
AMPHION: Specification-Based Programming for

Scientific Subroutine Libraries N95" 23680

Michael Lowry, Andrew Philpot, Thomas Pressburger, and Ian
Recom Technologies; AI Research Branch, M.S. 269-2

NASA Ames Research Center

Moffett Field, CA 94305, USA
Tel: (415) 604-3369 Fax: (415) 604-3594

lowry @ ptolemy, arc. nasa. gov

Underwood

Richard Waldinger and Mark Stickel
AI Center; SRI International

KEY WORDS AND PHRASES

Artificial Intelligence, knowledge-based

software engineering, NAIF, software

engineering, software reuse.

OVERVIEW

over manual program development. AMPHION is
currently undergoing alpha testing in preparation

for distribution to the NAIF community. Other
NASA domains are under consideration. Future

research will address the technology needed for

domain experts to develop their own AMPHION

domain theories with only minimal consultation

from experts in formal methods.

AMPHION is a knowledge-based software en-

gineering (KBSE) system that guides a user in

developing a diagram representing a formal

problem specification. It then automatically im-

plements a solution to this specification as a pro-

gram consisting of calls to subroutines from a li-

brary. The diagram provides an intuitive domain-

oriented notation for creating a specification that
also facilitates reuse and modification.

AMPHION'S architecture is domain indepen-

dent. AMPHION is specialized to an application

domain by developing a declarative domain the-

ory. Creating a domain theory is an iterative pro-

cess that currently requires the joint expertise of

domain experts and experts in automated formal

methods for software development.

AMPHION has been applied to JPL's NAIF do-

main through a declarative domain theory that
includes an axiomatization of JPL's SPICELIB

subroutine library. Testing with planetary scien-
fists demonstrates that AMPHION's interactive

specification acquisition paradigm enables users

to easily develop, modify, and reuse specifica-

tions after only a short tutorial. AMPHION rou-

tinely synthesizes programs consisting of dozens

of SPICELIB subroutine calls from these specifi-

cations in just a few minutes.

Qualitative assessments indicate an order of

magnitude productivity increase using AMPHION

MOTIVATION

Within the space science community, subrou-

tine libraries are a ubiquitous form of software

reuse. However, space scientists often do not
make effective use of libraries. Sometimes this

happens because a subroutine library is devel-

oped without following good conventional soft-

ware engineering practices, resulting in inade-

quate documentation, untrustworthy code, and a

lack of coherence in the different functions per-

formed by the individual routines. However,

even when a subroutine library is developed fol-

lowing the best conventional software engineer-

ing practices, users often have neither the time

nor the inclination to fully familiarize themselves
with it. The result is that most users lack the ex-

pertise to properly identify and assemble the rou-

tines appropriate to their problems. This repre-

sents an inherent knowledge barrier that lowers

the utility of even the best-engineered software li-
braries: the effort to acquire the knowledge to ef-

fectively use a subroutine library is often per-

ceived as being more than the effort to develop
the code from scratch. AMPHION is an effective

solution to this knowledge barrier.

The objective of AMPHION is tO enable users
who are familiar with the basic concepts of an

application domain to program at the level of ab-

41

https://ntrs.nasa.gov/search.jsp?R=19950017260 2020-06-16T08:45:32+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42782014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

stract domain-oriented problem specifications,
rather than at the detailed level of subroutine

calls. AMPHION breaks through the knowledge

barrier by enabling use of a subroutine library

without having to absorb all the documentation

about a library, especially the plethora of imple-

mentation details such as the representation con-

ventions for subroutine parameters.

NAIF APPLICATION

The first application domain for AMPHION is

solar-system kinematics, as implemented in the
SPICE,LIB subroutine library developed by the

Navigation Ancillary Information Facility (NAIF)

at JPL. SPICELIB is an extremely well-engineered

library used by planetary scientists to plan and

analyze the observing geometry for data collected
during interplanetary missions or by space-based

telescopes. A domain theory was developed that

includes an abstract formalization of solar-system

kinematics suitable for specifying problems, and

the knowledge needed to implement solutions

using SPICELIB. To date, Amphion has demon-

strated the following essential capabilities for
real-world KBSE:

1. Users without training in formal methods

readily develop domain-oriented diagrams cor-

responding to formal problem specifications

using Amphion's specification-acquisition
tools.

