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ABSTRACT

The effective-index method and Marcatili’s technique were utilized independently to calculate
the electric field profile of a rib channel waveguide. Using the electric field profile calculated from
each method, the theoretical coupling efficiency between a single-mode optical fiber and a rib
waveguide was calculated using the overlap integral. Perfect alignment was assumed and the
coupling efficiency calculated. The coupling efficiency calculation was then repeated for a range
of transverse offsets.
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1. INTRODUCTION

The behavior of integrated-optic devices is often polarization sensitive. Polarization-preserving
optical fibers can be used to couple light with a known polarization into these devices. In this
study, the theoretical coupling efficiency between a polarization-maintaining elliptical-core fiber
and a rib waveguide was investigated. To couple light energy efficiently from an optical fiber into
a channel waveguide, the design of both components should provide for well-matched electric
field profiles. Due to the complex geometry of a rib waveguide, there are no analytical solutions
to the wave equation for the guided modes. Approximation techniques must be utilized to de-
termine the propagation constants and field patterns of the guide. The two methods used here
are the effective-index method!~* and Marcatili’s approximation.~7 The refractive index profile
of the elliptical-core optical fiber was approximated by that of a rectangular channel guide 31
for which an analytical solution can be determined.

There are several causes of coupling loss between a fiber and a waveguide.!2-14 These include:
transverse offset (z,y offset), mode field mismatch, longitudinal separation (z offset), tilt, and
reflection. The loss mechanisms addressed in this study are the transverse offset and mode
field mismatch. Mode field mismatch contributes significantly to interconnect loss,®1¢ hence
modeling is a necessary tool to design waveguides with low coupling loss. As misalignment in
the = and y directions is inevitable in practice, the theoretical coupling efficiency results for z
and y offsets are of interest.

The integrated-optic rib waveguide and elliptical-core optical fiber that are the subjects of
this study are shown in Fig. 1. The single-mode channel waveguide is part of an integrated-optic



pressure sensor which is based on a strain sensitive ring resonator combined with a micromachined
silicon diaphragm. This sensor can be interrogated with either quasi-TE or quasi-TM polarized
light.” In this investigation, only the TE mode was analyzed. A single-mode polarization-
maintaining fiber with an elliptical core!® was used to excite the sensor at the 830 nm wavelength.
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Figure 1: Rib channel waveguide and elliptical-core fiber.

2. RIB ELECTRIC FIELD CALCULATION - TWO TECHNIQUES

For the channel guide, two methods of calculating the propagation constant and electric field
profiles were utilized: the effective-index method and Marcatili’s technique. The TE modes are
assumed excited and propagating in the z direction, thus the electric field is of the form

E(z,9,2) = & (z,y) 5, 1)
where f3, is the propagation constant.

Both techniques provide solutions to the scalar wave equation,

&2(z,y) | 8%(z,y)
oz? oy?

+ [n2(:c,y)k§ - 163] Q(xr y) =0. (2)

In Eq. 2, n(z,y) is the index of refraction and ko=;\2’:’, where ), is the wavelength in free space.



2.1 Effective-index method

The effective-index method reduces the two-dimensional scalar wave equation into two one-
dimensional problems. First, the rib guide is divided into three separate planar guides oriented
perpendicular to the y axis, as shown in Fig. 2. Slabs A and C, which have identical charac-
teristics, correspond to the etched portion of the waveguide, while Slab B corresponds to the
unetched portion. Nj is the effective index of Slab B and Ny is the effective index of Slabs A and
C, where Niyit = Biu/ko. To determine the degree of confinement in the z direction, a symmetric
slab waveguide, Slab D, is constructed which is perpendicular to the = axis. Slab D uses Ny and
Ny as the core and cladding indices, respectively, and the rib width W as the core thickness.
The analytic solution of Slab D yields the effective index, Negective, of the rib guide.
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Figure 2: Effective-index method

The electric field profile of the rib is the product of the field distribution of Slab B, X (x),
and that of D, Y (y), i.e.

o(z,y) = X(2) Y (y)- (3)

The effective-index method has intuitive appeal. However, because the guide is analyzed as three
separate slabs, the field continuity conditions at the interfaces are not met. The results of this
method are most accurate for ribs with small height and large width.1® This condition is satisfied
in this study as the guide etch depth is .09 pm which is small when compared to its 2.7 um
width.

