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Euler Technology Assessment Program for Preliminary Aircraft Design Employing

SPLITFLOW Code with Cartesian Unstructured Grid Method

Dennis B. Finley

Lockheed Fort Worth Company

Summary

This report documents results from the Euler Technology Assessment program. The objective

was to evaluate the efficacy of Euler computational-fluid dynamics codes for use in prelimi-

nary design. Both the accuracy of the predictions and the rapidity of calculation were to be

assessed. This portion of the study was conducted by Lockheed Fort Worth Company, using

a recently-developed in-house Cartesian-grid code called SPLITFLOW (Ref. 1). The Cartesian

grid technique offers several advantages for this study, including ease of volume grid gener-

ation and reduced number of cells compared to other grid schemes. SPLITFLOW also

includes grid adaption of the volume grid during the solution, to resolve high-gradient

regions. This proved beneficial in resolving the large vortical structures in the flow for several

of the configuration cases. The SPLITFLOW code predictions of configuration forces and

moments are shown to be adequate for preliminary design, including predictions of sideslip

effects and the effects of geometry variations at low and high angles of attack. The time

required to generate the results from initial surface data is on the order of several hours,

including grid generation, which is compatible with the needs of the design environment.





1. Introduction

In preliminary aircraft evaluation, a predicted result is valued both for its accuracy and for its

timeliness. In order to impact the design process, aerodynamic data must be produced within

the constraints of configuration decisions. Recentl_ the use of computational fluid dynamics

codes (CFD) for use in preliminary aircraft external shape evaluation has become practical.

CFD calculations provide improved resolution of configuration features over lower-order

methods, and the speed of computational hardware has put these codes within reach of the

short design cycles typical of advanced aircraft development.

The use of the Euler formulation provides a substantial simplification of the numerical par-

tial differential equations, reduces the size of the grid, and also avoids significant issues

regarding turbulence modeling of viscous layers. However, the Euler formulation contains

non-physical generation of vorticity (through numerical dissipation) and generally will not

capture secondary vortices (Ref. 2). Use of Euler codes on wings and forebodies having

rounded leading edges is difficult due to uncertainty in the 'separation' point (Ref. 2).

The creation of the computational grid plays a substantial role in determining the timeliness

with which CFD can be used within design evaluations. Grid generation on complex vehicles

can take literally months, rendering CFD no more timely than conventional wind tunnel test-

ing. Innovative grid generation techniques are critical to creating time-valued CFD predic-

tions.

The current study was designed to assess the value of Euler analyses and grid generation

techniques for configuration predictions, in flow regions both below and above vortex burst.

The configurations were all sharp-edge, eliminating the concern for Reynolds number effects

on leading edge separation. The use of the Euler equations simplified the grid generation,

and provided ease in conducting grid density studies since no special provision had to be

made to maintain a certain number of grid points within the boundary layer. High angle of

attack predictions did require grid adaption to capture off-body flow structures such as high-

vorticity regions. Without grid adaption, the off-body flowfield would be poorly resolved,

due to the dissipation in regions where the cell size is high. Several codes were used in the

study, and several organizations conducted parallel evaluations. The TEAM code (evaluated

by LASC), Ref. 3, is a structured-grid Euler/Navier-Stokes code. The OVERFLOW code

(evaluated by Boeing Aerospace), Ref. 4, is a Chimera overset structured-grid Euler/Navier-

Stokes code. The USM3D code (evaluated by NASA-Langley), Ref. 5, is an unstructured-grid

Euler/Navier-Stokes code which uses tetrahedral cells. The results of these codes for the

study are reported in separate documents.
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2. General Algorithm Attributes

Code formulation

Cartesian grid techniques have been developed as a means of fast automatic grid generation

(Ref. 6,7). The methods generally utilize recursive cell subdivision to generate the computa-

tional mesh around geometries. The grid generation is generally automatic and can handle

extremely complex geometries. SPLITFLOW is a finite-volume Euler/NavieroStokes code

which utilizes cubical cells. Attributes of SPLITFLOW include automatic cell division and

domain boundary decomposition from a computer-aided design (CAD) surface definition.

The code is upwind in the inviscid regions, and flux limiters are available to reduce oscilla-

tions near shocks. Inviscid regions utilize Cartesian grid topolog_ while a prismatic grid gen-

erator is used for viscous regions. As shown in Figure 2.1, the Cartesian grid method

produces rapid subdivision of root cells, and a known cell aspect ratio for ease of reconstruc-

tion of face information. Solution grid adaption is included within the code, using several

user-selected functions. The code offers extremely fast user setup times, on the order of 20 to

40 minutes.

Surface Representation

The surface geometry is input as a triangulated surface mesh. This mesh is provided by the

engineering computer aided design (CAD) package used to define the configuratiorL By

interfacing with the CAD package directly, conversion of geometry to CFD surface defini-

tions is eliminated. The surface in the CAD file is defined as a list of X, Y, and Z coordinates

and a connectivity in the form of three node numbers corresponding to the indices of the

forming points of each triangle making up the surface. The geometry facets are oriented such

that the surface normal point into the computational domain. Subsets of the facets can be

grouped together in a series of ASCII files, so that in the assembly of the faces of the grid

described below, each can be associated with a particular boundary condition type such as

no-slip, symmetry, characteristic slip wall, etc.

Grid Generation

The construction of the Cartesian grids within SPLITFLOW begins with a boundary face file

consisting of triangular facets describing all 6 faces of the grid, including the body surface.

For viscous analysis (not included in this report) the prismatic grid generator would be

employed to build an initial grid suitable for viscous analysis. The Cartesian grid would then

use the outer layer of the prismatic grid as its boundary surface. As shown in Figure 2.2,

SPLITFLOW finds the intersection between the Cartesian cells at the boundary and the sur-



facefaces,and constructssmaller facets in the intersection plane which are used to recon-

struct each cut boundary cell. Thus, the boundary cells contain portions of the surface

boundary and inherently capture the surface resolution provided by the user in the boundary

face file. The number of subtriangles constructed within each surface facet range on the order

of 5 to 10, but all the subtriangles are coplanar with the original facet provided in the face file.

Each boundary subtriangle is connected to a unique Cartesian boundary cell. The size of the

Cartesian cells, and resulting number of grid levels, is determined by the size of the facets

provided in the face file. Some control is provided by setting a scale factor (bndscale) for the

facets on each face, and a minimum Cartesian cell length term (dxyzmin), in the input deck.

