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Summary

This paper describes an integrated aerodynamic/
dynamic/structural (IADS) optimization procedure
for helicopter rotor blades. The procedure combines
performance, dynamics, and structural analyses with
a general-purpose optimizer using multilevel decom-
position techniques. At the upper level, the structure
is defined in terms of global quantities (stiffnesses,
masses, and average strains). At the lower level, the
structure is defined in terms of local quantities (de-
tailed dimensions of the blade structure and stresses).

The upper level objective function is a linear
combination of performance and dynamic measures.
Upper level design variables include pretwist, point
of taper initiation, taper ratio, root chord, blade
stiffnesses, tuning masses, and tuning mass locations.
Upper level constraints consist of limits on power
required in hover, forward flight, and maneuver;
airfoil drag; minimum tip chord; trim; blade natural
frequencies; autorotational inertia; blade weight; and
average strains.

The lower level sizes the internal blade structure
at several radial locations along the blade. The lower
level optimization assures that a structure can be
sized to provide the stiffnesses required by the up-
per level and also assures the structural integrity of
the blade. The lower level design variables are the
box beam wall thicknesses and several lumped areas
that are analogous to longitudinal stringers in a wing
box cross section. The lower level objective func-
tion is a measure of the difference between the upper
level stiffnesses and the stiffnesses computed from the
wall thicknesses and lumped areas. Lower level con-
straints are on the Von Mises stress at the box corners
for multiple-load cases generated by several flight
conditions, limits on wall thicknesses for thin-wall
theory, and other dimensional considerations.

The TADS procedure provides an optimization
technique that is compatible with industrial design
practices in which the aerodynamic and dynamic
designs are performed at a global level and the
structural design is carried out at a detailed level
with considerable dialogue and compromise among
the aerodynamic, dynamic, and structural groups.
The TADS procedure is demonstrated for several
cases.

Introduction

Over the last decade, optimization techniques
have been studied for application to the rotor blade
design process. In reference 1, Miura presents a
survey on the application of numerical optimization

methods to helicopter design problems including ro-
tor blade design. Most optimization procedures have
dealt with a single discipline such as aerodynamics
(refs. 2-4), structures (ref. 5), or dynamics (refs. 2
and 6-9). However, the rotor blade design process
is multidisciplinary involving couplings and inter-
actions between several disciplines such as aero-
dynamics, dynamics, structures, and acoustics.
These couplings and interactions can be exploited
by the optimization procedure if all the disciplines
are accounted for simultaneously rather than sequen-
tially. For instance, in a review (ref. 10) on the im-
pact of structural optimization on vibration reduc-
tion, Friedmann emphasizes the need to include the
multidisciplinary couplings between aerodynamics,
dynamics, and structures even when optimizing only
for minimum vibration.

Techniques and strategies for merging disciplines
to obtain integrated rotorcraft optimization proce-
dures are developing. In references 11 and 12,
a plan is described for integrating the disciplines
of aerodynamics, dynamics, structures, and acous-
tics. As part of that plan, aerodynamics and
dynamics have been incorporated systematically into
performance (refs. 3 and 4) and airload/dynamic
(ref. 13) optimization procedures resulting in an
integrated aerodynamic/dynamic optimization pro-
cedure (ref. 14). Reference 15 summarizes recent
accomplishments based on that plan.

Other multidisciplinary rotor blade optimization-

work is described in references 16-19. References 16
and 17 describe the formulation of a multidisciplinary
approach to rotor blade design for improved perfor-
mance and reduced fuselage vibrations. Reference 18
describes a staged optimization procedure for a ro-
tor for combined aerodynamics, dynamics, and struc-
tures. Reference 19 describes a multidisciplinary
optimization procedure to design high-speed prop
rotors.

What is lacking in previous multidisciplinary ro-
tor blade optimization procedures is an efficient

‘method to integrate structures or structural prop-

erties. Usually, structures or structural properties

- are included in one of two ways—either as local de-

sign variables (indirectly affecting the response of the
blade) or as global design variables (directly affect-
ing the response of the blade). When local design
variables are used, the detail dimensions of a struc-
tural member at one or more radial locations along
the blade are used to generate structural properties.
When global design variables are used, structural
properties are the design variables. Both types of
design variables have limitations. Using local design
variables (e.g., refs. 6, 7, 18, and 19), such as wall
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thicknesses of the structural member, can lead to a
large number of design variables that can be compu-
tationally expensive. Also, this choice of design vari-
ables is at odds with the traditional design practice in
which chord, stiffness, and mass distributions along
the blade are determined and then a structure is de-
signed that matches these distributions. Using global
design variables (e.g., refs. 2, 9, 13, 14, 16, and 17),
such as stiffness and mass properties, in optimiza-
tion also has disadvantages. When flapwise bending
stiffness, chordwise bending stiffness, torsional stiff-
ness, and extensional stiffness distributions are used
as design variables, they are treated as independent
quantities. In reality, these stiffnesses are not inde-
pendent, and no guarantee can be given that a set
of wall thicknesses can be found that will simultane-
ously give these stiffnesses.

This paper presents the methodology for incor-

porating aerodynamics, dynamics, and structures in-

an integrated optimization procedure using both lo-
cal and global design variables. Multilevel decom-
position techniques based on reference 20 are used
to add structural design variables and constraints
to an existing aerodynamic/dynamic optimization
procedure (ref. 14). The product is an integrated
aerodynamic/dynamic/structural (IADS) optimiza-
tion procedure. The multilevel formulation used in
this paper was presented first in reference 15. An-
other preliminary study of multilevel techniques ap-
plied to rotor blade design is described in
reference 21.

The multilevel decomposition approach has been
successfully applied to multidisciplinary problems
(e.g., refs. 22-24). As originally proposed in refer-
ence 25, the coordination procedure consisted of an
optimum sensitivity analysis (ref. 26) and a set of
equality constraints that relate the detailed (local)
design variables of one subsystem to the global de-
sign variables on the level above. However, as pointed
out in reference 27, these equality constraints have
caused difficulties in implementing multilevel decom-
position procedures. The IADS procedure is based
on the multilevel decomposition approach of refer-
ence 20 which eliminates the equality constraints in
the coordination procedure, thus allowing the use
of the optimum sensitivity derivative found in refer-
ence 28 that is less computationally costly. However
in the IADS procedure, the set of lower level con-
straints is replaced by an envelope function known as
the Kreisselmeir-Steinhauser function (KS function,
ref. 29) which further reduces the computational cost.

First, the general multilevel decomposition strat-
egy with two levels will be discussed. (Note that the
systems with more levels are discussed in refs. 20, 22,

2

and 25.) Next, the general strategy will be related to
rotor blade design. Then, the IADS development in-
cluding flowcharts of the upper and lower levels and
the optimization procedure will be explained. Re-
sults will be presented for several cases that demon-
strate the strengths of the IADS procedure.

Symbols and Abbreviations
A area, ft2

Al autorotational inertia,

ns
Y, W3, lbm-ft?
=1

a; ith lumped area, ft?

b box width, ft

Cp rotor coefficient of drag

Cp . . rotor coefficient of lift

CF centrifugal force, Ib

¢4 airfoil section drag coefficient

Cq all maximum allowable section drag
coefficient

cg,max largest section drag coefficient at
azimuth angle ¥

q airfoil section lift coefficient

Cr root chord, ft

ct tip chord, ft

DV, pth upper level design variable

E Young’s modulus of elasticity, 1b/ ft2

EA extensional stiffness, 1b

El; chordwise bending stiffness, 1b-ft2

EIl,, flapwise bending stiffness, 1b-ft2

F Jower level objective function

foi ith bending frequency, per rev

& kth frequency, per rev

Ty lower bound on kth frequency,
per rev

fru upper bound on kth frequency,
per rev

fti ith torsional frequency, per rev

Af increment used in frequency win-
dow, per rev

G torsional modulus of elasticity, 1b/ft?

GJ torsional stiffness, Ib-ft?



Ge,i
9

9max

nc

nP

ns

OBJ

ith lower level constraint function

ith upper level constraint function

maximum lower level constraint
function, max{g;}

box height, ft

number of trim iterations
chordwise moment of inertia, ft
flapwise moment of inertia, ft?
polar moment of inertia, ft*
Kreisselmeir-Steinhauser function

ith weighting factor in objective
function

factor of safety

total number of aerodynamic
segments

ith segment tuning mass, slug/ft
number of blades

number of upper level design
variables

integer

number of constraint components in
lower level

frequency at m times the rotational
speed of the blade

number of structural segments
upper level objective function
main rotor power, hp

blade radius from center of
rotation, ft

distance along blade from center of
rotation, ft

distance from center of rotation to
center of jth segment, ft

N /rev rotating vertical hub shear in
forward flight, 1bf

reference value of N /rev rotating
vertical hub shear in forward
flight, 1bf

4/rev rotating vertical hub shear in
forward flight, 1bf

S4,ref

tmax

Vie,T)

FEF

I
Zr

Yi
Yir
2]

2y

€a
Ey
gtw

Subscripts:
a
ff
h

reference value of 4/rev rotating
vertical hub shear in forward
flight, 1bf

kth wall thickness, ft

nondimensional location of maxi-
mum airfoil thickness

Von Mises stress, 1b/ft2
ith lower level design variable
total blade weight, Ibm

total weight of jth structural
segment, lbm

nondimensional distance from airfoil
leading edge to left of wing box

nondimensional distance from airfoil
trailing edge to right of wing box

location of ith tuning mass
point of taper initiation

nondimensional lower airfoil
coordinate

nondimensional upper airfoil
coordinate

coordination parameter
allowable average strain

dvérége strain

maximum pretwist, deg
Lagrange multiplier

pull-down factor

bending stress, 1b/ft?

allowable stress, Ib/ft2

shear stress, Ib/ft?

azimuth angle, zero over tail, deg

rotor speed, rpm

available
forward flight
hover
maneuver
maximum
minimum
optimum

reference



Superscripts:

] ith component
L lower level

T transpose

U upper level

A bar over a symbol indicates a nondimensional
quantity, and an asterisk (*) used as a superscript
indicates an upper level design variable.

Multilevel Optimization Strategy

With a multilevel decomposition approach
(refs. 20, 22, and 25), a large complex optimiza-
tion problem is broken into a hierarchy of smaller
optimization subproblems. This hierarchy can be
thought of as levels of increasing detail. At the upper
level, the subproblem is formulated in terms of global
quantities that describe the overall behavior of the
entire system. On the lower level, the subproblems
are stated in terms of local quantities and local con-
straints that have only a small impact on the entire
system. Each of these subproblems use local design
variables to reduce the violation of constraints that
are unique to that subproblem. The coupling be-
tween the upper level subproblem and the lower level
subproblems is preserved through a coordination pro-
cedure such as that described in references 20 or 25.
This coupling represents a dialogue between the lev-
els that, upon convergence, establishes compatibility
between the two levels.