2.2 Marcatili’s method

For modes far from cutoff, the majority of the field energy is confined in the central core
region. For purposes of analysis, a pseudo-rectangular waveguide is utilized to approximate the



rib structure.!’ The cross section of the waveguide is divided into nine regions as shown in Fig.
3, in which t is the etch depth and r is the thickness of the etched silicon oxynitride (SiON) layer,
such that the rib height is r + t.

Marcalili's Method
s Region(C)

Region(G) A

Figure 3: Marcatili’s method: pseudo-guide used to approximate rib guide.

The pseudo-guide is assigned a refractive index profile which approximates that of the actual
rib. This profile provides readier analysis because n?(z, y) is separable in the z and y coordinates;
it is defined as!

nZ(x, y) = n'?(x) + n”2 (y) - ng’ (4)
where
W(z) = ny  for |z < -2W- 5)
n(x) = ny for |z| > 2E (6)
and
n'y) = ng  for —t<y<r, (7)
n'(y) = ny for (y < —t) or (y>r). (8)

Analogous to the effective-index method, this method reduces the two-dimensional wave
equation to two separate one-dimensional problems. Marcatili’s technique is considered an ap-
proximate analytical approach and is most accurate when the waveguide mode is far from cutoff.®



Substituting Eqs. 3 and 4 into Eq. 2 produces

[+ K@) - ] X(a) = 0 ©
d2 n
[@ +k2n%(y) - ﬁ%] Y(y) = 0, (10)
where
B+ B3 —kinl =P (11)

When the mode is well-guided, the majority of the field energy is in the central core (n; region)
which is a key assumption of this theory.® The refractive index profile of the rib waveguide and
pseudo-guide differ in the outer shaded regions and sections D and H of Fig. 3. The index of
refraction in the shaded regions is 1/2n3 — n?. In regions D and H the actual index is n; when
-t <y < 0 and n; when 0 < y < r, but in this approximation it is assumed that n is the index
throughout regions D and H. However, because the modal power in these outer regions is small,
the mode field profile of the pseudo-guide should closely resemble that of the rib guide. This
assumption is generally applicable for large etch depths (t >> r). However, for this channel
guide the etch depth (t) is small, but because the rib is wide (W >> r + t), it is expected that
the pseudo-guide will provide an accurate field profile.

Following the development of Varshney and Kumar,!! the x dependent solutions are

w
X(z) = Acos (2,41% - o) for |a] < 5, (12)
X(z) = Agexp (—2;1,2%;—') for |z| > %’—, (13)

where

w

mo= kA, (14
w

b = /B KEn (15)

and 6 =0 (%) for a mode symmetric (antisymmetric) in . The y dependent solutions are given
by

Y) = dvep(2Y) for y>r, (16)
Y(y) = Accos (%ty + B.sin (%—ty-) for —t<y<r, (17)
Y(y) = A,exp (%ty) for y < —t, (18)



where

Y% = ty/B3—k2nj, (19)
Y = ty/kini— g3, (20)

Ya = M. (21)

Assuming quasi-TE polarized incident light, the boundary conditions,

n?®(z,y) and % continuous at z = :I:-Wz—-, (22)
®(z,y) and % continous at y = —t, r, (23)

are applied and eigenvalue equations determined for both the = and y dependent field functions.
These eigenvalue equations are

2
-1 P 2] _nr _
tan [ngﬂl] m+ (p 1)2 0, (24)
tan~? [%] + tan™? [Zﬁ] - Ye (1 + Zt:) +(@g-)m = 0, (25)
c [

for the z and y dependent field functions, respectively. For the fundamental mode, p=g¢=1in
Eqgs. 24 and 25. Constants A; Az, Ag, A, A, and B, are determined by satisfying the boundary
conditions given in Eqs. 22 and 23.

3. FIBER ELECTRIC FIELD CALCULATION

The fiber in Fig. 1 was a single-mode polarization-maintaining elliptical-core fiber. Thus,
the standard Gaussian approximation used for circular-core fibers is not valid for this case.
Recently, several papers have discussed solutions for elliptical-core fibers.2~1° In this study, the
elliptical core was approximated by a rectangle for which an analytical solution can be found.
The rectangular core dimensions are chosen such that it and the elliptical core have the same
area and aspect ratio.® Therefore, the rectangle dimensions, @' and b, are given by

¢ =¥ and b = pYT. (26)

2 2
A diagram of the elliptical and rectangular cores is shown in Fig. 4. Using this rectangle as the
pseudo-guide, Marcatili’s method (Section 2.2) was used to determine the fiber field profile. The

field is given by Eqs. 12-21, where t and 7 have been replaced by b, W has been replaced by 2a’,
and B. = 0.
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Figure 4: Elliptical-core fiber with pseudo-guide (rectangle).