An octree data structure is used to store information for each Cartesian cell during the recur-

sive grid generation process. A subdivided cell produces eight new offspring cells, as shown

in Figure 2.1. The parent is retained in the grid after the subdivision. The information stored

for each cell consists of the global index of the parent cell, the global indices of the eight chil-

dren that may exist and the grid level of the cell. The grid 'level' refers to the number of times

the root cell has been recursively subdivided to create this particular child. Since the position

of each offspring cell (in relation to its parent) is predetermined in the subdivision process

(due to the Cartesian topology) the neighboring cell indices can quickly be determined. In

addition many of the search procedures are made efficient using the octree data structure.

Initial Grid Refinement

The initial Cartesian grid is generated based on the resolution of the surface triangulation of

each of the 6 faces of the boundary face file. Generally, the surface of the vehicle of interest

will contain a much denser mesh of triangular facets than outer boundary face regions. The

root cell defined by the boundary face file is termed grid level 1, and is subdivided in the X, Y,

and Z directions resulting in eight offspring cells at grid level 2. Each offspring cell is recur-

sively subdivided based on a cell length-scale criterion. The length scale of each cell is com-

pared with the length scale of all the geometry facets that are contained within the cell or are

touched by the cell. The cell length scale is defined as the length of the sides of the cell. The

length scale of the geometry facet can be defined as the average length of the thn,e sides of

the facet. If a particular cell is larger than the facet length scale multiplied by a u-,'r--pecified

scale factor, the cell is subdivided. This process continues down each branch ,,I ttw octree

data structure until all cells without offspring satisfy the length scale criterion

•During the subdivision process, grid smoothing constraints are enforced. No _t.II ,an have

more than four neighbors on any side. This is equivalent to limiting the differen, e- in grid

levels between adjacent cells to one. This constraint is enforced so that the octree data struc-

ture can be used to rapidly determine the neighbor information of the cells on all grid levels.

Any refinement resulting from this constraint quickly propagates through the grid. The
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resulting grid has fine resolution cells near the bodies, and coarse resolution cells in the far

field.

The robustness of the grid is checked. Cartesian grid generation may result in cells that are

divided into multiple distinct volumes near thin sharp regions, which are invalid. SPLIT-

FLOW uses an area summing approach to sum the X, Y, and Z area components of the

boundary facets in each cell that lies along the boundary. First, if any of the area components

sum to zero while the maximum magnitude of the area component is non-zero, then the cell

may be an invalid cell. Second, if large negative and positive summations occur then the cell

may be invalid. These checks assure that invalid cells are eliminated.

Grid Adaption

Once the volume grid has been created based on the face geometry, cells within the volume

grid are subdivided additionally during the solution to various levels, depending on the local

flowfield gradients. SPLITFLOW contains gradient computations of several functions such as

static pressure or Mach number. These functions are selected by the user, and are used to

refine or derefine the grid. Example results of the volume grid are shown at the top of Figure

2.3. The flowfield gradients around the leading edge, and the burst vortex, are clearly seen in

the figure. At the bottom of Figure 2.3, the equation for the grid adaption parameter is

shown. The gradient of each chosen adaption function is computed across the cell and multi-

plied by a length scale. This length scale is calculated from the cell volume and is then

adjusted by an exponent based on a user selected term. This gives some control for super-

sonic flows in which the adaption function gradient across shocks is so high that the cells

near the shock tend to dominate the adaption function statistics.

The statistical approach used for assessing the need for grid adaption is shown in Figure 2.4.

This approach dramatically reduces the requirement for user decision about grid adaption.

Unlike other Cartesian grid schemes, no rain/max cell size or tolerance needs to be defined,

and no user-defined "sequence' of adaption (such as a number of cycles each having several

grid levels within each cycle). Rather, the actual gradient information is computed across

every cell in the entire domain. Physically-based adaption functions (selected by the user)

such as pressure or velocity are calculated using these gradients. The user simply defines the

thresholds of the values on the adaption function at which cells will be marked for refine-

ment or derefinement. These thresholds (called gradmn and gradmx) are applied to the sta-

tistics of the adaption function(s), and are defined in Figure 2.4 as percentage of the standard

deviation or (max-median) of each adaption function. Refinement occurs automatically for

cells which exceed the threshold. Cells which fall below the lower threshold of the adaption

function are marked for derefinement. Derefinement occurs for cells in which all 8 children

have been marked. The objective is to create a uniform value of the adaption function across



all thecellsand avoid either"hotspots'in which largegradientsexist,or regionsof minimal
gradientwherecellscouldbe removedwithout disturbing thesolution.

Grid adaption occurs when the value of the adaption function as shown in Figure 2.4 exceeds

the statistical threshold. The grid cell is subdivided. After all refinement has been completed

(or the target number of cells is reached) then grid smoothing is employed to assure that only

one level changes between adjacent cells.

The user input file contains the grid generation cell resolution terms Condscale and dxyzmin)

which allow control of the minimum Cartesian cell size. The adaption of the volume grid to

flowfield gradients is controlled by the terms gradmx and gradmn in the input file.

As the solution proceeds, refinement events occur periodically. Cells are added or deleted,

and the residual spikes then falls. The general trend for the residual is to progressively drop,

and generally 3-4 orders of magnitude of convergence of the L2 norm of the residual are

achieved.

Numerical Formulation

The governing equations solved are the Reynold's averaged, compressible Navier-Stokes

equations. The discrete-integral form of the equations for an arbitrarily-shaped cell with ns

sides is given as:

_AQ+ 2 (Fi-F_)_* (n_o,,,)
m=l

where ns is the number of sides of the cell (to accommodate boundary cut cells), n is the cur-

rent time level, and s is the current sub-iteration. The flux F and conserved vector Q are from

the conventional conservation-law formulation. The cell volume is represented by f_ and At

is the time step. The outward-pointing unit normal vector for face m is n m and the surface

area is given by %. The inviscid flux for face m is denoted Fi, and the viscous flux as F v

A steady-state solution to the governing equations is obtained by using an implicit time

marching scheme. Upwind fluxes are used for the inviscid terms, and central differences are

used for the viscous terms. A consistent set of flux functions are used in the solution proce-

dure on both the Cartesian grid and the prismatic grid. A point-wise implicit time integration

scheme with sub-iterations is used to advance the solution. The numerical form of the

implicit equation is:



8F (_

The given cell is c, while each neighbor on the right-hand side is n. Res is the residual vector

computed as the sum of the fluxes over the cell. I is the identity matrix.

The flux Jacobians are the inviscid Jacobians consistent with Roe's scheme, computed using

first-order extrapolated data. By using the _'s from the previous subiteration for the neigh-

bor cells and adding the influence to the right-hand side, the equations require a block inver-

sion of a 5X5 matrix for each cell. The inverted matrix is computed during the first sub-

iteration and stored for use in subsequent sub-iterations. Typically, 10 to 20 sub-iterations are

used to converge the implicit equation at each time level. Sub-iteration convergence is moni-

tored by the code.