Figure 1 illustrates a generic two-level optimiza-
tion procedure. Note that the analysis proceeds from
the upper level to the lower level while the optimiza-
tion proceeds from the lower level to the upper level.
First, the upper level analysis initializes all the global
quantities and responses and then provides informa-
tion to each lower level subproblem. Next, individual
lower level optimizations are performed that reduce
local constraints as much as possible and that provide
information to the coordination procedure. Finally,
the upper level optimization occurs. The preceding
description defines 1 cycle. This entire process is re-
peated for several cycles. Convergence occurs when
all the constraints (both upper level and lower level)
are satisfied and the upper level objective function is
minimized.

The rotor blade optimization problem can be de-
composed into one subproblem affecting the global
response of the blade and three subproblems affect-
ing portions of the blade. Quantities such as power
required, blade trim, autorotational inertia, natural
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frequencies, total blade weight, and average strain
describe the global response of the blade. The entire
blade must be analyzed to obtain these response
quantities. Quantities such as stresses are detailed
response quantities since only a portion of the blade
must be considered to obtain these response quanti-
ties. Therefore, a two-level decomposed rotor blade
optimization problem can be defined as shown in fig-
ure 2. The upper level optimizes the blade by chang-
ing global quantities such as blade planform, twist,
and distributions of mass and stiffness. The upper
level chord, mass, and stiffness distributions are
treated as independent quantities. The reconciliation
between these distributions is done on the lower level,
which consists of several independent subproblems at
stations along the blade radius. These subproblems
optimize detailed cross-sectional dimensions to sat-
isfy stress constraints and to reconcile the upper level
independent mass, chord, and stiffness distributions
with the lower level calculated mass and stiffness dis-
tributions. This reconciliation is improved further by
a set of upper level coordination constraints. (See
appendix A.) First, the upper level analysis and op-
timization will be described, then the lower level
analysis and optimization, and last the overall IADS
system.

Upper Level Analysis and Optimization

The purpose of the upper level analysis is to
evaluate the overall rotor blade design on the ba-
sis of performance, dynamic, and global structural
measures. (For a description of the rotor blade de-
sign philosophy, see refs. 3, 4, 11, 12, 14, and 15.)
The upper level analysis is similar to the integrated
aerodynamic/dynamic analysis reported in refer-
ence 14 with the addition of extensional stiffness de-
sign variables, strain constraints, and coordination
constraints. As shown in figure 3, the blade is evalu-
ated for three flight conditions: hover, forward flight,
and maneuver. The Langley-developed hover anal-
ysis program HOVT (a blade-element momentum
analysis based on ref. 30) is used to predict power re-
quired in hover. The comprehensive helicopter anal-
ysis program CAMRAD/JA (ref. 31) is used to pre-
dict rotor performance (e.g., trim, airfoil drag, and
power required), loads, and frequencies for forward
flight and maneuver. The maneuver flight condition
simulates a coordinated turn in terms of an increased
load on the forward-flight lift requirement.

The rotor blade design process is defined in terms
of aerodynamic performance, dynamics, and global
structural requirements. Satisfactory aerodynamic
performance is defined by the following four require-
ments. First, the power required for any flight



condition must be less than the available power.
Second, airfoil section drag along the blade radius on
the advancing and retreating side of the rotor disk in
both forward flight and maneuver must be less than
a maximum allowable value. Third, the rotor must
trim at each flight condition. The rotor is trimmed
to a constant lift in forward flight and a (different)
constant lift in maneuver which ensures that the ro-
tor has no loss in lift capability or maneuverability
even if solidity decreases from the initial to the fi-
nal design. Incorporation of a maneuver flight con-
dition is used in place of a constraint on solidity, be-
cause low-speed maneuver determines rotor solidity
(ref. 32). Fourth, the blade tip chord must be larger
than a prescrlbed minimum value. Satisfactory dy-
namics is defined in terms of limits on vibrational
frequencies. The blade is designed so that the natu-
ral frequencies (both bending and torsional) do not
coincide with integer multiples of the rotor speed.
Also, the blade must have sufficient autorotational
inertia as a safety measure needed in case of engine
failure. In addition to satisfying these design require-
ments, the blade weight must not exceed some upper
limit. Satisfactory structural requirements are de-
fined in terms of limits on the average axial strains for
forward flight and maneuver flight conditions. The
upper level optimization problem is formulated next
in terms of design variables, objective function, and
constraints.

Upper Level Design Variables

The upper level design variables are the blade
planform, stiffnesses, and tuning masses. (See fig. 4.)
The blade planform is defined by the point of taper
initiation (yir), root chord (cr), taper ratio (c/ct),
and maximum pretwist (fiy). The blade is rectan-
gular from the root to y;; and then tapers linearly
to the tip. The pretwist varies linearly from the
center of rotation to the tip. Global design vari-
ables include the blade chordwise, flapwise, torsional,
and extensional stiffnesses (denoted by EI,;, EI,,,
GJ, and E A, respectively) at three radial locations:
blade root, point of taper initiation, and blade tip.
The stiffnesses are assumed to vary linearly between
these points and are treated as independent quanti-
ties. The remaining design variables are three tun-
ing masses (denoted by mj,ms, and m3) and their
locations (denoted by yi,y2, and ys3), respectively.
The total blade mass consists of the structural mass
(which is assumed to be constant) plus the sum of
the tuning masses. No attempt is made to reconcile
the change in weight with the change in design vari-
ables because the present work is based on extending
the procedure of reference 14 to include structures.
However, this reconciliation is possible. (See ref. 15.)

The center of gravity and aerodynamic offsets are co-
incident with the blade elastic axis. The number of
blades, rotor radius, rotational velocity, airfoils, and
airfoil distribution are preselected and fixed.

Upper Level Objective Function

The objective function to be minimized is a com-
bination of performance and dynamics measures and
is formulated as

Py Py Sng )

+k3 +kyq
Pff,ref s’N ;ref

OBJ = kb4
! 2 Pm,ref

Ph ref

where P, Pg, and P, are the powers required in
hover, forward ﬂight and maneuver, respectively.
The symbol N is the number of blades and Sy g
is the N /rev rotating vertical hub shear in forward
flight. The terms ky, kg, k3, and k4 are weighting fac-
tors chosen by the user, and Py ef, P ref, P ref>
and Sy r.f are reference values used to mormalize
and nondimensionalize the objective function com-
ponents. The usefulness of this objective function
was demonstrated in reference 14.

Upper Level Constraints

The upper level constraints are grouped into
performance, dynamic, structural, and coordination
constraints. This section of the paper discusses the
performance, dynamic, and structural constraints.
The coordination constraints are discussed later in
the paper. The performance and dynamic constraints
are the same as those used in reference 14. By con-
vention, the ith constraint g; is satisfied if it is less
than or equal to zero.

Performance constraints. The performance
constraints are on power required, trim, airfoil sec-
tion drag, and blade tip chord. The requirement that
the power required be less than the power available
is given by

P.
J
=== -1<0 2
g P, AS (2)
for each flight condition, where P; is the power
required for the ith ﬂ1ght condltlon and P, is the
power available.

The requirement on the airfoil section drag trans-
lates into a constraint that each airfoil section distrib-
uted along the rotor blade operate at a section drag
coefficient c4 less than a specified allowable value
Cd,al- (See appendix B.) This leads to 24 constraints
per flight condition because the blade is analyzed in
azimuth increments of 15° around the rotor disk. At
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a given azimuth angle (¥), the constraint is formu-
lated as

v

C
gi= B <0 (¥ =15°30°45°%...,360°)  (3)
Cd,all

where cgan is the allowable drag coefficient and
cg”max is the largest drag coefficient at any radial

station. (Note that the drag coefficients in the
reverse-flow region occurring on the retreating side
of the rotor disk are ignored.) In the present work,
the same value for ¢,y is used on the advancing and
retreating side of the rotor disk. This simplifying
assumption can easily be lifted.

The trim requirement is difficult to translate into
a mathematical constraint. The trim constraints
in forward flight and maneuver are implemented by
using the method developed in reference 3, which
expresses the constraint in terms of the number
of trim iterations (ITER), the maximum number
of trim iterations allowed (ITERmax), and the pth
nondimensional design variable (DV,). The heuristic
trim constraint is given by

NDV
gi = (ITER — ITERmax +1) [ )_ DV, | <0 (4)
p=1

where NDV is the number of design variables. In
the development of this equation in reference 3, the
addition of the summation term was found to im-
prove convergence because it allowed calculation of
the change in the trim constraint with respect to the
change in a single design variable.

The final performance requirement is a constraint
used to ensure that the blade tip chord does not
become too small. Thus,

Ct

gi=1- <0 (5)

Ct,min

where ¢; is the tip chord and ¢t min is the minimum
tip chord allowed. This is a practical constraint used
to assure validity of the airfoil tables and to address
manufacturing considerations.

Dynamic constraints. The dynamic con-
straints are on frequencies, total blade weight, and
autorotational inertia. The constraint on the kth
frequency fi (either a bending or a torsional fre-
quency) is formulated such that the frequency is sep-
arated from integer multiples of the rotor speed by

6

an amount Af. Thus, for the upper bound,

a=2 _1<0 (62)

k,u
and for the lower bound,

g=1-7% <o (6b)

fea

where fj ,, has a value that is Af below n+1 perrev
and fi,; has a value that is Af above n/rev for the
applicable n. For example, if Af is 0.1/rev and fy is
5.6/rev, then nP would be 5/rev and (n+1)P would
be 6/rev. Thus, fs, and fq; would be 5.9/rev and
5.1/rev, respectively. Formulating the constraints in
this manner allows the frequencies to change from
one optimization cycle to the next cycle provided
the frequencies avoid approaching integer multiples
of the rotor speed. This formulation is different from

the approaches used in references 13, 16, and 17

in which the frequencies are kept within prescribed
windows based on the reference blade frequencies.
In this work, constraints are placed on frequencies
in both forward flight and maneuver because blade
collective pitch and the amount of modal coupling
may be different for the two flight conditions, and
therefore the frequencies can be different.

The constraint that the blade weight should be
less than some maximum value is formulated as

w
gi=w——-150 (7)
max

where W is the total blade weight and Wi,y is the
maximum allowable weight. The total blade weight is
the structural mass distribution (which is constant)
plus the sum of the tuning masses.