4. COUPLING EFFICIENCY CALCULATION

Once the electric fields of the rib guide and fiber were calculated, the efficiency of coupling
between the two components was determined. Because the index of refraction difference between
the fiber and waveguide was small, Fresnel reflection loss was neglected.'® The coupling efficiency,
7, was calculated using the overlap integral %17

[1 1 84(z,9)83(x,3) dady] | -
I 1 @4(x,9)®3(z,y) dedy| [f [ By(z,y);(z,y) dzdy]’

where the integrals are taken over all space and ®;(r,y) and ®,(z,y) are the electric field
profiles of the fiber and rib waveguide, respectively. The major axis of the elliptical-core fiber
was oriented paralle] to the z axis of the guide. The position of zero z and y offset is chosen to
correspond to alignment of the maximum field positions of the fiber and rib.1® After solving for
the aligned case, various z offsets were introduced and a new coupling efficiency calculated for
each. This procedure was then repeated for various y offsets while the z offset was zero.

"

5. RESULTS

Field results for the elliptical fiber field using Marcatili’s method are discussed in section 5.1.
For the rib guide, the field profiles calculated using the effective-index method and Marcatili’s
approximation are described in section 5.2. The results of the theoretical coupling efficiency
calculations for various z and y offsets are described in section 5.3.



5.1 Waveguide field results

Theoretical field results using the eflective-index method and Marcatili’s approximation are
shown in Figs. 5 and 6. Results using the effective-index method tend to overestimate the width

of the field in the z direction® as illustrated in Fig. 5.
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Figure 5: Effective-index method: electric field contours for rib guide.
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Figure 6: Marcatili’s method: electric field contours for rib guide.



5.2 Fiber field results

Utilizing Marcatili’s method, the fiber field profile was determined using the parameters Ncore
= 1.484 and nge = 1.450. The major and minor axes (2a and 2b) of the elliptical-core fiber
were 2.6 um and 1.3 um, respectively. A contour plot of the electric field is shown in Fig. 7.
For all the contour plots in this paper, the contours indicate regions of equal field magnitude in

increments of 0.1, with the maximum field magnitude being equal to 1.0.
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Figure 7: Fiber electric field contour plot with elliptical fiber core superimposed (dashed
ellipse).

5.3 Coupling efficiency results

Once the alignment position was determined and the coupling efficiency at this position was
calculated, an offset in the z direction was introduced. This offset ranged from -3 um to +3 pm
in .20 ym increments. The coupling efficiency as a function of z offset is shown in Fig. 8.
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Figure 8: Coupling efficiency vs. z offset.
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Figure 9: Coupling efficiency vs. y offset.

Similarly for the y direction, keeping the z alignment, the fiber position was varied from -3
pm to +3 um from the position of alignment. The theoretical coupling efficiency results vs. y
offset are shown in Fig. 9.

From the graphs in Figs. 8 and 9, it is apparent that alignment was more critical in the
y direction. This is expected since the rib field calculated was more tightly confined in the y
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direction than the lateral direction (). The maximum theoretical coupling efficiency calculated
was 81% using the effective-index method and 88% using Marcatili’s technique. The actual
coupling efficiency is expected to be somewhere between these two results. The difference was
due to the weaker lateral rib field confinement predicted by the effective-index method, compared
to the tighter confinement predicted by Marcatili’s method. Because the fiber field profile more
closely matches the rib field predicted by Marcatili’s method, the theoretical coupling efficiency
is higher than that calculated using the effective-index method.

6. CONCLUDING REMARKS

Theoretical coupling efficiency between an elliptical-core fiber and a rib guide was determined
for a range of transverse offsets. Two techniques were used to calculate the theoretical electric
field profile of the rib waveguide: the effective-index method and Marcatili’s technique. For
this channel structure, both methods produced similar results. The electric field profile of the
elliptical-core fiber was determined using Marcatili’s method.

Calculations of this kind are useful in optimizing the fiber choice and rib guide design in
order to maximize the coupling efficiency between the two components.
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