The Courant-Friedrichs-Lewy (CFL) number is automatically adjusted by the code, depend-

ing on the subiteration convergence characteristics. CFL numbers on the order of 5 or more

are possible for most problems.

The inviscid fluxes are computed using Roe's approximate Riemann solver. A minmod lim-

iter is used to reduce the order of accuracy near discontinuities and prevent overshoots, and

the entropy fix of Harten (Ref. 8) is used to prevent non-physical expansion shocks.

User Work-load and SPLITFLOW Domain Definition

The steps of user involvement in creation of a SPLITFLOW grid are shown in Figure 2.5. The

user determines the level of surface resolution using the computer-aided design (CAD) sys-

tem. This surface definition is made up of a number of triangular facets. The outer bound-

aries of the domain are defined, and a symmetry plane is constructed by running LFWC

software tools which read the outer boundary points and the centerline of the CAD surface

file to generate a faceted triangulated symmetry plane. The user also makes simple ascii files

of the outer boundary faces (consisting of large triangles containing the comer points of the

domain) and assembles the faces into a total file using an LFWC software tool, 'spfbnd'. This

boundary file is the input to SPLITFLOW, along with a namelist file containing flow condi-

tions, grid adaption parameters, surface integration reference terms and requested print data

such as surface pressures. The time required to set up a problem is generally 20 to 40 minutes.

The avoidance of volume grid generation and the simplicity of construction of face grids are

seminal features of SPLITFLOW. Also, the addition of new surface geometry is easily accom-

plished, such as a new tail or modified body shape.



3. Attributes of Grids for Euler Technology Assessment

Specific results of the surface and volume grid generation for the Euler Technology Assess-

ment study are shown in this section. The configuration used for the computations was the

NASA-Langley Modular Transonic Vortex Interaction (MTVI) model (Ref. 9). The MTVI con-

figuration features a 60-degree clipped delta wing and a large fuselage which extends ahead

of the wing. A significant feature of this configuration is the sharp leading and trailing edges

on the wing, fuselage and tail. This promotes flow separation and roll-up into upper-surface

vortices, and reduces the sensitivity of test and predicted results to Reynolds number effects

associated with the onset of vortical flow. The geometry variations used in the study

included the position of the vertical tails (centerline vs. wing-mounted), body cross-section

chine shape (100-degree included angle vs. 30-degree), and leading-edge flap deflection. The

baseline geometry, termed MTVI#1, included twin wing-mounted tails, a 100-degree chine,

and a 30-degree leading-edge flap deflection over the inner 60% of the wing span.

The various configurations used for the predictions are shown in Figure 3.1. A sting was

added as shown in Figure 3.1, consisting of a reduced-area cross-section extending approxi-

mately one body length aft of the body. A tapered region closed the gap between the end of

the model and the beginning of the sting. The overall surface grid of each configuration had

about 30,000 facets.

The development of a faceted surface file from the CAD definition of each vehicle required

that the bodies be closed (with no gaps or mismatches), such that a solid volume could be

made. The CAD defined geometries contained the trimmed surfaces for the components

(such as upper fuselage, wing, flap etc.) Small mismatches occurred between some of these

surfaces. Connecting patches and extensions to surfaces were generated in order to create a

solid facet file of each geometry.

Preparation of the face grids was conducted on Silicon Graphics Personal IRIS and IRIS

indigo Extreme workstations. The construction of the Cartesian grids within SPLITFLOW

begins with the boundary face file provided by the user. This file, described in the previous

section, contains a cubical root cell of the domain. Each face of this file consists of points and

connectivity information defining two or more triangular facets. One of the faces is the sur-

face definition of the geometry of interest (from the CAD development discussed above). The

maximum cell size for volume grid cells near the outer boundaries was selected to be approx-

imately 12 inches. The domain is subdivided recursively, and each subdivision is termed a

level. The progression for MTVI was 0.5 n X 12 inches, to reach the minimum size. A target

size for the smallest cells is selected by the user. The nominal minimum cell sizing for several

SPLITFLOW runs is shown versus a 'y-plus' parameter in Figure 3.2. These runs were made

9



usingvariationsin theselectedminimum targetcell size.Y-plusis typically ameasure of the

radial spacing required for a viscous grid, but it gives an indication of the relationship

between the SPLITFLOW levels for MTVI and radial spacing near the wall. The smallest ele-

ment in each MTVI facet file had edges of approximately 0.0005 inches. If the target size is on

this same order, the resulting 'n' value of 15 (which subdivides the 12-inch largest cells 15

times) corresponds to a y+ of about 40. In general, this level of near-wall resolution has been

adequate for Euler calculations.

10



4. Pathfinder Study

The first portion of the Euler Technology Assessment study included systematic evaluation

of several issues confronting the use of CFD for aerodynamic predictions. This first phase

was called the 'Pathfinder' study, since it was in this phase that the basis was established for

proper grid techniques and convergence assessment for both low and high angle of attack

flows. Two angles of attack were used, a relatively low angle representing a 'benign' vortex

condition having a mixture of attached and vortical flow, and a higher angle creating a "burst'

flowfield. The requirements for grid resolution at low and high angle of attack were deter-

mined by performing solutions on several grids for each of the flow cases. Another objective

was to computationally assess the effect of wind tunnel walls on the configuration aerody-

namics. These calculations were made using the 'medium' grid as determined from the grid

sensitivity study.

The computational strategy and run plan for the pathfinder study were developed by NASA-

Langley, and were provided to all participants. A number of calculations were made during

the course of the study, and these are summarized in Table 1. The pathfinder runs are labeled

Runs 1-8 in the table. The configurations are listed in the table, along with the corresponding

arrangement of flap and tail components, outer boundary geometry and grid resolution. The

nominal Mach number used for all calculations was 0.4.

Effect of Grid Resolution

Several grids were generated using SPLITFLOW over the range of cell count from 350,000 to

850,000, and the resulting integrated forces were compared to determine when no significant

change occurred with increasing grid resolution. Since flows were to be predicted in which

either mixed (attached and separated) flow or fully-separated flow would exist, the grid den-

sity studies were conducted at both low and high angles of attack. An example for the angle

of attack of 10 degrees is shown in Figure 4.1. Each solution was assumed to converge when

the force coefficients reached a steady value with succeeding iterations of the code. Also, the

L2 norm of the residual was monitored, and a value of 1.0 X 10 -5 or lower was generally

selected as a target for convergence of each solution. As shown in Figure 4.1, these converged

solutions had different integrated forces depending on the grid resolution selected. The force

coefficients reach nominal levels at about 500,000 cells of grid resolution.