Finally, the blade must have enough auto-
rotational inertia (AI) for safe autorotation in case
of engine failure. The constraint is formulated so
that the autorotational inertia of the blade is greater
than some minimum value Aly;,. Thus,

Al
<0 8
AImin ( )

gi=1-

The structural con-
straints are on the average axial strains. The struc-
tural constraints evaluated at the same radial loca-
tions that are used to define the design variables
(fig. 4) are imposed on the average axial strains (ey)

as follows:

Structural constraints.

g,-=£?i—1_<_0 (9a)
€aq



and c
g=-1--2<0 (9b)
Ea

where ¢, is the magnitude of the allowable strain and

lfCF
Ey = —f-EI (10)
where CF is the centrifugal force, EA is the ex-
tensional stiffness, and l; is a safety factor on the
loads. The strain constraints are calculated using
loads from both the forward flight and the maneuver
flight conditions.

Upper Level Optimization

The upper level optimization consists of the
general-purpose optimization program CONMIN
(ref. 33) and an approximate analysis used to re-
duce the number of HOVT and CAMRAD/JA anal-
yses during the iteration process. The approximate
analysis is used to extrapolate the upper level objec-
tive function and upper level constraints with linear
Taylor-series expansions using derivatives of the ob-
jective function and constraints with respect to the
design variables

NDV
d0BJ
OBJ=OBJo+ Y ——| ADV; (11)
o 9DVi|,
and
_ NDV Bg
1=

The assumption of linearity is valid over a suitably
small change in the design-variable values and will
not introduce a large error into the analysis provided
that the changes ADV are small. Errors that may
be introduced by use of the approximate analysis
are controlled by imposing “move limits” on each
design variable during the iteration process. A move
limit that is specified as a fractional change of each
design-variable value is imposed as an upper and
lower design-variable bound. At the present time,
the move limits are manually adjusted.

Lower Level Analysis and Optimization

This section of the paper describes the lower level
analysis and lower level optimization procedure. The
purpose of each lower level optimization is to assess
whether a structure at the given radial location can
be sized to provide the stiffnesses required by the
upper level optimization and still have the strength
to withstand loads calculated by the upper level

analysis. The lower level optimizations can be done
in parallel because they are independent.

For simplicity, because closed-form equations can
be derived (see appendix C), the structural member
(fig. 5) is assumed to be a thin-walled isotropic box.
The box cross section is symmetric about the hori-
zontal axis with wall thicknesses (¢;) and lumped ar-
eas (a;) which are analogous to longitudinal stringers
in a wing box cross section. The outer dimensions b
(the box beam width) and h (the box beam height)
are functions of the upper level design variables be-
cause b and h depend on the local chord and the
local airfoil thickness. The values of b and k are de-
termined by placing a box of maximum area within
the airfoil cross section by using the method of ref-
erence 34. (See appendix D.)

Lower Level Design Variables

The design variables are the three wall thicknesses
(t1,t2, and t4) and the three lumped areas (aj,as,
and a3). The lumped areas are used to give the
lower level more flexibility in matching the upper
level stiffnesses. For the present implementation, the
lumped areas are assumed to be square areas.

Lower Level Objective Function

The objective function is a measure of the dif-
ference between the stiffnesses required on the up-
per level and those determined from the lower design
variables

Pe[PEGe] [P
[@]2 -
(GJ)*

(13)

where a starred quantity ( )* denotes an upper level
design variable. The lower level cross-sectional prop-
erties Iz, I;;, and J are computed (see appendix C),
E is Young’s modulus of elasticity, and G is the tor-
sional modulus of elasticity.

Lower Level Constraints

The constraints are enforced on the extensional
stiffness, stresses, and the physical dimensions of the
wall thicknesses and lumped areas. The extensional
stiffness constraint that requires the lower level cal-
culated extensional stiffness EA (appendix C) to be
equal or greater than the upper level extensional stiff-
ness (EA)* (an upper level design variable) is given

by

EA
gc’i=1—(—ET)*SO (14)



at the given cross section. The extensional stiffness
appears in a constraint rather than in the objective
function (eq. (13)) where the other stiffnesses appear.
This is done because the role of EA in the upper level
is limited to satisfying the strain constraints (eq. (9))-
The lower level is responsible only for assuring that
the value of EA is at least as large as the value
needed in the upper level; i.e., close matching of EA
to (EA)* is not required.

The stress constraint evaluated at the corner of
the box cross section shown in fig. 5 has the form

9c,i=m—1§0 (15)

Oa

where ¢ is the bending stress, T is the shear stress,
and V(c,7) is the Von Mises stress measure. (See
appendix C.) Two stress constraints are used: in one,
7 is based on the vertical wall thickness, and in the
other, 7 is based on the horizontal wall thickness.

A set of constraints is imposed on the lower level
wall thicknesses to assure that the section remains
a thin-walled section and that the expression for J
remains valid. (See appendix C.) These constraints
are

(j=2and4)  (16)

t.
= d 1< - 1
Ge,i 01h 1<0 (j=1and3) (17)

where b and h are the width and height of the box
cross section, respectively.

A set of constraints is imposed on the lumped ar-
eas and wall thicknesses that require that the dimen-
sions are physically possible (i.e., that the lumped
areas can fit inside the box cross section). These
constraints are

b—ty—1t 1
i =~ (LU= - v - gvm) <0 (9)

b—ty—1 1
e =~ (U= - i - @) <0 (9

gei=—(h—t1 —t3—-2y/a1) <0 (20)
gei=—(h—t1 —t3—2/a2) <0 (21)
gei=—(h—t1—t3—2a3) <0 (22)

In addition, a set of constraints representing up-
per and lower bounds on the design variables is used.
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For the kth design variable, the lower bound is given
by
9ei =Vt~ S0 (23)

and the upper bound is given by
Gei =Vk —Vku <0 (24)

where vy ; and v, are the lower and upper design
variable bounds, respectively.

For convenience, the set of lower level constraints
defined by equations (14)—(24) is replaced by a single
cumulative constraint, an envelope function known
as the KS function (ref. 29), which approximates the
active constraint boundary

ne
KS = gmax + %]n [Z ep(gc,z’_gma.x)] <0 (25)
=1

where gmax is the maximum constraint component
from equations (14)~(24), nc is the number of lower
level constraint components, and p is defined by
the user. Initially, p is small and then increases
until a maximum value pmax is reached. For large
values of p, the value of KS approaches gmax. The
KS function is a single measure of the degree of
constraint satisfaction or violation and is positive
(violated) if at least one of the constraints g.; is
violated. The KS function is a single-valued function
that is continuous and differentiable. This property
becomes important when implementing the upper
and lower levels as described in the section on the
overall organization of the TADS procedure.

Lower Level Optimization Procedure

The flowchart for each lower level optimization
procedure is shown in figure 6. Loads, local chord,
box beam width, box beam height, and upper level
stiffnesses are passed down from the upper level anal-
ysis. The lower level design variables (fig. 5) are
used to calculate lower level stiffnesses. Von Mises
stresses are calculated using the loads from the for-
ward flight and maneuver analyses. The lower level
objective function (eq. (13)) and cumulative con-
straint (eq. (25)) are evaluated. The lower level op-
timizations are performed using the general-purpose
optimization program CONMIN. Exact analyses are
used to evaluate the objective function, the con-
straint, and any gradients computed by CONMIN.
The optimization process is converged when the ob-
jective function is minimized and the cumulative con-
straint is satisfied. After convergence, the process
returns to the upper level.



Coordination Between Upper and Lower
Levels

The coordination between upper and lower lev-
els is implemented by upper level constraints. These
constraints are imposed to encourage changes in the
upper level design variables that promote consistency
between the upper and lower level stiffnesses. Specif-
ically, these constraints (one for each lower level op-
timization) have the form

g=FY —(1+e)FL <o (26)

where FL is the most recent value of the lower
level objective function (i.e., the optimum value of
eq. (13)), FU is an estimate of the change in FL that
would be caused by a change in the upper level design
variable values, and ¢ is a specified tolerance defined
as the coordination parameter. (See appendix A.)
The importance of this parameter will be discussed
later.

Equation (26) is the general form of the coordi-
nation constraint as formulated in reference 15. As
shown in appendix A, the coordination constraint
can be approximated in terms of the lower level to-
tal optimum sensitivity derivative that expresses how
the optimum lower level objective function and lower
level active constraint will change with a change in
upper level design variable.

Overall Organization of IADS Procedure

The conceptual IADS procedure is shown in fig-
ure 2. It consists of an upper level analysis (fig. 3),
three lower level optimizations (fig. 6), and a coor-
dination task. The actual IADS procedure is more
complicated and requires, in addition, an upper level
sensitivity analysis and three lower level optimum
sensitivity analyses.

The flowchart for the IADS procedure is shown in
figure 7. First, the upper level analysis is executed
for the current set of design variables providing all
the information needed to calculate the upper level
objective function and constraints with the exception
of the coordination constraints. The upper level
analysis also provides the loads, local chord, box
beam width, box beam height, and stiffnesses (to
be matched) to the lower level analysis. Each lower
level optimization is performed to obtain a set of
lower level design variables that match the current
upper level bending and torsional stiffnesses as close
as possible.

Next, an upper level sensitivity analysis is per-
formed consisting of forward finite-difference deriva-
tives (or gradients) of the upper level analysis. These

derivatives are required to approximate the upper
level objective function and upper level constraints
during the upper level optimization. In addition, the
loads and local chords corresponding to the changes
in the upper design variables are saved. These quan-
tities are used in the three lower level optimum sensi-
tivity analyses to approximate the coordination con-
straint (eq. (26)). Appendix A describes how the
coordination constraint is expressed in terms of the
total optimum sensitivity derivative involving both
changes in the optimum lower level objective func-
tion with respect to changes in the upper level de-
sign variables and changes in the active lower level
constraint with respect to changes in the upper level
design variables.

Finally, the upper level optimization occurs con-
sisting of CONMIN and an approximate analysis.
This describes 1 cycle of the IADS procedure. The
process is repeated for additional cycles until conver-
gence is achieved. A very strict convergence crite-
rion is used for demonstration purposes. The overall
procedure is converged when the change in the up-
per level objective function is less than 0.5 x 1079
over three consecutive cycles and all the constraints
(both upper and lower level) are satisfied. A step
size of 0.001 is used to compute the finite-difference
derivatives.

Demonstration of IADS Procedure

This section of the paper describes the analytical
blade model, the mission definition, the optimization
problem, and the optimization results used to demon-
strate the IADS procedure. Results are presented for
three studies: (1) the effect of initial design, (2) the
effect of the coordination parameter ¢, and (3) the
comparison between a single-level and multilevel op-
timization approach.

