoted.
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TABLE 4.2-2. Antenna Element Specifications.

Parameter Specification
Operating Frequency From S-Band to X-Band
Axis Coverage: '

Elevation 0° to 90°
Azimuth +200°

Reflector Surface

Solid aluminum

Environments:
Precision Operation:
Wind 10 mph gusting to 12 mph
Rain 2 inches per hour
Temperature 0°Fto 115°F
Normal Operation:
Wind 30 mph gusting to 36 mph
Rain 2 inches per hour
Temperature 0°F to 115°F
Survival:
Wind 100 mph (stowed)
Seismic 0.3 G horizontal and 0.15 G vertical
Hail Up to 1 inch diameter stones
Temperature —20°F to 180°F
Drive-to-Stow 60 mph
Maximum Tracking Rates:
Velocity 0.4°/sec
Acceleration 0.4°/sec?
Maximum Slew Rates:
Velocity 0.4°/sec
Acceleration 0.2°/sec?
Site Location Australia

Soil Conditions

3,000 psf bearing capacity at 3 feet below grade
(no piles required)

Axis Configuration

Elevation over Azimuth

Pointing Accuracy:
Precision Operation

0.1 beamwidth

Normal Operation 0.2 beamwidth
Surface Accuracy:

Precision Operation 0.030 inch RMS

Normal Operation 0.035 inch RMS

Concrete Foundation

Minimum height (no building room required)
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The constant fixed cost ¢, is taken to be the nonrecurring costs associated with engineering
design, tooling, etc., for each antenna element. As noted earlier, limitations of this study did not
allow an in-depth examination of nonrecurring costs, as well as economies of scale, which may
lower incremental costs of the antennas—especially for the smaller diameters. Shown in Table 4.2-3
are estimates of nonrecurring costs supplied by the contractors. These numbers reflect nonrecurring
costs for the total array of elements based on the minimum number of units in Table 4.2-1. The
constant o in Eq. (4.3-1) would be the costs listed in the table prorated per element.

Table 4.2-3. Nonrecurring costs for antenna elements.

TIW SA
DIAMETER (m) NONRECURRING $ DIAMETER (m) NONRECURRING $
3 1,348,838 3 380,000
5 1,533,821 5 380,000
10 1,768,737 10 542,500
15 1,533,959 13.1 250,000
20 1,644,085 15.3 250,000
25 1,613,000 16.1 400,000
30 1,923,300 18.3 400,000
35 2,001,500 20.0 500,000
21.0 550,000
25.0 750,000
30.0 350,000
320 350,000
35.0 1,000,000

Figure 4.2-1 shows the recurring cost estimates from the two contractors for the antenna
elements as a function of diameter. SA supplied data for more diameters than specified because they
have existing systems or cost data at 13, 16, 18,21 and 32 meters. The SA data are not as smooth
as the TTW-supplied cost data because of design variations at some diameters. Specifically, SA
supplies an 18-m system where the structure, foundation, and shipping, installation, and test
subsystems are optimized for cost.

Power law fits to the data are also shown on the plot. For both data sets, it is seen that the
cost increases nearly as the diameter squared, counter to higher powers previously published. It is
interesting to note that the Project Cyclops study [1971] came to the same conclusion for 25- -150-m
antennas. The fact that antenna costs scale approximately as diameter squared profoundly affects the
overall conclusions of this study.
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4.2.3.1 ANTENNA SUBSYSTEM COSTS

Cost data for the eight antenna subsystems are presented in Figs. 4.2-2 to 4.2-9. Costs for
specific subsystems at specific antenna diameters are plotted on the charts for both contractors. The
cross and square symbols denote the points where data were supplied, and the solid and dashed lines
are fits to the data. For some components, it is clear that the SA data do not fit the power law model
well. As mentioned in the previous section, this is due to optimizations of certain diameters for cost
reduction. Table 4-2.4 summarizes the constants 8 and y for the subsystems. The line labeled
"total" refers to the best-fit for the total antenna cost of Fig. 4-2.1.

Table 4.2-4. Summary of power law coefficients for the subsystems.

TIW SA

SUBSYSTEM B Y B Y

SUPPORT 0.10 271 1.62 1.88
REFLECTOR 0.26 2.39 0.77 2.08
DRIVE 3.14 1.43 8.82 0.99
POSITIONER 12.94 0.73 12.22 0.44
FEED 1075 1.06 0.43 1.65
FOUNDATION 0.20 2.13 0.31 1.89
POWER 2.68 0.72 0.95 0.65
SHP/INS/TST2 0.25 2.42 1.17 2.02
TOTAL 421 2.02 6.96 1.84

a Shipping/Installation/Testing

424 SUMMARY
For the purposes of the overall array cost model, the best-fit power law shown in Fig. 4.2-1
are sufficient to model the antenna system. The cost data (in K$) from the two contractors are

remarkably similar over the range 3-35 m, even though there are marked differences in the estimated
costs of components and the best-fitting power functions are different.

Crrw = 4210792, Csp =6.96D84

38



For better local fits to the data, or for individual subsystem cost data, the individual models shown in
Figs. 4.2-2 t0 4.2-9 can be used. An antenna system cost model made up of the individual
subsystems is then

C=Csyp + Crer + Cax + Cpos + Creep + Croun + Cpow + Cir (K$)
where the individual subsystem costs are given in the figures.

Figure 4.2-10 shows the percent of total cost for each of the eight subsystems for the TIW
and SA data: Structure; reflector; and shipping, installation, and test subsystem costs increase with
diameter size. Feed, position control, and power subsystem costs decrease, while foundation and
axis drive costs are relatively constant. For 3-m antennas, the feed and position control subsystems
contribute 57% of total cost in the TIW data and a similar percentage for nonshipping, installation,
and test costs in the SA data. These are obvious areas for cost reductions for high-quantity
production.

To extrapolate cost scaling for larger systems, the individual cost models were calculated for
diameters up to 100 m. The costs were calculated based on the individual cost models for TIW data
in Figs. 4.2-2 to 4.2-9, with power law fits made to the resulting extrapolated data. It was seen that
when a power law was fit to data up to 50 m, the cost scaled as D2-27; for fits to 70 m, the costs
scaled as D240; and for fits to 100 m, the costs scaled as D250, As the diameter becomes large, the
total antenna cost is dominated by the component having the largest exponent. For the TIW data,
this is the support structure component and the exponent is 2.71. These costs are, of course,
extrapolations to the small antenna diameter data and are speculative. However, this is the likely
explanation why prior studies suggested exponents in the range 2.5-2.7.

4.3 RF, IF, AND LO COST MODEL

The radio frequency (RF), intermediate frequency (IF) and local oscillator (LO) subsystems
all comprise analog devices. As indicated in Fig. 4-1, each antenna is equipped with a low-noise
amplifier (LNA) that amplifies the RF signal collected by the aperture. The noise contribution of this
LNA is usually the major component of the system temperature performance. Section 2 discussed
three different LNA performance models. In this section we discuss their cost.

The block diagram of Fig. 4-1 also indicates that the RF signal from the LNA directly
modulates a fiber-optic link that routes the signal to a central location. The advantages of this
configuration were discussed in Section 4.1, and the cost will be calculated as part of the signal
distribution subsystem. One of the design aspects associated with this scheme is that 70 to 80 dB of
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RF gain is needed to drive the modulator of the fiber-optic link, as compared to 30 to 40 dB of gain
needed for a more conventional scheme that would have a downconverter at each antenna. Once the
RF signals are brought to central location they must be heterodyned with a coherent local oscillator to
some intermediate frequency, amplified, and routed to the Correlator subsystem.

4.3.1 RF COST MODEL

From the discussion of performance in Section 2, we see that the number of required
antennas in the array is directly proportional to the system noise temperature and the major
component of the system noise is contributed by the noise temperature of the first RF amplifier,
except in the cryogenic package. Three conﬁguratlons were discussed: one in which the RF -
amplifier operated at ambient temperature, and two configurations in which the RF amplifier was
cooled to a physical temperature well below ambient.

There are several different approaches that can be used to cool electronic components and
assemblies to temperatures below the ambient environment. The discussion here will be limited to
those techniques viewed as being commercially available for cooling microwave transistor amplifiers
(FETs and HEMTs). Typically, the transistor is one of the least-expensive components of the
subsystem. The cost is dominated by the packaging, which includes assembly and testing.

Stored cryogens (or coolants), such as liquid helium and hqu1d nitrogen, have been used for
many decades. Use of liquid nitrogen usually offers the lowest cost method of cooling equipment to
78 K. Dewars suitable for cooling transistor amplifiers can be purchased for as little as $1, 000 and
have refill time intervals ranging from 1 day to 1 month. Liquid nitrogen is cheap (less than $1 per
liter), available almost anywhere, and relatively easy to handle. While the capital investment for
stored cryogenic cooling systems may be low, the life-cycle cost is high due to the need for proper
servicing by appropriately trained and dedicated personnel. The Dewars also present mounting
problems when located on the moving portion of an antenna (note that these problems can be avoided
in a BWG antenna design). For these reasons, a Dewar-based cooling scheme was not considered in
the cost model.

Peltier coolers offer a simple way to cool equipment to temperatures as low as 200 K. The
cost of a Peltier cooling unit is expected to be less than $1000. It is important to note that cooled
equipment must be packaged in a manner that excludes moisture and other condensibles. Vacuum
insulation or other forms of insulation and a container with vacuum-tight microwave windows and
power connectors are needed to thermally isolate and protect the cooled electronics from warm
surfaces and contaminants. The low cost of the Peltier cooler may be offset by packaging costs that
can easily range from $5k to $20k per package.
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Gifford-McMahon cycle cryo-coolers are used extensively for many applications in industry
and the scientific community. These are the most attractive commercially available coolers for
HEMTs and FETs, with operating temperatures as low as 10 K. Complete closed-cycle cryogenic
refrigerator (CCR) systems of this type are available at costs between $10k and $20k, depending on
the model selected.

Again, as in the case of the Peltier cooler, the cost of the CCR is a small fraction of the cost
of the cryo-cooled LNA package. The electronic equipment cost, the packaging cost, gas lines, and
cables needed for antenna-mounted operation, monitor and control equipment, spare parts,
documentation and testing costs can total $150k per package. The procurement of 30 to 50
HEMT/CCR systems might result in a lower price (perhaps somewhere between $75k to $100k per
system).

For the three configurations used in our cost model, we assume a total RF gain of 75 dB at
both S- and X-band. The unit cost for an uncooled configuration is taken as $15k, for a Peltier
cooled configuration as $30k, and for the CCR configuration as $150k. It was assumed that the
nonrecurring investment needed to develop and test these designs from a commercial source would
be $200k, $400k, and $600k for the uncooled, Peltier cooled, and CCR packages, respectively.

4.3.2 LO AND IF COSTS

After the RF signal is routed to some central location and is demodulated from the fiber
optics, it must be heterodyned to an IF frequency of approximately 300 MHz. The bandwidth could
range from a few MHz to several hundred MHz, depending on the final requirements on the array.
Even if the array were to be used only for telemetry, the bandwidths of the IF amplifiers might be
larger than the frequency allocations for Deep Space Communications in order to reduce the
instrumental calibration problems (e.g., see Section 3.4).

In the current architecture of the DSN, the RF signal is heterodyned on each antenna using a
device called the "VLBI Downconverter.”" This device heterodynes four channels, two at S-band and
two at X-band, to a 300-MHz IF center frequency with 100- to 500-MHz bandwidth. Thus, each
device contains two local oscillators whose phase is locked to a 100-MHz reference signal and four
IF amplifier chains. All these electronics are enclosed in an oven that is kept at a physical
temperature higher than the ambient temperature is ever expected to reach. The box enclosing the

downconverter is approximately 0.5 m3 in volume, weighs almost 100 kg, and costs over $150k
(i.e., $40k per channel) in single units. A large portion of the cost for this unit is due to the
packaging and stems from the requirement that the unit be located on the antenna.
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When the RF signals are all collocated, it would be more cost-effective to generate a single
high-power LO signal and split it multiple times to power the mixers in individual channels. The
mixer and IF amplifier could be greatly reduced in size, power consumption, and unit cost by using
monolithic microwave integrated circuit (MMIC) technology, however the initial design cost would
be high. A detailed cost estimate of this technology was not made during the study, we simply
"guess-timated" a nonrecurring cost to be $1.5M and a recurring cost of $12.5k for the
downconverter channel, the local oscillator, and the IF amplifier, plus any additional calibration
equipment that might be needed.

