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Abstract

A geometrical interpretation for the outer multiplicity p that occurs in a reduction of the

product of two SU(3) representations, (A., #.) x (A_, tt_) _ _p(A, #)p, is introduced. This

coupling of proton (Tr) and neutron (u) representations arises, for example, in both boson and

fermion descriptions of heavy deformed nuclei. Attributing a geometry to the coupling raises

the possibility of introducing a simple interaction that provides a physically meaningful way

for distinguishing multiple occurrences of (A, p) values that can arise in such products.

1 Introduction

The objective of our program in nuclear structure physics has been to bridge the gap that exists

between collective and shell-model descriptions of observed nuclear phenomena. Progress has been

slow because of the difficulty in making realistic shell-model calculations, at least when measured

against the background of the success of simpler collective models. Algebraic shell-model theories

come closest to realizing this objective. Regarding the latter, there are two basic types of algebraic

theories: those based on a boson description of the dynamics, such as the Interacting Boson Model

(IBM) [1], and those which treat the nucleons as fermions.

The first and most familiar algebraic fermion model is the Elliott SU(3) scheme. It is known

to work well for light (A _< 28) nuclei [2]. Another is the Sp(a,R) (denoted Sp(6, R) sometimes)

or symplectic model which is a natural multi-hw extension of the Elliott scheme [3]. For heavier

systems (A > 150) there are currently two algebraic models being employed: the so-called Fermion

Dynamical Symmetry Model (FDSM) which identifies s and d fermion pair operators that form

an algebra which closes under commutation (the SO(8) group for the n = 4 shell and Sp(6) for

n = 5 and n = 6, which has SU(3) as a subgroup) and gives a possible microscopic interpretation

of the IBM [4], and the pseudo-SU(3) model and its pseudo-symplectic extension which builds on

the concept of good pseudo-spin symmetry in heavy nuclei [5, 6, 7].

The common algebraic structure in these theories is the SU(3) group. This is understandable

because the angular momentum L and the deformation generating quadrupole operator Q - when

restricted to a single major oscillator shell - are generators of SU(3). In particular, large irre-

ducible representations (irreps) of SU(3) correspond to configurations of constant deformation. In
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the next section we expand on the connection, and in so doing establish a basis for

the geometrical picture of the SU(3) outer multiplicity that is presented in the subsequent sec-

tion. While no proofs are given, it should be clear from the discussion that' the proposed scheme

has potentially far reaching consequences regarding a physically motivated interpretation of the

outer multiplicity whenever there is an applicable group contraction-expansion procedure, which

is SU(3) _ Ts/xSO(3) in the present case. Here TsASO(3) is the symmetry group of the rotor.

2 SU(3)- Rotor Connection

A geometrical interpretation for SU(3) can be achieved by looking at a shell-model interpretation

of collective quadrupole motion as depicted in terms of a triaxial quantum rotor. The trick

that we apply is to first express the Hamiltonian for the rotor in a frame-independent form

because that expression can then be rewritten in terms of its corresponding microscopic operators.

The rotor is a particularly elegant example because this prescription is easy to apply and leads

immediately to the sought after shell-model representation. Furthermore, the operators that

enter into the expression have historical significance, dating back to Raeah's pioneering work on

the SU(3) D SO(3) symmetry group [8]. Since the argument is illustrative it bears repeating, but

in an abbreviated form. A more complete description can be found in the book by Casten [9].

The triaxial rotor Hamiltonian is given by

Hnow = AII_ + A2I_ + AaI_ (1)

where Im (a = 1, 2, 3) is the projection of the total angular momentum on the a-th body-fixed

symmetry axis and Am is the corresponding inertia parameter: Am = 1/(2Jm) where J_ is the

moment of inertia about the a-th principal axis. This familiar principal-axis form can be rewritten

in a frame-independent representation by introducing three special scalar operators:

L 2 = _(_L_Lm = E_I_,

c

X4 __, f _c _c L 2 2
a,B,'y m

The L_ and Q_z in this equation are Cartesian forms for the total angular momentum and col-

lective quadrupole operators, respectively. (The superscript c appended to the Q denotes the

collective quadrupole operator which has non-vanishing matrix elements between major shells