Analytical Blade Model

The analytical blade model used to demonstrate
the JADS procedure represents a wind tunnel model
of a rotor blade for a four-bladed helicopter having
a blade radius of 4.68 ft. Three sets of advanced ro-
torcraft (RC) airfoils are used along the blade: the
RC(4)-10 airfoil (ref. 35) from the root to 85 per-
cent radius, the RC(3)-10 airfoil (ref. 36) from 85 to
95 percent radius, and the RC(3)-08 airfoil (ref. 36)
from 95 percent radius to the tip. Tables of exper-
imental two-dimensional airfoil data for these three
airfoil types are wused in both HOVT and
CAMRAD/JA. The analytical model of the blade
uses 19 aerodynamic segments for HOVT, and it
uses 50 structural segments and 18 aerodynamic seg-
ments for CAMRAD/JA. HOVT is used to predict
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the power required in hover using nonuniform inflow
(no wake is included) by trimming to a constant lift
(Cr). CAMRAD/JA is used to predict rotor perfor-
mance, loads, and frequencies using uniform inflow
with empirical inflow correction factors for the for-
ward and maneuver flight conditions. Uniform in-
flow is used to save on computational costs. (Note
that even though an approximate analysis is used
in the upper level optimization, 46 CAMRAD/JA
analyses are required per optimization cycle.) In

CAMRAD/JA an isolated rotor analysis is used that

trims the rotor to constant lift (Cr) and drag (Cp)
and zero flapping angle relative to the shaft using col-
lective, lateral cyclic, and longitudinal cyclic pitch.
From the modal analyses in CAMRAD/JA using
10 bending modes and 5 torsional modes, only the
first 6 bending frequencies are below 10 per rev and
need to be constrained for a four-bladed rotor. Be-
cause fp1 ‘corresponds to a rigid-body mode and fp 2
is the 1/rev frequency, the first two frequencies are
not constrained. Constraints are placed on the first
four bending frequencies (fs 3, fp.4, and fy 6 are flap-
ping dominated and f 5 is lead-lag dominated) and
the first two torsional frequencies (f; 1 represents the
rigid-body torsional mode due to the control system
stiffness and f; 2 represents the first elastic torsional
mode).

Mission Definition

The flight conditions are a constant lift of 1g
(331 1b and C, = 0.0081), a propulsive force of 32 Ib
(Cp = —0.000811), and an advance ratio of 0.35 for
the forward flight condition and a constant lift of
401 b (Cr = 0.00985), a propulsive force of 23 Ib
(Cp = —0.000596), and an advance ratio of 0.3 for
the maneuver flight condition, which is for a load
factor of 1.22. These flight conditions and the load
factor are similar to those used in reference 37.

Optimization Problem

The objective function is a combination of the
power required in hover, forward flight, and maneu-
ver and of the 4/rev rotating vertical hub shear in
forward flight. The objective function is chosen to
be one dominated by performance with little empha-
sis on dynamics. Of the three powers, reducing the
power required in hover is assumed to be the most im-
portant; it will have twice the weight as the other two
powers. Several values were tried for the weighting
factor on the hub shear term. To obtain the proper
balance between performance and dynamics, k4 must
be between one and two orders of magnitude less
than k;. Thus, for this case, the weighting factors
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are chosen to be k; = 10,k9 = k3 = 5, and k4 = 0.5.
Therefore, we have
Py P, Sy a0

+5 +0.5
P, m,ref S4,ref

Py
OBJ =10 +5
Pyret  Poref

(27)
where Pj ref, Pt ref, Pm ref and Syref are 15 hp,
13 hp, 12 hp, and 2 Ibf, respectively. The reference
values are chosen to be representative of the powers
required and the hub shear for all the initial blade
designs used in this work.

The upper and lower bounds for the design vari-
ables are given in table 1. On the upper level, 22 de-
sign variables and 95 constraints are used. On the

lower level, 6 design variables and 1 cumulative con-
straint (the KS function with 24 components) are
used at each of the 3 spanwise locations (i.e., the
root, the point of taper initiation, and the tip).

Parameters and flight conditions are summarized
in table 2. Because the blade is made of aluminum, E
has a value of 15.26 x 108 Ib/ft?, the allowable strain
€g has a value of 0.05 ft/ft, and the allowable stress
oo is 8.352 x 108 1b/ft2. The values for minimum
tip chord (ctmin), POWer available (Fp), minimum
autorotational inertia, and maximum allowable drag
coefficient (cqan) are 0.083 ft, 20 hp, 23.69 1bm-ft2,
and 0.12, respectively. Frequencies must be at least
0.1 away from a per-rev value (Af = 0.1/rev in

eq. (6)).
Study on Effect of Initial Designs

The IADS multilevel optimization procedure is
demonstrated for three examples using the three
starting points shown in figure 8. Example 1
(fig. (8a)) uses a rectangular planform with a pretwist
of —9°, a root chord of 0.3449 ft, and upper level stiff-
ness design variables initialized to be consistent with
the lower level initial wall thickness and lumped areas
(i.e., matched stiffnesses). Example 2 (fig. (8b)) uses
a tapered planform with a pretwist of —16°, a root
chord of 0.45 ft, and matched stiffnesses. The blade
is rectangular to 80 percent radius and then tapers
linearly to the tip with a 3-to-1 taper ratio. Exam-
ple 3 (fig. (8¢)) uses the same planform and pretwist
as example 2 except that the upper and lower level
stiffnesses are unmatched. All these examples use a
value of —0.4 for the coordination parameter (¢) in
equation (26). The importance of the choice of ¢ is
examined in a later section of the paper.

Ezample 1: rectangular planform (“ini-
tially matched stiffnesses”). The starting point
for the optimization is the rectangular blade shown
in figure 8(a). The upper and lower level stiffnesses
are matched because the upper level stiffnesses are



started with the stiffnesses determined by the ini-
tial lower level design variables. This is an infeasi-
ble starting point because the lower level stress con-
straints at the root are violated. (See the results
given in table 3.) The initial and final values for
the blade planform, performance measures, and dy-
namics measures are given in table 3(a). The initial
and final values for the constrained frequencies are
given in table 3(b). Notice that the final value for
the fourth bending frequency f;, 4 is in a different fre-
quency range than the initial value. Final values for
the lower level design variables and the upper level
stiffnesses are given in table 3(c). The final design is
able to improve the performance characteristics from
the initial blade and satisfy all the constraints. Com-
pared with the initial values, the final design repre-
sents a 2.1-, 2.3-, 2.3-, 47.6-, and 3.2-percent reduc-
tion in the power required in hover, forward flight,
and maneuver; hub shear; and upper level objective
function, respectively.

The final stiffness distributions for the upper
(required values) and lower levels (actual values)
are shown in figure 9. The matching of the chord-
wise bending stiffness (EI;;) (fig. 9(a)), the flapwise
bending stiffness (E1,,) (fig. 9(b)), and the torsional
stiffness (GJ) (fig. 9(c)) are extremely good. As
shown in figure 9(d), the lower level is able to ob-
tain an extensional stiffness distribution higher than
the minimum requirement set by the upper level.

Convergence histories of the individual terms
of the lower level objective function (eq. (13)) are
shown in figure 10 for the three locations: the root
(fig. 10(a)), the point of taper initiation (fig. 10(b)),
and the tip (fig. 10(c)). Each term (denoted stiff-
ness deviation) is a measure of how well the upper
and lower stiffnesses match. Initially, the stiffnesses
are matched, but the stress constraints are violated
at the root. Therefore, the lower level design vari-
ables must change to satisfy these constraints while
keeping the upper and lower level stiffnesses matched
as close as possible. Notice that the chordwise stiff-
ness at the root, the torsional stiffness at the point of
taper initiation, and the flapwise stiffness at the tip
are the last stiffnesses to match. Further, it appears
that stiffnesses at the point of taper initiation are
particularly difficult to match. This difficulty may
be due to the fact that the point of taper initiation
is a design variable but the root and tip positions are
fixed.

The reason for the deviations in the stiffness is
that the upper and lower levels are in conflict. One
component of the upper level objective function is
the hub shear which can be reduced significantly
by increasing the blade stiffnesses. On the upper

level, if the optimizer did not have to be concerned
with stiffness matching, it would increase the upper
level stiffnesses. Without the lower level to keep the
stiffnesses in check, a heavy or nonbuildable blade
might result.

The information shown in figure 10 is collected
and used to determine when a move-limit adjustment
is necessary for an upper level design variable during
the overall optimization process. (Recall that an ap-
proximate analysis is used on the upper level and an
exact analysis is used on the lower level.) At the
present time, no automatic move-limit adjustment
is used in the approximate analysis on the upper
level. Instead, the IADS procedure is run for 8 cy-
cles and then the stiffness deviations are examined.
When the stiffness deviation increases (e.g., cycle 16),
the design-variable move limits are manually reduced
and the optimization process is continued for another
8 cycles. In practical applications, the optimiza-
tion procedure would terminate after about 30 cy-
cles; however, for demonstration purposes, the con-
vergence criterion is set to a very small value. Both
the upper and lower levels have the same tight con-
vergence criterion on each cycle. Overall convergence
of the IADS procedure might improve if the conver-
gence criterion is relaxed initially and then tightened
as the optimization proceeds.

Example 2: tapered planform (“initially
matched stiffnesses”). The starting point for
the optimization is the tapered blade shown in fig-
ure 8(b). Initially, the upper and lower level stiff-
nesses are matched because the upper level stiffness is
determined by the lower level design variables. How-
ever, this is an infeasible starting point because a
thin-wall-theory constraint is violated on the lower
level. The initial and final values for the blade plan-
form, performance measures, and dynamics measures
are given in table 4(a). The initial and final con-
strained frequencies are included in table 4(b). The
final design is able to improve the performance char-
acteristics from the initial blade. However, the hub
shear increases from the initial value.

Figure 11 shows the final stiffness distributions
for the upper levels (required values) and lower levels
(actual values) for the chordwise bending stiffness
(fig. 11(a)), flapwise bending stiffness (fig. 11(b)),
and torsional stiffness (fig. 11(c)). As shown in
the figure, the stiffness matching is good, although
not as good as in example 1. The lower level is
able to obtain an extensional stiffness distribution
(fig. 11(d)) higher than the minimum requirement.

Figure 12 shows stiffness deviation versus cycle
number for the three matching locations: the root
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(fig. 12(a)), the point of taper initiation (fig. 12(b)),
and the tip (fig. 12(c)). Early in the optimization
process, the flapwise and torsional stiffnesses are both
unmatched. After cycle 10, the matchings improve,
and after 25 cycles, all three matchings are good.
At the tip (fig. 12(c)), matching proves to be quite
difficult. The torsional stiffness is the last to match.
The reason for this is that the blade initial design is
tapered, and it is difficult to place a thin-wall section
in the space near and at the tip and still match the
stiffness required on the upper level.