2. Users can reuse, modify, and maintain previ-

ously developed specifications, thereby elevat-

ing the software life cycle from the code level

to the specification level.

3. Automatic deductive program synthesis

achieves acceptable performance, given an ap-

propriately structured domain theory and mod-

erate use of theorem-proving tactics.

Programming at the Specification Level

To enable users to program at the specification

level, AMPHION consists of a specification-ac-

quisition component to guide users in developing

a formal specification, and a program synthesis

component that automatically generates a pro-

gram implementing a solution to the specifica-

tion. Users enter specifications graphically

through a menu-guided graphical user interface

(GUI). Figure 1 is an example of a completed

specification: it denotes the problem of predicting

the solar incidence angle at the point on Jupiter

closest to Galileo at a particular time. (This is the

sub-spacecraft point). The specification acquisi-

tion component performs semantic checks on

completed specification diagrams, and then au-

tomatically translates them to a logical form used

by the program synthesis component.

The output of program synthesis for the NAIF

application is a FORTRAN-77 program consisting

of calls to the SPICELIB subroutine library.

AMPHION generated the SOLAR program in

Figure 2 from the specification in Figure 1 in 52

seconds of CPU time on a Sparc 2. In over a

hundred programs generated by AMPHION for the
NAIF domain to date, the CPU time has ex-

ceeded three minutes in only four cases. This is

an unprecedented level of performance for the

deductive synthesis approach, developed over 25

years ago [1,2]. Most of the program synthesis

component is independent of the target output

language. It would only take two weeks of work

to adapt AMPHION for a different output language
such as C or UNIX shell files.

AMPHION's specification language for the

NAIF domain is at the level of abstract geometry.

This specification language is part of the declara-

tive domain theory. The vocabulary is basic

Euclidean geometry (e.g., points, rays, ellip-
soids, and intersections) augmented with astro-

nomical terms (e.g., planets, spacecraft, and

photons; the latter for specifying constraints used

in calculating light-time correction). The specifi-

cation language does not include the myriad im-

plementation details required for correctly calling
SPICELIB subroutines, such as coordinate

frames, units, time systems, etc; these details are

automatically deduced during program synthesis.

The user only needs to define the abstract prob-

lem and the desired representation conventions
for the program inputs and outputs.

AMPHION's GUI bears a superficial resem-

blance to data-flow oriented graphical pro-

gramming environments. For example, Apple's

HOOKUP application enables users to select icons

from a palette that represent individual subrou-

tines, and then connect input and output ports.

However, these environments only provide an

alternate notation to conventional programming

languages. In contrast, AMPHION enables a radi-

cal separation between the level at which users

42

Figure 1: Diagram for solar incidence angle developed interactively with AMPHION.

SUBROUTINE SOLAR (GALILE, ANGLEI)

Input Parameters

CHARACTER*(*) GALILE

Output Parameters

DOUBLE PRECISION ANGLEI

Function Declarations

DOUBLE PRECISION VSEP

Parameter Declarations

INTEGER JUPITE

PARAMETER (JUPITE = 599)

INTEGER GALILI

PARAMETER (GALILI = -77)

INTEGER SUN

PARAMETER (SUN = 10)

Variable Declarations

DOUBLE PRECISION RADJUP (3)

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

E

PVGALI (6 }

LTJUGA

V1 (3)

X

PVJUPI (6)

LTSUJU

MJUPIT (3, 3)

V2 (3)

Xl

DV2VI (3

PVSUN (6

XDV2VI (3

V (3)

N { 3)

PN (3)

DV2N (3)

XDV2N (3

DOUBLE PRECISION DXDV2V (3)

DOUBLE PRECISION XDXDV2 (3)

Dummy Variable Declarations

INTEGER DMYI0

DOUBLE PRECISION DMY20 (6)

DOUBLE PRECISION DMY60 (6)