At an angle of attack of 35 degrees, shown in Figure 4.2, the forces also converged at about

500,000 cells, but the pitching moment was still showing variation. It was decided to use a

target of 600,000 cells for the pitch runs, in order to adequately resolve the flowfield espe-

cially at the higher angles of attack. This target was used for all angles of attack, although one

11



could vary the target cell count for each run as desired to improve efficiency for low angle

cases. The ability to set resolution without costly and tedious modification of the volume grid

is a distinct advantage of this grid approach.

Solution timing

The time required to generate the volume grids within SPLITFLOW are shown in Figure 4.3

for a Pathfinder run series. The grid boundary cutting process required about 30 to 40 min-

utes, and the subsequent grid refinement and adaption during the course of the solution

required an additional 20 to 40 minutes. These results depend on the number of refinement

sweeps requested by the user. Generally for the Pathfinder runs the grid updating and refin-

ing was requested frequently (every 10 steps) since the objective was to determine accuracy

requirements and not timing. Subsequent 'production' runs of the code have brought down

the grid generation and refinement times. As SPLITFLOW has matured, it has been found

that the number of iterations and the amount of grid refinement activity can reduced without

affecting the solution quality. The convergence and timing for a subsequent solution of Run 2

is shown in Figure 4.4 through 4.7. The solution was run for 300 steps, and convergence

appears to have occurred within 250 steps. The overall solution time was 3.3 hours on the C-

90. The grid generation took about 700 seconds, and the adaption and refinement was 500

seconds. The cell count, Figure 4.6, shows the developing number of cells which are added

during the solution. Three lines are shown on the plot. The top line is the total number of

cells. The middle line shows the number of 'active cells', or cells within the domain. The

lower line indicates the number of cells without children, which is generally the smallest-

sized cells.

The grids for three levels of resolution from the 35-degree flow condition are shown in Figure

4.8. The addition of cells in the vortical region over the wing can be seen for the denser grids.

Plots of off-body quantities were made to find the vortex characteristics. An important con-

sideration in off-body flowfield display is the parameter to be used to visualize the flow. The

use of total pressure, x-crossflow total pressure and static pressure were compared as shown

in Figure 4.9. Cuts were made through the flowfield grid at the six fuselage stations/or which

surface pressure data were provided, shown in a geometry plot in Figure 4.10 The vortex

core can be seen in Figure 4.9 for all three parameters. Total pressure shows a Io,, near the

vortex 'burst' location (in the next-to-last station cut in this figure), but the resolution ol the

vortical features was poor when total pressure was used. Static pressure coeffic,.nt -bows a

reduced level of suction in the wing cuts, but it is difficult to find the course of the Ior,,body

vortex as it trails aft. When the x-crossflow total pressure is computed (using crossflo_v Mach

number to define the isentropic relation) the results on the right-side of the figur_ show a

much better definition of the core of the vortices. The x-crossflow term has the advantage of

showing more details of the burst vortex region as seen in the last pressure plane cut in the

12
OI_GINAL PAG_ r_

OF POOil



figure. The low values of the x-crossflow term on the forebody suggest that most of the veloc-

ity is axial in the forebody 'vortex', such that the computed total pressure using crossflow

velocity is low. On the wing, the loss of total pressure due to entropy losses is compensated

for by an increase in the crossflow velocity in these regions, such that the total x-crossflow

term has a good range of values for plot display. Therefore, the x-crossflow total pressure for-

mulation was used for subsequent plots of off-body flow features.

The comparison of off-body data for the grid resolution study at 35-degrees angle of attack is

shown in Figure 4.11. The additional cells provide better resolution of the interaction region

between the forebody vortex and the wing vortex at the fifth station cut (just ahead of the

vertical tail). Also, the large rotating structures at the last station are better resolved with the

grid adaption. Vortex traces were made of the three grid solutions as shown in Figure 4.12.

The high grid resolution showed the best tracing of the large mixing region ahead of the ver-

tical tail.

A denser particle trace was made of the solution on the medium grid to show in more detail

the flow features. The results for aoa=10 are shown in Figure 4.13 (Run 2), and show a strong

tip vortex. The dense-trace results for an angle of attack of 35 degrees are shown in Figure

4.14 (Run 5), and indicate that the wing vortex has encountered adverse conditions near the

wing-mounted vertical tail and is lifted off the configuration.

Surface pressures are compared between SPLITFLOW predictions and test results (Ref. 10) in

Figure 4.15 on the first three forebody stations that were defined in Figure 4.10. The results

indicate the medium grid, Run 5, produced essentially the same prediction of the peak suc-

tion in the forebody vortex and its location spanwise as the fine grid, Run 6. Both of these

runs showed an under-prediction of the amount of peak suction in the vortex. This is

unusual in that in general Euler codes tend to over-predict the level of suction for these

flows. The pressure results for the three wing stations is shown in Figure 4.16. Here the effect

of increasing grid resolution was to increase the amount of peak suction. The Run 5 results

were very close to Run 6, indicating that the size of this 'medium' grid was sufficient. Further

refinement in the grid to the level of Run 6 did not improve the degree of correlation with the

test data. The code tended to under-predict the amount of suction in the wing leading-edge

vortex at the second station, but predicted the continuation of the forebody vortex (the peak

seen near the centerline). The general shape of the suction peaks is well predicted.

The integrated force results from all the runs made on the MTVI#1 configuration are shown

in Figure 4.17. A drag increment of 0.02 has been added to the predicted results, to estimate

the viscous effects. The free-air calculations (Runs 2, 5, and 9 through 13) show good defini-

tion of the trends from the test data, including the non-linear pitching moment break at a lift

coefficient of 1.0. The predictions made using the tunnel walls (Runs 7 and 8) show an effect
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of the walls, including somewhat better agreement with the value of lift at 35 degrees angle

of attack. More investigation was made of the tunnel wall case, and is discussed in the next

section.

Effect of Wind Tunnel Walls

One of the objectives of the pathfinder study was to assess the effect of wind tunnel walls on

the flowfield surrounding the model, and estimate the effect on configuration forces. The

symmetry plane of the volume grid for the tunnel wall case (Run 8) is shown in Figure 4.18.

The walls are in fairly close proximity to the model at this angle of attack. The far-field grid

used for the free-air cases (Run 6) is shown for comparison, and illustrates the large domain

used in the free-air computations which should have minimized propagation of solution

errors from the far-field boundaries. The adapted grid in the wake regions of the symmetry

plane appear somewhat different between the two calculations. Particle traces were made in

both solutions as seen in Figure 4.19. These particles were released at the same locations in

the flowfield for both the free-air case (Run 5) and the tunnel wall case (Run 8). The stream-

lines are originated at the same release points for both views. A dramatic difference is seen in

the trajectory of the vortex (upper part of the figure). Also, the pattern of the flow region

above and behind the wing in the free-air run is significantly different in the tunnel-wall case.

