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Abstract

We present a description of the vibrational excitations of methane by means of

an algebraic analysis of a model of coupled anharmonic oscillators.

1 Introduction

Consider an AB4-1ike tetrahedral molecule and supl)ose we are interested in describing its vi-

brational degrees of freedom. This can be accomplished either in the framework of an integro-

differential scheme or by means of an algebraic apl)roach. The former constitutes the traditional

method, which consists in parametrizing the Hamiltonian in terms of internal coordinates [1],

where the potential is modeled in terms of force field constants that can be obtained from

theoretical calculations or from fits to spectroscopic data [2]. On the other hand, the algebraic

approach represents an alternative to the traditional methods based on the use of Lie algebras to

represent the interactions [3]. The algebra used to describe the vibrational degrees of freedom is

not unique. Michelot and Leroy, for example, use a unitalT group U(n) a.s the dynamical group

of the system with n - 1 vibrational degrees of fi'eedom [4], while Iachello and Oss introduce

an SU(2) algebra for each atomic degree of freedom [5]. In this work we carry out a complete

description of the vibrational excitations of tetrahedral molecules by assigning a U(2) algebra

to each interatomic potential.

2 Algebraic Model

The model is based on the isomorphism of the U(2) algebra with a one-dimensional Morse

oscillator, whose eigenstates may be put into a one to one correspondence with a set of U(2) D

0(2) states, characterized by the quantum munbers I[N],m >, as long as the value of m is

restricted to be non-negative. In this space the Morse Hamiltonian takes the simple form 7_ =
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AC2o(2), where A and N are related to the Morse potential parmneters and 6'2o(2) corresponds

to the square of the 0(2) invariant operator [3].
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FIG, 1. Assignment ()f the ui(2) algebras to tetrahedral molecules.

For the description of a tetrahedral molecule we assign a Ui(2) algebra to each interaction

present, as shown in Fig. 1. The first four algebras have been chosen to correspond to the A-B

interactions, while the other six represent the B - B couplings. The molecular dynamical group

is then given by the product U 1(2) x... x U_°(2), and the most general Hamiltonian, up to two

body interactions, conserving the total number of quanta and invariant under the tetrahedral

group iTd, can be written as

72l = _.s' + _B + _S-/_ (1)

The term 72/s describes the stretclfing degrees of freedom and has the form

4 3 4 3 4

i=1 i=1 j=i+l i=1 j=i+l

while 7_ B is the bending contribution, given by

i=5 _ /=6 i=5,10 /=7,9 i=6,8

E F. M,,+ E M,;
j=6 i=5,10 j=7,9 i----6,8

"_- A5,10 {M5,10 -_- d_6,S "_J_7,9}

C2ou (2) }
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The last operator, 1)_ -e, represents the stretching-bending interactions, which will be neglected

as a first approximation. Ill these expressions C2o+i(2) corresponds to tl_e oiJ(2) Casimir in-

variant, while .'Qij is the Majorana operator, which is related to the UiJ(2) Casimir operator

[31.
The simplest basis to diagonalize the Hamiltonian is the one associated to the local-mode

chain [3]

U(1)(2) x ... x U(4)(2) x U(5)(2) x ... x u(l°)(2) D O(1)(2) x ... x O(1°)(2) D 0(2)

1 l (2)
I[N,] , ... IN,] [U2] , ..., IN:] v,, ..., vl0; V >,

1

where below each group we have indicated the quantum numbers characterizing the eigenvalue

of the corresponding invariant operator. The two boson numbers N1 and N2, are related to the

two sets of physical modes (stretching and bending). The quantum numbers vi correspond to

the munber of phonons in each oscillator (vi = N_ _ ,tti), while V = _21 °, vi.2

A simple analysis of an AB4 tetrahedral molecule [6] shows that it presents 9 vibrational

degrees of fl'eedom, four of them corresponding to the flmdamental stretclfing modes (A1 • F2)

and the other five to the flmdamental bending modes (E ® F2). Comparing this result with the

local basis (2), we deduce that an unphysical bending mode is present in the algebraic formalism.

We thus proceed to eliminate this spurious state both fi'om the Hamiltonian and the basis.

To accomplish this goal we first transform, for the one phonon case, the local basis to a

normal one, which carries the irreducible representations (irreps) of the 7-d group. With this

change of basis we obtain the decomposition Al q_ F2 for the stretches and A1 • E ® F2 for the

bends. From this result we readily identify the Al bending mode as the spurious state. We now

eliminate this Sl)urious state fi'om the space and proceed to construct the higher phonon basis

fi'om the physical one-phonon set by means of the coupling coefficients C( ; )

(3)

where P mad 3' label the irreps of Td and its components, respectively.

To eliminate the spurious contributions fl'om the Hamiltonian we demand its null expecta-

tion value with respect to the one-phonon spuriotm fimctions [7]

< l_At I_At >=0 (4)
bending 1)ending '

which leads to a constraint

4(1 - N2)A5 + 16(1 - 2N2)Bs,6 + 4(1 - 2N2)Bs,,0 = 0

between the interaction parameters.