(n' = n, n + 2), in contrast with the algebraic quadrupole operators, Q_z, which have non-

vanishing matrix elements only within a major shell, n' = n.) The last expression given for each

scalar in eq.(2) is the form these operators take in the body-fixed, principal-axis system where

the eigenvalues of the Q_,_ are presumed to be sharp: (QC_z} = A_6m,_. These equations can be

inverted to yield the Ia2 in terms of L 2, X_, and Xg:

2 c (A_)X_] �Din where D. = 2,kaa + )_1/_2/_3. (3)= + +

Substituting this result for the I_ into eq.(1) yields

HltOT = aL 2 + bX_ + cX_ ; (4)
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where a, b and c depend on the inertia parameters and the eig'envalues of QC:

a= y_.a_,A_ , b= E bc,Ao , c= _c_,A_ , (5)
O_ Ot OL

A_A_ , bo = As 1
as= 2A_+A_A_ 2A_+A_A.y ' ca- 2A_+A_A- r

where a -_ fl -_ _' =fi a.

A shell-model image of the rotor Hamiltonian can be obtained by substituting single-particle

forms for the collective Lo and Q_ operators: Lo = _, G(i) and QC =_ _, q_(i). However, this

ignores the shell structure and the fermion character of the many-body system. It is important to

remember that while the L_ have non-vanishing matrix elements only within a major oscillator

shell, the Q_ couple shells differing by two quanta (n' = n, n ± 2). Indeed, the off-diagonal

(n' = n + 2) couplings are about equal in magnitude to the diagonal (n' = n) ones. It follows

from this that operators like QC. QC and the X_ and X_ (even if used only as residual interactions)

can destroy the shell structure. This catastrophe can be avoided easily by simply setting all off-

diagonal couplings between major shells to zero, an action which corresponds to replacing the

Q_ operators by their algebraic counterparts, Qa_' Elliott was the first person to recognize that

the Q_,_ operators, along with the L_, generate SU(3), the symmetry algebra of the isotropic
harmonic oscillator Hamiltonian. The appropriate shell-model image of the rotor Hamiltonian,

eqs.(1) and (4), is thus given by

Hsu3 = Ho + aL 2 + bX_ + cX_, (6)

where H0 is the harmonic oscillator Hamiltonian.

Shell-model values for the As are required to complete the mapping. This follows by equating

invariants of the two theories, a very natural thing to do since constants of the motion relate to

the important physics, which in turn should be independent of the particular description. Because

SU(3) is a rank two group it has two invariants: C2 with eigenvalue [A2 + A# + #2 + 3(A + #)], and

(?3 with eigenvalue [(A- #)(A + 2# + 3)(2A + # + 3)/2], where A and # are SU(3) representation

labels with (A + #) and #, respectively, specifying the number of boxes in the first and second

rows in a standard Young diagram labeling of irreps of the SU(3) group. Note that C2 is of degree

two in the generators of SU(3) while C3 is of degree three. The symmetry group of the rotor

[ThASO(3)] also has t,wo invariants: traces of the square {Trace[(Q2)2]} and cube {Trace[(Q2)3]}

of the collective quadrupole matrix. The eigenvalues of these two invariant operator forms are

2 2 2 __..,A1+ A2 + Aa (kZ) 2 and A_A2A3 (kfl) 3 c0s(33,), respectively, where (fl, _') are the shape variables

of the collective model and k 2 = _ (At-2) 2. The requirement of a linear correspondence between

these two sets of invariants leads to the following relations,

A, = -(A - #)/3, A2=-(A+2#+3)/3, A3=+(2A+It+3)/3. (7)

This correspondence, in turn, sets up a direct relationship between the (fl, 3_) shape variables of

the collective model and the (A, It) irrep labels of SU(3),

fl__ 4zr #2 3] tan-' ( V/-:J(it + 1) '/5(At2) 2[A 2+A#+ +3(A+it)+ , 3'= _7)_T+-5]
(8)
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Since A and # are positive integers, this translates into a regular grid when superimposed on a

traditional (/?, 7) plot, with/? the radius vector and 7 the azimuthal angle:

k/?= = k/?cos(7) - 2A + p + 3 k/?y = kflsin(7) - # + 1
3 ' v/5 " (9)

Each (A,#)-irrep corresponds to a unique value for the (/?,'}')-pair. In the limit of large (A,p)

values the constant +3 factor in A2 and A3 can be dropped and in so doing one arrives at the

asymptotic results [3]. The +3 and +1 factors in/?2 and 7 as well as those in fl= and /?u also

disappear in this limit.