4.4 SIGNAL DISTRIBUTION COST MODEL

The signal distribution and layout considerations pertaining to a telemetry receiving array
differ from those of large antenna arrays used primarily for radio astronomy, since angular resolution
of target position is not a primary design consideration. For the telemetry receiving array, the design
goal is to maximize the gain of the array, which increases with the number and size of the elements in
the array but does not depend critically on the physical dimensions of the array. The signal
distribution scheme for a telemetry receiving array must therefore be a balance of several
considerations: distribution system stability, optimal packing of elements, shadowing of adjacent
elements, cable lengths and installation costs, land area required, and division of the array into
subarrays. This section summarizes the findings of a study undertaken to determine the optimum
design of the distribution system and layout. The results of this study are more fully documented in
Logan [1993].

4.4.1 DESIGN CONSTRAINTS
For the array under consideration in this study, the following design constraints are assumed:
» The signal distribution links from the individual antenna elements to the correlator/combiner
must have adequate phase stability over the integration times needed to support suppressed-carrier

tracking of deep-space missions.

« No shadowing of adjacent antenna elements is permitted over the entire tracking range of
360° in azimuth, to 10° above horizontal.

» Minimum-length cable runs to the central correlator/combiner are desired.
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* The whole array should be divisible into independent, identically shaped subarrays, so that
the correlator/combiner hardware and software are not subarray-dependent.

* The least-costly cable installation method which preserves the stability of the signal should
be employed.

4.4.2 SIGNAL DISTRIBUTION SYSTEM

All of the signals received by the individual antennas must be combined to yield a single
output of the array or subarray. Since the G/T of the individual antennas prevents them from
independently acquiring and locking to the weak spacecraft carrier signal, the correlator must
integrate the combined output of all the antennas to achieve lock. Therefore, the primary
performance requirement placed on the signal-distribution system links is to provide adequate phase
stability for the transmitted signals throughout the integration time needed by the combiner/correlator
to acquire and lock to the spacecraft carrier. The most stringent phase stability requirement is for
carrier-suppressed signals, where the necessity of Costas-loop tracking increases the required
integration time well beyond a symbol length.

For example, with the expected power levels from Galileo, calculations indicate that the
tracking-loop integration time could be as long as hundreds of seconds. During this time, the phase
of any signal input to the correlator should not drift by more than 1/10 of a cycle to avoid loss of
coherence. These two requirements of the combiner/correlator therefore determine the stability
requirements for the transmission links from the individual antennas to the combiner/correlator. In
this study, we adopt the conventional design rule of requiring the differential (input-to-output) phase
stability of each transmission link to be 10 times more stable than the transmitted signal phase-
stability requirement. Therefore, the worst-case differential phase-stability requirement for each link
is: no more than 1/100 of a cycle of phase drift (at X-band) during an integration interval. This
corresponds to a differential phase-stability requirement for each link of approximately A¢/¢ = 10-14
for a 100-second averaging time, and A¢/¢ = 10-15 for a 1000-second averaging time. However, it
can be shown [Logan and Maleki, 1994] that uncorrelated phase fluctuations of individual elements
in an array are mitigated by a factor of N in the combined output. Therefore, this relaxes the phase
stability required of an individual element by N.

Typically, temperature effects along and between cables are the largest source of differential
phase changes. A I-km cable length contains approximately 3 x 104 X-band wavelengths. If we
assume a coefficient of thermal expansion of 10-3 parts per Kelvin, then the cables would have to be
maintained within 30 mK during an integration interval in order to ensure no more than 0.01 cycle of
phase drift. This level of stability has been observed at the Goldstone site at a depth of 1.5 m by
Calhoun, Kuhnle, and Law [1993].
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This stability requirement applies not only the transmission medium (i.e., coaxial cable,
waveguide, or optical fiber), but also to the entire downlink electronics chain from antenna and
subreflector to the combiner/correlator, including the low-noise amplifier (LNA), RF-IF
downconverter, digitizer, etc. The choice of downlink architecture influences the type of
transmission medium employed, so the transmission system and downlink electronics configuration
are intimately related. Recent advances in fiber-optic analog signal transmission allow novel
architecture to be employed which enhance downlink stability and reduce costs, as discussed by
Logan, Lutes, and Maleki [1990] and Logan and Lutes [1992].

Four architectures were considered for the signal-processing and distribution system:

(1) Conventional RF-IF downconverter at antenna front-end, with coaxial cables used for LO and IF
distribution.

(2) Conventional RF-IF downconverter at antenna front-end, with analog fiber-optic links used for
the LO and IF distribution.

(3) RE-IF downconverter, digitization, and time-tagging at the antenna front-end, with analog fiber-
optic link used for LO distribution and digital fiber-optic links used for sampled IF distribution.

(4) Transmission of the S- and X-band LNA outputs using analog fiber-optic links from antenna
front-end. Conventional RE-IF downconverter and digitizer collocated with the combiner/correlator.
No LO distribution to the antenna front-end is required.

The fourth option, RF fiber-optic transmission, was selected as the most stable and
economical solution. The block diagram for this configuration is illustrated in Fig. 4.4-1. Analysis
and demonstration at DSS 13 of this capability was documented by Yao, Lutes, Logan, and Maleki
[1994].

Direct transmission of the RF output from the LNA over an analog fiber-optic link would
probably provide the most direct method for meeting the stability requirements of any other option.
A detailed design would likely utilize fiber-optic cable with a very low coefficient of thermal
expansion for above-ground routes and buried single-mode fiber for the long routes between
antennas and the control point. Burial at a depth of a meter would ensure differential thermal effects
at the milli-Kelvin level or less. The direct transmission method also offers the attractive advantage
of locating much of the downconverter chain in a well-controlled, centrally located environment in
close proximity to the correlator and combiner hardware and the frequency standard. This improves
the maintainability of the array and reduces the complexity and envitonmental control requirements
for the front-end areas of the individual antennas. In fact, it is doubtful whether the 0.01 cycle of
phase drift could be met if the downconverters were located on the antennas.
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4.4.3 ARRAY LAYOUT AND CABLE ROUTING

The considerations for the layout of a telemetry-receiving array are different than for an
astronomical array. The telemetry array under discussion should achieve a maximum gain-to-noise
temperature ratio (G/T) at a minimum cost. Since G/T does not depend sensitively on the array
layout, but the length of the cables in the signal-distribution system increases with the interelement
spacing, it is desirable to utilize that layout scheme which provides for the lowest-cost cabling
solution. These considerations were discussed in Section 4.2.1

To avoid shadowing of adjacent antenna elements, each antenna must occupy nonoverlapping
circular areas Aeff of diameter Deff = De/sin o + Doff, where De is the diameter of an individual
antenna element, ¢ is the minimum tracking elevation angle above horizontal, and Doff depends on
the antenna mount design, as shown in Fig. 4.4-2. If the elements are arranged in a simple square
or nearly square grid, we know from the discussion in Section 2 that the number of elements needed
is a function of (De)~2. Since the number of elements along one side of the square is approximately

v N , and the length of the side is (Ne—1)Deff, we see that the size of the array is practically

independent of the element diameter. Instead, it depends on the constants in Eq. (2-2) and the
minimum elevation angle. If we wanted to synthesize a single 70-m antenna with an array of four
35-m antennas having the same system temperature as the 70-m antenna, then the array would be
approximately 335 m along the side if the minimum elevation is 6°. An array of 3-m antennas with
110-K system temperatures would be about 458 m along the side.

Although it is straightforward to estimate the signal-distribution costs for a square array, it is
not the most cost-effective geometry. The most dense packing arrangement for these circular areas is
the hexagonal-close-pack (hcp), as illustrated in Fig. 4.4-3, in which each circular element of
diameter Leff is surrounded by 6 identical elements. The hcp arrangement uses 86.6% of the area

needed for a conventional square packing arrangement.

For a square array, it is obvious how to obtain identical square subarrays, but "it is a
widespread source of irritation that hexagons put together do not quite make up a bigger hexagon"
[Mandelbrot, 1977], i.e., it is not possible to construct identical hexagonal subarrays from the
single-antenna hexagonal unit cells. However, a fractal geometrical construction, the Gosper
snowflake [Gardner, 1976] retains the hcp arrangement while providing identical perfectly
interlocking subarrays.

In Fig. 4.4-3, the seven elements arranged in hcp configuration represent a "first-order”
Gosper snowflake. Higher-order Gosper snowflakes are obtained by recursive tiling of lower-order
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snowflakes. Figure 4.4-4 illustrates a second-order Gosper snowflake, which is comprised of seven
perfectly interlocking first-order snowflakes. Likewise, seven second-order Gosper snowflakes can
interlock perfectly to form a third-order Gosper snowflake, as in Fig. 4.4-5. Second-order, third-
order, and higher-order Gosper snowflakes retain this same shape. This "self-similarity" on all
scales is a basic characteristic of fractal objects.

The Gosper snowflake configuration also provides for the possibility of nonoverlapping
cabling to a central location, so that all cables may be installed via direct burial with a cable plow, as
illustrated in Fig. 4.4-6 for the third-order snowflake. A detailed comparison of the cable lengths
required for the Gosper snowflake and for a conventional square array [Logan, 1993] indicated that
the Gosper snowflake layout is more economical than a square array. Also, the cable lengths in the
Gosper snowflake are naturally equalized, which places less burden on the correlator to compensate
for the inevitably unequal cable lengths resulting from a square array layout. Although the fractal
geometry for the array layout was not used in the cost estimation process, the preceding discussion
illustrates the potential for cost savings in land, cabling, and trenching, which should be explored if
the arraying concept is to be pursued.

4.4.4 COST MODEL

The total cost of the fiber optic distribution system as a function of the antenna element
diameter is modeled using terms for each of the components of the system:

CrO(D) = Leable Ceable +Ltrench Ctrench +Ne Crerm +Ne Csplice N Cconn

where Labje is the total length of fiber-optic cable needed in meters, Ccaple is the cost per meter of
the cable, Lrench is the total length of trench in meters, Cyrench is the cost per meter for trenching,
laying the cable, and burial, Ne is the number of antenna elements, Cterm is the cost of terminal
equipment for a single antenna, Cgpjjce is the cost of splices for each antenna, and Ccqpp is the cost
of connectors for each antenna. Each of these terms will be treated separately below.

Trenches
For the purposes of this model, we assume that the antennas are laid out in a regular square

grid pattern, separated by distance Lpjn = De/sin o, where De is the diameter of the antennas, and o
is the minimum elevation angle to be tracked above the horizon. The grid will have sides of length
Lgide = (Ne!2 — Linin. Assume further that trenches are to be dug to route the cables, in a

fashion similar to the Project Cyclops study [1971]. A central trench runs the length of the array
vertically through the center, and horizontal trenches are dug for each row. There will be Nel2 +1

trenches, each of length Ne!/2 Lipin. The total trench length is thus Lirench = (Ne + Ne!/2) Liin-
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The cables can be laid in the trench and buried at a uniform depth. Recently, a price quote of
$180/meter was obtained for a DSN job between DSS 16 and G-86 for trenching and installation of
two conduits with pull cables. We will use this number for the following estimates. It is
emphasized that the power cables for the antennas can be laid in the same trench with the optical fiber
cables, since the fiber is immune to electromagnetic interference.

Cable Costs

It appears that the total length of cable required to run individual cables in the trenches from
each antenna to the center of this square array can be approximated by Laple = Ne3/2/2 Lyyin. This
expression holds better for large Ne (> 50), but will be used for the purposes of this first-order
estimate. The cost of single-mode fiber-optic cable for a recent DSN job was found to be
$0.23/fiber-meter. This is a relatively high price, probably because this was only a 4-fiber cable,
and so is a conservative estimate. It is assumed that the cost of adding a few multimode fibers to the
cable is negligible.

