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Abstract

The presence of an unstable periodic classical orbit allows one to introduce the decay

time as a purely classical magnitude: inverse of the Lyapunov index which characterizes

the orbit instability. The Uncertainty Relation gives the corresponding resonance width

which is proportional to the Planck constant. The more elaborate analysis is based on the

parabolic equation method where the problem is effectively reduced to the multidimensional

harmonic oscillator with the time!-dependent frequency. The resonances form series in the

complex energy plane which is equidistant in the direction perpendicular to the real axis.

The applications of the general approach to various problems in atomic physics are briefly

exposed.

1 Introduction

The quantum quasistationary states may be subdivided into three types (although these types

are not absolutely independent): (i) the shape resonances which decay by penetration through

some potential barrier; (ii) the Feshbach resonances, i.e. the quasibound states of the particle

in the field of the excited core, for instance, the doubly excited states of the helium atom; (iii)

the resonances related with the unstable periodic classical orbits. The latter type of resonances

is probably the less known one. The peculiarities of the density of states, corresponding to the

periodic orbit (or cycle), were analyzed by Gutzwiller [1] and by Balian and Bloch [2]. The role

of such orbits is a subject of intensive discussion in the current literature.

The connection between the stable periodic classical orbit and the quantum mechanical eigen-

values is obvious from the physical point of view: such trajectories are similpr to the effective

channels in space along which the wavefunction is concentrated. The pioneer study of the prob-

lem by Gutzwiller [1] suffers a number of deficiencies. For instance, the Gutzwiller theory does

not give true value for the total amount of quantum numbers labeling the state (in this case it

should be equal to the dimensionality of the configurational space). This deficiencies were dis-

cussed by Miller [3]. However it seems that the most appropriate method to treat the problem is

the parabolic equation approach developed initially in the theory of radio wave propagation (see

e.g. the monograph by Babich and Buldyrev [4] and the discussion below in See.2). This method

provides adequate basis for the description of the eigenfunctions which are localized at the vicinity

of the periodic stable orbit.

The case of the unstable periodic classical orbit was not the subject of such a detailed study.

In particular Voro_ [5] showed that the expansion of the density of states over the closed orbits due
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to Gutzwiller [1] is not convergent and thus has not rigorous mathematical meaning. We do not

discuss the problem on such a rigorous level and do not analyze the density of states expansion.

Instead of it we consider only the relatively narrow resonances which can be well manifested in

the physical observables. The resonances of this type are shown below to be related with the

short-period long-living unstable orbits.
The natural characteristics of the classical orbit lifetime is the inverse of the Lyapunov index

which is commonly used to describe the orbit instability. Thus in this case the concept of lifetime

is introduced exclusively within the framework of classical mechanics without an appeal to the

quantum tunneling and the channels interaction as in the case of the resonance types (i) and (ii).

Namely this circumstance allows us to single out the third type of resonances in the classification

introduced above.

The unstable orbits were discussed by Heller [6] who demonstrated that in the vicinity of the

orbits the wavefunctions are enhanc(_d and the 'scars' are formed on them. The explanation is

obvious: the classical system stays long in this region. We show that the individual unstable orbit

is naturally related with the whole series of resonances and give the simplified description of the

wavefunctions. The complex eigenenergies representing the series form an equidistant pattern in

the direction of the imaginary energy axis. The basic ideas of the present approach were outlined

by the authors some times ago [7]. Here they are developed further and elucidated. Some recent

applications to the problems of atomic physics are discussed.

2 Parabolic Equation Method

We start our analysis with the trivial comment. In the classical mechanics the particle with the

energy close to the top of the potential barrier stays near the top for a long time. In quantum

mechanics one can associate with the barrier top the series of 'eigenstates' with the imaginary

energies (see also [8]). Indeed, consider the one- or two-dimensional parabolic barrier. In the first

case the particle coordinate is x, in the second case the cylindrical radial coordinate is denoted as

p. The stationary Schrodinger equation (for the particle with unit mass) is written respectively

as

2dx 2 § a2z2 ¢ =

and

( h_/_2 1 2 2_ E(:)¢
2 2+#L3-2 c_ p)_b= , (2)

where /_2 is the two-dimensional Laplace operator, L3 is the corresponding angular momentum

operator, a and # are the potential parameters. The substitution of new variables (x', p') = (x', p')

exp(-i_r/4) transforms the equations (1), (2) into these for the harmonic oscillators. Respectively,

the wave functions containing only the outgoing waves in the asymptotes are transformed into

the oscillator eigenstates. Thus if the equations (1), (2) are considered with the outgoing wave

boundary condition, then the imaginary 'eigenvalues' are obtained:

= -ic_h (n-t- 1_), E (e) = ,Am-iha(2n-i-lm ]+1):. (3)E(1)

\ z/
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It should be stressed that the corresponding 'eigenstates' form the natural basis set for the de-

scription of the time-evolution of the wave packet which is localized initially near the barrier top

(e.g., for _b(x) It_-0= exp(-3x2)/(1 + 7x 2 ) with some positive parameters fl and 7). The imag-

inary part of the energy generally describes the short-time evolution of the wave packet and is

not necessarily related with the true ionization process, i.e. escape to infinitely large distances

(this situation is described by the notion Diabatic Quasistaionary State (DQS) introduced by the

authors, see Ref.[7]).

The method of parabolic equation allows one to apply these simple formulae to the more

general problem. Its essence is summarized below.

Consider the vicinity of the unstable orbit. One carl introduce the natural local reference

system at this region related with the trajectory. Let the system origin move with the particle

along the unstable periodic orbit. The transversal coordinate axes q, (i = 1, 2, 3, ... N - 1; N is

the dimensionality of the system configurational space) are directed normally to the orbit. The

longitudinal coordinate s is the distance along the orbit. Let qi be chosen so that qi = 0 on the

orbit. Since our subsequent consideration is confined to the orbit vicinity this definition is quite

sufficient to our purposes. In these variables the system tIamiltonian can be written as

li2 0 2

It - 2M Os 2 + Iltr(pi,qi,.s), (4)

where M is the effective mass (we treat here the transition to the new curvilinear coordinates in

somewhat simplified manner what is unimportant for the subsequent discussion). The transversal

motion Hamiltonian Htr contains momenta pi conjugate to the transversal coordinates qi. It

includes also the periodic parametric dependence on the coordinate s.
In the framework of the parabolic equation method the motion along the longitudinal coordi-

nate s is treated semiclassically. This implies the following representation of the wave function:

_b(q,,q2," "qn-l,S) = vE2/_exp(iSEo(t)/h)cP(q,,q2, "" • q_-l, t). (5)

Here SE0 and vE0 are respectively the action (fpdq) and the velocity for the classical motion

along the trajectory for the energy E0 (rE0 = M-ldSEo/ds). The new 'time' variable t is directly

related with the longitudinal coordinate s: v_odt = ds. Substituting the wave function (5) into

the Schrodinger equation (H - E)_b = 0 one obtains (in the lowest order in the Planck constant

h) the following equation for the function _:

ih_t = (Htr(pi,q,,t)- Ht_(O,O,t)- E + Eo) F. (6)

The latter equation has the mathematical form of the non-stationary (parabolic) Schrodinger

equation with the mock 'time' variable t directly related to the coordinate s. Note that our

treatment starts with the stationary Schrodinger equation. Therefore the ! true time does not

appear here.

The rigorous formulation of the method based on the asymptotic (semiclassical type) techniques

implies that the Hamiltonian of the non-stationary problem should be replaced by its approxi-

mation quadratic in the coordinates qi. These statements present the essence of the parabolic

equation method introduced originally by Leontovich and Fock [9] (see also Ref.[10]).
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3 Quantization Conditions

The important point for the further development is that the Hamiltonian Ht,. is periodic in 'time' t

since the orbit is periodic. The natural way to treat such a problem is to consider the quasienergetic

or Floquet stales (see e.g. the review Ref. [11]). The latter is introduced so that after the period

T the corresponding wave function acquires the phase factor which contains the quasi energy e:

_b(t + T)= exp(ieT)¢(t). (7)

Let now choose the function _ to be the quasi energy state. After the passage over the periodic

orbit the total wave function ¢ (5) should remain unchanged. This gives the following quantization

condition:

E - Eo- + S.o(T)/T = 2, nh/T, (8)

where T is the period of the orbit, n is an integer. Note that the parabolic equation method

assumes naturally the semiclassical condition for the motion over s-coordinate: SEo/h > 1.

Since we assume here the quadratic approximation for the Hamiltonian Ht,, then the non-

stationary Schrodinger equation (6) describes the (N - 1)-dimensional oscillator with the param-

eters depending on the _'time' t.

The quasi energy spectrum for the time-periodic quadratic (in the coordingtes and the conju-

gated momenta) system was discussed in the monograph by Malkin and Man'ko [12]. Their study

is based on the mathematically rigorous analysis by Sugiura [13] and Williamson [14]. Here we

give only the list of the statements which seems to be quite appealing.