3 SU(3) - Outer Mulitiplicity

Having established the SU(3) - rotor connection, it is instructive to push the (/?,7) _ (A, #)

connection to a consideration of a coupled double-rotor picture which is commonly used to describe

heavy nuclei in a collective model framework, see Figure 1 ahead, with one rotor representing the

protons (Tr) and another the neutrons (L,). This associates physics with the SU(3) coupling picture

and, as we will see in greater detail later, it also leads naturally to a geometrical interpretation for

the SU(3) outer multiplicity label. This picture also suggests a natural way for para.Ineterizing

the proton-neutron interaction in terms of the geometry of this simple scheme, for example, one

with final states of the same (A, #) but different multiplicity energetically separated from one

another due to a simple interaction that senses the relative orientation of the parent proton-neutron

configurations. We will return to this matter after making the geometrical picture quantitative

for the special case of prolate proton-neutron (Tr - _ ) parent configurations.

To get a feeling for the proposed scheme, consider the special case of prolate 7r-v factors (% = 0

and % = 0) in the parent configuration. In this case it is sufficient to introduce a single angle

which measures the relative orientation of the principal axes of the two distributions; rotations

about either the proton or neutron symmetry axis effect no change, only rotations about an axis

that is perpendicular to the plane defined by the principal axes are distinguishable. (The scissors

mode used to describe t_(M1) strengths gets its name from this simple picture ... O measures the

angle between the two blades of the scissors. Also note that the Exclusion Principle, which applies

because the nucleons are considered to be fermions, is not violated by the coupling because the

two distributions are made up of different particle types.) For O = 0 ° the two axially symmetric

ellipsoids overlap maximally (aligned principal axes) whereas when 8 = 90 ° the principal axes are

perpendicular to one another and the resulting overlap is a minimum.

The (/?, 7) value of the product can be determined once/?.,/?_ and 8 are specified. Recall that

/? and 7 are determined respectively by the trace of the square and cube of the quadrupole matrix,

see eq. (8), and that the quadrupole matrix of the joint distribution is just the sum of the separate

proton and neutron distributions, with the second (Q_) rotated by an angle _ relative to the first

(Q,): Q = Q, -4-RQ_,R -1 where R = exp(iO, fi) and _ points in the direction of _, x fi_ with ft,

and _ defined to be unit vectors that point respectively along the proton and neutron symmetry

axes. Or vice-versa, given/_,/?. and (/?, 7) one can clearly deduce the relative orientation angle

8. This construction corresponds to the (A,, #, = 0) ® (A_, #, = 0) --_ E ® (A,#) coupling in

the SU(3) case which is known to be simply reducible, that is, each of the allowed (A, #) irreps

in the product [(A,#) = (A, + A_,0), (A, + A_ - 2,1), (A, + A_ -4,2), ..., (A> - A<, A<), where

102



)_> = max(,k_, Av) and A< = min()_, Av)], occurs once and only once. Arguing by analogy with

the collective model picture, it is relatively easy to see that a discrete orientation angle 0n can be

associated with the (,k_ + ,kv - 2n, n) irrep in the product (A_, #_ = 0) ® (Av, #v = 0) where n is

an integer given by n = 0 (0 = 0 ° --'11), 1,.,., min(,k_, ,k,) (0 = 90 ° 4_1_).

x =
p_('X", _")

Figure 1: Schematic representation for the expansion of a product of two quadrupole mass dis-

tributions in terms of other quadrupole mass distributions. The upper product is for triaxial

quantum rotors, which are characterized by the (/3, _/) shape variables of the collective model

and have a [TsASO(3)] symmetry; the lower coupling is for ()_,#) irreps of S'U(3). The overlap

function fn is the inner product {(/3", 7")1(/3, ?); (/3', "/)}n where f_ = (_p, 0, ¢) specifies the Euler

angles giving the relative orientation of the principal axes of the unprimed (1(/3, 7))) and primed

(1(_',')")}) systems. In the SU(3) case, the decomposition is a sum of SU(3) irreps with integer

multiplicity p which can be determined by the Littlewood rules for coupling Young diagrams. The

multiplicity Pa, like fn, can be related to the number of distinguishable orientations of the two

initial distributions that yield the final one.