Cost of Terminal Equipment

Assuming no quantity discounts, the costs of the terminal equipment for a directly modulated
semiconductor-laser system for both S- and X-band are dominated by the cost of the transmitters.
Two scenarios are considered: (1) a "conventional” LO/IF system, in which a frequency reference is
distributed to each antenna on one fiber, the signal is downconverted, and the IFs are sent back on
separate fibers at 300 MHz, and (2) an "advanced" system, in which the RF signals are transmitted
directly on fiber from the antennas to the control room at S- and X-band on separate fiber-optic links.
It should be noted that the second scenario is conservative, and it is quite likely that both S-, and X-
band signals could be transmitted on the same link.

Splices

Each cable must be stripped at both ends, and connectors spliced onto the cables at a breakout
box. The cost of the breakout box is included in the terminal equipment "misc H/W" amount.
Assume that the cost to strip a cable is Cgyrip = $12.50, based on 15 minutes of labor at $50.00/hr,
and the cost to splice single-mode and multimode fiber is about $1/fiber, if ribbon-type cable is used.
S single-mode fibers will be used for the RF signals and M multimode fibers will be used for
monitor and control, per antenna. Thus, we have the following costs per antenna for stripping and
splicing:

2 Cytrip + 2 (S + M) Cgplice
Connectors

Connectors must be spliced to the ends of the fiber for connection to the terminal equipment
at the breakout boxes. For each antenna, the costs are
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25 Csm-conn + 2M Cmm-conn

where the cost of a high-quality, low-reflection single-mode connector pigtail is Csm-conn = $60.00

(based on the cost of a patch cord, cut in half to provide two pigtails with connectors). Multimode
connector cost is substantially less, Cynm-conn = $6.00.

Option 1: LO/IF System, one transmitter shared among 4 antennas for frequency distribution.
Assumed NO quantity discounts.

COMPONENT QUANTITY COST (k$)
FO Transmitter (Ortel CATV) 2.25 31.5
Optical Isolators 2.25 4.5

FO Receiver (Ortel CATV) 3 18

FO 1 x 4 Splitter 25 1

Misc. /W 5
Assembly & Test 4

TOTAL FO terminal equipment cost per antenna: Cierm-LO=$63.1k

Option 2: RF S- and X-band System. Assumed NO quantity discounts.

COMPONENT QUANTITY COST (k$)
FO Transmitter (Ortel DFB) 2 30
Optical Isolators 2 4
FO Receiver (Ortel) 2 6
S- X-band RF Preamp 2 4
Misc. H/W 5
Assembly & Test 4
TOTAL FO terminal equipment cost per antenna: Cterm-RF = $53k

The total cost of the fiber-optic system for the square array can now be written as:

Cro(D) = (Ne3/2/2)(De/sin 0)SCeaple + (Ne+Ne!”2)(De/sin 0)Crench
+Ne{Cterm +2Cstrip +2(5+M)Csplice +28 Csm-conn +2MCmm-conn} (44-1)
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4.4.5 CONCLUSIONS

The layout and cabling problems of a large deep-space telemetry-receiving antenna array were
investigated. Transmission of the RF signals from the antenna front-end areas using fiber-optic links
offers the best phase stability and simplifies the front-end area, compared to other methods of signal
distribution. It is concluded that the antenna elements should be arranged in the hexagonal-close-pack
configuration, and that the subarrays should have the shape of a Gosper snowflake. This
arrangement provides the most dense packing without shadowing, so it requires the least amount of
land and the shortest cable runs. Also, the Gosper snowflake provides perfectly interlocking,
identically shaped subarrays, and enables a cabling scheme that does not require any crossing of
cable trenches. This greatly simplifies construction, since all cables may be installed with a tractor-
pulled cable plow at a uniform depth.

4.5 CORRELATOR AND COMBINER COST MODEL

Normally, as a spacecraft travels farther away from Earth and the telemetry signal-to-noise
ratio (snr) gets poorer, two system-parameter trade-offs come into play. First, the telemetry
modulation index is usually increased so more transmitter power is moved from the carrier into the
telemetry signal, thereby improving telemetry snr. This, of course, may result in a carrier signal that
is significantly harder to acquire and track. The limit for this trade-off is full modulation where no
carrier is present. In this case, the carrier signal must be acquired and tracked using a less-than-
optimal Costas phase-lock-loop technique.

The second trade-off that comes into play is the reduction of the rate at which telemetry data
are transmitted back to Earth, resulting in an improved snr per telemetry bit. This has the unfortunate
consequence of also reducing the total amount of data that can be returned during the critical
encounter-phase of a mission (e.g., the Galileo S-band mission). Although other combining
schemes are possible, the full-spectrum combining scheme appears to be the most general in that it
can operate in the lowest snr conditions and would work with natural radio sources as well as the
modulated signals from spacecraft. For these reasons it was selected as the combining scheme to be
costed in this design study.

4.5.1 CALIBRATION

For any large system to function consistently, continual self checking and calibration are
required. For arraying of many small antennas, the most important and sensitive calibration will be
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the relative phase between the various signal paths. Along with the relative delay between signal
paths, the relative phase must be driven to zero before the various signals can be added coherently.
Normally, considerable efforts are made to maintain good phase stability within the cost limitations
of the budget. Calibration can then be done infrequently (e.g., once a day or before and after a
pass). An even better approach, however, is to self-calibrate by using the source being observed,
provided that it has the right characteristics and is strong enough.

For the application under consideration, the source is normally a spacecraft telemetry signal
consisting of a carrier signal upon which a subcarrier and/or telemetry symbols have been impressed.
If a carrier is present, it provides a nice CW signal for calibration. If suppressed carrier modulation
is used, then "squaring" of the signal must be performed before a CW is available for use.
Unfortunately, when signal reception is accomplished through the use of many small apertures, the
signal strength for either of these approaches is weak, at best. If the carrier cannot be directly
tracked, cross-correlation offers some advantages.

4.5.2 CORRELATION

A key processing component in the full-spectrum combining technique is cross-correlation.
As seen in the overall block diagram of Fig. 3-4, the correlator is the device that provides the
measurement and control of delay and phase for closing the correction loop.

The correlation process is exactly analogous to the squaring process in a Costas-loop tracking
receiver. For weak signals, there is a "squaring” (or correlation) loss due to the multiplication of
signal and noise. This must be overcome by proper filtering before correlation (hence the matched
filter shown in Fig. 3-4) and lengthy integration (narrow-loop bandwidths) after correlation. In the
single-antenna Costas-loop tracking, integration is limited by instabilities of signal phase. However,
for correlation, many of these instabilities are reduced or eliminated by common mode rejection, and
therefore longer integration time is possible.

One further step can be taken to overcome the problem of weak signals. Rather than simply
correlate the signals from each small aperture a pair at a time, improvement is obtained if each
aperture is correlated with the sum of all the others. This provides a gain of a factor of N-1 (N being
the number of small apertures) in the correlation snr. It does, however, require that the sum of the
apertures adds up coherently to start with. This can be accomplished either by calibrating ahead of
time on a strong source, or by using some "bootstrap” technique. The design presented and costed
below includes this capability to allow for the possibility of smaller apertures.
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4.5.3 DESIGN

Figure 4.5-1 presents a block diagram of a full-spectrum correlator/combiner to be used in a
small aperture array. It is assumed that multiple IF signals centered at 300 MHz arrive from many
antennas, and that these need to be downconverted to baseband, corrected for delay and phase, and
finally combined. The output will be fed into a normal receiver to accomplish symbol extraction.

Downconverter and Digitizer

The downconverter module shown in Fig. 4.5-2 consists of two parts: downconversion to
near baseband where an IF of 64 MHz and about 120 MHz bandwidth is digitized at 256 MS/s
(where MS/s = megasamples per second); this is followed by a second digital downconversion to 0
MHz IF, resulting in a bandwidth of £8 MHz, or 16 MS/s sample rate, both I and Q (in-phase and
quadrature-phase) components. This second downconversion is tunable over the 120 MHz in steps
of 1 MHz.

Signal Corrector

An antenna module is shown in Fig. 4.5-3. In the first half of this module is found a delay
line and a phase rotator. These are controlled by a microprocessor which calculates the settings of
these devices, based on known instrumental and geometric models for the array. To the calculated
values are added the residual delay and phase determined by the correlator.

It is expected that the model calculations should be able to provide delays accurate to a few
nanoseconds, and phases to less than a millicycle. The residuals will be probably on the order of a
microsecond in delay, and actually up to many hertz for the phase rate.

Correlator and Combiner

The correlator block in Fig. 4.5-3 consists of a matched filter that extracts the individual
harmonics of the spacecraft telemetry out of the signal, one at a time, and cross-correlates them to
obtain estimates of the delay and phase residuals. The correlation takes place between each antenna
and the sum of all antennas.

The harmonic extraction is accomplished by separate downconverters for each harmonic
followed by narrowband filters. These signals are then integrated over the length of a symbol (at
several different symbol phases to provide a crude symbol synchronization), and then correlated.
The result of this correlation is Fourier transformed over a long enough time interval to allow
extraction of the residual delay and phase with good snr, and then the loop is closed with these
residuals.
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4.54 COST MODEL

Table 4.5-1 gives a summary of the hardware and software components that are necessary to
accomplish the combining function, together with an estimate of their cost. The costs, as presented,
do not include the economies that will occur in buying large quantities. This savings should be
accounted for at a higher level.

4.5.5 CONCLUSIONS

Because of the potentially large number of antennas in the arrays under consideration, the
most important cost is not the nonrecurring portion, but the recurring part. Any recurring cost that
scales with the antenna number, or even more important, any part that would scale with the number
of antenna pairs, will grow to dominate the cost of a large array. This is seen clearly when we
realize that if the number of antennas is N, then the number of antenna pairs is N(N-1)/2. In
developing the present design, by correlating each antenna against the sum of the others, all
components that scale as the number of pairs have been eliminated. This feature was obtained at the
sacrifice of requiring some precalibration before these correlations produced a significant output.
However, the result is a relatively modest cost per antenna, as compared to the other system
components.
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TABLE 4.5-1: Correlator/Combiner Cost Estimation.

Recurring Costs -
Downconverter / Digitizer Chassis:

#/ant. $K $K/ant.
Downconverter Module
IF-IF D/C & Dig. 1 10.00 10.00
Digital Video D/C 1 10.00 10.00
Link 2 0.05 0.10
Controller Modules
CPU 0.125 4.00 0.50
Memory 0.125 2.00 0.25
Ethernet 0.125 2.00 0.25
Cabinet/PwrSup 0.125 8.00 1.00
Correlator / Combiner Chassis:
Antenna Module
Delay Line 2 0.10 0.20
Phase Rotator 1 0.25 0.25
Correlator 1 0.50 0.50
Module Controller 1 0.50 0.50
PC Board | 0.20 0.20
Links 4 0.05 0.20
Combiner Module 0.00
Adder 32 0.05 1.60
PC Board 0.0625 0.15 0.01
Link 32 0.05 1.60
Controller Modules 0.00
CPU 0.0625 6.00 0.38
Memory 0.0625 3.00 0.19
Ethernet 0.0625 3.00 0.19
Cabinet/PwrSup 0.0625 8.00 0.50
Assembly and Test 0.0625 10.00 0.63
Total Recurring (per Antenna) 29.03
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TABLE 4.5-1: Correlator/Combiner Cost Estimation (continued).

Nonrecurring Costs -
System Controller:

Workstation 50.00
Network 20.00
wY $K (FY '92 §)
Engineering: 20 134.00 2680.00
Total Nonrecurring 2750.00

4.6 MONITOR AND CONTROL COST MODEL

When this circuit learns your job,
what are you going to do?
- Herbert Marshall McLuhan

A top-level design for the Monitor and Control subsystem (M&C) is presented. It is argued
that the monitor and control costs for an array depend weakly on the diameter of antenna elements.
These costs are strongly dependent on the functional complexity and the number of different interface
types, both external and internal. As the diameter of the "small" antennas increases, the decrease in
the number of antennas required reduces the monitor and control complexity. Although antennas
with larger diameters are more complex, this effect is offset by the fact that the overall system design
includes a 34-m antenna. Thus, the monitor and control cost for the array decreases as antenna size
increases.