DOUBLE PRECISION DMYI30

CALL BODVAR (JUPITE, 'RADII', DMYI0, RADJUP)

CALL SCS2E (GALILI, GALILE, E)

CALL SPKSSB (GALILI, E, "J2000', PVGALI)

CALL SPKEZ (JUPITE, E, 'J2000', 'NONE', GALILI,

DMY20, LTJUGA)

CALL VEQU { PVGALI (1), V1)

X = E - LTJUGA

CALL SPKSSB (JUPITE, X, "J2000', PVJUPI)

CALL SPKEZ (SUN, X, 'J2000', "NONE', JUPITE,

DMY60, LTSUJU)

CALL BODMAT (JUPITE, X, MJUPIT)

CALL VEQU (PVJUPI (1), V2)

X1 = X - LTSUJU

CALL VSUB (VI, V2, DV2VI)

CALL SPKSSB (SUN, XI, 'J2000', PVSUN)

CALL MXV (MJUPIT, DV2VI, XDV2VI)

CALL VEQU (PVSUN (1), V)

CALL NEARPT (XDV2VI, RADJUP (1),

RADJUP (2),RA/3JUP (3),N, DMYI30)

CALL SURFNM (RADJUP (1), RADJUP (2),

RADJUP (3), N, PN)

CALL VSUB (N, V2, DV2N)

CALL MTXV (MJUPIT, DV2N, XDV2N)

CALL VSUB (V, XDV2N, DXDV2V)

CALL MXV (MJUPIT, DXDV2V, XDXDV2)

ANGLEI = VSEP (XDXDV2, PN)

RETURN

END

Figure 2: SOLAR program generated by AMPHION from Figure 2.

43

specify problems and the level at which solutions

are implemented by the program synthesis com-

ponent. AMPHION'S GUI provides an alternate

notation to formal specifications written in math-

ematical logic. The notation of mathematical logic

can be formidable; that is one reason that specifi-

cation-based software engineering life cycles

have not previously been adopted in practice.

AMPHION's GUI employs an object-oriented

paradigm for interactively developing problem

specifications. Conceptually, a user develops a

problem specification by first defining a configu-

ration, and then declaring a subset of the objects

in a configuration to be inputs or outputs of the

desired program. A configuration is a set of ab-

stract objects and their relationships.

A user generates a configuration through the

actions of adding objects, deleting objects, mov-

ing the edges between objects that define their

interrelationships, and by merging objects to-

gether. Adding and deleting objects are done

through menus; moving edges and merging ob-

jects are done by directly manipulating the dia-

gram. Declaring an object to be an input or output

of the desired program brings up a menu of the
possible data-representation conventions: coordi-

nate systems for locations, time systems for time,

and units of measurement. These alternative rep-

resentation conventions are also part of the
declarative domain theory.

AMPHION's specification-acquisition compo-

nent not only enables specifications to be devel-
oped from scratch, but it is also especially well

suited for specifcafion reuse and modification.

The abstract graphical notation makes it much

easier to identify the required modifications than

it is to trace through dependencies in code.

AMPHION's editing operations facilitate making

the changes. Furthermore, there is no possibility

of introducing bugs in the code, since AMPHION
synthesizes the code from scratch for the modi-

fied specification.

FUTURE DIRECTIONS

Why the name AMPHION? AMPHION was the

son of Zeus who used his magic lyre to charm

the stones lying around Thebes into position to

form the city's walls. The AMPHION system's

expertise lies in charming subroutines into useful

programs through SNARK, an advanced auto-

matic theorem prover developed at SRI
International. A tutorial introduction for this de-

ductive approach to program synthesis can be
found in [3], while more details on the use of

SNARK for synthesizing programs in the NAIF

domain can be found in [4]. One advantage of the

deductive approach is that a synthesized program

is guaranteed to be a correct implementation of a

user's specification, with respect to the domain

theory. This reduces the software verification

problem to a one-time verification of the domain

theory. The declarative nature of the domain the-

ory simplifies verification.

