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Abstract

Coherent states for a family of isospectral oscillator Hamiltonians are derived from a

suitable choice of annihilation and creation operators. The Fock-Bargmann representation

is also obtained.

1 Generalized Oscillator

Let us consider the harmonic oscillator Hamiltonian and its amfihilation and creation operators

H=-2ex---_+2x" _- v_ _+_ - v_ -_+-x , I_,_l = 1. (1

We obviously have a_a = H - ½, aa _ = H + ½, Ha ¢ = a_(H + 1) and Ha = a(H - 1). The

eigenstates verify

(_¢)"tVo). .'lcn) = v_ + _Iv,,,+,), .1¢.) -- v_ Iv,,-_). (2)
I¢.) - _ ,

1
In his paper of I984, Mielnik [1] (see also [2]) looked for operators b and b¢ such that bb¢ = H +

and taking the following form:

b = --v_ _ + _(x) , b_= --v_ -_ + 9(_) . (3)

Hence, fl(x) must verify the Riccati equation

/3' + f12 = 1 + x 2, whose general solution is
e-5C2

/3(x) = x + A + ff e-u_dy ' A E R. (4)
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The inverted product of the new operators is not related to the oscillator Hamiltonian, but gives

a one-parametric family of operators:

1 1 d 2 1 d2 x 2 d

H_--b+bT 2----2dx---2 ÷Va(x)- 2dx 2+ 2 dx

e--X 2

A + f_ e-;2dy
(5)
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FIG. 1. The potentials Va(x) associated to Ha.

The operator b? connects H and Ha: Hab _ = b_(H + 1). Therefore, the normalized eigenstates

and eigenvalues of Ha are

b+l_pn_l) 1

IOn)- v/-ff , En--n+2, n-- 1,2, .... (6)

They do not generate all L2(R). There is a missing vector [00) verifying blOo> = 0 and given by

Coe-X2 /2

Oo(x)-- A + f_ e-'_dy" (7)

It is an eigenvector of H_ with eigenvalue 1/2; then H_ is a Hamiltonian with spectrum equal to

that of the harmonic oscillator. The annihilation and creation operators for Ha can be chosen

A = b?ab, A + = b?a?b. (8)
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2 New Coherent States

It is well-known that there are several non-equivalent definitions of coherent states [3, 4]. One of

the possibilities is to look for eigenstates of an annihilation operator. We have seen that A is such

an operator. Hence, tim states Iz) we are looking for must verify

oo

AIz) = zlz), iz ) = _ a,lO,). (9)
n=O

After normalizing, we get

1 _o z'_ IOn+l)' (10)
Iz) : _/0F2(1,2;iz12) = n!v/(n ÷ 1)!

where the generalized hypergeometric function is defined as [5]

_o r(_)r(z) _
0F:(o, Z;x) = _ r(o + nlr(Z + n) n!

n=0

(11)

We see that z = 0 is a doubly degenerated eigenvalue for A, with eigenvectors 10) - 10_) and 100).

We analyze now the overcompleteness. The resolution of the identity must take the form

1_ = IOo)<Ool+ f Iz)(zld_(z), (12)

where the measure dr(z) can be determined as in [6] (see 171 for details). This measure is positive

and non-singular. Some other interesting results are the form of the reproducing kernel (zlz')

0F2(1, 2; 2z') (13)

<zlz') : _/0F=(1,2; Izl2) 0F2(1,2; Iz'12)'

the dynamical evolution of the coherent states

1 oo z" _,tH_,l_/,+l) = e_,Zt/2le.-,tz) '

u(t)lz) = _/oFdl,2, iz12) ._on!_/(n + 1)! e
(14)

and the expected value of the Hamiltonian Hx in a coherent state

oF2(1.1;Izl 2) 1
+ _. (15)

(zln_,lz) -- oF2(1.2;iz12 ) 2

3 The harmonic oscillator limit

Notice that Hx tends to the harmonic oscillator Hamiltonian when I,_l --, ¢x). Let us consider

this limit to see if there is a relationship between the coherent states we have computed and the
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harmonic oscillator ones. In the limit, fl(x) --_ x; therefore, b --_ a and bt --_ a t. Then, we get

IOn) -* ]_n). Nevertheless, A ---, Ao = ata2; as a consequence, the coherent states (10) become

1 0o Zn

]Z)o =--- lim [z) = _o I_n+X), (16)
I_r-_ _/0F2(1,2;Izl 2) = n!v/(n + 1)!

which are not the usual coherent states. For Iz} it is difficult to compute the expectation values

of the position and momentum operators, but for IZ)o the problem can be easily solved using

1 i

= _(a t+a), fi= _(a t-a). (17)

For the position operator v_e get
I

+ 2 or_(2,2;'lzlZ). I (18)
o(zl_lz)o- v'7 o/;'2(1,2;Izl2) '

1 ( (z + 2)2oF2(2,3;lz[2)) (19)°(z[:r2lz)°= 20F2(1,2;lz[ 2) 3°F2(l'2;lz]2)+ 2

For the momentum operator we obtain similar results. The uncertainty product is then

(A_)(A_) = + ]z[Ue(Iz]) + [Re(z)Im(z)e([zl)] u, (20)

where

a(lzl) = oF2(1, 2; Izl=)0F2(2,3; Izl:) - 210r2(2,2; Izl:)l 2 (21)
10F2(1,2; Izl_)]_ '

A plot of (A&)(Afi) is shown in Figure 2. It can be rigorously proved that 1/2 _< (A_)(Ai5) < 3/2.