The approach to producing a cost model for the M&C was as follows:

« Identify Constraints

« State Assumptions

» Identify Monitor and Control Functionality

* Produce a design with sufficient detail to model costs

Figure 4.6-1 shows control flow paths for the monitor and control subsystem. These flow paths are
pertinent to the Monitor and Control function for the array, and should not be confused with the
spacecraft telecommunications data flow. Boxes with plain lines contain functions dedicated to
monitor and control. Boxes with dashed lines contain functions that are not dedicated to monitor and
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control, but with which monitor and control must communicate. The remaining portion of this
section details the steps that led to the monitor and control design and to the resultant cost model.

4.6.1 CONSTRAINTS

In order to minimize development costs, a constraint imposed on the entire task was to use
existing, proven standards and technologies in producing the designs and resultant cost models. For
Monitor and Control, this constraint means:

* Use Commercial Off-the-Shelf (COTS) software wherever possible

» Vendor supplied software and hardware must be nonproprietary, open architecture, and
have a sufficient client base such that assistance, maintenance, and qualified personnel are
available

Constraints are also imposed by the DSN. The draft version of document 820-1, DSN Functional
Requirements and General Requirements and Policies, states that TCP/IP communication protocols
shall be used throughout the Network.

Document 821-18, DSN Monitor and Control System Functional Requirements and Design
[1994], prohibits an increase in the number of Complex personnel in operations as new subnets are
added. Therefore, the array must be an integral part of the DSN, and not a special case requiring
dedicated operations personnel.

4.6.2 ASSUMPTIONS

Given the rapid advances in computer-processing speed, memory size, disk space, etc., it is
assumed that computers with sufficient "horsepower" exist such that performance limitations will
not be an issue. This assumption is based on work done for the NOCC Upgrade Task. It will be
shown that the data rates for NOCC-RT are 3-5 times greater than the rates expected for the array
Monitor and Control.

Methods used in recent DSN implementations can be used for the array. Examples are:

NOCC Upgrade and RTOP 73 at DSS 13. While the exact implementations may not be replicated
for the array, it is assumed that a base software component is available for easy incorporation into the
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design. The average cost of one line of code, fully tested and debugged, is assumed to be $58. This
may vary somewhat, depending on the difficulty of the task.

In the cost model, any deviations from this assumption are noted. It is anticipated that more
than one computer will be required for the array. A distributed architecture is assumed. The cabling
costs to individual antennas for the purpose of monitor and control are not a part of this estimation
because it is assumed that these costs are part of the Signal Distribution subsystem.

The array interfaces to the DSCC Monitor and Control Subsystem (DMC) will resemble
those of standard microwave and antenna subsystems. To the DMC, each subarray will appear as an
individual DSS. It is assumed that the array has various "canned" antenna types (e.g., 70-m, 34-m,
26-m), and that a "pseudo-DSS" is assigned to each possible subarray. That is, given the current
task goals as stated in Section 1.4, there could be as many as:

20 26-m DSS IDs
12 34-m DSS IDs
3 70-m DSS IDs

The DMC will not assign individual antennas to a subarray. Instead, it will simply assign a
DSS to a link, and the array Monitor and Control will interpret the link assignment and configure the
equipment. The prerequisite scheduling must be done by the NSS in order to prevent conflicts.

In keeping with the philosophy of a centralized DSCC monitor and control, it is assumed that
local control of the array will be used for calibration and maintenance purposes only. This implies

that:

» DMC directives, whether from an operator or a station event list, will have overall array
control

» the array will receive and act on antenna predicts

» the array will report status to the DMC

In the realm of software and distributed architecture, there is a difficulty associated with the
handling of a single instance, e.g., the pointing of an antenna. There is an additional difficulty
associated with the handling of multiple instances, e.g., the simultaneous pointing of several
antennas. However, given proper software techniques, and within limits, the difficulty in handling
N instances is less than N times the difficulty in handling one instance, for N > 3. In other words,
controlling 10 antennas is not ten times more difficult than controlling 1 antenna.
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4.6.3 MONITOR AND CONTROL FUNCTIONALITY
The following monitor and control functions are defined:

* Routing (Gateway) - In order to meet the requirement that the array is perceived by the
DMC (and other Complex assemblies) as a set of standard antenna/microwave combinations,
there must be a single physical interface between the array and the DMC.

* Command Interpreter/Event Scheduler - Directives are received from the DMC; responses to
these directives are sent to the DMC. Commands from the DMC (e.g., link assignments)
must be translated into control inputs for the array assemblies. Subsequent events are
scheduled and monitored for completion.

» Facility Monitor and Control - The status, configuration, and performance of the array
facility (e.g., program set health, LAN loads, disk utilization, program set initialization, etc.)
require monitor and control.

* Control of Combiner/Correlator - The Combiner/Correlator requires control of calibration,
pre-pass, pass, and post-pass sequences. Event notices from the C/C are logged.

* Control of Signal Distribution - The Signal Distribution Assembly requires control and the
logging of event notices.

* Subarray Control - Each subarray requires control of calibration, pre-pass, pass, and post-
pass sequences. Event notices from subarrays are logged.

* 34-Meter Antenna Control - The 34-meter antenna requires specific controls for the
microwave, exciter, transmitter, etc., assemblies. The control of these assemblies is in
conjunction with control of the calibration, pre-pass, pass, and post-pass sequences.

* "Small" Antenna Control - The individual antenna elements require control (e.g., pointing).
A communications method with the antennas requires definition.

* Data Evaluation (Information Synthesis) - Low-level data from the individual antenna
elements, subarrays, and other assemblies must be summarized in order to present

hierarchical information to the operator

* Interprocessor communications - A means to communicate between the individual
processors must be defined.
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» Availability - The array Monitor and Control design must meet standard DSN availability
requirements.

e Fault Recovery - The array Monitor and Control design must be devoid of single points of
failure and must permit rapid recovery in case of a hardware malfunction.

4.6.4 FUNCTIONAL DESIGN

The functional design is presented in Fig. 4.6-1. One should view the boxed items as
program sets rather than individual computers. Given the nature of a distributed architecture, there
may be one, more than one, or perhaps all program sets, housed in a single computer. The design
presented is deliberately traditional. There may be debate with regard to implementation methods,
but the functions listed in Section 4.6-3 and the allocation to program sets and hardware that follow
are fairly standard. The individual functions assigned to each program set or hardware device are:

Gateway
» Receive and validate inbound streams from DMC
* Route monitor and control data
« Send outbound streams to DMC
» Provide FTS, TELNET capability
e Provide network services (ARP, RIP, DNS, etc.)
« Act on inputs from the Network Manager

Facility Manager
« Monitor processors and LAN using SNMP or some other COTS package
» Provide software version validation
» Handle logging functions
« Provide centralized management of files
» Act on inputs from the Command Interpreter

Command Interpreter/Event Scheduler
» Validate directives from DMC
« Translate directives from the DMC into commands for the other the array assemblies
(Correlator/Combiner, Signal Distribution Assembly, Subarray Controllers, 34-Meter
Antenna)
« Send responses to the DMC (via gateway)

Data Evaluator (Information Synthesizer)
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* Accept and process status, configuration, and performance data from all the array
assemblies in real time

* Act on inputs from the Command Interpreter

* Act on inputs from the Network Manager

* Receive predicts, standards, and limits from DMC or access from internal data
stores

* Flag parameter values which are out-of-tolerance or which do not match the
commanded configuration

* Provide summary parameters

*» Send the array status to DMC (via gateway)

Subarray Controller(s)
* Act on inputs from the Command Interpreter
* Receive predicts, standards, and limits from DMC or access from internal data

stores

* Send commands to the individual antennas (Small Antenna Control)
* Receive feedback from the antennas

* Provide status to the Data Evaluator

* Act on inputs from the Network Manager

34-Meter Monitor and Control
* Act on inputs from the Command Interpreter
* Receive predicts, standards, and limits from DMC or access from internal data

stores
* Monitor and control all assemblies associated with the 34-m antenna

Utility Software
* Experience has shown that about 15% of the software falls into the "utility" category

Ethernet LAN (or Fiber Optic)
* Provide interprocessor communication

Fiber Optic
* Provide communication between the Subarray Controller(s) and the individual
antennas

Processors
* Provide necessary CPU, memory, and disk resources to execute the program sets

with sufficient margin
* Via high MTBFs and redundancy, meet the availability requirements
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4.6.5 COST MODEL

Before a cost model can be formed, it must be determined whether the functional design is
sufficient to proceed. Given that this design was constructed by a party of one, imperfections are
expected. However, it will become evident that the monitor and control costs are so weakly coupled
with the diameter of the small antennas that even an imperfect design is sufficient.

Estimating software efforts is not an exact science. A very accurate estimate can be obtained
by doing careful analysis and a detailed design. However, since analysis and design usually
contribute to 40% of the software costs, investing this level of effort in an estimate is usually not
cost-effective. At the other end of the spectrum, one can eyeball the job and base the cost estimate on
experience, analogy, etc. The approach taken here is a hybrid of the two extremes. Sufficient
analysis and design are performed to partition the task into pieces that are small enough to estimate
either empirically or by analogy.

An assumption stated in Section 4.6.2 is that current computing capability is adequate to
effect the design. This assumption will be validated after examining the cost model and the
corresponding coefficients. It must also be shown that the architecture meets the availability and

fault tolerance specifications.
The cost model is as follows:

Data Routing (CpR) - Independent of the number of computers for a network this size

Facility Monitor and Control (CEAC) - Independent of the number of computers for a network this

size

External (operator or DMC) Control and Response (Cops) -Dependent on the number of operator
directives (Nop) and the cost per directive (COD)

Command Interpreter/Event Scheduler (Ccy) - Dependent on interpretation of commands from the
DMC, scheduling complexities, and responses to status as provided by the Data Evaluator

Combiner/Correlator Control (Ccc) - Dependent on the number of procedure calls (Npc) from the
Command Interpreter. The cost of each procedure call (CpC) is dependent on the number of

parameters per procedure (Npp) and the cost per parameter (Cp). So
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Npc Npc
Cec= 2 (Cpc)= X (Npp)i Cp
i

i
Signal Distribution Control (Cgp) - Same format as Combiner/Correlator

Subarray Control (CgAR) - Same format as Combiner/Correlator

34-Meter Control (C34) - Use numbers from RTOP 73 as basis

Small Antenna Control (C ATOT) - As expected, the cost model for this item is convoluted. One

cannot produce a model based solely on the number of small antennas, because supporting twenty 3-
meter antennas is much less of a task than supporting twenty 18-meter antennas. Complexity
components which scale linearly for some antenna diameter regimes are not applicable in others. The
result is a model which is best described as piecewise continuous. There does not exist a single
analytical relation which covers the entire domain of small antenna diameters from 3 to 34 meters.

It is obvious that bigger antennas are more complex, and that the cost of supporting a single
small antenna increases with the diameter of the antenna. It was assumed that the complexity of
supporting a single small antenna increased proportionally with diameter. This term is CAc.
However, the array must support a 34-m antenna as its base station. Therefore, building 34-m
"small" antennas, or small antennas in the same class as a 34-m antenna, incurs no additional cost
with respect to the monitor and control of a single antenna. It was assumed that small antennas 18 m
in diameter and larger were of the same class as a 34-m aperture, meaning that the incremental cost to
support a single antenna of this class is zero. Also, antennas in the 9- to 18-m range were assumed
to have a fair amount of commonalty with the larger antenna class. Finally, the smaller antennas (D
< 9 m) were assumed to have some commonalty with the larger antennas. Specifically:

Cac=0 (D> 18m)
CAC = (1.4-(D/18) -0.4)-Ca4 ©Om <D < 18m)
CAC = (D/18)-C34:0.7 (D < 9m)

The next contribution to C5TOT is Cyp, the cost due to the handling of N total parameters. The
number of parameters is simply the number of antennas times the number of parameters per antenna.
It is assumed, somewhat empirically, that the effort scales as the square root of the total number of
parameters. Using the same rationale as in the preceding paragraph:

CNP = Cp-(34/D)-Np34.N34 (D 2 18m)
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CNp = Cp-34-(18-Dy 1/2.Np34 (D < 18m)

where
Cp  isthe cost due to a single parameter

Np34 is the number of parameters for the 34-m antenna
N34 is the number of 34-meter antennas for an equivalent 70-m G/T

The reason for this breakdown is as follows:

For D > 21m, the number of parameters per antenna is a constant; thus, the cost scales as the
square root of the number of antennas, or in effect, as the diameter of the small antennas.