(i) In the case of quadratic time-dependent Hamiltonian the classical Hamilton equations are

linear and coincide with the quantum tteizenberg equations for the momentum and coordinate

operators i5 and q-

(ii) Let the general solution of the classical equations to be known:

(p(t), q(t))= A(t)(p(O), q(O)), (9)

where A(t) is the evolution matrix acting on the array of the system coordinates q and canonically

conjugated momenta p. Then the solution of the Heizenberg equations takes the form

(iS(t), O(t))= A(t)(ib(O), 0(0)) (10)

with the same evolution matrix.

(iii) For an arbitrary fixed to one can find the time-independent quadratic (in the coordinates

and momenta) ttamiltonian u(t0) which generates the same result for the system evolution at"'ell
the time t as the initial time-dependent Hamiltonian. This implies that the exact time-evolution

operator can be presented as exp(iH}}°]to).

(iv) The matrix A(t) which describes the system evolution over its period is called the mon-

odromy matrix. The spectrum of the corresponding operator u(T) coincides with the quasi energy

spectrum. We should emphasize here that this operator must be considered as a continuous'limit

(t _ T) of the operator g}))f. For instance, in the one-dimensional case the phase point in prin-

ciple can perform several 2_r-rotations around the origin which do not influence the monodromy
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matrix. However this rotations should be taken into account in the construction of the operator
H(T)

Thus the problem of finding the quasi energies is reduced to the analysis of the spectrum of

the monodromy matrix (we assume further that its eigenvalues are non-degenerate). Moreover,

the eigenvalues of the monodromy matrix are essentially the exponents of the eigenvalues of some

quadratic Hamiltonian. The latter does not necessarily correspond to the real oscillator since the

case of the quadratic potential barrier also can be realized. The spectrum of such a barrier was

discussed above at the beginning of the Section 2. Taking all these possibilities into account one

finds that the following basic types of the eigenvalues sets are feasible (the most general description

is given by Williamson [14]):

exp(iaJT), (11)

exp(+c_T), (12)

exp(+i#T+_T). (13)

The first one corresponds to the real oscillator with the frequency _ in the normal mode of
the Hamiltonian H_f) whereas the second and the third cases are related respectively with the

parabolic barriers (1) and (2). Note that in (13) four various eigenvalues are contained according

to various choice of the signs.

The parameter a in (12) and (13) coincides with the Lyapunov index which characterizes the

instability of the classical periodic orbit in the linear approximation for tile equations of motion.

Indeed, the Lyapunov index is defined by the relation q,(T)/q_(O) = exp(aT). According to the

statement (ii) it is related with the description of the quantum system.
tt(T) OneThe eigenstates of the time-evolution operator coincide with those of the operator ,,_ff.

has to bear in mind that in the multidimensional system the eigenstates of each type can appear

several times. In order to distinguish them we introduce below the lower indexes. The diagonal-

ization of u(T) generates the subdivision of the transversal coordinate subspace into the direct

sum of the subspaces each of which corresponds to some set of the eigenvalues discussed above.

The natural coordinate basis in each subspace is given by the normal coordinates. Depending on

the type of the eigenvalue (see above) the quadratic IIamiltonian u(T) in each subspace is of the

oscillatory type (with some frequency _Jl, jl = 1, 2, ...N1) or corresponds to the quadratic barrier

described by Eq. (1) or (2) with the related parameters aj2 (j2 = 1,2,...N2) in the case (1) or

the parameters aj_ and #j_ (j3 = 1,2, ...N3) in the case (2). The lower indexes enumerate the

eigenvalues. The total amount of the eigenvalues is N1 + N2 + N3 = N - 1.

Taking into account the relation (7) we obtain the quasi energy spectrum of the system:

Jl J_

+ h - ]+1))
J3

with some integer nj (nj > 0), mi. The summation is performed over all eigenvalues described

above. The eigenfunctions _ are expressed readily as the products of the Hermit functions of the

normal coordinates.
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Let us summarize the meaning of the quantum numbers. The quantum number n quantizes the

motion along the periodic orbit. The quantum numbers nil quantize the stable vibrational modes

of the transversal motion whereas nj2 and nj3 are theirs analogs in the case of unstable transversal

modes. The quantum number m j3 are the azimuthal quantum number for the rotations in the

plane locally perpendicular to the cycle.

We should emphasize that the total amount of the quantum numbers (including n, see (8))

coincides with the dimensionality of the configuration space. However, since theresonance series lie

along the imaginary axis in the complex energy plane, this series is manifested in the experimental

observations as one peak.• Thus some of the quantum numbers prove to be 'hidden' and the amount
of the 'observable' quan:cum numbers is effectively reduced.