These differences suggest that the presence of tunnel walls does have an effect on the flow-

field around the configuration. Plots were made of surface static pressures for free-air and

wall cases, as seen in Figures 4.20 and 4.21. The tunnel wall results have higher static pres-

sures, which seem to better match the forebody pressures on the lower surface, as well as bet-

ter matching the trends in the wing upper surface pressures. The effect of tunnel walls on the

longitudinal forces and moment are included in Figure 4.17. The predictions for the walls in

place are shown as diamond symbols in the figure. At a nominal angle of attack of 35

degrees, two runs were made to show the effect of variation in angle from the 'blockage-cor-

rected' value to the 'uncorrected' value. The lift, drag and pitching moment predictions'

agreement with the test data at an angle of attack of 35 degrees were improved with the walls

in place. A noticeable effect of the tunnel walls on the forces and moments is indicated by the

code. The wake blockage corrections to the wind tunnel data for wall interference effects are

known to be very small. Either the code predictions indicate an overestimation of the wall

effects, or there may be other influences of the walls on the test data that are not included in

the blockage correction terms. Additional studies would be required to more fully investigate

the effect of the tunnel walls. The effect of inflow and outflow boundaries, the sting, and grid

resolution could be made. Also, predicted blockage effects on exit dynamic pressure could be

estimated from surveys of the predicted flowfield at the exit plane.
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Assessment of Vortex Burst Location

The location of vortex 'burst' was estimated from the free-air 35-degree solution (Run 5). Sev-

eral surveys were made of the upper surface as seen in Figure 4.22 at several iterations dur-

ing the convergence of the run. The U-velocity was surveyed in cross-plane cuts above the

wing. Values of U-velocity between -100 and 0 feet/sec were displayed at these planes. It was

observed that the vortex emanating from the forebody had significant regions of negative-

velocity flow at fuselage stations starting at 20 inches. The formation of negative velocity in

ring-shaped structures appeared to grow as the solution sequence proceeded to convergence.

The upper-surface vortex over the wing also appeared to develop negative-velocity regions,

and the streamlines developed more disorganized behavior as the solution converged. The

forces and moments varied during the convergence sequence as seen in Figure 4.23. The

movement of the vortex burst position fore and aft corresponded only weakly to variations in

lift and pitching moment. The nominal converged position of vortex 'burst' from this data

would be around 19.5 inches in the forebody vortex, and 23.5 inches in the wing vortex. Eval-

uation of other flowfield criteria, and comparison with viscous calculations, is recommended

to further evaluate the applicability of Euler results to the determination of vortex burst.
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5. Solutions from Run Matrix

The MTVI configurations used in this study were shown in Figure 3.1. After the pathfinder

studies were completed, calculations of a series of configurations were made. These runs are

listed in the run matrix in Table 1. The baseline configuration was the MTVI#1, having twin

wing-mounted tails and a thick 100-degree body chine. The objective of this portion of the

study was to assess the timeliness and accuracy of Euler predictions for variations in angle of

attack, sideslip and configuration shape.

Baseline Configuration Results

The force results for angle-of-attack variation of the baseline geometry were shown in Figure

4.17. These series of runs are denoted Runs 9-13 in Table 1. The effect of angle of attack on the

flowfield is shown in Figure 5.1 with static pressure displayed at several fuselage stations.

The forebody vortex is seen to lift up and away from the configuration as angle of attack is

increased, while the wing vortex loses suction. More details of the surface pressure were pre-

sented for the forebody in Figure 4.15, and for the wing in Figure 4.16. Generally, the code

tended to under-predict the peak in suction pressure on the forebody, but performed well in

predicting the wing pressures.

Results for Undeflected Leading Edge

The twin-tail configuration with flap undeflected was run at angles of attack of 10 and 35

degrees. These are found as Runs 31 and 32 in Table 1. The pressure data on the forebody at

10 degrees are shown in Figure 5.2. The upper-surface suction pressures at Fuselage Station

(FS) 10.45 were over-predicted, but the shape of the curve was well-matched. The code did

not predict the onset of vortex flow at the third fuselage station, FS 14.5. The pressure data on

the wing at 10 degrees are shown in Figure 5.3. The Euler predictions capture the significant

upper-surface flow features, but miss the secondary separation. The magnitude of the peak

suction and its location spanwise are also mispredicted.

At an angle of attack of 35 degrees (Figure 5.4 and 5.5), the predicted pressures on the fore-

body are generally under the peak suction in the data, but the suction peaks on the wing are

well predicted except for Station 23.56. The low-energy region on the outer wing panel out-

board of the vertical tails is well predicted as seen for Station 28 in Figure 5.5.

The force results for zero-flap deflection is shown in Figure 5.6. The predictions are shown as

diamond symbols, and the test data is circles. All longitudinal data for zero flap deflection

appears to be well predicted at both 10 and 35 degrees.
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Effect of Tail Placement

A centerline-tail version of the MTVI configuration was run in SPLITFLOW and is found as

Runs 14 through 17 and Run 33 in Table 1. The effect of moving the tail to the centerline was

dramatic. The wing vortex may have "burst' as it approached the wing-mounted twin tails, as

evidenced by a nearly-constant pressure coefficient at FS 28.05 as was presented in Figure

4.21, at an angle of attack of 35 degrees. The effects of the change to a centerline tail will be

shown at several angles of attack in the following figures. A comparison of x-crossflow total

pressure is shown in Figure 5.7 between the twin-tail configuration and the centerline vertical

(CVT) configuration for an angle of attack of 22.5 degrees. The centerline tail causes a large

improvement in the upper wing vortical pattern as seen in the increase in intensity of the vor-

tical features near the wing trailing edge. The trace of the vortices in Figure 5.8 shows a sig-

nificant increase in wing vortex activity with the centerline tail.

In order to examine the effects of tail placement for attached-flow conditions, the pressure

data was plotted for an angle of attack 10 degrees and is shown in Figure 5.9 on the forebody.

The predicted pressure is above the test levels at the second station, FS 10.45, a consistently-

observed difference. The indication of vortex flow at the third station (FS 14.50) was not pre-

dicted. An onset in leading-edge separation may have occurred in the test data between FS

6.1 and FS 10.45. The code appeared to predict fully-attached flow in this region. The compar-

isons of surface pressures on the wing is seen in Figure 5.10. The code predicts the slight drop

in suction due to moving the tails to the centerline that is seen in the test data. The peak suc-

tion at the hingeline of the deflected leading edge is over-predicted, so it is possible that the

code over-predicts expansion regions in fully-attached flow.