For D < 21m, since the number of parameters per antenna is proportional to D, and the total
number of parameters is proportional to the number of antennas (inversely proportional to
D?2), the cost effort is inversely proportional to D1/,

Finally, there is the cost simply due to the support of N small antennas: CNa. Again, the cost is
scaled as the square root of the level of effort, i.e., NA 1”2, which is proportional to D.

CNA = (D/34)-Cipc

where Cjyc is the incremental cost to support the number of 34-m antennas required to equal the

performance of a single 70-m aperture. So,

CATOT =CACc+Cnp +CNA

Data Evaluation -> Information Synthesis (CpE) - Dependent on the number of processes/assemblies
being evaluated (N A §), the number of independent data items which contribute to each process

(Npp), and the cost per data item evaluated (Cpy). The part of this coefficient relating to small

antennas has already been accounted for in C ATOT,

Nas
Cpg = X(NDl)i Cpi

1

Status, Configuration, and Performance Displays (Cgcp) -Dependent on the number of assemblies
(N AS), the number of displays per assembly (Npg), and the cost per display (Cpg). The part of

this coefficient relating to small antennas has already been accounted for in C ATOT.
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Nas
Cscp = 2(Nps); *Cbps

Utility Software (CyT) - Estimated as approximately 15% of the direct software effort.

Computer Processor Hardware (Cyyw - Includes processors, disks, monitors, but not

communications interfaces nor LANs) - Dependent on the amount of the array Monitor and Control
software. The quantity of computer hardware required will be determined by comparing the amount
of software required for the array versus the amount of software which currently runs in the NOCC-
RT Sun SPARC:s.

Communications Hardware (Ccop - Includes communications interfaces and LANs) - Dependent

on the number of processors which must be interconnected within the array facility.
So, the total cost of monitor and control is:

Cwmc = Cpr + Crac + Cops + Ccr + Coc + Csp + Csagr + C3q + CATOT
+ Cpg + Cscp + Cut + Caw + Ccom

4.6.6 COST ESTIMATES

Given the cost model presented above, the costs for the array Monitor and Control are:
Cpr - $208,800 (3600L0OC)

Cgac - $160,000 (3200 LOC @ $50 per LOC)

Cops - $203,000

The following directives are expected:
* Facility start-up
* Facility shutdown
* Program set init
* Program set abort
* Configure a subarray (pseudo-DSS) for a link
* Report status
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* Accept predicts

* Perform calibration

» Six other miscellaneous directives
s0 Ngop = 14 and Cop was estimated at $14,500. Note that the directive list does not include
commands for the 34-m antenna assemblies, e.g., TXR, UWV, etc. This is included in the 34-m
antenna specific costs.

Ccr - $829,400 (14,300 LOC)
A further breakdown follows:
* Interpretation of commands from DMC - 3300 LOC

» Response to status as presented by Data Evaluator -4500 LOC
» Scheduling of events - 6500 LOC

Ccc - $69,600
Npp is estimated at 5
Cpc is estimated at $2,320
Cp is therefore $11,600
Npc is estimated at 6

Csp - $13,920
Npp is estimated at 3
Cpc is estimated at $2,320
Cp is therefore $6,960
Npc is estimated at 2

Csa - $111,360
Npp is estimated at 6
Cpc is estimated at $2,320
Cp is therefore $13,920
Npc is estimated at 8

Cy4 - $870,000 (15,000 LOC)
The monitor and control effort for DSS 13 was on the order of 40,000 LOC. It is assumed that
efforts involving other 34-m antennas are similar and approximately 62% of the code can be
ported.
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C ATOT

Cac 1s determined from the formula presented in Section 4.E, given the estimate of C3y4

presented above.

Cnp
Cp = $75 (approx. 1 work-hour)
Np34 = 65 (derived by examining the current 34-m interfaces)

N3y = 4

Cna
Cinc is estimated at $20K

The estimates for the small antennas are (in $K):

—

D | 3 5 7 9 12 | 15 | 21 [ 34
Cac | 54 | 90 [126 [162 [ 144 | 90 0 0
Cnp | 93 72 | 6l 53 | 46 | 41 32 | 20

Cna | 226 | 136 | 97 | 76 57 | 45 32 20
CATOT| 373 | 298 | 284 [291 [ 247 | 176 | 64 | 40

Cpg - $274,050 (4,725L0C)
The estimated number of parameters evaluated for each assembly is:
7 parameters from the Correlator/Combiner
2 parameters from the Signal Distribution Assembly
2 parameters from the Subarray Controller
24 parameters from the 34-m antenna
The cost per parameter (CpIE) is estimated at $3,190. There is an additional cost of $162,400
(2800 LOC) associated with providing the infrastructure necessary to support the parameter
evaluations.

Status, Configuration, and Performance Displays (Cgcp) -Dependent on the number of
processes/assemblies being evaluated (N o g), the number of data items per process (Npyp), and the
cost per data item (Cpy)

Cscp - $158,000
The number of "custom" displays per function is estimated as:
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Assuming 80 LOC per display (based on NOCC-RT), the cost is $100,000 @ $50 per LOC.
There is an additional $58,000 (1k LOC) for supporting software.

Cyut - $464,000 (8,000 LOC)

Cyw - $120,000
Approximately 200,000 LOC reside in the 4 different processor types associated with NOCC-RT,
i.e., on the average, each processor executes 50,000 LOC. The total estimated LOC for the array
is approximately 62,000. To meet availability and redundancy requirements, two processors,
plus a spare, are necessary. The estimated cost per processor is $40K.

Thus, the total cost ranges from $3.52M to $3.85M. For comparison, the estimated cost to
do the monitor and control for the DSCC Galileo Telemetry Subsystem is on the order of $3M. This
subsystem involves similar functions, and a like number of different assembly types, but not a large

number of small antennas.

4.6.7 DESIGN VALIDATION

Is the design adequate with respect to CPU and I/O loading? One of the benefits of a
distributed architecture is that if the software is properly designed and mated with the correct
hardware architecture, CPU and /O overloads can be solved simply by adding more hardware; the
design is said to be "extensible.” However, it will be demonstrated that the CPU and I/O loading
anticipated in this design are not expected to tax the system.

CPU intensive operations are expected when the Command Interpreter and Scheduler
receives a directive from the DMC to initiate a track. If, in the extreme case when the entire array is
configured as twenty 26-m antennas, and an average track lasts 20 minutes, such a directive occurs
on the average only once a minute. Subsequent scheduling operations involving precalibration,
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track, and post-cal may cause short, intensive CPU loads, but these transients, again, pose no CPU
loading problems.

The most sustained CPU loading is due to the Data Evaluation operation, that is, the
collecting of data from all the array assemblies and the subsequent information synthesis. Suppose
that 600 3-m antennas are required to effect a 70-m G/T, that each antenna reports 8 parameter values
once every 5 seconds, and that each parameter requires 16 bits. This equates to approximately
15,000 bps. Using NOCC-RT as a comparison, a single SPARC 10 can process 75 kbps and
maintain a 50% CPU margin. As one might expect, this process also involves the largest /O
component. Ethernet LANs can easily support 4 Mbps of primarily unidirectional traffic.

4.6.8 SUMMARY

A design and cost model for the array Monitor and Control has been presented. The design
is based on current, proven software and hardware. The cost of supporting a "large number of little
antennas" ranges from 1% to 9% of the total monitor and control cost.

47 AVAILABILITY COST MODEL

As discussed in Section 2, one aspect of performance in a communications link is
availability, and like everything else it comes at some cost. In order to make a reasonable
comparison of the costs for an array versus a single antenna, we must assume comparable
availability for the two apertures. In Section 2 it was argued that the reliability or availability PA, of

an array is given by

m
Py = Y C(N, +mk)-(1-p)*-pN+™ ¥ (2-8)
k=0

where Ne is the number of array elements needed to equal the G/T of some performance standard, p

is the individual element availability, and m is the extra number of array elements that are used to
increase the array availability. If we assume that the individual element availability is the same as the
70-m antenna, then p = P70, and the above equation becomes
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(N +m)/
(N, +m—k)/k/

2_; (1=Py)* - (Pro) ™" (4.7-1)

which can be solved for m if Ne and P7Q are specified.

The expressions for calculating Ne were given in Section 2.1 and a discussion of the relevant
parameters that go into the determination of P7( is given in Appendix B. Based on this discussion
we take PA = P70 = 0.992 and solve Eq. (4.7-1) for m, given some value of Ne. Note that the
value of Ne is always rounded up to the nearest whole integer. Figure 4.7-1 plots the value of m
versus Ne for the range of array sizes needed to synthesize the G/T of a 70-m antenna at X-band,
and an array availability equal to an individual element availability of 0.992.

In reality, it seems unlikely that one would construct an array with elements having the same
availability as a single large antenna. It would seem worthwhile to mvesugate the cost of rehablhty
and determine whether the investment should be toward makmg ‘each array element more reliable or
SImply buying redundant elements. In addition, redundant elements would make it possible to make
the array 100% available for schedulmg, which is not feasible for a smgle aperture.

4.8 INTEGRATION, TESTING, AND CALIBRATION

Integration, testing, and calibration was not modeled in this study but was discussed in
enough detail to understand that it would be an apprec1able fraction of the total system cost. These
activities occur at two levels, first in the ﬁeld and second at the 51gnal processmg center (SPC),
where it is presumed that all 51gnals are brought toa common point and where the downconverters
local oscillators, correlator, combiner, and M&C computers are collocated.

The three items that are installed in the field are the antennas, LNAs, and the signal
distribution system. The field installation and initial testing costs for these items are contained in the
cost estimates for each subsystem respectwely Smularly, bench testing of the electronics
components located at the SPC have been budgeted in the subsystem cost estimates. Once the
individual components are in place they must be integrated and tested as a system. A list of some of
the typical tasks that would be performed at this level include:

* Measure the individual antenna system temperature.

* Develop the individual antenna pointing model.
» Measure the individual antenna gain.
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* Determine the instrumental phase delay to each array element and its stability.
* Determine each baseline.
* Measure the combiner loss.

When an organization builds large antennas dccasionally, the first three steps on the above
list can take a large amount of humanpower. If the G/T performance is critical, as it is in the DSN,
then these tasks include not only measurement at the 0.1-K and 0.1-dB level but troubleshooting
sources of spurious performance. The effort is usually measured in work years. If the time between
building new antennas is longer than the time to test and calibrate an antenna, then the chances are
that each antenna is treated individually. The tools and techniques may be redeveloped for each
installation and the people doing the work may change, thereby diminishing the benefit of
experience.

Clearly, it would be completely unaffordable to lavish a work year of effort per antenna on an
array of 3000 elements. Equally clear is the fact that as the diameter of the array elements become
smaller, some aspects of the test and calibration task become easier, e.g., the antenna pointing
model. Construction of an array requires a far different approach to installation, calibration, and
testing. The entire process must be extensively planned to automate repetitive tasks. This requires a
substantial investment at the outset but may be recouped during the maintenance and operations
phase.