Finding an expression for 0n in terms of (,_,#_ = 0), (Av,#v = 0)i and the final (A,#)

illustrates a prescription that can also be applied to the case of general shapes when the # values

of the factors (#_ ¢ 0; a = 7r, u) are non-zero. First of all note that the various (_, #) values that

enter determine the eigenvalues of the corresponding quadrupole matrix, see eq. (7). It follows from

this that an analytic form for 0n can be derived by requiring that the root_ of the characteristic
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equations for Q, + RQ,,R -1 and Q coincide: IQ- + RQ,,R-11 ¢_ IQI. The solution to the set of

equations that this condition generates, yields the following general result for 0n as a function of

A, and A_:

0n = sin-l([n(A, + A,.,- n)/(A,_A_,)]I/2), (10)

where the integer index n = 0, 1, ..., min(A., A_) = A<. Although this expression is symmetric

in )% and £_ and goes respectively to 0 ° and 90 ° for n = 0 and n = A< as required, it has no other

obvious symmetry properties, and in particular, note that the allowed 9 values are not distributed

symmetrically about the 9 = 45 ° plane, a result that is related to the occurrence of the square

root in the argument of the inverse sine function.

When one of the two factor distributions is triaxial (7. _ 0 and _ = 0 or 7. = 0 and % _ 0)

the situation is only slightly more complicated. In this case two angles rather than one are required

to specify the relative orientation of the two distributions: 9 as introduced above to specify the

relative orientation of the major axes, and another angle _ that specifies the rotation of the minor

axes of the triaxial shape relative to an axis that is perpendicular to the plane defined by the

principal axes of the two factor distributions. Only values of 9 and _ that lie between 0° and

90 ° lead to distinguishable configurations. In the SU(3) case this construction corresponds to the

(A,,#_) ® (A_,#_) --_ E @ (A,#) coupling, where #, 7_ 0 and #_ = 0 or #, = 0 and #_ _ O,

respectively. While this SU(3) coupling is more complicated than the previous case, it remains

simply reducible, that is, each of the allowed (A, #) irreps in the product occurs just one time.

However, because one of the two # values is now nonzero, the pattern of allowed final (A, It) values

is considerably richer than in the previous case: (A, It) = (A_ + A_, It>), (A_ + A_- 2, It> + 1), ...,

(A_+A.- 1, It>-X), (A,/+A_-3, It>),..., (A_+A.-2, It>-2), (A_+X.-4, It>-l),..., where It>

= max(It_, Its). The general result, (A_, Its) ® (A_, Its) -_ E,,,, ® ()% + A_ - 2n - m, It> + n - m),

requires one additional non-negative integer (m) that specifies the number of completed (three

box) columns in the final Young diagram.

In general one must deal with two triaxial shapes ('y_ _ 0 and V. _ 0) and the corresponding

product distribution: (/3_, "y_) × (¢3_, 7_) _ (/3, 7). The geometrical interpretation is considerably

more complicated in this case because three Euler angles (_z, 0, ¢) are required to specify the relative

orientation of the factor distributions. For (_, 0, ¢) = (0 °, 0°, 0 °) the major and minor axes of the

sub-distributions coincide (maximum alignment) whereas if (_, 0, ¢) = (0 °, 90 °, 0 °) the semi-axes

(y) remain aligned but the major (z) and minor (x) axes of the two systems are perpendicular to

one another, etc. In the corresponding SU(3) case the allowed product configurations are again

determined by the Littlewood Rules but now for the coupling of two two-rowed Young diagrams.