Ezample 3:
unmatched stiffnesses”). In the previous exam-
ples, the starting points used matched stiffnesses.
The purpose of the present example is to demon-
strate how the IADS procedure behaves when it is
started from an inconsistent set of stiffnesses (i.e.,
unmatched stiffnesses). The starting point for the
optimization is shown in figure 8(c). The initial stiff-
nesses used in the upper level are much larger than
the stiffnesses obtained from the lower level design
variables. The initial and final values for the blade
planform, performance measures, and dynamics mea-
sures are given in table 5(a). The initial and final
constrained frequencies are included in table 5(b).
The final upper and lower level stiffnesses are shown
in figure 13, which also shows that the optimization
procedure is able to match the upper and lower level
stiffnesses successfully. Figure 14 shows the stiffness
deviations for the three matching locations: the root
(g. 14(a)), the point of taper initiation (fig. 14(b)),
and the tip (fig. 14(c)). As shown in the figure,
the optimization procedure is able to match all three
stiffnesses after 25 cycles, but it is at the expense of
upper level performance. (See table 5.) The power
required for all three flight conditions has increased
substantially along with the hub shear. Notice that
a bending frequency fp g has shifted frequency inter-
vals. From these results it appears that although the
optimization procedure will converge when starting
from an initial point that has unmatched stiffnesses,
starting with a set of consistent stiffnesses is better.

Observations on Effect of Initial Design
Study

The IADS procedure has been exercised for three
starting blade planforms: a rectangular planform
with matched stiffnesses, a tapered planform with
matched stiffnesses, and a tapered blade with un-
matched stiffnesses. In all cases, the procedure is able
to find converged feasible designs. When comparing
examples 1 and 2 (tables 3 and 4, respectively), the
reader will find two different final blade designs (i.e.,
the design variable values are different) with essen-
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tapered planform (“initially

tially the same objective function value. Apparently,
many different combinations of design variables exist
that satisfy the matching constraints, and more than
one of these is optimal. The final solution depends
on initial conditions. In example 3 (table 5), the
optimizer appears to converge to a suboptimal solu-
tion when compared with example 2. Both examples
started from the same planform, but example 2 starts
with matched stiffnesses and example 3 starts with
unmatched stiffnesses. Because the initial matching
of the stiffnesses is relatively easy, this suggests that
the initial matching should always be enforced.

When comparing all three examples, the reader
will also notice that each initial blade has a different
frequency range for the bending and torsional fre-
quencies and that each final blade design has a fre-
quency which has shifted a frequency interval (e.g.,
foe In example 3). During the approximate analy-
sis, the optimizer can change the upper level design
variables such that a frequency can shift intervals.
However, as the design-variable move limits are re-
duced, this shifting is less likely to occur.

At the present time, no automatic move-limit ad-
justment is used in the upper level approximate anal-
ysis. However, the stiffness deviation information
(e.g., fig. 10) can be collected and used to determine
when a move-limit adjustment is necessary for an up-
per level design variable during the overall optimiza-
tion process.

Study on Effect of Coordination
Parameter ¢

The purpose of this study is to demonstrate the
effect of ¢ in the coordination constraint (eq. (26))
on the optimization procedure. Results for three
values of ¢ (0.4, —0.2, and —0.4) are presented in
table 6 and figures 15, 16, and 9, respectively. If
£ is a large positive value, the levels are essentially
independent. The upper level is free to change
the upper level stiffness and chord distributions in
any way that will reduce the upper level objective
function. The only requirement is that the overall
stiffness matching should not degrade by more than
the value of £ from the best match found on the last
lower level optimization. For example, if ¢ = 0.4,
the stiffness matching can degrade by 40 percent and
still satisfy the coordination constraints. Therefore,
the procedure could possibly converge with the upper
and lower level stiffnesses being mismatched by as
much as 40 percent. A negative value for ¢ means
that the upper level must improve the matching
achieved on the lower level by that amount. This
section of the paper presents results for several values



of £ using the starting point in figure 8(a) that is also
used in example 1.

One choice for € would be zero. This would mean
that the upper level cannot degrade the matching
achieved on the lower level. This value was found to
be too restrictive for the optimization process, and
the procedure converged in 3 cycles with very lit-
tle change in the upper level design variables. The
reason for this can be seen by examining the coordi-
nation constraint (eq. (26)). At the start of the up-
per level optimization, the coordination constraint at
each matching location is active (i.e., g = 0) because
FU is equal to Fé". As the upper level optimizer tries
to change the upper level design variables, the coor-
dination constraints become violated. Therefore, the
upper level optimizer makes only small changes and
the process converges in 3 cycles.

As shown in table 6, when ¢ = 0.4, the optimiza-
tion process is able to improve the performance and
dynamics measures over the initial blade values and
improve the lower level (i.e., satisfy the stress con-
straints). This improvement is achieved at the ex-
pense of stiffness matching. Figure 15 shows the final
stiffness distributions for the upper and lower levels.
The lower level is not able to find a set of stiffnesses
to match those required by the upper level. This fi-
nal result is technically a feasible design because all
the constraints are satisfied. Recall that the upper
and lower stiffnesses need only be as close as possible
(lower level objective function). The upper level co-
ordination constraints do not require the upper and
lower level stiffnesses to match exactly.

When ¢ = —0.2, the optimization procedure is
able to obtain a design that has some improvement
over the initial starting point (table 6). The upper
level objective function is reduced slightly, but not
as much as when ¢ is positive. As shown in figure 16,
the upper and lower stiffnesses match well for the
chordwise stiffness (fig. 16(a)), the flapwise stiffness
(fig. 16(b)), and the torsional stiffness (fig. 16(c)).
The lower level is able to obtain an extensional
stiffness which is slightly larger than that required
by the upper level.

Of the values used in this work, the best value
for € is —0.4 because the optimization procedure is
able to obtain improvement on the upper level and
find a set of consistent stiffnesses on the lower level.
These results (example 1) are included in table 6 for
completeness. The stiffness distributions are shown
in figure 9.

Observations on Effect of Coordination
Parameter ¢ Study

As shown previously, positive values of € result in
upper level improvement, but poor stiffness matching
and negative values of ¢ result in both upper level
improvement (although not quite as good as when ¢ is
positive) and good stiffness matching. This suggests
that a gradual reduction in € from a positive value
to a negative value could be beneficial. The IADS
procedure was run with ¢ = 0.4 for 8 cycles, ¢ = 0.2
for 8 cycles, € = —0.2 for 8 cycles, and € = —0.4 for
8 cycles. This technique of gradually reducing the
value of € did not work. Presumably, the upper level
planform area and upper level stiffnesses increased
to improve the upper level objective function when ¢
was positive so that by the time that ¢ was negative,
the stiffness matching was achieved at the expense
of performance and dynamic improvement on the
upper level. This situation is analogous to example 3
in which the mismatched initial conditions resulted
in stiffness matching at the expense of upper level
improvement.

Study on Comparison of Two-Level and
Single-Level Optimization Procedures

The IADS procedure is compared with a more
traditional optimization procedure without multi-
level decomposition (i.e., the single-level optimiza-
tion procedure). The single-level optimization pro-
cedure combines local and global design variables
and simultaneously evaluates aerodynamics, dynam-
ics, and structures. The design variables are the same
as those used in the IADS procedure with the excep-
tion of the stiffness design variables (El,, El,,,GJ,
and EA) which are no longer needed. These stiff-
nesses are calculated from the wall thicknesses, the
lumped areas, and the blade planform. The con-
straints are the same constraints used in the IADS
procedure with two exceptions. First, the coordi-
nation constraints are no longer needed because the
stiffnesses are calculated from the design variables.
Second, the cumulative constraint, (KS), (eq. (25)) is
no longer needed and the individual constraint com-
ponents (eqs. (14)-(24)) are used. The single-level
optimization procedure has 28 design variables and
218 constraints (eqs. (2)-(11) and (14)-(24)). The
optimizer consists of CONMIN and an approximate
analysis. All derivatives are calculated by forward
finite differences and results are presented for four
cases. Cases 1 and 2 compare the single-level and
multilevel approaches using the initial designs in fig-
ures 8(a) and 8(b), respectively. Cases 3 and 4 in-
vestigate whether the multilevel approach can im-
prove on the best solutions found by the single-level
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approach. All the IADS cases use a value of —0.4 for
the coordination parameter (g).

Case 1: rectangular starting design. The
starting point for case 1 is shown in figure 8(a), and
initial and final results for the two approaches are
given in table 7. Both approaches show improvement
over the initial design. The single-level approach
finds a better overall design in terms of the objective
function than the multilevel approach and is faster
to converge. The multilevel approach has slightly
less performance improvement but more dynamics
improvement than the single-level approach.

Case 2: tapered starting design. The start-
ing point for case 2 is the tapered blade shown in
figure 8(b). Initial and final results for the two
approaches are given in table 8. For this start-
ing point, only the multilevel approach converges
to a feasible design. The single-level approach was
manually discontinued after 64 cycles. The final
single-level design includes large lumped masses re-
sulting in a weight constraint that is grossly violated
(W =441b).

Case 3: starting from feasible single-level
design. The purpose of case 3 is to see if the IADS
optimization procedure can improve on the best so-
lution obtained by a single-level optimization proce-
dure. The initial design for the multilevel procedure
is rectangular to 0.7131 percent radius and then ta-
pers linearly to the tip with a taper ratio of 2.21 to 1.
This is the best solution found using the single-level
approach in case 1 (table 1). The results are given
in table 9. The multilevel approach is able to im-
prove the design only slightly over that obtained by
the single-level approach.

Case 4: starting from infeasible single-
level design. Recall in case 2 that the single-level
approach did not find a feasible design although the
TADS procedure did find a feasible design. The pur-
pose of case 4 is to see if the IADS optimization pro-
cedure can start from that final infeasible single-level
solution (table 8) and obtain a feasible design. Thus,
the initial design for the multilevel procedure has a
pretwist of —13.22° and a planform that is rectan-
gular to 0.4934 percent radius and then tapers lin-
early to the tip with a taper ratio of 3.098 to 1 with
a root chord of 0.4899 ft. The IADS procedure is
able to find a feasible design, and the initial and fi-
nal results are given in table 10. The final upper and
lower level stiffness distributions for the three match-
ing locations are shown in figure 17 and the stiffness
deviations are shown in figure 18.
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Observations on multilevel versus single-
level optimization cases. The IADS procedure is
compared with a more traditional optimization pro-
cedure without decomposition (single-level optimiza-
tion procedure) for four cases. In the first and second
cases, the initial design had a rectangular planform
and a tapered planform, respectively. In the third
and fourth cases, the IADS procedure is started with
the best designs from a single-level optimization pro-
cedure. The multilevel optimization approach is able
to find feasible final designs regardless of the initial
planform design. The single-level optimization pro-
cedure could find only a feasible final design when the
initial planform was rectangular (case 1). When the
initial planform was tapered (case 2), the single-level
optimization procedure could not find a feasible de-
sign and was terminated manually because the blade
weight constraint was grossly violated. In cases 3
and 4, the multilevel approach was started from two
single-level optimization results of cases 1 and 2, re-
spectively. In case 3, the multilevel approach im-
proved the single-level design slightly. In case 4, the
initial design for the IADS procedure is the infeasible
single-level design that has a grossly violated weight
constraint. The IADS procedure is able to start with
this highly infeasible design and find a feasible design.