The effects of tail position at higher angles is next presented. The forebody pressure data at

22.5 degrees is seen in Figure 5.11. The effect of the change in tail position on the forebody

pressures is small. The forebody pressure levels in the underbody regions and near the cen-

terline of the upper surface are predicted well, but the test data shows indications of vortical

flow over the forebody. The code appears to predict attached flow on the majority of the

upper surface. The pressures on the wing are shown in Figure 5.12. The outer panel of the

wing at the last station (FS 28.06) exhibits test pressures that suggest that th,. _ I_; vortex

with the CVT is creating higher suction pressure than the twin-tail configur,_tl_,r_ _vith the

position of peak suction at approximately the same span station. The flow-reatta, h,:_,.nt por-

tion of the wing flow (inboard) also shows higher suction for the centerline tail, ,,n t, ._u ration.

The code tends to predict the increase in peak suction, but mis-predicts the am,,L_n_ of suc-

tion. At the second station (FS 23.56) the code predicts less peak suction than tht. t,.-t re.-ults.

The x-crossflow total pressure at 35 degrees, Figure 5.13, shows that the centerline tail causes

a large increase in the rotational intensity of the upper-surface vortical structures in the aft
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portion of the wing. This is seen as the darker coloration of the center of the planar cut at FS

28 (the last cut on the wing). The x-crossflow total pressure tends to show a reduction in

regions where the axial core velocity is high (and therefore crossflow velocity is lower). The

forebody pressure data at 35 degrees is seen in Figure 5.14, and indicates that the tail position

did not significantly affect the forebody pressures. The SPLITFLOW predictions show a delay

in prediction of the onset of significant vortex peak pressures, since at FS 6.1 the suction lev-

els from the code are flatter and do not have the definite peak of the test data. At the second

station, FS 10.45, the code predicts less suction peak, although the position of peak suction is

predicted to be farther inboard than seen in the test data. This is somewhat unusual for Euler

results, which tend to show an outboard movement of the suction peak versus test data. The

level of suction pressure near the centerline at FS 10.45 is slightly over-predicted, a consistent

effect seen at this station in all cases. At the third station (FS 14.5) the SPLITFLOW prediction

is slightly below the suction level of the test data, although the rest of the pressure data

aroundthe fuselage is predicted reasonably well.

The pressures on the wing are shown in Figure 5.15. The effect of moving the tail to the cen-

terline is seen much more clearly at this angle of attack than at 22.5 degrees. As indicated in

the flowfield visualization (Figure 5.13) the wing vortex is more robust over the aft two sta-

tions than the twin-tail flowfield. The wing vortex peak suction is substantially higher for the

CVT arrangement. The SPLITFLOW code predicts the pressure distribution well at the first

station, but the prediction does not capture the dramatic rise in suction for the centerline tail

at the last two stations. The outer panel of the twin-tail configuration near the wing tip has a

low-pressure flat region due to vortex burst. The code predicts this flat region, but the magni-

tude of the pressure level is not predicted. Examination of the predicted flowfield outboard

of the twin vertical tails indicates a low-energ}_ low-velocity flow. It could be stated that the

predicted behavior is analogous to a large-scale separated zone. The test-measured level of

pressure in this outer panel region was predicted more closely with SPLITFLOW when the

tunnel walls were introduced, as was shown in Figure 4.21.

A comparison of the test and predicted forces and moments for both the twin-tail and center-

line tail (MTVI#1 and MTVI#2) are shown in Figure 5.16. The force data for the centerline tail

vehicle shows good agreement between SPLITFLOW forces and the test data, up into the non-

linear region. The test data for this configuration has a severe non-linearity above 35 degrees

(with a drop in lift and a large unstable pitching moment shift) which is not captured by the

code. An additional code prediction was made at an angle of attack of 40 degrees (shown as

Run 33 in the test matrix). The code lift, drag and moment predictions above 30 degrees

appear to capture the trends of the test data, but not the magnitude. Below this point, the code

predictions appear very close to the test results.
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Effect of Body Chine Shape

The effect of body cross-section chine shape is shown in the following data. Two chines were

used in the current study, with included angles of 100 degrees for the baseline (MTVI#1) and 30

degrees included angle for the 'sharp' chine (MTVI#3). This 'sharp' geometry was used in SPLIT-

FLOW Runs 18 through 21 in Table 1. The crossflow total pressure at an angle of attack of 22.5

degrees shows a definite increase in vortex activity for the sharper chine (Figure 5.17). Traces of

the vortex core trajectory (Figure 5.18) show that the sharp 30-degree chine has a definitive vor-

tex shed from the forebody which moves aft to the rear. The blunt chine baseline configuration

has minimal evidence of vortical flow. The pressure coefficients on the forebody are shown in

Figure 5.19. The sharper chine exhibits an inward movement of the peak suction, and an increase

in the static pressure on the undersurface at each station. The SPLITFLOW prediction does not

capture the suction peak value, and does not indicate the significance of vortical activity on the

upper surface of the fuselage. The code predictions do capture the increase in compression on the

lower fuselage. The sharp chine causes only a slight increase in suction pressure on the forebody.

The wing pressures are shown in Figure 5.20. The predictions show more attached-flow behavior

in the wing upper-surface pressures for the baseline than is indicated by the test data. The pre-

dictions for the sharp chine show more indication of vortex activity. At 35 degrees, the chine

effects on the forebody are more pronounced as shown in Figure 5.21. The prediction shows the

trend of inward movement of the suction peak, but has less magnitude of suction than the data

except for the last station, FS 14.5. The pressures on the wing, Figure 5.22, indicate good agree-

ment between SPLITFLOW and the test data for the first two wing stations. The last station

shows that SPLITFLOW under-predicts the suction in the outer panel, where the pressures are

very flat. The forebody vortex at this station creates a suction peak inboard of BL 2 inches. In the

test data, this vortex appeared to have less suction for the sharp 30-degree chine case than for the

baseline. This is a surprising result. The code correctly predicts this trend, but over-predicts the

suction level in the attached flow region between BL 2 and BL 4 inches.

The force and moment results for the different chine shapes are shown in Figure 5.23. The sharp

chine has a slight increase in lift, and a nose-up pitching moment compared to the baseline.

SPLITFLOW provides good agreement with the force coefficients for this sharp chine vehicle,

including the pitching moment break above a lift coefficient of 1.0.

Effect of Sideslip for Twin Tail Configuration

The baseline twin-tail vehicle was run in sideslip at angles of attack of 22.5 degrees and 30

degrees. These runs are noted as Runs 22 through 27 in Table 1. The flowfield was solved for

three sideslip angles up to -6 degrees. Surveys of x-crossflow total pressure were made from the

zero-sideslip case and the 9=-6 degree case at an angle of attack of 30 degrees, and are shown in

19



Figure5.24. The windward vortex is closer to the forebody, while the leeward vortex has lifted

off. The wing vortex is stronger (tighter and higher suction levels) on the leeward wing. Particle

traces (Figure 5.25) show that the windward vortex on the forebody is displaced outboard.