The vibrational energies are obtained by diagonalizing the Hamiltonian (1) with respect to

the normal basis (3), constructed fi'om the projected one-phonon functions (A1, F2)-stretching

and (E, F_)- bending, taldng into account the constraint (4).
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TABLE I. Experimental [2,6,9] and calculated energies (cm -1) for methane.

Normal

V label F Expt. Cale. V

1 u4 F2 1310.0 1303.7 3

v2 E 1533.0 1520.4

vl A1 2916.5 2918.4

u3 F2 3019.4 3027.2

2 'A1

2u4 , E

F2

//2 + /]4 IF1

2,J2

vl +v4 F2

v3+v4 , E

F1
,F2

v2 + v3 IF1F2
vl + v2 E

2vl A1

Vl + v3 F2

IA,

3//4 _ F1

J:

v2 + 2v4 I E

I A 2

F2
FI

2v2 + u4 ,,F2

2474.5

2476.4

2614.0 2610.5

2827.2

2830.4 2841.5

3003.7

3026.3

4223.0 4222.0

4330.9

4330.9

4330.9

4319.0 4330.9

4547.7

4549.0 4547.7

4438.8

5788.0

5861.0 5856.7

5974.4

6004.7 6014.5

6047.7

4123.0

3624.3

3778.3

3779.4

3920.4

3925.7

3935.6

3987.9

4017.6

4123.9

4260.4

4425.5

4317.4

4387.6

Normal

lal)el F Expt. Calc.

I

Vl + /22 + I]4

v2 + v3 + v4

ul + 2v2

2v2 + v3

2vl + '/4

/]1 +31-V3 +4- //4

2,]3 + 124

2vl + v2

vl + v2 + v3

v2 + 2v3

3/]1

F2 5745.65775.0 5759.9

_2 5854.4

E 5854.4

FI 5854.4

iF2 5854.4

A1 5868.7

E 5868.7

F1 5868.7

F2 5861.0 5868.7

_1 5922.0E 5944.7

_2 6030.9

F_ 6053.5

F2 6053.5

F2 7091.7

41 7160.4
, E 7160.4

F1 7160.4

F2 7160.4

_2 7278.1

E 7308.4

Al 7318.2

_F_ 7318.2

IF2 7318.2
!F2 7351.4

_ 7351.47318.2

IF, 7377.17377.1
7494.8

IF1 7534.9

_F2 7514.0 7534.9
E 7568.1

A2 7568.1

_A1 7568.1
A1 8581.1
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V

Nornlal

label F

AI

3u2 _'E

IA2

rA,
u! + 2114 , E

F2
F_

1/3 -_ 21] 4 , F2

A1

E

F,

Expt. Calc. V

4495.3

4510.9

4575.7

5392.8

5394.7

5501.7

5503.6

5503.6

5528.8

5637.7

5637.7

5637.7

5637.7

Nornla]

label F Expt. Calc.

2ul + ua F2 8604.0 8603.0

A, 8725.5

U 1 + 2ua ,F2 8807 8794.1
8838.5

_2 8900.0 8910.0

3u3 ,F, 8944.8

A1 8982.1

9o45.o 9034.5

3 Methane

In this section we al,ply this algebraic approach to describe tile vibrational levels of methane.

According to the Hamiltonian (1) the munber of parameters is eight, plus the boson mlmbers

N1 and N2. The vibron lmnll)er Nl can be fixed from the anharmonicity of the C - H bond,

while for the bending vibrations we have taken N2 from the H - H interaction in H20 given

in reference [8]. From these considerations, the number of free parameters is seven, taking into

account the constraint (4).

TABLE II. Parameters of the Hamiltonian obtained in the least square fitting

(cm -1 ). The nmnbers of bosons are taken to 1,e N1 =43 and N_=28.

Stretching

A, BI_ A12

-13.2125 -0.6850 0.6328

Bending

As B5,6 Bs,IO A5,6 A5,10

35.4844 2.6492 --28.0164 9.0501 5.1799

The Hamiltoifian (1) is diagonalized in the normal basis, built by repeated couplings of

the form (3). Since by construction this basis is symmetry adapted, the Hamiltonian matrix

separates into blocks corresponding to the irreps of Td. In Table I we present the least square

fit for methane up to three quanta. Following Herzberg's notation [6], the four fundamental

energies for A1, F2 (stretching) and E, F2 (bending) have 1)een denoted by Ul, 1]a, u2 and l]4,

respectively. The final parameters are given in Table II. The model in its simplest form (without
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including the V °-s interaction or higher order terms) seems to provide a good description of

19 experimental energy levels with an rms deviation of 12.16 Cln -1 .

4 Conclusions

We have presented a new method, which applied to an algebraic model of coupled aalharmonic

oscillators is able to describe the complete vibrational spectrum of polyatomic molecules. We

emphasize that the method systematically incorporates group theoretical techniques which sim-

plify the diagonalization of the Hamiltonian and provide a clear methodological procedure that

can be applied to other molecules [10]. Although we have used the model in its simplest form, it

can be improved in the following ways: a) Inclusion of the stretching-bending interactions 1_"s-B,

(b) Introduction in the Hamiltonian of laiglaer order terms and (c) Addition of interactions which

do not conserve the total munber of quanta.
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