Conéluding Remarks

An integrated aerodynamic/dynamic/structural
(IADS) optimization procedure for helicopter rotor
blades has been developed. The procedure combines
performance, dynamics, and structural analyses with
a general-purpose optimizer using multilevel decom-
position techniques. At the upper level, the structure
interacts with the disciplines of aerodynamics and
dynamics in terms of global quantities (stiffnesses
and average strains). At the lower level, the struc-
ture is defined in terms of local quantities (detailed
dimensions of the blade structure and stresses).

The IADS procedure consists of an upper level
optimization, a lower level optimization, and a coor-
dination task. The upper level objective function is a
linear combination of performance and dynamic mea-
sures. Upper level design variables include pretwist,
point of taper initiation, taper ratio, root chord,
blade stiffnesses, tuning masses, and tuning mass lo-
cations. Upper level constraints consist of limits on
power required in hover, forward flight, and maneu-
ver; airfoil drag; minimum tip chord; trim; blade nat-
ural frequencies; autorotational inertia; blade weight;
and average strains.

The lower level optimization sizes the internal
blade structure to provide the stiffnesses required by
the upper level and assure the structural integrity of



the blade. The lower level design variables are the
box beam wall thicknesses and several lumped areas
that are analogous to longitudinal stringers in a wing
box cross section. The lower level objective function
is a measure of the difference between the upper
level stiffnesses and the stiffnesses computed from the
wall thicknesses and lumped areas. The lower level
constraints are on Von Mises stresses, extensional
stiffnesses, thin-wall theory, and dimensional limits.

The coordination task consists of a set of up-
per level constraints that link the levels and promote
consistency between the upper and lower level stiff-
nesses. A coordination parameter is included in each
constraint. This parameter specifies the amount of
coupling between the levels. A proper value for the
coordination parameter is found to be crucial to the
success of the IADS procedure. If the parameter has
a positive value, the procedure will converge but the
final stiffness matching can be unacceptable. If the
parameter value is too small (approximately zero),
the optimization process will terminate without im-
proving the dynamics or performance measures. A
small negative value for the coordination parameter
encourages the upper level to improve dynamics and
performance using stiffness values that the lower level
can match.

The IADS procedure is demonstrated by using a
model-size rotor blade for several initial blade plan-
forms and varying amounts of coupling between the
levels. In addition, the IADS multilevel procedure
is compared with a more traditional optimization

procedure without decomposition (a single-level op-
timization procedure). In all cases, the IADS pro-
cedure achieves successful results. It converges to
a feasible design regardless of whether the initial
design had a set of consistent stiffnesses. However,
initializing the upper level stiffnesses with the stiff-
nesses calculated from the lower level design variables
greatly improves the final design. For the cases stud-
ied, the IADS procedure is found to be superior to
the single-level optimization procedure. The IADS
procedure converges to a feasible design, even when
the single-level procedure does not. Furthermore, the
IADS procedure improves upon the best design found
by the single-level optimization procedure.

The TADS procedure exploits the couplings and
interactions between the disciplines of aerodynamics,
dynamics, and structures. It provides an efficient
method to integrate structures and/or structural
properties into an optimization procedure because it
guarantees that a structure with a consistent set of
structural properties can be found. The IADS proce-
dure provides an optimization technique that is com-
patible with industrial design practice in which the
aerodynamic and dynamic design is performed at a
global level and the structural design is carried out at
a detailed level with considerable dialogue and com-
promise among the groups.

NASA Langley Research Center
Hampton, VA 23681-0001
August 25, 1994
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Appendix A

Coordination Constraint

In a multilevel decomposition approach, the cou-
pling between levels is done through a coordination
procedure (e.g., refs. 20 and 25). In the present work,
the coordination procedure based on reference 20 is
used to reconcile the stiffnesses required on the upper
level with the stiffnesses that the lower level can actu-
ally obtain. This reconciliation results in one upper
level constraint at each matching location

g=FU - (1+e)Ff <o (A1)

where FL is the most recent value of the lower
level objective function (i.e., the optimum value of
eq. (13)), FY is an estimate of the change in FL that
would be caused by a change in the upper level design
variable values, and ¢ is the coordination parameter.
This coordination parameter specifies how much the
upper level can either degrade or improve the overall
stiffness matching achieved on the lower level, and it
may also be interpreted as a measure of how closely
coupled the two levels are. If € has a positive value,
the two levels are not closely coupled (i.e., they are
essentially independent). The upper level can change
the upper level stiffness and chord distributions in
any way that will improve the upper level objective
function as long as the stiffness matching is not
degraded by more than the amount of €. If ¢ has
a negative value, the two levels are closely coupled
and the upper level is commanded to improve the
matching by the amount of €.

Equation (A1) is the general form of the coordi-
nation constraint as formulated in reference 15. The
form of the coordination constraint used in this work
is obtained by approximating FU in terms of the cur-
rent optimum lower level objective function (FOL). If
FOL is expanded in terms of a first-order Taylor se-
ries about the lower level optimum, then F U can be
approximated by

NDV dFL

FU=FL+ > oV, ADV; (A2)
i=1 0

where DV; is an upper level design variable and

L cero- e s
j% is the total optimum sensitivity derivative
1
0

(ref. 28) given by

_ oFL
, 0DV

dFL
dDV,;

_ 7 9KS

3DV, (A3)

0 0

where 8FL/ODV; is the derivative of the optimum
lower level objective function with respect to the up-
per level design variables, 0KS/0DV; is the deriva-
tive of the active lower level constraint (eq. (25)) with
respect to the upper level design variables, AT is the
Lagrange multiplier given by

-1
R (aKs>T (BKS) )
N v Ov dv
where OKS/0v is the vector of derivatives of the ac-
tive lower level constraints with respect to the lower
level design variables at the lower level optimum. At
a lower level optimum, AT will be positive, and if no
lower level constraint is active, A is set to zero. By
substituting equation (A2) into equation (Al), the
coordination constraint g is approximated by -

NDV L
dF
g= (FOL +

(A4)

0

DV |,

i=1

ADV,-) ~(1+e)Ff<o0

(A5)
or simplifying gives

NDV . nL
g__.

.ldDVi

1=

ADVi) —eFl <o (A6)
0

From substituting equation (A3) into equation (A6),
the coordination constraint becomes
) —EFOL <0
0

B 1‘%’ aFL T 9KS
9= 3DV,
(AT)

dDV;

ADV; — A
0

=1

which is the form implemented in this work.

The derivative of the coordination constraint is
obtained by differentiating equation (A7) with re-
spect to upper level design variables. Thus,

dg aFL

oDV; oDV, (A8)

0

U]



Appendix B

Drag Constraints

Rotor blades operate over a wide range of flight
conditions: hover, low-speed forward flight, high-
speed forward flight, and maneuver. In addition, the
blade encounters different conflicting phenoma as it
rotates. Figure 19 shows a top view of the rotor disk
with the advancing side when the blade is between
¥ = 0° and 180° and with the retreating side when
the blade is between ¥ = 180° and 360°. On the
advancing side, the blade encounters a higher net
velocity than it does on the retreating side where
an area exists in which the flow is reversed. This
reversed-flow region does not contribute any lift on
the blade. In this work and in previous work (refs. 3,
4, and 14), aerodynamic concerns such as drag di-
vergence and blade stall are expressed in terms of
constraints on the drag coefficient at various azimuth
angles (¥).

On the advancing side of the blade, ¢  is checked
at every spanwise station. The constraint is formu-
lated so that the largest ¢ is less than a given value of
ciall- At a given azimuth angle, the largest section

drag coeflicient cg”max is selected from the aerody-

namic stations along the blade span. (See fig. 20.)
Thus,

C:{max = max(cd,l, Cd,2, e 1Cd,MRA)
(¥ = 0°,15°30°,...,180°) (B1)

where cg; is the section drag coefficient in the ith
aerodynamic segment and MRA is the total number
of aerodynamic segments.

Similarly, on the retreating side of the blade, c4
is constrained at each ¥. The difference is caused by
the reverse-flow region which occurs on the retreating
side of the blade, and this must not be considered.
In the reverse-flow region, ¢4 is large because of the
reversed flow. The velocities in this region have
a tangential velocity similar to the advance ratio.
Therefore, on the retreating side of the blade at a
given azimuth angle, the largest drag coefficient is

give by

cgj,max =max(cqk,Cdk+1>- - - »CdMRA)
(¥ = 180°,195°,210°, ...,360°) (B2)

where cq ;. is the first drag coefficient corresponding
to the first value of ¢; ;. outside the reverse-flow region
as shown in figure 21.

At a given azimuth angle, the constraint is for-

mulated as
0

¢
g=-3m& _ g < (B3)

Cd,all
where cg,y is the allowable drag coefficient and
cg’max is given by equations (B1) or (B2). Because
several airfoils may be used along the blade, a com-
posite ¢y 4y is used. Different values of g, could
be used for the advancing and retreating side con-
straints, but in this work the same value of 0.12 is
used.
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Appendix C

Lower Level Structural Analysis

The purpose of this appendix is to summarize the
elementary equations describing the geometric and
structural analysis for the lower level structure. A
typical cross section of the thin-walled isotropic box
section is shown in figure 5. For simplicity, the top
and bottom wall thicknesses, t; and t3, respectively,
are equal. The total cross-sectional area (A) is the
sum of the cross-sectional areas of the box beam
elements A; and the lumped areas a; (described in
the main text). Thus,

n m
A=Y A4+ q; (C1)
i=1 j=1

By using the familiar relations, the centroid of the
cross section is calculated from the equations

n m

Zl Ajx; + Zl a;T;
_ = 1=

Te= V] (C2)
and

n m

El Aizi + El a;z;
= = J=

where z; and z; are coordinates in the chordwise
and flapwise directions, respectively, that specify the
distance of the centroid of the ith element area (4;)
from the reference z- and z-axes shown in figure 5.
Similarly, z; and z; are coordinates that specify the
distance of the centroid of the jth lumped area (a;)
from the reference axes, n is the number of elements
that the cross section is divided into for ease of
calculations, and m is the number of lumped areas.