The pressures on the forebody are shown in Figure 5.26 at an angle of attack of 30 degrees and for

sideslip of zero and +6 degrees. The data has been 'reversed' to indicate positive sideslip. In this

and subsequent pressure figures, the positive-y coordinate points to the windward side of the

configuration. The station cuts are therefore oriented as a view looking forward toward the nose

of the configuration, with the relative wind coming from right to left. SPLITFLOW predicts the

trend of increased suction on the windward side of the upper forebody with sideslip, but mis-

predicted the drop in peak leeward-side suction at the first two stations. The wing pressures are

shown in Figure 5.27. The effect of 6 degrees of sideslip is to decrease the suction on the leeward

wing, and increase the suction on the windward wing, at the first two stations (FS 19.06 and FS

23.56). SPLITFLOW predicted the trend of sideslip, but mis-predicted the amount of peak suc-

tion in the upper-surface vortex. At the last wing station (FS 28.06) the surface pressures are very

flat on both the windward and leeward wings. The predictions indicate a sizeable vortex on the

leeward wing at sideslip. The code does predict the attached flow region and the center-body

pressures from BL -5 to BL 5 inches very well.

The predicted forces and lateral-directional moments at an angle of attack of 22.5 degrees are

shown in Figure 5.28. Test data was not available for comparison at this condition. The force

results at o_=30 degrees are shown in Figure 5.29, and indicate that the SPLITFLOW predictions

are remarkably accurate in predicting both the non-linear trends in the lateral-directional data

and their magnitude. The longitudinal forces (not shown) tended to not change as the configura-

tion was moved into sideslip, except for an increase in drag.

The sideslip results for this configuration indicated that the yawing moment (a restoring

moment) was generated by a positive side force. At lower angles of attack, a restoring yawing

moment typically occurs due to the negative side forces contributed from the tail, with its

moment arm behind the c.g. At o_=30 degrees, this configuration has a significant contribution to

the yawing moment from the forebody. The flowfield visualization shown in Figure 5.25 indi-

cated that the leeward vortex pulled away from the upper surface, corresponding to the hypoth-

esis that the amount of suction generated on the leeward forebody was less than the suction on

the windward side.

A study of these directional stability results was made. SPLITFLOW has numerous plot options

that have been developed at LFWC. A comparison was made of the contribution to the yawing,

pitching and rolling moments from surface pressures. The data for the yaw moment (not shown)

revealed that the net forebody moment is indeed a restoring moment, and that the contribution
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from thetails is small.Thus,SPLITFLOW predictions could be used to explain an observed test

data effect.

Effect of Sideslip for Centerline Tail

The centerline tail vehicle was run in sideslip at an angle of attack of 30 degrees. These runs are

found as Runs 28 through 30 in Table 1. The flowfield was solved using a sideslip angles up to -6

degrees. The x-crossflow total pressure (Figure 5.30) shows that the windward vortex on both the

wing and forebody is closer to the body, while the leeward vortex has lifted off. The wing vortex

is stronger (tighter and higher suction levels) on the leeward wing. Particle traces (Figure 5.31)

show that the leeward vortex on the forebody is lifting off the vehicle, while the windward vor-

tex on the wing is exhibiting unsteady behavior. The pressure data comparison is seen in Figure

5.32 for the forebody. The results are similar to those for the twin-tail configuration; the code

credits the trend of suction increase on the windward side of the nose, but not the magnitude of

the peak. The wing pressures are shown in Figure 5.33. The SPLITFLOW pressure levels under-

predict the peak suction for the zero-J3 case, and overpredict the vortex activity for the configura-

tion at 13=6. At the fifth station (FS 23.5 inch), the test data shows a very flat pressure distribution

all across the windward wing. The force results (Figure 5.34) show that the SPLITFLOW predic-

tions capture both the trends and the magnitude of the lateral-directional data reasonably well

up to _=4, where a large non-linearity occurs in the test data. This non-linearity could correspond

to the flat pressure distribution on the wing, and may indicate a burst vortex condition in side-

slip.

The integrated forces from the centerline tail case indicate that more negative side force is gener-

ated on the centerline tail configuration than the twin tail configuration. In fact, the predicted

change in side force to move from the twin tail to the centerline tail, when multiplied by the

moment arm of the centerline tail, agrees with the incremental increase in yawing moment seen

for the centerline tail. Therefore, SPLITFLOW accurately predicts the configuration change

effects on stability for this change in tail arrangement.

Repeatability and 'Accuracy'

An assessment was made of data repeatability in both predictions and test data. The pressure

data comparison is shown for forebody pressures in Figure 5.35. Two wind tunnel data sets are

shown, indicating a measure of repeatability in the test pressures. This repeatability appears to

be good. The SPLITFLOW predictions are shown for three converged solutions of the free-air

case. These solutions were made at different times during the course of the investigation and

have different grid densities. Several parameters were changed which influenced the grid resolu-

tion near the body and the amount and location of grid adaption. The initial calculation of Run 5

had no cap on cell addition. The repeat run had a limit of 40,000 cells placed on the number of
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grid cellsaddedper refinementsweep,which shouldresult in a 'better' answersincethegrid is
preventedfrom developingtoo fast.Also, theCFLstability numberwas increasedfrom approxi-
mately5 to 20,in orderto speedthe rateof solutionconvergence.Thismayhavehad anegative
effecton the results,sincethe solutionhad less-stringentrequirementsfor convergencein each
subiteration.The differencein the CFDresultssuggeststhat some'scatter'canbeassignedto
CFD resultsdependingon a variation in the input parameters.A morecompleteinvestigation
which variesinput Machnumber,velocitygradientsacrossthetestsectionetc.would providea
morecompleteassessmentof CFD'uncertainty'.

A comparison was made of the force coefficient repeatability. The repeat data is shown in Figure

5.36. In this figure, repeat test data at o_=30 degrees are shown for the twin-tail vehicle. These

results show that the test data was very repeatable. Predictions using SPLITFLOW are shown for

several repeat runs at 35 degrees angle of attack. Input variables contributed to changes in the

force results. The first Run 6 prediction had a small minimum cell size criterion of 10"5. For the

Run 6 repeat calculation, the criterion was increased in size to put a floor on the Cartesian grid

generation near the body. The difference in repeat data was slightly more than that seen in the

test data, with differences in lift and drag on the order of 1% to 2%. For the Run 5 predictions, the

parameters that were varied were the CFL and cell addition per step parameters that were used

for the pressure comparison. The overall comparison shows that the CFD solution has somewhat

more 'uncertainty' than the test data.