4 Discussion

The formulae (8) and (14) contain the essence of the present paper. They are quite transparent

from tile physical point of view. Let the orbit energy E0 be chosen to satisfy the semiclassical

quantization condition for the motion along the periodic orbit:

SEo = 27rnh. (15)

Then from (8) we obtain

E = E0 + e. (16)

Thus the quantization problem is separated: first, the motion over the unstable cycle should

be quantized according to Eq.(15) and, second, the motion over the transversal coordinates is

quantized giving the quasi energy spectrum (14). The analogous equations were discussed by

Miller [3] in the case of stable orbit. They reflects effective separation of variables in the vicinity

of the cycle: the quantum number n is large but the other quantum numbers are small being

incorporated into the quasi energy spectrum.

These formulae are also in close relation to the Gutzwiller formula for the density of levels in
the two-dimensional case:

r oGp(E) = Im _ sinh(naT/2) exp(inS/h).
n=l

This sum can be rearranged similarly to the Miller [3] paper:

(17)

r oop(E)= Im y_ [1-exp(-naT)]-lexp[n(iS/h-aT/2)] =
rt----1

T _o
=--Im y_ [1-exp(iS/h- rna)]-l exp [n(iS/h - 3_T/2)1.

2re
m----O

(18)

Thus the density of states has the poles at the complex energies given by the equations (8) and

(14) (since SE = SEo + (OS/OE)(E- E0), OS/OE = T). However the expression (17) is not

applicable in the complex energy plane. Moreover the expansion of the states density over the
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periodic trajectories does not converge [5]. Therefore the proper description of the individual

resonance states given in the present paper is essential.

Our principle qualitative conclusion is as follows. Since the unstable closed classical orbit

can be characterized by some 'decay time' (namely, the inverse of Lyapunov index), the Uncer-

tainty Relation gives tl_e related resonance width which is linear in the Planck constant h (ini
contradistinction to the shape resonances where the width is exponentially small). Moreover

whole resonance series correspond to the individual orbit with the resonances lying in the complex

energy plane equidistantly on the line parallel to the imaginary axis (see formula (14)).

The first point to be stressed is that the quadratic approximation demands localization of the

wave function in the vicinity of the orbit whereas the resonance functions constructed above do not

satisfy this requirement since they rise exponentially in the case of the quadratic potential barrier.

This contradiction is removed if one notices that the complex transformation of the transversal

coordinates q = q' exp(i_r/8) makes the eigenfunctions decreasing. The close analogy is traced here

with the method of the complex rotation of the coordinates. This method of the resonance states
calculation proves to be very efficient in the analysis of quite complex atomic systems [15]. The

physical meaning of this states follows from theirs role in the description of the initially prepared

wave packet (see discussion in the Sec.2).

The formula (14) implies that the quantum numbers nj are not too large in order to confine

the major part of the probability to the applicability domain of the quadratic approximation for

the Hamiltonian Ht,.. Nevertheless it is worth to stress that the resonances of this type generate

series in the complex energy plane (in the quadratic approximation the series are equidistant in

the direction of the imaginary energy axis). This constitutes the principle difference between the

resonances discussed in the present paper and the shape or Feshbach resonances. In particular,

this difference is manifested in the shape of the resonance profiles in the physical observables such

as the cross sections, transition probabilities etc.

In principle the situation is feasible when the quadratic approximation is not applicable even

for the lowest values of ni (hi = 0). This problem is not important for the general construction

of the present theory since in fact its small parameter is the Planck constant (or inverse particle

mass), ttowever it can limit applicability of the theory to the concrete systems. If the quadratic

approximation is dropped, then the theory is reduced to the description of the quasi energy states

of the periodic Hamiltonian with the more general (non-quadratic) dependence on the coordinates.

The practical realozation of this approach (see the next Section) gives good results.

5 Some Applications to Atomic Physics

In this Section some recent applications to the atomic physics are briefly discussed. We emphasize

some modifications of the general scheme which are necessary in the concrete applications. The

states of the atom in the uniform electric field serve in the text books as a typical example of

the shape resonances. These resonances have negative energy and decay by the penetration of

the potential barrier. The resonances exist also for positive energies where they have different

origin being related with the unstable periodic classical trajectory. The electron moves between

the atomic nucleus and the turning point against the force exerted on it by the uniform field. The

calculations [16], [17] within the present approach demonstrate an excellent agreement with the

accurate numerical data both for the resonance positions and widths.
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For the motion of the electron in the field of two Coulomb centers the I unstable classical

trajectory also represents an interval of line. The calculations of the resonances were carried in

this case by Du et al [18].