Because it uses a generic architecture, de-

scribed in [5], AMPHION can be applied to other

domains and subroutine libraries by developing
the appropriate domain theories. The methodol-

ogy for developing suitable AMPHION domain

theories is described in [6]. Developing the initial

NAIF domain theory took three months of collab-

oration between a NAIF expert and experts in

automated formal approaches to program syn-

thesis. Much of the subsequent refinements to the

domain theory were straightforward and could

likely be done by domain experts with the appro-

priate tools. Future research will include develop-
ing such tools.

REFERENCES

[1] Green, C.; 1969. "Application of
Theorem Proving to Problem Solving", in
IJCAI-69.

[2] Waldinger, R.; and Lee, R; 1969.

"PROW: A Step Toward Automatic Program
Writing", in IJCAI-69.

[3] Manna, Z.; and Waldinger, R.; 1992.
"Fundamentals of Deductive Program
Synthesis", in IEEE Transactions on Software
Engineering (18) 8.

[4] Stickel, M.; Waldinger, R.; Lowry,
M.; Pressburger, T.; and Underwood, I.; 1994.
"Deductive Composition of Astronomical Soft-
ware from Subroutine Libraries", in CADE-12.

[5] Lowry, M.; Pressburger, T.; Philpot,
A.; and Underwood, I.; 1994. "A Formal

Approach to Domain-Oriented Software Design
Environments", in KBSE-94.

[6] Lowry, M.; Pressburger, T.; Philpot,
A.; and Underwood, I.; 1994. "AMPHION:

Automatic Programming for Scientific
Subroutine Libraries", in ISMIS-94.

44

SS ON MD

Monitoring and Diagnostics

MD.1 TIKON: An Intelligent Ground Operator Support System

T. G6rlach, G. Ohlendoff, F. Plal3meier, and U. Brfige, DASA/ERNO, Bremen, Germany

MD.2 Toward an Automated Signature Recognition Toolkit for Mission

Operations

47

53

T. Cleghorn, L. Perrine, C. Culbert, M. Macha, and R. Shelton, NASA Johnson Space
Center, Houston, Texas, USA; D. Hammen, Mitre Corporation, Houston, Texas, USA;

P. Laird, NASA Ames Research Center, Moffett Field, California, USA; T. Moebes, SAIC at

Johnson Space Center; R. Saul, Recom Technologies, Inc., at NASA Ames Research Center

MD.3 Attention Focusing and Anomaly Detection in Systems Monitoring ___

R.J. Doyle, JPL, California Institute of Technology, Pasadena, California, USA

MD.4 Predictability in Spacecraft Propulsion System Anomaly Detection

Using Intelligent Neuro-Fuzzy Systems

S. Gulati, JPL, California Institute of Technology, Pasadena, California, USA

MD.5 An Expert System for Diagnosing Anomalies of Spacecraft

M. Lauriente, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA; R. Durand

and A. Vampola, University Research Foundation, Greenbelt, Maryland, USA; H. C. Koons

and D. Gorney, The Aerospace Corporation, Los Angeles, California, USA

MD.6 Distributed Intelligence for Ground/Space Systems

M. Aarup and K. H. Munch, CRI Space, Denmark; J. Fuchs, ESA/ESTEC/WGS, The
Netherlands; R. Hartmann, Dornier, Germany; T. Baud, Cray Systems, United Kingdom

MD.7 Learning Time Series for Intelligent Monitoring

S. Manganaris and D. Fisher, Vanderbilt University, Nashville, Tennessee, USA

MD.8 An Operations and Command System for the Extreme Ultraviolet

Explorer

57

61

63

67

71

75

N. Muscettola, Recom Technologies, Inc., at NASA Ames Research Center, Moffett Field,

California, USA; D.J. Korsmeyer, NASA Ames Research Center; E. C. Olson and G. Wong,

University of California at Berkeley, Berkeley, California, USA

MD.9 Performance Results of Cooperating Expert Systems in a

Distributed Real-Time Monitoring System

U. M. Schwuttke, J. R. Veregge, and A. G. Quan, JPL, California Institute of Technology,

Pasadena, California, USA

79

45