4.9 MAINTENANCE AND OPERATION COST CONSIDERATIONS

The study by Brunstein [1990], which will be used as a reference for the cost of a 70-m
antenna, did not include Maintenance and Operations (M&O). Therefore, M&O costs will not be
included in the current cost model. However, a comparison of an array versus a single large antenna
should include consideration of the life-cycle cost for each approach. Maintenance and Operations
costs consume an increasing large percentage of the life-cycle cost as the expected lifetime of the
array or single antenna is lengthened. There were no members of the Maintenance and Operations
(M&O) organization on the design team, and therefore a cost model for M&O was not attempted.
However, for the reader's convenience we summarize the salient points that were made in the LAAS
study [Haglund, 1978] in Section V, written by J. T. Hatch and F. R. Maiocco and titled "M & O
Cost Study" .

From the discussion in Section 1, it will be recalled that the LAAS study compared a single

100-m class antenna to an array of 30- to 38-m class antennas. The M&O portion of the study
assumed what was termed "bent pipe" and "unattended" operation. These terms imply that the array
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elements simply collect electromagnetic signals and deliver the arrayed signal to a Signal Processing
Center (SPC) for telemetry or other processing. Furthermore, this is accomplished without human
operators at each antenna or stationed at key pieces of equipment along the signal path. These
assumptions are entirely consistent with the approach used in the present study.

The approach used in the LAAS study was to: (1) establish a maintenance policy, (2) analyze
the maintenance tasks for each subsystem, (3) estimate workload and workforce requirements, and
(4) estimate start-up and annual M&O costs. Since the architecture of the LAAS array that was
studied was based on elements that could completely stand alone, the M&O cost elements were not
completely overlapping with the array architecture in the present study. For instance, the LASS
study assumed cryogenic LNAs (i.e., traveling wave maser amplifiers with 4-K cryogenics), a
transmitter, exciter, and FTS subsystem on each antenna. Nevertheless, such other cost elements as
documentation, training, system performance testing, support services, and the spectrum of common
subsystems would be applicable to both studies.

The LAAS study also made a number of assumptions that appear consistent with the present
study. These include:

» Major maintenance activities are scheduled as required and do not count as unscheduled outages for
availability assessment.

« No time is spent on each array element repairing the LNA, the receiver, or the drive, other than that
time required to remove and replace faulty equipment.

« All refurbishment, etc., is done at a maintenance facility after the operational spare is installed.

« Multiple apertures will permit improved utilization of workforce to perform scheduled preventive
maintenance (PM).

« Operational reliability to be at least as good as the existing reliability if not better. All estimates to
be based on DR data.

« Complex Maintenance and Integration (M&I) Team -
* Centrally located.
» Central repository for tools and spares.
« Performs all PM, corrective maintenance (CM), engineering change order (ECO)
implementations, and new equipment installations.

* Array configuration -
 Maintenance crew scheduled 40 hr./wk (8 am — 5 pm local time).
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* CM to be accomplished on next available day shift.

* PM to be accomplished on a scheduled basis.

* One or two array elements will be available to maintenance crew for PM that
cannot normally be accomplished while tracking.

* Painting to be performed to keep the antennas aesthetically attractive.

The LAAS study also included two assumptions that do not seem consistent with the
present study:

* System documentation, initial operational spares, and 180-day consumables will be supplied by
engineering.

* Maintenance will be performed such that at the end of 30 years, the array will in general be ready
for the next 30 years.

In the first case, the present study has not estimated spares or consumables, nor adopted a consistent
philosophy in regard to the level of documentation. The second case appears at odds with the
underlying thesis of this study—that changing technology drives down the optimum diameter of the
array element. The discrepancy boils down to an extrapolation or "guess-timate" as to how fast
technology is likely to change in the future. At some point in time, it becomes cost-effective to
replace a piece of equipment rather than maintain it, and the estimate of this time determines the
lifetime of the equipment and the M&O costs needed to sustain it.

Keeping in mind the similarities and dissimilarities between the LAAS study and the current
study, let us consider the M&O cost estimates versus the number of array elements, as shown in Fig.
4.9-1, and versus antenna diameter, as shown in Fig. 4.9-2. The best linear regression line is for
the cost versus number-of-elements plot and suggests a fixed M&O cost of $1.5M/yr. plus
$203k/yr./antenna. If this expression is extrapolated to the largest array size that is envisioned (i.e.,
approximately 4000 3-m antennas), the yearly M&O will cost $814M. This implies that it would
cost more to maintain and operate the array every year than it took to build it in the first place. The
only way around this dilemma is if the relation indicated in Fig. 4.9-1 is nonlinear, such that the cost
of M&O decreases dramatically as Ng increases.

Clearly, any conclusions derived from an extrapolation of this expression outside the data
range must be viewed with caution. Nevertheless, the preceding discussion suggests two things.
First, a complete comparison of the cost of an array versus the cost of a single aperture must include
M&O costs. Second, M&O cost considerations must be an integral part of the initial design for all
subsystems. This latter point typically raises the design cost and initial capital investment. These
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increased costs are only recovered gradually over the lifetime of the instrument, resulting in a
funding dilemma that may be unacceptable to institutions focused on 1- to S-year budgets.

In the discussion above regarding array availability, it was noted that the capital investment
costs might be lowered by investing in less-reliable elements and accepting the fact that they would
be replaced more frequently. A full analysis of the reliability vs. cost trade-off would include the
implied M&O impact over the expected lifetime of the array. Any part that fails in the field will
require a person to remove it and take it to a maintenance facility, a second person to repair it, and a
third person to reinstall it in the field, and perhaps a fourth person to check it out. These repair
people require an infrastructure of secretaries, managers, and supply clerks to provide supporting
services. The sum total of this effort must then be multiplied by the lifetime to get the total M&O

costs.

While it is possible to reduce the M&O task to many small steps and thereby estimate the
workforce requirements, the total cost depends on how frequently the equipment fails. Failure
statistics are more reliably arrived at empirically rather than theoretically, and for this reason the
logical approach to building an array is to build a small one first and get the practical experience
needed to estimate these costs.
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5.0 TOTAL SYSTEM COST

The purpose of models is not to fit the data but to sharpen the questions.
- Samuel Karlin

The performance and cost estimates discussed previously for each subsystem were used to
create three models. A separate cost model was created for three representative values of the system
temperature. The calculations in each model are identical, but the results depend upon the number of
antennas which in turn are determined by the assumed system temperature. Table 5-1 summarizes
the tabular calculation for all three models using the TIW data for antenna costs and Fig. 5-1 shows
the calculations graphically. The calculation represents the array cost to synthesize a single 70-m
aperture having the same G/T and availability of one of the existing DSN 70-m antennas using
parabolic apertures ranging from 3 to 35 m in diameter.

Performance Specification:

The performance is specified in the top four rows of the table. The top line lists the
coefficients used to calculate the antenna aperture efficiency and could be used to model the
efficiency as a function of diameter. In the particular model summarized in Table 5-1, the antenna
efficiency is assumed to be a constant equal to 60% of the physical aperture. The second, third, and
fourth rows list the three system temperatures that were used: 110 K, 85 K, and 30 K,
corresponding to X-band zenith temperatures.

Starting on Line 5, the calculation proceeds by column with the diameter of the array element
in this line. Line 6 is the calculation of antenna efficiency. Lines 7 through 12 calculate the number
of antennas needed for each element diameter, for each system temperature and the additional number
of antennas needed to raise the array availability to that of a single 70-m antenna. Given the aperture
efficiency, system temperature, antenna diameter, and combining loss, the number of elements
needed in the array can then be calculated according to Eq. (2-4). A combining loss of 0.2 dB was
assumed, which increases the number of antennas in the array by 4.5% (but not the number of
elements used for margin). The calculation of N was rounded up to an integer value. A separate
calculation, as discussed in Section 4.7, was performed to estimate the additional elements that are
necessary to ensure that the array availability is equal to or greater than the individual element
availability.

Since the X-band specifications drive the maximum number of antennas, the S-band
specifications have been neglected. In effect, at S-band the array would perform better than the
equivalent 70-m aperture using model #1 and #2 and would have approximately comparable
performance using model #3.
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Cost Specification:

The three lower segments of Table 5-1 list the subsystem costs for each of the three system
temperatures. Within each segment or cost model, the subsystem is listed by row and costs are listed
under the column headed by Ne, the total number of array elements that was calculated in the upper
part of the table. The nonrecurring cost (NRC) is listed in the second column of the table and is
assumed to be independent of antenna diameter. As discussed in Section 4.2, an average value of
the NRC was used for the antenna subsystem, even though the estimate supplied by the antenna
contractors indicated some variation with diameter. In general the variations of this parameter are
small compared to total antenna costs.

For antenna diameters of 15 m or less, the LNA costs for cooled configurations are doubled
because of the previous assumption (e.g., see Section 4.2) of a prime focus S-band and Cassegrain
focus X-band configuration would imply physically separated LNAs. The signal distribution
subsystem and M&C subsystem costs are not exactly a linear function of Ne, and were calculated
separately. The remaining subsystem costs were modeled with a recurring cost times N, as

discussed in Section 4.

The bottom row for each segment gives the subtotal of cost. Note that the units of the
subtotal are in $M whereas the entries are in $k.

Learning Curve:

A quantity discount assumption was applied to all subsystems except the antenna costs,
which were supposedly contained in the antenna contractors' cost estimates. The discount was
assumed to vary as log10(Ne). That is, we assumed that production-line learning would decrease
total cost by 5% for each factor of 10 increase in number of units produced. Thus, there is no
discount for 1 — 9 units, 5% discount for 10 — 99 units, 10% for 100 — 999 units, and 30% for 1000

— 9999 units.
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Table 5-1:

Array cost model using TIW antenna data.

Ant. aperture eff. =a+bD, where a=.6, b=0.0

Tsysl= 110 individual ant. avail= 0.992
Tsys2= 85 Elev(min)=8 deg.
Tsys3= 30 Freq.= X-Band
Element Diam.= 3 5 10 15 20 25 30 35
Aperture Eff = 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Tsys=110 Nel= 3434 1236 309 137 77 49 34 25
Nel(avail.)= 41 18 7 4 3 3 2 2
Tsys=85 Ne2= 2654 955 239 106 60 38 27 19
Ne2(avail.)= 33 15 6 4 3 2 2 2
Tsys=30 Ne3= 937 337 84 37 21 13 9 7
Ne3(avail.)= 15 7 3 2 2 1 1 1
MODEL #1 NRC RC 3475 1254 316 141 80 52 36 27
LNA1 200 15.00 43096 16096 4348 2088 1286 913 698 576
Cal./LO/F 1500 1250 37247 14747 4956 3073 2405 2094 1915 1813
Antenna 1671 4.21 136688 138541 141753 143567 145706 148676 148813 152389
C/C 2750 29.03 85769 33514 10777 6403 4851 4130 3714 3478
Sig Dist 1000 65447 40246 21705 15418 12234 10304 9012 8079
M&C 4275 4018 3951 3833 3744 3671 3607 3550 3497
Tst/Calib
subtotal 11396 61 372 247 187 174 170 170 168 170
MODEL #2 NRC RC 2687 970 245 110 63 40 29 21
LNA2 400 30.00 133977 49908 13344 3363 2120 1504 1206 988
Cal /LO/TF 1500 1250 29328 11814 4197 2735 2217 1960 1836 1745
Antenna 1671 421 106071 107544 110279 112370 115098 114752 120202 118896
c/C 2750 29.03 67379 26704 9013 5617 4414 3818 3530 3319
Sig Dist 1000 50581 31610 17211 12325 9851 8357 7346 6627
M&C 4275 4018 3951 3833 3744 3671 3607 3550 3497
Tst/Calib
subtotal 11596 76 391 232 158 140 137 134 138 135
MODEL #3 NRC RC 952 344 87 39 23 14 10 8
LNA3 600 150.00 243665 90711 24169 5985 3815 2580 2025 1746
Cal./LO/F 1500 12.50 11628 5255 2482 1949 1768 1665 1619 1595
Antenna 1671 4.21 38660 39217 40238 40919 43081 41249 42544 46328
C/C 2750 29.03 26271 11470 5031 3792 3372 3133 3026 2972
Sig Dist3 1000 18520 11931 6915 5211 4349 3827 3477 3226
M&C3 4275 4018 3951 3833 3744 3671 3607 3550 3497
Tst/Calib
subtotal 11796 196 343 163 83 62 60 56 56 59
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6.0 SUMMARY AND CONCLUSIONS

"There are some people who if they don't already know,
you can't tell them.”
' - Yogi Berra

Contrary to our initial supposition, the cost models illustrated in Fig. 5-1 indicate that there is
no optimum antenna diameter in the 3- to 35-m range for an array that would synthesize a 70-m
aperture. In this section, we discuss the reasons for this, the validity of the model, and what actions
the DSN might consider next.