Next, the area moments of inertia of each element
about its centroidal z- and z-axes are calculated from

b hd

Ix,k=—’;—2—k (k=1,2,...,n+m) (C4)
hib3

Lj=—2t (k=12..n+m) (C5)

where by, is the base of the kth rectangular element,
hy is the height relative to the z-axis, and Iz, ; =0
for symmetric elements. By using the parallel-axis
theorem, the moments of inertia of each element are
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found with respect to the centroid of the box beam

as

Icz,k = Iz,k + Akd?c }

Icz,k = Iz,k + Akci
where I, and I} are the moments of inertia of
the kth element about the centroid of the box beam,
I, ) and I, are the moments of inertia of the kth
element about its centroidal axes, and di and ¢, are
the distances from the centroid of the element to the
centroid of the box beam in the z- and z-directions,
respectively. The total moments of inertia for the box
beam are equal to the sum of the element inertias:

Iz = ch:c,k
I = Z Iez ke

The polar moment of inertia (J) for the box beam
is calculated by using the method described in refer-
ence 38 which gives

(C6)

(€7)

_ar
T §ds/t

where A, is the enclosed area of the mean periphery
of the box beam wall, ds is the differential circumfer-
encial length along the box beam, and t is the local
thickness of the wall.

J (C8)

In order to calculate the lower level objective
function, the bending and torsional stiffnesses of the
box beam are necessary. For an isotropic beam,
the moments of inertia Ipz and I, calculated in
equation (C7) are multiplied by Young’s modulus E
to acquire the bending stiffnesses Elzz and EI;; in
the chordwise and flapwise directions, respectively.
Similarly, the polar moment of inertia is multiplied
by the torsional modulus of elasticity G to acquire
the torsional stiffness of the beam GJ.

The stresses for the constraints in the lower level
optimization are evaluated at the corners of the box
beam by using the Von Mises stress measure given

by
V(o,7) = Vo2 + 372 (C9)

where ¢ is the axial bending stress at the outer fiber
of the cross section, which is given by

M, Mm) CF
o= ( I, )xouter + ( Tox Zouter T A

and T is the shear stress due to torsion in the wall of
the section with thickness ¢, which is given by

(C10)

Mr

T 244 (C11)

T



where M, is the flapwise moment, My, is the lag Here, M,,, Myz, N, and M7 are computed in the

moment, CF is the centrifugal force, and My is upper level analysis for forward flight and maneuver,
the torque at the section. The shear stress due to multiplied by a factor of safety (I £), and then passed
transverse loads has been neglected for simplicity. to the lower level.
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Appendix D
Wing Box Fitting

At a given radial location, the outer dimensions
of the box cross section are determined by placing a
rectangular box of maximum area within the given
airfoil cross section using a modified version of the
method described in reference 34. As shown in
figure 22, the outer dimensions (where b denotes
the nondimensional box beam width and h denotes
the nondimensional box beam height) depend on the
airfoil section and the local chord c. (Note that the
upper coordinates Z,, lower coordinates Zj, horizontal
coordinates Z, and maximum thickness location tmax;,
which are all normalized with respect to the chord c,
are given in ref. 35 for the RC(4)-10 airfoil and in
ref. 36 for the RC(3)-08 and RC(3)-10 airfoils.)

The procedure for the wing box fitting is de-
scribed below, and the nondimensional box beam
height (k) is determined first. By starting from the
leading edge of the airfoil at an initial point Z;, which
is given as

2
5
z., and .'zli are determined by linearly interpolating
between the respective upper and lower airfoil coor-

20

dinates. The nondimensional box beam height (k) is
given by _ '
h=2z, -% (D2)

Next, by starting at a distance T, where

=1 (L‘%‘%) (D3)

the location of the right side of the box is similarly
determined. If the box is not within the airfoil shape,
Z, is increased from the trailing edge until the box
is within the airfoil shape. The nondimensional box
beam length (b) is given by

I (D4)

8

E:ir—

and the nondimensional area A of the box is given
by
A=bh (D5)

Next, Z; is incremented by 1 percent and the process
is repeated to compute a new area. The larger of the
two areas is kept. The process is repeated until three
consecutive areas are within a given tolerance. When
this occurs, a rectangular box of maximum area has
been determined.
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Table 1. Bounds for Design Variables Used in Optimization Examples

Design variables

Quantity Lower bound Upper bound
Twist,deg . . . . . . . . .. —20.0 -5.0
Taper initiation, r/R . . . . . 0.26 0.985
Taperratio. . . . . . . . .. 0.05 5.0
Root chord, ft . . . . . . . . 0.05 0.833
Elg, bft2 . . . . ... .. 50.00 20 000 000.0
EL,, b-ft2 . ... .. ... 5.00 1000.0
GJ, b-ft2 . . ... ... 5.00 1000.0
EADb. . ... .. 1000.00 200000 000.0
my, slug/ft . . . . . ... .. 0 0.50
vi.r/R . . . .. ... ... 0.24 0.95
L, ft . ... 0.00008 0.01
ai, 82 . . . L. 0 0.00004
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Table 2. Parameters and Flight Conditions Used in Optimization Examples

(a) Parameters

Minimum autorotational inertia, Alpn, Ib-f62 . . . . . . . . . . . .. .. e e e e e e o ... 2369
Allowable drag coefficient, cgan - - « « « - o o oo oo N ¢ 1
Minimum tip chord, ¢;min, ft - . - . - . oo e e e e e e . . 0.083
Number of blades, N . . . . . . . « . . . . .. e e e e e e e -
Number of aerodynamic segments:

HOVT . . . . . . « .« .. e e e e e e e e e e e e e e e e 19

CAMRAD/JA . . . . . . . .. e e e e e e e e e e e e e e 18
Number of structural segments . . . . . . « « .+« o . . 0 e e e e e e e e 50
Number of design variables:

Upper level . . . . . e e e e e e e e e e e e e e e e e e e e e e e e 22

Lower level . . . . . . . . . . .. e e e e e e e e e 18 (6 per location)
Power available, P, hp ~ . . . . . . . . o o oo e e e e e e e e e 20
Blade radius, R, ft . . . . . . . e e e e e e e e e e e e e o 3 <
Maximum blade mass, W,1b . . . . . . . . .. e e e e e e e e e e e e e e e 3.5
Factor of safety, ¢y . . . . . . . . ... .. e e e e e e e e e e e 2.0
Frequency increment, Af, perrev . . . . . . e e e e e e e e e e e e e e e e e 0.1
Allowable average strain, gq, ft/ft . . . . . . . . . oo oo e e e e e 0.05
ITERmax + + « « « « o v o o v 0 v v v o s e e e e e e e e e e e 40
Pmax - - o eETR I e e e e e e e e e e e e e e e e e e e e e e e e 300
Allowable stress, oq, Ib/ft2 . . . . . . . . .. e e e . 8.352 x 10°
Young’s modulus, F, Ib/ft2 . . L e . 15.26 x 108

(b) Flight conditions

Rotational velocity (in Freon with density of 0.006 slug/ f#3), Qrpm . . ... .o 639.5
Hover tip Mach number . . . . . . . . . . . . . . e e e e e e e e e e e e 0.628
Cr:
Hover . . . . . . . . . .. C e e e e e e e e e e e e e . . . . . . . 0.00810
Forward flight . . . . . . . e e e e e e e e e e e e e e e . . . 0.00810
Maneuver . . . . . . . e v e e e e e e e e e e e e e e e e e e 0.00985
Cp:
Forward flight . . . . . . . . .. e e e e e e e e e e s e e e e e —0.000811
Maneuver . . . . . . o+ . e e .. C e e e e e e e e e e e e —0.000596
Advance ratio:
Forward flight . . . . . . . . . . . . . .. e e e e e e e e e e e e e 0.35
Maneuver . . . . . . . . . e e e e e e e e e e e e e e e e e e e e e e e . 0.30
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Table 3. Example 1: Rectangular-Planform Starting Point With Matched Stiffnesses

(a) Initial and final values for blade planform, performance measures,
and dynamic measures

Quantity

Initial value

Final value

Hover power, hp
Forward flight power, hp
Maneuver power, hp . . . . . . . .
Hub shear, 1b
Objective function
Twist, deg
Taper initiation, r/R
Taper ratio
Root chord, ft
my, slug/ft
my, slug/ft
mg, slug/ft
y1,7/R
Y2, 7‘/ R
y3,7/R
Cycles to converge

............

14.81
13.26
12.22
2.1
20.578
-9.0
0.7

1.0
0.3449
0

0

0

14.50
12.96
11.94

1.1
19.9107
—-11.47
0.7010
1.664
0.3770
0.00027607
0.0031988
0.0020144
0.4503
0.5830
0.4534

76

(b) Initial and final values for constrained frequencies

Frequency, per rev Initial value Final value
foz -« o o oo 2.60 2.68
bd - e e e e 3.77 4.57
BS - - e e e e e 4.52 4.88
BE v v - e e e e 7.22 7.55
7 7.30 7.30
82 - . 3.61 3.83

(c) Final values for lower level design variables and upper level stiffnesses

Radial location 1 Radial location 2 Radial location 3
Variable (root) (point of taper initiation) (tip)
Final lower level design variables
68 ... L. 0.002366 0.002427 0.0004517
to,ft . ... .. 0.003261 0.009954 0.0003766
[ 7795 i 0.003414 0.009954 0.0003766
a;, t2 . . . . .. 0.00003341 0.00003293 0.00001610
ag, ft2 . . . . .. 0.00001615 0.00003084 0.00001192
ag, ft2 . . . . .. 0.00003281 0.00003293 0.00001610
Final upper level stiffnesses
EI, Ib-ft2 2057.0 2974.1 153.73
EI,, Ib-ft? 122.21 140.03 8.6135
GJ, b-ft2 . . . . 127.93 128.53 5.8743
EFAlb. .. ... 797 370 1647300 212230
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Table 4. Example 2: Tapered-Planform Starting Point With Matched Stiffnesses

(a) Initial and final values for blade planform, performance measures,

and dynamic measures

Quantity Initial value Final value

Hover power,hp . . . . . . . . . . . . . 14.85 14.74
Forward flight power, hp . . . . . . . . . . 13.38 13.02
Maneuver power, hp . . . . . . . . . . .. 11.93 11.84
Hubshear,lb . . . . . . . . . . . . . .. 0.6 0.66
Objective function . . . . . . . . . . . . 19.876 19.9326
Twist,deg . . . . . . . . « . . .. -16.0 —10.85
Taper initiation, r/R . . . . . . . . . . . 0.8 0.37
Taperratio. . . . . .« . . . . .. . 3.0 1.636
Rootchord, ft . . . . . . . . . . . . .. 0.45 0.4932
my,slug/ft . . . . . ..o oo 0 0.008961
mg,slug/ft . . . . . . . . oo 0 0.01354
mg,slug/ft . . . . . .. .o 0 0.0246
vi,7/R .. - oo 0.24
yo,7/R . e oo e 0.6164
y3, 7/R . . . o 0.6215
Cycles toconverge . . . . . . . . . . . . 93