3/2
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FIG. 2. The uncertainty product (A_)(A_) as a function of z.

218



4 The Fock-Bargmann representation

For the harmonic oscillator it is possible to find a realization of tile Hilbert space in terms of

entire functions [4, 8]. The same is true for the coherent states of the Lie algebra su(1, 1) [6, 9].

We will show next that we can construct a similar realization for the problem under study. The

Hilbert space 7"/ is generated by the basis vectors {100}, 101}, [02},...}; the state [00) is isolated

from the others, in the s_nse that it is an atypical coherent state. Let us call T/0 the one-

dimensional subspace generated by 100) and 7"/1 the Hilbert space generated by {1_1}, 102}, ... }, so
that 7-/ = 7"/o @ 7-/1. From now on, we are going to concentrate on 7-/1. A vector I_} E 7-/1, is

oo

m=l

C?Tt z emb); (gig) = Ic-,I2 < (22)
77l: ]

Using (10)
1 oo 5_

(zig) = JoF2(1,2;Izl 2) ,_: on!, (/f_n+ 1)! (O"+'lg)' (23)
¥ - • • - y

A realization of T/1 as a space J_ of entire analytic functions is obtained by' associating to every

[g) • 7"/1 the entire function

oo

, . (24)
g(z) = E n!/'n

rt=O

From the relation Ig(z)l < Ilgllv/0F2(1,2;1_12), Vg(z) • a (issued from the Schwarz inequality),

we can show that g(z) is an entire function of order 2/3 and type 3/2 (see [7]). This characterizes

completely the space .T" (the usual coherent states are related to the Segal-Bargmann space of

entire functions of growth (1/2, 2)). In particular, the entire function corresponding to a coherent

state ]a) is

a(z)= oF2(1,2;az) (25)

_/oF2(1, 2; bl 2)

The functions
_n

O.+l(Z)= n!v/(n+l)!, n 0,1,2,,..,

form an orthonormal basis of _" so that g(z) may be written

(26)

(3O

g(z) = E (27)
n=O

Notice that the function 5(z, z') = 0F2(1, 2; z2') plays the role of the delta function in .7".

Finally, we want to know what is the abstract realization of the operators acting on _" as a

multiplication by z and as a derivation O/Oz. Let us consider the function

oo zn+ l oo

zg(z) = _ C,+l - _ mx/-m + 1CmOrn+l(Z ). (28)
n=0 n!_(n + 1)! m=l
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On the other hand, the action of the operator At on Ig/ is

oo co

a*lg)[: b*a*b _ Cm+liOm+l) : _ c.nx/_ + 1 I0.+_). (29)
TrL=O n=l

Then, A ¢ is the operator whose realization in jr is a multiplication by z. Let us consider now the

function

oo Z m-1 rn_l _Cm+l 0 , \mtz). (30)Og(Z)Oz= F_,c,,,+,
m=l (m - 1)!v/(m + 1)!

As [A, A ?] _ I, the abstract operator corresponding to the derivative is not A. Therefore, we have

to find an operator B such that

(2O OO
Cm+ 1

Big) = _, Cm+,Blem+,) = _, x/--m-.-_ lOm).
rn----O m= l

(31)

We suppose it has the form

B = b'raf(N)b, N = a?a,

and the function f becomes

(32)

It is easy to see that

1
f(N) - ,,,,. (33)

N(1 + IY )

and therefore, up to normalization,

[B,A* l : I, [A,B _1= I, (34)

Iz) :exp(zB?)lO,). (35)

However, it is not possible to obtain Iz) as the action of a unitary representation of the algebras

in (34).

Acknowledgments

D.J. Fernandez C. is supported by CONACYT (Mexico). The research of V. Hussin is partially

supported by grants from NSERC of Canada and FCAR du Gouverment du Qu6bec. L.M. Nieto

acknowledges a fellowship from Ministerio de Educaci6n y Ciencia (Spain) and kind hospitality

at CINVESTAV (M6xico).

220



References

[1] B. Mielnik, J. Math. Phys. 25, 3387 (1984).

[2] M.M. Nieto, Phys. Lett. 145B, 208 (1984).

[3] J.R. Klauder and B.S. Skagerstam, Coherent states-Applications in Physics and Mathematical

Physics (World Scientific, Singapore, 1985).

[4] A. Perelomov, Generalized Coherent States and their Applications, Texts and Monographs in

Physics (Spring_r-Verlag, Berlin, 1986).

[5] H. Bateman, Higher transcendeutal fuuctious, vol. 1, A. Erd_lyi ed. (McGraw Hill, New York,

1953).

{6] A.O. Barut and L. Girardello, Commun. Math. Phys. 21, 41 (1971).

17] D.J. Fern£ndez C., V. Hussin and L.M. Nieto, CohereT_t States for Isospectral Oscillator Hamil-

tonians, to appear in J. Phys. A: Math. Gen. (1994).

[81 V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961).

[9] J. Beckers and N. Debergh, ,I. Math. Phys. 30, 1732 (1989).

221