In the cited examples the resonance width corresponds to the true ionization (transitions to

the continuum). An alternative situation appears for the helium atom where Klar [19] have found

classical unstable equilibrium configurations (in which the electron-electron and electron-nucleus

separations do not vary with time but the system rotates as a whole). Within the present approach

these configurations are related [20] with the Rydberg series of broad resonances (doubly excited

states) which are interpreted as DQS. Their widths describe not the transitions to the continuum

(autoionization) but the interaction of the diabatic configurations.

The equilibrium electron configurations in the helium atom give an example of the correlated

motion of the electrons which is not described by the effective central field approximation conven-

tional in the theory of atoms. The description of the electron correlations is one of the fundamental

problems in atomic physics.

The other example of the correlated electron motion appears in the study to the two-electron

continuum states which are the final states in the electron impact ionization ((e, 2e) process) or

double photoionization ((3', 2e) process) of the atom. In the near-threshold domain the theory

of the process was developed by Wannier [21] (see also the review by Read [22]). The physical

idea is that the electrons fly apart from the core (with the charge Z) being at equal distances

from it, i.e. at the so called Wannier ridge rl = r2 (r'l, r'2 are the electron vectors relative to the

atomic nucleus). Otherwise one of the electrons is decelerated and is captured into the high lying

Rydberg state. Hence sliding off the Wannier ridge leads to the population of the one-electron

continuum. For the double escape process this part of the flux is lost. In the framework of the

present approach this is described in terms of the effective width and the whole double escape

process is presented [23] as the system survival on the Wannier ridge.

Due to the Coulomb electron-electron repulsion the emission of the electrons in the opposite

direction has the highest probability, i.e. 012 _ 7r, where 012 is the angle between 5"1,F2).

It is convenient to use collective hyperspherical coordinates: hyperradius R = (r_ + r_) 1/2 and

hyperangle ah = tan(rl/r2). The Wannier treatment presumes two basic assumptions:
1

(i) The vicinity of the Wannier saddle configuration r'l : --_'2 (i.e. ah = grr), 012 = 7r is

-- 17r) and (7r- 012).considered with the quadratic approximation in the variables (ah _-

(ii) The motion over the hyperradius R is treated semiclassically.

The hyperradius R plays the role of the longitudinal coordinate s of the Sections 2, and

(ah--arc) and (_r- 012) are the transversal coordinates qi. In the original Wannier theory [21], [22]

the processes in the small-R region (inner zone, R < R0) are not considered. They are replaced by

some boundary condition on the border R0 and the system evolution in the outer zone to the free

electron motion regime (R _ oe) is considered. Thus in contradistinction to the previous examples

we do not have the periodic classical trajectory in this case. The basic trajectory corresponds to

the double electron escape and terminates at R --* ec.

The analysis of the total double escape cross sections within the present approach was carried

out in Ref. [23]. Some special treatment is required to account for the electrons deceleration (as

R increases) due to the Coulomb attraction to the residual core. This effect becomes crucial when

the energy excess E above the double ionization threshold is small. The postadiabatic scheme was

developed which allowed us to reproduce not only the Wannier power threshold law but also the
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deviations from it for _mall but finite E.

In addition to the total double escape cross section the final electron distributions over the

angles and energies is of great interest as a direct manifestation of the electron correlations. In

a good approximation the angular coordinate 012 is separated from the hyperangle ah. Then the

general scheme of the Sections 2 and 3 shows that the angular dependent wave function obeys [24],

[25] the non-stationary Schrodinger equation for the harmonic oscillator with the time-dependent

frequency (it is worth reiterating that the mock time is simply related with the longitudinal

coordinate R). The final (R _ ec) angular distributions depend crucially on the boundary (or

initial) condition imposed on the border of the reaction zone. Although this point is completely

obvious in the present formulation via the non-stationary harmonic oscillator (see also Ref. [26]),

it was missed by the previous authors [27] who claimed that the Gaussian angular correlation

pattern universally appear.
In the present approach the problem of the angular correlations is formulated in terms of the

wave packet propagation from R0 to R _ :xD. Some general features of the propagation can be

established in the harmonic approximation for the problem under consideration [24], [25]. The

more accurate scheme of the calculations drops the harmonic approximation. It incorporates the

exact Coulomb interaction between the electrons and also the effective centrifugal potential which

appears for the double continuum states with the non-zero orbital momentum L. The quantitative

agreement with the experimental data is achieved along this way and a number of new qualitative

features of the double escape process are revealed [28]- [30].
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