# 3-D CFD ANALYSIS OF HYDROSTATIC BEARINGS 

## 43735

Shyi-Jang Lin and Robert I. Bibs
Rocketdyne Division, Rockwell International


#### Abstract

The hydrostatic bearing promises life and speed characteristics currently unachievable with rolling element bearings alone. In order to achieve the speed and life requirements of the next generation of rocket engines, turbopump manufacturers are proposing hydrostatic bearing to be used in place of, or in series with, rolling element bearings.

The design of a hydrostatic bearing is dependent on accurate prediction of the pressure in the bearing. The stiffness and damping of the hydrostatic bearing is very sensitive to the bearing recess pressure ratio. In the conventional approach, usually ad hoc assumptions were made in determining the bearing pressure of this approach is inherently incorrect.

In the present paper, a more elaborate approach to obtain the bearing pressure is used. The bearing pressure and complete flow features of the bearing are directly computed by solving the complete 3-D Navier-Stokes equation.

The code used in the present calculation is a modified version of REACT3D code.

Several calculations has been performed for the hydrostatic bearing designed and tested at Texas A\&M. Good agreement has been obtained between computed and test results. Detailed flow features in the bearing will be also described and discussed.




[^0]Whaty

v k
5



Benefits:

- Low-Wear/ No Known Life LImit
- Reasonable Hardware Cost

Power
Bearing
$\infty$
Life 0
4
0

| O |
| :--- |
| 0 |
| 0 |
| o |
| 은 | Hydro

Level Margin With


- Improve Accuracy of Rotordynamic Model Input

Analysis Method:

- Unsteady Solution with Whirling Shaft

| COMPARISON OF T TEXAS A\&M HYDRO | AOR | AND | XPE |
| :---: | :---: | :---: | :---: |
|  |  | fferen |  |
|  | MIN | AVG | MAX |
| Direct Sllitness ( $\mathrm{K}_{\mathrm{xx}}$ ) | -5\% | +7\% | +20\% |
| Cross-Coupled Silltress ( $K_{\text {xy }}$ ) | -26\% | +2\% | +16\% |
| Dlrect Damping ( $\mathrm{C}_{\mathrm{xx}}$ ) | -22\% | -5\% | +13\% |
| $W F R=K_{x y} /(1) C_{x x}$ <br> Whirl Frequency Rallo | -15\% | +1\% | + $8 \%$ |


Grid Generation Challenges:

- Circular Orifice Matching Recess Curvature
- Aspect Ratio in Bearing Land
- Solved Through Multi-Zone Approach

- Total in Model - 10976
Methodology
- 3 D Steady-State Accurate Finite Volume Formulation in
Generalized Coordinates
- Full Navier-Stokes (FNS) 1st and 2nd Order Upwind/Central
Spatial Discretization
- Simple Based Velocity-Pressure Coupling
-k- $\varepsilon$ Turbulence Modelling with Wall Function
- k- $\varepsilon$ Turbulence Modelling with Wall Function
- Multiple Zone Approach

[^1]Boundary Conditions
outlet
$\stackrel{0}{+}$
$\stackrel{\rightharpoonup}{\overline{0}}$
до!ఎəృu!
from the
s
le

- Periodic conditions between recesses


## - No slip relative to the rotating shaft

Rockwell International

Results:
Results:

- Matches Assumptions of Bulk Flow Model

3-D CFD Pressure Solution
Axial Line Plot in Bearing Clearance

(edW) ounssedd

Rockwell International

Conclusions:


- Flow Variables Constant Across Bearing Clearance
- Improvements to Bulk -Flow Solution will be Determined
by Evaluation of Differences
- Pressure Recovery at Entrance to Recess and Land


[^0]:    1 Rockwell International

[^1]:    Rockwell International
    Rocketdyne Division