6.1 THE BOTTOM LINE

The lack of a well-defined minimum in the cost-versus-diameter curve is a direct result of the
data illustrated in Fig. 4.2-1. This shows that the best-fit power law to the antenna cost data has an
exponent of approximately 2 instead of 2.7, as suggested in previous studies. An exponent of 2
implies that the cost of the collecting area is independent of the antenna diameter and the total array
cost must then increase as the number of antenna elements in the array. The reason for this stems
directly from the functional behavior of the various cost components that make up the antenna
subsystem. This same conclusion had been anticipated in the unpublished data of Stevens and
McLaughlin [F. McLaughlin, JPL, 1993, private comm.].

When the antenna component costs were fit with a power law, several indicated exponents
larger than 2, e.g., the support structure, reflector, foundation, shipping, installation, and testing.
These are components that relate to the mass of material and reflect the fact that the antenna
represents a volume, and these components dominate the cost for large antenna diameter. However,
there are four antenna cost components whose functional behavior is more complex but nearly linear,
e.g., the axis drives, positioner, feed, and power, and these components dominate the cost for small
antenna diameter. The distribution of fractional cost among all 8 components versus the antenna
diameter is shown in Fig. 4.2-10. The other subsystems in the cost model scale either directly or
approximately as the number of array elements Ne. As a result, the cost of these subsystems does
not determine the existence of a minimum in the curve but does determine the value of element
diameter, if there is a minimum.

The discussion in Section 4.2.4 suggests that as the data for each cost component is
extrapolated to larger diameters, the exponent of the power law that best fits the total antenna cost
becomes larger than 2. With all of the clearness afforded by hindsight, it then seems safe to
conclude that we should have modeled a larger range of antenna diameter. Had we done so, a
minimum in the total system cost would probably have been found for a diameter > 30 m. Recall
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that the conclusion of Potter, Merrick and Ludwig [1965] was that the optimum diameter for the
array elements was approximately 65 m.

6.2 VALIDITY OF THE MODEL

Errors using inadequate data are much
less than those using no data at all.
- Charles Babbage

In Section 4 we discussed, but did not include in the cost model, several important elements
of the total life-cycle cost of an array; installation, testing, calibration, maintenance, and operations.
Potentially large costs involving land acquisition and site development were also left out of the
model. The primary reason these cost elements were not included in the study is the time element—
or lack thereof. Many of these costs scale as Ne and would not change the shape of the curves

shown in Fig. 5-1. However, the facilities cost would likely scale as (Ne)2 (i.e., proportional to
area), and would possibly influence the shape of the curve.

6.3 WHAT NEXT?

It would be the height of folly— and self-defeating— to think
that things never heretofore done can be accomplished
without means never heretofore tried.

- Francis Bacon

Figure 6-1 illustrates how the fractional cost of each subsystem changes as a function of
antenna diameter. We see that for a large diameter the antenna subsystem dominates the cost,
whereas for small diameters the electronics dominate the cost. Although the power law function of
the antenna cost is an approximation, it does represent some physical attribute of the subsystem
component that it models, e.g., an exponent >2 relates to a volumetric term. Furthermore, it was
noted that as the antenna cost data are extrapolated to larger diameter elements, the exponent of the
best-fitting power law to the total antenna subsystem cost became larger than 2.

For the antenna components that were modeled as linear or piecewise linear functions, the
physical attribute driving the cost is less clear. Also, as seen in Figs. 4.2-1 to 4.2-9, the
disagreement between antenna suppliers is fairly large when measured as a percentage and grows
with increasing antenna diameter.
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If the basic thesis of this study is true—that advances in technology tend to drive the
optimum diameter of the array elements toward a smaller diameter—then we may ask what are those
areas of technology development that would most contribute to increasing performance and/or
decreasing cost. By increasing the performance, the multiplier Ne in the cost model is reduced, and
by decreasing the recurring cost, the product of Ne times RC; is reduced. In addition to increasing
performance and decreasing cost, there are areas of development essential to reduce the uncertainty
of many aspects of performance and cost and, therefore, the risk to implementation. A
(noncomprehensive) list of those areas of technology that impact the trade-off between cost and array
element diameter would include the following:

* Antenna Pointing/Drive Mechanisms -

One of the elements that dominates the cost of small antennas is the pointing and drive
system. To have an impact on the system cost model, the linear dependence of this cost element
must be dramatically lowered for small antenna diameters. The requirement is to point with an
accuracy of 1/10th of a beam width. The beam width is inversely proportional to the antenna
diameter, so that meeting the requirement gets easier at small antenna diameters. An innovative
design and component selection is needed in this area to provide an inexpensive solution to the
problem of driving and pointing small antennas.

* Feed Fabrication -

There does not seem to be a technological problem involved with designing feeds for any of
the antennas that were considered in this study. Rather, the problem seems to be to design a feed
that is manufacturable in quantity for very low cost. The DSN is experienced in building things in
small quantities and does not normally face this problem. It may be better to contract this aspect of
the design if the array concept were to flower.

» Signal Distribution -

As argued in Section 4.4, the technology to directly modulate an FO link with the S- or X-
band output of the LNA seems to be commercially available today. The benefits are fairly obvious—
less equipment on the antenna (in the field) and concentration of functions in a central facility. Field
maintenance and complexity are both reduced. Centralization of the downconverter and local
oscillators would make it possible to miniaturize these components and achieve better overall system
stability. What is necessary at this juncture is a convincing demonstration of this technology.

78



* LNA/Cryogenics -

The system temperature was modeled in three discrete steps because it did not seem feasible
to assume that field-worthy systems were available at arbitrary physical temperatures. The derivative
of the receiver temperature versus physical temperature curve is highest near room temperature,
which suggests that low-cost cooling technology in this regime offers the most benefit. However,
what is needed is an understanding of the life-cycle cost of the cooling technology— particularly the
maintenance costs. As an example, consider that difference between Model #2 and #3 for a 35-m
array element. The difference in total capital investment is a factor of two, which is also the
difference in the LNA cost. However, it is certain that the M&O costs for cooled LNAs (Model #3)
would be more than a factor of two larger than the Peltier cooled LNAs of Model #2. Over a thirty-
year lifetime, this difference might exceed an order of magnitude for the LNA subsystem but would
have to be balanced against the total M&O cost of an array of 17 elements versus an array of 7
elements.

* Modular Down Converters -

The planned DSN expansion of an additional 3 BWG antennas per complex (plus two
inherited antennas at Goldstone), at potentially 3 operating frequencies (Ka-, X-, and S-band), and
two orthogonal polarizations implies the need for up to 66 downconverters in the next few years.
The current design uses all discrete components and contains 4 channels of downconverter
electronics encased in an oven that is operated well above ambient temperature. There are 2 channels
at X-band and 2 channels at S-band, each pair sharing a common local oscillator that is driven by a
reference signal from the signal-processing center. This arrangement is packaged in a large bulky
oven and is physically located in the antenna cone where space is at a very high premium. The
variations of the physical temperature of the electronics is one of the prime factors in the overall
stability of the unit.

Whether the downconverter is to remain on the antenna or located at a central processing
center, it may be possible to achieve both cost and performance improvements by redesign of these
devices using modern technology.

* Correlator/Combiner -

In Section 3 some of the problems involved with array calibration were discussed, and it was
argued that the snr limitations could be minimized by using a scheme in which the combiner output
was fed back and correlated against each individual element. This scheme should be analyzed and
demonstrated with both telemetry signals and natural radio sources.

If the full-spectrum combiner approach is ever implemented in the DSN, then the signal
spectrum must be filtered prior to correlation. This filter would have to be adaptive in the sense that
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it would be a simple bandpass for sources whose spectrum is flat or unknown. In the case of
spacecraft signals, the filter must be matched to the expected spectral power distribution within the a
priori uncertainty on the frequency of that signal. Since the algorithms for doing this matched filter
processing already exist in the Block V receiver, it seems logical to assume that some subset of the
Block V design should be integrated in the design of the correlator and combiner in order to achieve
maximum snr for the widest possible choice of signal source.

* Atmospheric Issues

In Section 3 some of the effects of atmospheric fluctuations on array gain were discussed and
it was pointed out that these fluctuations lead to an effective gain loss for a telemetry array. For a
given geometry, the gain loss depends on elevation angle and the strength of the turbulence. The
turbulence strength is characterized by the parameter Cp, which is a statistical measure and also
varies. For instance, very low values of Cp, are possible during cold winter nights on the top of high
mountains, whereas very high values of Cp, can occur during a summer thunderstorm in the desert.

In effect, Cp, is both site and season dependent, and like atmospheric attenuation or
brightness temperature, it must be characterized in the form of a cumulative probability distribution
(PDF) that is both site and season dependent. Knowing the baseline geometry and source elevation
angle, the gain of an array can then be calculated with any desired degree of statistical certainty.
These atmospheric effects are mostly negligible at S-band, noticeable at X-band on 10-km baselines,
and appreciable at Ka-band. As the DSN evolves to an X-band and then Ka-band network of
arrayed 34-m antennas, it becomes increasingly important to quantify atmospheric fluctuations.

A better understanding of the site and seasonal variations in atmospheric fluctuations should
also influence the site selection of new antennas, but unfortunately the database needed to
characterize these statistics does not exist. Like the statistics for attenuation and brightness
temperature, the fluctuation statistics must be collected over a long period of time. In addition to the
effects on array gain, atmospheric phase fluctuations will limit our ability to track a carrier signal on a
single antenna and thereby impose another constraint on the design of a deep space communications
link. Thus, the DSN should be interested in atmospheric fluctuations for several reasons. It is
strongly recommended that compilation of this database be given a high priority.

Before I came here I was confused about this subject. Having listened
to your lecture I am still confused. But on a higher level.
- Enrico Fermi
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Figure 2-1. The cooling curve for an X-band high-electron mobility (HEMT)
amplifier showing the amplifier's effective noise temperature versus its
physical temperature together with the best linear fit, from Williams [1991] .
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Figure 2-2. The HEMT amplifier noise performance versus frequency for 3
common cooling configurations, from Williams [1991].
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Figure 2-3. The number of array elements required to synthesize the G/T
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Figure 4.2-1. Recurring cost for an individual antenna versus
antenna diameter and the best-fit power law function.
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Figure 4.2-10. Cost breakdown by subsystem as a percentage of total
antenna cost versus diameter for both TIW (a) and SA (b) data.
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Figure 4.4-2. Geometry of the antenna shadowing constraint.
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Fig. 4.4-3. The unit cell for the hexagonal close-pack array layout, often referred to as a first-order
Gosper snowflake. The distance between centers Legr is determined by the shadowing constraint.

Figure 4.4-4. A second-order Gosper snowflake (49 elements) comprised of seven
first-order snowflakes.
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Figure 4.4-5. A third-order Gosper snowflake consisting of 343 elements.
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Figure 4.4-6. Cable routing for the third-order Gosper snowflake array geometry.
Note that the interconnecting lines do not cross, indicating that direct cable burial is
possible.
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APPENDIX A
CONTRACTOR STATEMENT OF WORK

This is a summary of the STATEMENT OF WORK (dated Sept. 1992) that was sent to
two contractors that had previously supplied antennas to the DSN. The final statement of work
was modified by the JPL Procurement Office to include contractual details and cost.