It was observed over all the configurations run in this study that the SPLITFLOW Euler predic-

tions provided a good prediction of the trend in surface pressure resulting from a configuration

change, but the magnitude and the location of suction peaks was generally missed. SPLITFLOW

generally produced under-prediction of suction peaks. Increased resolution near the body sur-

face would improve the prediction of local flow expansion around the leading edge. Since the

current study utilized the surface facet geometry as the determining parameter on cell size near

the wall, it is possible that improvements could be made by allowing the code to refine to one or

more additional 'levels' in order to subdivide the near-surface cells further. This would drive up

the overall size of the grid, and was not done in this study since in the Pathfinder evaluation the

convergence of integrated forces was used as the criterion for assessing the level of resolution

needed to achieve a grid-independent solution.

The fact that integrated forces appeared to be better predicted than surface pressures may indi-

cate that force data alone is not a reliable assessment of the accuracy of these methods. However

for preliminary design evaluations, the remarkable resolution of forces and moments shown in

this study is a substantial indication that Euler codes can be used with confidence for design

evaluation of configuration shaping variations.
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6. Conclusions

Results of this study verified the accuracy of Euler results for predicting configuration shaping

effects on sharp-edged vehicles at subsonic speeds. In addition, the ability of CFD to produce

results within hours was demonstrated. Force and moment comparisons with wind tunnel data

on the MTVI configuration demonstrated that Euler calculations can provide meaningful force

and moment predictions for configuration shape changes, including prediction of low- and high-

angle of attack forces and the effects of sideslip. The use of the residual L2 norm and monitoring

of force and moment data during convergence of each solution provided adequate ability to

track convergence to a satisfactory result.

The SPLITFLOW code performed the grid generation tasks for all the configuration perturba-

tions, including leading-edge flap deflection effects. This capability allows much more rapid

evaluations in the design environment, since complex grid generation by the user is avoided.

Solution times for SPLITFLOW are being reduced with evolution of the code, and are approach-

ing the 3-hour level including grid generation.

Several useful conclusions can be made from the pathfinder study. The predicted results indi-

cated that wind tunnel wall effects were predicted to be significant on pressures and integrated

forces. The blockage corrections applied to the data did not reflect this effect. The results also

show the sensitivity of forces and moments to grid resolution. This is an important aspect of the

'uncertainty' of CFD predictions, along with other sources of uncertainty in the code input

parameters. A third significant observation was that the surface pressure predictions were gener-

ally in good agreement with test data in attached flow regions, but the development and magni-

tude of suction peaks associated with upper-surface vortex structures was underpredicted by the

code. Several calculations were repeated using different grid densities, and different grid adap-

tion parameters, but these results were not altered.

The second phase of the investigation showed that SPLITFLOW provided reliable trends for

force and moment effects of configuration shaping at both low and high angles of attack. Pre-

dicted forces and pressures were compared to test data on the MTVI configuration. The predic-

tions achieved good comparison with forces and moments. Surface pressures were generally

well-predicted in attached-flow regions such as the underside of the forebody and inner portion

of the wing. The peak suction values were generally underpredicted.

An illustration of the accuracy of the prediction was in the effect of a change in vertical tail posi-

tion on yawing moments in sideslip. SPLITFLOW predictions of the side force and yawing

moment were exemplary of the test data up to 6 degrees of sideslip at a relatively high angle of

attack, 30 degrees. SPLITFLOW analysis revealed that for the twin-tailed configuration (MTVI#1)

the yawing moment was generated on the forebody, not the wing-mounted tails. Movement of
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the tail to a centerline position created side force and yawing moment increments which

matched the test data. This degree of analysis depth can be very helpful in diagnosis of configu-

ration shaping issues.

Specific recommendations are made for future studies. These include the evaluation of SPLIT-

FLOW for transonic predictions. Reliable prediction of transonic drag rise and wave drag, lift

and moment at supersonic speeds are valuable for shape optimization. Multi-disciplinary stud-

ies of transonic cruise and supersonic cruise vehicles generally include the aerodynamic impacts

of shape changes. If MTVI data is available at Mach numbers for which transonic flow occurred,

this would be an excellent candidate for evaluating the suitability of Euler codes in these regions.

Also, the need exists to rapidly and accurately predict the control effectiveness of control sur-

faces, and the hinge moments for leading-edge flaps. It is suggested that additional comparisons

be made using force and pressure data for deflected flaps and control surfaces. The high-angle-

of-attack arena is a possible area for investigation. Since the MTVI forebody has a sharp leading

edge, cross-section effects can be studied without the uncertainty of predicting the crossflow sep-

aration point. Finally, the grid generator in SPLITFLOW includes prismatic grids for viscous

analysis. Investigations could be made of viscous vs inviscid vortical strength, core location, and

formation of secondary separation. Also, the location and character of vortical bursting at higher

angles of attack could be investigated. SPLITFLOW has the capability to resolve the off-body

flow structures by grid adaption to flowfield gradients, resulting in better prediction of these

structures.
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Table 1: RUN MATRIX FOR EULER TECHNOLOGY ASSESSMENT

Configur
0_ _ Chine

ation

MTVI#1 10 0 100

10

10

35

35

35

10

35

22.5

3O

4O

45

50

MTVI#2 10 0 100

22.5

3O

35

MTVI#3 22.5 0 30

30

35

4O

MTVI#1 22.5 2 100

4

6

30 2

Tail
LEF,

deg
Grid

Twin 30 coarse

medium

fine

coarse

medium

fine

medium

medium

medium

CVT 30 medium

Twin 30 medium

Remarks

Pathfinder grid resolution

Pathfinder grid resolution

Pathfinder grid resolution

Pathfinder grid resolution

Pathfinder grid resolution

Pathfinder grid resolution

Pathfinder tunnel walls

Pathfinder tunnel walls

Additional aoa on bsln

Effect of centerline tail

Effect of sharper chine

Twin 30 medium Sideslip, Twin tail
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Table 1: RUN MATRIX FOR EULER TECHNOLOGY ASSESSMENT

Configur
Run ation o_ [3 Chine

26 4

27 6

28 MTVI#2 30 2

29 4

30 6

31 MTVI# 1 10 0 100

32 35

33 MTVI#2 40

Tail
LEF,

deg
Grid Remarks

CVT 30 medium Sideslip, Centerline Tail

Twin 0 medium Effect of zero LEF

CVT 30 medium High-aoa case

Definition of Terms:

CVT: centerline vertical tail

Twin: twin tails mounted on wing upper surface

LEF: leading-edge flap

Chine: forebody cross-section angle between lower and upper surface
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