There is a need for three (_,0,¢) _ (m,n,p) rather than one [prolate shapes: (0) _ (n)] or

two [one prolate and one triaxial shape: (0, ¢) _ (m, n)] quantum labels in this general case:

(A_, Its) ® (A_, Its) --_ (A. + At, + m, It. + It_ + n)p, where p is a non-negative integer index

(p = 1,2, ...,Pmax) labeling distinct occurrences of the same (A, It) in the (Az, It,r) ® (A_,,It_)

product. Working backwards, it should also be clear that the 03, "y) _ (A, It) correspondence

can be used to give a Igeometrical interpretation to the abstract group theoretical concept of
I

the outer multiplicity - at least for the SU(3) case - which has up until now escaped a simple

physical interpretation. Specifically, the multiplicity p, together with m and n, can be considered

to be a measure of the relative orientation of the two factor distributions. In this way the first

(p = 1) occurrence of (A, It) corresponds to a parent configuration oriented with one set of angles

(_1,01, ¢1) while the second (p = 2) solution corresponds to another set (qz2, 92, 02), and so on.
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If Pma= = 1, the corresponding (A, #) distribution can only be realized in one way. With this

interpretation in hand the evaluation of reduced matrix elements and especially SU(3) coupling

and recoupling coefficients should be revisited, looking for asymptotic solutions that exploit the

geometrical concept of overlapping ellipsoidal mass distributions.
It is instructive to view the relationship between the rotor and SU(3) theories at a more

fundamental level. This can be achieved by comparing the algebras of their symmetry groups.

The symmetry group of the quantum rotor is the semi-direct product ThA SO(3) where T5 is

generated by the five independent components of the (spherical) collective quadrupole operator

(Q_) and SO(3) is generated by the angular momentum operators (L,). The generators of SU(3),

on the other hand, are the Q_ [see the discussion following eq.(1)] and the L, operators. If Q=

denotes a generic quadrupole operator, the commutation relations of the L, and the Q_ are

[L,, L_]

[Lt,, Q_,]

[Q;,Q_]

= -v_< lp, lull,#+u > L,+,, ,

2?

= -_/'6 < lp, 2ul2, p + u > Qu+. '

= c<2#,2u[1,#+u>L_+_,,

(11)

where c = 0 for TsA SO(3), (QX = QC), c = +3x/_-6for SU(3) (QX = Qa), and c = -3v/'i-0

for a heretofore not mentioned group Sl(3,R) [Q= = Qb _ (xipj + pjxi)] which is associated with

shear degrees of freedom. In eq.(I1) the < , l- > symbol denotes an ordinary SO(3) Clebsch-

Gordan coefficient. [All three of these groups, ThASO(3), SU(3) , and S/(3, R), are subgroups

of the symplectic group Sp(3,R).] From these commutation relations it is easy to see how the

SU(3) algebra reduces to that of ThASO(3): if Qa is divided by the square root of the second

order invariant of SU(3) (Qa ,_ Qa/v"--_2 where by definition the invariant C2 = (Qa.Qa + 3L2)/4

commutes with the Q_ and L, operators), the first and second commutators in eq.(ll) remain

unchanged, while the Lu+. on the right-hand-side of the third goes over into L,+_,/C2 and for

low L values in large SU(3) irreps, L_,+_,/C2 ---* O. This renormalization of the Q_ operator is a

group contraction process and the arguments presented show the SU(3) algebra reduces to the

algebra of TsASO(3) in the contraction limit, and consequently, the SU(3) theory reduces to that

of the quantum rotor. Differences between observables of the two theories occur because SU(3)

is a compact group with finite dimensional irreps while ThASO(3) is non-compact with infinite

dimensional representations. Band termination and a fall-off in B(E2) strengths are examples.

4 Conclusion

A geometrical interpretation for the outer multiplicity p that occurs in a re_luction of the product

of two SU(3) representations, (A_,#_) x (A.,#,) ---* _p(A,#)p, has been introduced. This struc-

ture arises, for example, in the coupling of proton (Tr) and neutron (v) representations that occur

in both boson and fermion descriptions of heavy deformed (rare earth and actinide) nuclei. At-

tributing a geometry to the proton-neutron coupling, raises the possibility of introducing a simple

phenomenological interaction that provides a physically meaningful way for distinguishing among

different (_, #) and multiple occurrences of the same (A, #) values that arise, for example, when

coupling deformed proton and neutron configurations in heavy deformed nuclei.
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