I. PURPOSE

Jet Propulsion Laboratory is currently engaged in a study to develop a quantitative
understanding of the performance, cost, and technical risks associated with synthesizing a large
aperture from an array of smaller aperture antennas. The array will be a receive-only system,
operating simultaneously at S-band and X-band. This Small Aperture Array Study will
parameterize costs of the entire array as a function of the antenna element diameter for a prescribed
G/T (gain divided by system noise temperature). As a benchmark, the prescribed G/T will be that
of a small number (one to three) of Deep Space Network 70-m antennas. Costs for the complete
system will be parameterized. These include the antennas, radio and intermediate frequency
amplification, signal distribution, combiner electronics, and the monitor and control needed to
operate the array in a synchronous fashion. (Further background information was included in the
JPL Study statement attached to the Statement of Work.) This Statement of Work outlines a cost
study of the antenna elements to be performed by TIW Systems, Inc.

'II.  NUMBER OF ANTENNAS, OPTICS, AND COST BREAKDOWN

The number of antennas needed to synthesize the G/T of a 70-m antenna is a function of the
antenna diameter and system noise temperature. Shown in Table A-1 is the range of the number of
antennas needed for the eight diameters considered in this study. This range allows both cooled
and uncooled amplifiers to be parameterized, as well as a range of G/T for 1 to 3 different deep
space stations.

The antenna optics are broken into two regimes. For small-diameter antennas, a frequency
selective subreflector is used to separate S-band, arranged as a prime focus system, from X-band,
arranged as a Cassegrain system. For larger diameter antennas, both bands operate as a
Cassegrain system, with the bands separated by either a dual-frequency (concentric) feed, or a
frequency-selective surface diplexor. It is expected that the break will occur in the range of 10- to
20-m antenna diameters.

Antenna costs are to be broken into the following categories:
(A) Structure
(B) Main Reflector Surface



(C) Axis Drive

(D) Position Control

(E) Foundation

(F) Shipping and Installation

(G) Feed System (including possible frequency selective surface)

(H) Power Supply

Table A-1. Minimum and Maximum Antennas

Units
Diameter (m) Minimum Maximum
3 545 27,000
5 196 10,000
10 49 2,500
15 22 1,100
20 12 615
25 8 394
30 5 274
35 4 201

The specific tasks to be completed are as follows:

e For each diameter in Table A-1, production techniques will be investigated and a
preferred design in each category will be specified.

*  The design will include specifying antenna optics for each diameter size, based on
cost, manufacturability, and performance.

*  Each category will be further divided into nonrecurring and recurring costs.

«  Because of the large number of antennas that could be fabricated (especially at the
smaller diameters), it is expected that an economy of scale will be encountered.
This cost study should outline breakpoints in production where costs drop for a
given diameter as more antennas are fabricated.

»  As part of the JPL Small Aperture Array Study, a probabilistic determination of the
number of antennas needed to maintain a prescribed G/T margin is being calculated
for a given array and reliability of antenna elements. To assist in this calculation,
this cost study should outline antenna components which critically affect reliability
and detail the costs of critical components as a function of reliability.

III. PERFORMANCE REQUIREMENTS
The performance requirements are summarized in Table A-2.
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IV. DELIVERABLES AND SCHEDULE
Following the agreed commencement date,
A. There will be a conference of TIW and JPL personnel after 3 weeks to discuss and
clarify issues developed in the study.
B. A final conference of TIW and JPL personnel after 6 weeks will be held to discuss

results of the study,
C. The final report will be delivered after 6 weeks.
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Table A-2. Performance Requirements

Parameter Specification
Operating Frequency From S-Band to X-Band
Axis Coverage:

Elevation 0° to 90°
Azimuth +200°
Reflector Surface Solid aluminum
Environments:
Precision Operation:
Wind 10 mph gusting to 12 mph
Rain 2 inches per hour
Temperature 0°F to 115°F
Normal Operation:
Wind 30 mph gusting to 36 mph
Rain 2 inches per hour
Temperature 0°F to 115°F
Survival:
Wind 100 mph (stowed)
Seismic 0.3 G horizontal and 0.15 G vertical
Hail Up to 1 inch diameter stones
Temperature —20°F to 180°F
Drive-to-Stow 60 mph
Maximum Tracking Rates:
Velocity 0.4°/sec
Acceleration 0.4°/sec?
Maximum Slew Rates:
Velocity 0.4°/sec
Acceleration 0.2°/sec?
Site Location Australia

Soil Conditions

3,000 psf bearing capacity at 3 feet below grade

(no piles required)

Axis Configuration

Elevation over Azimuth

Pointing Accuracy:
Precision Operation 0.1 beamwidth
Normal Operation 0.2 beamwidth
Surface Accuracy:
Precision Operation 0.030 inch RMS

Normal Operation

0.035 inch RMS

Concrete Foundation

Minimum height (no building room required)
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APPENDIX B
ANTENNA AVAILABILITY IN THE DSN

The DSN defines the availability of a systerri AT, as the percentage of time that the system
produces the required data for scheduled support. Thus, the downtime required for scheduled
maintenance is not counted. One might imagine a situation in which a very old antenna requires 6
days/week of maintenance in order to be "available" for a single day. Therefore, the availability is
only related to the reliability. However, when defined in this way the availability has the great
virtue of being directly measurable.

Normally a spacecraft link is supported with a single antenna and a string of many other
subsystems along a serial data path. Failure of any subsystem that results in loss of data requires
the generation of a Discrepancy Report (DR) that is kept in a database. It is this database that we
will use to estimate the availability of various subsystems rather than DSN Document 810-5
[1991], which lists specifications. The reader should keep in mind the limitations of the data. For
instance, when an antenna fails for some long period of time, the tasks that were assigned to it are
re-scheduled for another antenna and the availability as it is used here does not suffer. Clearly, the
availability as defined above is at most an upper bound on the reliability, but they are the only data
that are readily available.

The DR database is analyzed by Donald Custer of the Allied Signal Corp. and published
periodically in thick books titled "DSN Performance Study: Telemetry Data Loss" [1993, 1990]
that cover a period of time on the order of 2-3 years. Tables B-1 and B-2 summarize the DR data
by subsystem for two periods. Table B-1 contains the data spanning the period 1 Jan. 1986 to 31
Jul. 1990, and Table B-2 covers the period 1 Jan. 1989 through 31 Dec. 1992. Both tables cover
all DR types and all flight projects that were scheduled for the telemetry data type. However,
Table B-1 contains data from all of the antennas in the DSN whereas Table B-2 contains the data
from the 70-m and 34-m networks (i.e., DSSs 16, 46, and 61 are not included). It has been noted
by others that the availability of the DSN is a function of time, typically increasing during such
critical events as planetary encounters and decreasing during cruise periods.

The first column of each table contains the 3-letter acronym for the subsystem. The
subsystem name appears in the second column for those readers who are unfamiliar with the
acronyms. The third column lists the number of hours of data that was lost, according to the DR's
count. At the bottom of this column, these hours are summed to give the total hours of data that
were lost and the overall system availability. The cumulative availability is listed in column 4,

For each subsystem row, the cumulative probability is calculated by summing the hours lost for the
particular subsystem to the top of the table, dividing the sum by the total hours that were
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scheduled, and subtracting this ratio from one. The last column in the table is the individual
subsystem availability, i.e., the product of which yields the total system availability.

There are several things worth noting in these tables. First, the top five subsystems (in
terms of losing data) are the same in both lists, and taken together account for about 70% of the
total hours that were lost. Also, the antenna is in the number-two spot on both lists and has an
availability of 0.993 in the older data set and 0.9956 in the more recent data set. A true believer in
statistics might be tempted to conclude that as our antennas get older they get more reliable, but the
reader has already been forewarned about the dangers in these statistics and certainly would not
succumb to that temptation. Finally, the total system availability is in the range 0.97-0.98, which I
believe is the number that has been used as the system availability per antenna in the current
version of the data return calculations.

TABLE B-1. From Jan. 86 to Jul. 90, 142744.75 scheduled hours, all projects, all antennas,
telemetry data type.

Abr. SUBSYSTEM NAME Hr. lost Cumulative P P;

DT™M DSCC Telemetry Subsystem 1240.75 0.9915 0.9915
ANT Antenna 963.53 0.9846 0.9930
RFI Radio Frequency Interference 715.82 0.9795 0.9949
RCV Receiver-Exciter 474,92 0.9762 0.9966
UMV DSCC Antenna Microwave Subsystem 459.38 0.9730 0.9967
FAC DSCC Technical Facilities Subsystem 143.13 0.9720 0.9990
TXR DSCC Transmitter Subsystem 102.60 0.9713 0.9993
DMC DSCC Monitor and Control Subsystem 68.40 0.9708 0.9995
NSS NOCC Support Subsystem 42.18 0.9705 0.9997
GDC DSCC Digital Communications Subsystem 39.63 0.9702 0.9997
DTK DSCC Tracking Subsystem 38.13 0.9700 0.9997
FTS DSCC Frequency and Timing Subsystem 29.72 0.9697 0.9998
N/A Not Applicable 28.70 0.9695 0.9998
UND Undefined 24.27 0.9694 0.9998
DSP DSCC Spectrum Processing Subsystem  8.80 0.9693 0.9999
NTM NOCC Telemetry Subsystem 5.10 0.9693 1.0000
GIA GCF Intersite Analog Comm. Subsystem 4.22 0.9693 1.0000
DCD DSCC Command Subsystem 3.70 0.9692 1.0000
GVC GCF Voice Subsystem 0.83 0.9692 1.0000
MFR Multifunction Receiver Subsystem 0.50 0.9692 1.0000
DTS DSCC Test Support Subsystem 0.18 0.9692 1.0000
NTK NOCC Tracking Subsystem 0.07 0.9692 1.0000

Total hr lost = 4393.81

System Availability = 0.9692 0.9692
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The subsystem availability should be calculated in a slightly different manner when the
DSN provides arraying support. An array is a parallel architecture so its reliability is conditional.
If we denote the availability of all the parallel subsystems (e.g., the antenna and probably the
microwave subsystems) as aj, then the total availability can be written

The composite availability of the antenna and microwave subsystem from the data base
summarized in Tables B-1 and B-2 is 0.992, so now all we have to do is figure out how to calculate
the conditional probability.

TABLE B-2. From Jan. 89 to Dec. 92, 148382.12 scheduled hours, all projects, DSS 12, 14, 15,
42,43, 45, 61, 63, and 65, telemetry data type.

Abr. SUBSYSTEM NAME Hr. lost Cumulative P P;

DTM DSCC Telemetry Subsystem 1009.85 0.9933 0.9933
ANT Antenna 620.70  0.9890 0.9956
RCV Receiver-Exciter 293.22 0.9870 0.9980
RFI Radio Frequency Interference 270.33 0.9852 0.9982
umv DSCC Antenna Microwave Subsystem 230.48 0.9837 0.9984
UND Undefined 133.08 0.9828 0.9991
FAC DSCC Technical Facilities Subsystem 95.18 0.9821 0.9993
DMC DSCC Monitor and Control Subsystem 87.00 0.9815 0.9994
TXR DSCC Transmitter Subsystem 81.30 0.9810 0.9994
NSS NOCC Support Subsystem 48.37 0.9807 0.9997
GDC DSCC Tracking Subsystem 46.10 0.9804 0.9997
DTK DSCC Tracking Subsystem 32.72 0.9801 0.9998
FTS DSCC Frequency and Timing Subsystem 27.07 0.9799 0.9998
N/A Undefined 27.03 0.9798 0.9998
DCD DSCC Command Subsystem 5.80 0.9797 1.0000
GIA GCF Intersite Analog Comm. Subsystem  5.53 0.9797 1.0000
DPS DSCC Power Subsystem 5.17 0.9797 1.0000
DSP DSCC Spectrum Processing Subsystem  4.57 0.9796 1.0000
NTM NOCC Telemetry Subsystem 1.72 0.9796 1.0000
GVC GCF Voice Subsystem 0.72 0.9796 1.0000
GDR DSCC Test Support Subsystem 0.18 0.9796 1.0000
NTK NOCC Tracking Subsystem 0.06 0.9796 1.0000

Total hr lost = 3026.18

System Availability = 0.9796 0.9796
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