(b) Initial and final values for constrained frequencies

Frequency, per rev Initial value Final value

Foz - - - - - - .- 2.93 2.86

foa - - oo 5.64 5.33

fos - - o oo 6.22 6.68

o - - o 10.25 9.16

fer oo 7.30 7.30

fta o oo 6.45 6.12




Table 5. Example 3: Tapered-Planform Starting Point With Unmatched Stiffnesses

(a) Initial and final values for blade planform, performance measures,

and dynamic measures

Quantity Initial value Final value
Hover power, hp . . . . . . . . . . . . 14.85 16.64
Forward flight power, hp . . . . . . . . . . 13.27 17.46
Maneuver power, hp . . . . . . . . . . . . 11.89 14.89
Hubshear,lb . . . . . . . . . . . . ... 0.186 2.45
Objective function . . . . . . . . . . .. 20.005 24.624
Twist,deg . . . . . . . . . ... .. .. -16.0 -11.98
Taper initiation, r/R . . . . . . . . . .. 0.8 0.8893
Taperratio. . . . . . . . . .. ... .. 3.0 1.3148
Root chord, ft . . . . . . . . . .. ... 0.45 0.7364
my,slug/ft . . . . 0. .00 0.008546
mag, slug/ft . . . ... 0.0077966
mg,slug/ft . . . . ... L0, 0.0090299
yLT/R . 0.32257
yo,7/R . . ..o 0.43886
y,7/R .. 0.39256
Cyclesto converge . . . . . . . . . . .. 92

(b) Initial and final values for constrained frequencies

Frequency, per rev Initial value | Final value

Foz - - - 287 2.90

Sod © o 5.54 5.87

fos5 « - o o oo 8.62 8.10

fos -+ o e 9.65 10.50

) 7% P 7.30 7.30

Foo L. 5.48 5.12
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Table 6. Effect of Coordination Parameter (¢) on Multilevel Optimization Procedure

Final value at € of—

28

Quantity Initial value 04 -0.2 —04
Hover power, hp . . . . . . 14.81 14.44 14.60 14.50
Forward flight power, hp . . . 13.26 12.77 13.11 12.96
Maneuver power, hp . . . . . 12.22 11.75 11.96 11.94
Hub shear,lb . . . . . . . . 2.1 0.2072 1.85 1.1
Objective function . . . . . 20.58 19.48 20.22 19.9107
Twist,deg . . . . . . . .. -9.0 —13.32 -11.12 —11.47
Taper initiation, r/R 0.7 0.7859 0.8246 0.7010
Taperratio . . . . . . . . . 1.0 3.155 1.410 1.664
Root chord, ft . . . . . . . 0.3449 0.3651 0.3606 0.3770
my, slug/ft . . . . . ... 0 0.02571 0.00135 0.0002761
mo, slug/ft . . . . . . . .. 0 0.00211 0.0000995 0.0031988
mg, slug/ft . . . . . . . .. 0 0.00099 0.0000727 0.0020144
yi.,7/R . . .. oo 0.4124 0.3115 0.4503
yo,7/R .. .. ..o 0.4154 0.3950 0.5830
y3,7/R . . ... 0.4382 0.4292 0.4533
Cycles to converge . . . . . 90 152 76




Table 7. Case 1: Comparison of Single-Level and Two-Level Optimization
Procedures for Rectangular Starting Design

Final value for approach—

Quantity Initial value | Single level Two levels

Hover power, hp . . . . . . 14.81 14.42 14.50
Forward flight power, hp . . . 13.26 12.87 12.96
Maneuver power, hp . . . . . 12.22 11.83 11.94
Hub shear,1b . . . . . . . . 2.1 1.27 1.1
Objective function . . . . . 20.578 19.5469 19.9107
Twist,deg . . . . . . . .. -9.0 —-13.25 —11.47
Taper initiation, /R 0.7 0.7131 0.7010
Taperratio. . . . . . . .. 1.0 2.21 1.664
Root chord, ft . . . . . . . 0.3449 0.3813 0.3770
my,slug/ft . . . . .. ... 0 0.003065 0.00027607
mg, slug/ft . . . . . . . .. 0 0.04554 0.0031988
ma,slug/ft . . . . . . . .. 0 0.013545 0.0020144
yi.v/R . . ... ... 0.3073 0.4503
yo.7/R ... ... 0.5132 0.5830
y,*/R . ... L. 0.5061 0.4534
Feasible design . . . . . . . Yes Yes

Table 8. Case 2: Comparison of Single-Level and Two-Level Optimization
Procedures for Tapered Starting Design

Final value for approach—

Quantity Initial value | Single level Two levels
Hover power, hp . . . . . . 14.85 14.41 14.74
Forward flight power, hp . . . 13.38 12.67 13.02
Maneuver power, hp . . . . . 11.93 11.68 11.84
Hub shear,Ib . . . . . . . . 0.6 0.7137 0.66
Objective function . . . . . 19.876 19.377 19.9326
Twist,deg . . . . . . . .. —16.0 —-13.22 —10.85
Taper initiation, /R 0.8 0.4934 0.37
Taperratio. . . . . . . . . 3.0 3.098 1.636
Root chord, ft . . . . . . . 0.45 0.4899 0.4932
my, slug/ft . . . .. .. .. 0 0.002305 0.008961
mo,slug/ft . . . . . . . .. 0 0.1636 0.01354
ms, slug/ft . . . . . . . . . 0 0.2922 0.0246
v,r/R .. ... 0.2420 0.24
v.r/R . ... 0.2420 0.6164
y.m/R ... 0.3610 0.6215
Feasible design . . . . . . . No Yes
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Table 9. Case 3: Multilevel Approach Starting From Feasible
Single-Level Optimization Solution

Initial value Final value
from single- from two-
Quantity level approach | level approach

Hover power, hp . . . . . . 14.42 14.44
Forward flight power, hp . . . 12.87 12.89
Maneuver power, hp . . . . . 11.83 11.83
Hub shear,1b . . . . . . . . 1.27 1.13
Objective function . . . . . 19.5469 19.814
Twist,deg . . . . . . . . . -13.25 -12.51
Taper initiation, r/R 0.7131 0.7450
Taper ratio . . . . . . . . . 221 2.4041
Root chord, ft . . . . . . . 0.3813 0.3834
my, slug/ft . . . . .. .. .003065 0.001920
ma, slug/ft . . . . . . . .. 0.04554 0.08434
mg, slug/ft . . . . . . . .. 0.013545 0.01985
y,7/R . . . . .o 0.3073 0.3487
yo,7/R . . . . . .. 0.5132 0.4397
ys,7/R . . . .. 0.5061 0.4421
Feasible design . . . . . . . Yes Yes

Table 10. Case 4: Multilevel Approach Starting From Infeasible
Single-Level Optimization Solution

Quantity

Initial value
from single-

level approach

Final value
from two-

level approach

Hover power, hp . . . . . .
Forward flight power, hp . . .
Maneuver power, hp . . . . .
Hub shear,lIb . . . . . . . .
Objective function . . . . .
Twist,deg . . . . . . . . .
Taper initiation, /R

Taper ratio . . . . . . . . .
Root chord, ft . . . . . . .
my, slug/ft . . . . . . . ..
my, slug/ft . . . . . . . ..
mg, slug/ft . . . . . . . ..

yo,r/R . . . . . .. ..
yo,7/R . . oo oo

Y3, T / R . ... .. .. ..
Feasible design . . . . . . .

14.41
12.67
11.68
0.7137
19.377
—-13.22
0.4934
3.098
0.4899
0.002305
0.1636
0.2922
0.2420
0.2420
0.3610
No

14.83
13.35
11.96
1.29
20.328
—10.80
0.36
2.164
0.5926
0.0009530
0.04803
0.1042
0.2913
0.3221
0.4373
Yes
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Upper level design variables

v

CAMRAD/JA Design variable CAMRAD/JA
analysis l Preprocessors i analysis

T T e e - e Em e —m - - - 1 e e T e e e, ——-——- 1
| | i i
: Forward flight : : Maneuver :
I performance I I performance |
| | HOVT | |
: v : analysis : v :
: Forward flight l v ! Maneuver !
i airloads : Hover I airloads :
! v ; performance ! v :
I |

I Forward flight : | Maneuver :
: dynamic response : : dynamic response :
I________l _______ | I_________i _______ 1

Forward flight Maneuver
structural analysis structural analysis

l . J
> Objective function <

and constraints

Figure 3. Flowchart of upper level analysis.
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Point of taper initiation: y;. =1/R
Z Root chord: ¢,
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Figure 4. Upper level design variables.

tl z t4
v i maling
? 4] a2 a3 Line of
symmetry
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Figure 5. Lower level design variables.



Loads, stiffnesses, and
local chord
from upper level

v

Calculate stlffpesses from <
lower level design variables

v ’ v

Structural analysis Structural analysis
load case 1: load case 2:
Forward flight Maneuver

Stresses ¢ ¢ Stresses

Objective function
and constraints

v

Optimizer

v

Updated design
variables

Converged
?

Retumn to upper level

Figure 6. Lower level flowchart.
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Current upper
level design
variables

Cycle =Cycle + 1

Upper level analysis
|
Lower level Lower level Lower level
optimization: optimization: optimization:
Radial location 1 Radial location 2 Radial location 3

v

Upper level sensitivity analysis

v

v

v

Converged
?

Lower level
optimum sensitivity:
Radial location 1

Lower level
optimum sensitivity:
Radial location 2

Lower level
optimum sensitivity:
Radial location 3

Iteration

v

Coordination constraints

v

Approximate analysis

v

Optimizer CONMIN

Updated upper level
design variables

Figure 7. Overall optimization flowchart.



Center of
rotation
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(a) Example 1: rectangular planform with matched upper and lower level stiffnesses.

Twist =-16°

(b) Example 2: tapered planform with matched upper and lower level stiffnesses.

Twist =-16°

(c) Example 3: tapered planform with unmatched upper and lower level stiffnesses.

Figure 8. Starting points.
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Figure 12. Convergence history of upper and lower level stiffness deviations for example 2.
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Figure 14. Convergence history of upper and lower level stiffness deviations for example 3.
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Figure 18. Convergence history of upper and lower level stiffness deviations for case 4.
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Figure 21. Lift distribution on retreating side of rotor disk.
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Figure 22. Wing box in RC(4)-10 airfoil.
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