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Abstract

Any attempt to introduce automation into the
monitoring of complex physical systems must
start from a robust anomaly detection capability.
This task is far from straightforward, for a single
definition of what constitutes an anomaly is diffi-

cult to come by. In addition, to make the moni-
toring process efficient, and to avoid the potential
for information overload on human operators, at-
tention focusing must also be addressed. When
an anomaly occurs, more often than not several
sensors are affected, and the partially redundant

information they provide can be confusing, par-
ticularly in a crisis situation where a response is
needed quickly.

The focus of this paper is a new technique for
attention focusing. The technique involves rea-

soning about the distance between two frequency
distributions, and is used to detect both anoma-

lous system parameters and "broken" causal de-
pendencies. These two forms of information to-
gether isolate the locus of anomalous behavior in
the system being monitored.

1 Introduction

Mission Operations personnel at NASA have the task of de-
termining, from moment to moment, whether a space plat-
form is exhibiting behavior which is in any way anomalous,
which could disrupt the operation of the platform, and in the
worst case, could represent a loss of ability to achieve mission

goals. A traditional technique for assisting mission opera-
tors in space-platform health analysis is the establishment of
alarm thresholds for sensors, typically indexed by operating
mode, which summarize which ranges of sensor values imply
the existence of anomalies. Another established technique

for anomaly detection is the comparison of predicted val-
ues from a simulation to actual values received in telemetry.

However, experienced mission operators reason about more
than just alarm threshold crossings and discrepancies between

predicted and actual sensor values: they may ask whether
a sensor is behaving differently than it has in the past, or

whether a single behavior is resulting in--the particular bane
of operators--a rapidly developing alarm sequence.

Our approach to introducing automation into real-time sys-
tems monitoring is based on two observations: !) mission op-

erators employ multiple methods for recognizing anomalies,
and 2) mission operators do not and should not interpret all
sensor data all of the time. We seek an approach for deter-

mining from moment to moment which of the available sensor
data is most informative about the presence of anomalies oc-
curring within a system. The work reported here extends the
anomaly detection capability in the SELMON monitoring sys-
tem [2, 3] by adding an attention focusing capability. This
work complements other work within NASA on empirical
and model-based methods for fault diagnosis of aerospace

platforms [4, 5].

2 Background: The SELMON Approach

Abnormal behavior is always defined as some kind of depar-
ture from normal behavior. Unfortunately, there appears to

be no single, crisp definition of "normal" behavior. In the
traditional monitoring technique of limit-sensing, normal be-

havior is predefined by nominal value ranges for sensors. A
fundamental limitation of this approach is the lack of sensitiv-

ity to context. In the other traditional monitoring technique of
discrepancy detection, normal behavior is obtained by simu-
lating a model of the system being monitored. This approach,
while avoiding the insensitivity to context of the limit-sensing
approach, has its own limitations. The approach is only as
good as the system model. It can be difficult to distinguish
genuine anomalies from errors in the model.

Noting the limitations of the existing monitoring tech-
niques, we have developed an approach to monitoring which is
designed to make the anomaly detection process more robust,
i.e., to reduce the number of undetected anomalies. Towards
this end, we introduce multiple anomaly models, each em-

ploying a different notion of "normal" behavior.

2.1 Anomaly Detection Methods

In this section, we briefly describe some of the methods that
we use to determine when a sensor is reporting anomalous be-
havior. These measures use knowledge about each individual
sensor, without knowledge of any relations among sensors.
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Surprise

An appealing way to assess whether current behavior is

anomalous or not is via comparison to past behavior. This
is the essence of the surprise measure. It is designed to
highlight a sensor which behaves other than it has historically.
Specifically, surprise uses the historical frequency distribution
for the sensor in two ways: To determine the likelihood of'
the given current value of the sensor (unusualness), and to
examine the relative likelihoods of different values of the

sensor (informativeness). It is those sensors which display
unlikely values when other values of the sensor are more
likely which get a high surprise score. Surprise is not high
if the only reason a sensor's value is unlikely is that there are
many possible values for the sensor, all equally unlikely.

Alarm Anticipation

The alarm anticipation measure in SELMON performs a

simple form of trend analysis to decide whether or not a sensor
is expected to be in alarm in the future. A straightforward
curve fit is used to project when the sensor will next cross an
alarm threshold, in either direction. A high score means the
sensor will soon enter alarm or will remain there. A low score

means the sensor will remain in the nominal range or emerge
from alarm soon.

Value Change

A change in the value of a sensor may be indicative of an
anomaly. In order to better assess such an event, the value

change measure in SELMON compares a given value change
to historical value changes seen on that sensor. The score
reported is based on the proportion of previous value changes
which were less than the given value change. It is maximum
when the given value change is the greatest value change seen
to date on that sensor. It is minimum when no value change
has occurred in that sensor.

Space limitations preclude describing additional SELMON
anomaly measures which reason about individual sensors and
about system interactions through the use of a causal model.

2.2 Previous Results

In order to assess whether SELMON increased the robustness

of the anomaly detection process, we performed the follow-
ing experiment: We compared SELMON performance to the
performance of the traditional limit-sensing technique in se-
lecting critical sensor subsets specified by a Space Station
Environmental Control and Life Support System (ECLSS)
domain expert, sensors seen by that expert as useful in under-
standing episodes of anomalous behavior in actual historical
data from ECLSS testbed operations.

The experiment asked the following specific question:
How often did SELMON place a "critical" sensor in the top
half of its sensor ordering, based on the anomaly detection
measures?

The performance of a random sensor selection algorithm
would be expected to be about 50%; any particular sensor
would appear in the top half of the sensor ordering about half
the time. Limit-sensing detected the anomalies 76.3% of the
time. SELMON detected the anomalies 95. 1% of the time.

These results show SELMON performing considerably bet-
ter than the traditional practice of limit-sensing. They lend
credibility to our premise that the most effective monitoring

system is one which incorporates several models of anoma-

lous behavior. Our aim is to offer a more complete, robust
set of techniques for anomaly detection to make human oper-
ators more effective, or to provide the basis for an automated
monitoring capability.

The following is a specific example of the value added of
SELMON. During an episode in which the ECLSS pre-heater
failed, system pressure (which normally oscillates within a
known range) became stable. This "abnormally normal" be-
havior is not detected by traditional monitoring methods be-
cause the system pressure remains firmly in the nominal range,
where limit-sensing fails to trigger. Furthermore, the fluctuat-
ing behavior of the sensor is not modeled; the predicted value
is an averaged stable value which fails to trigger discrepancy
detection.

3 Attention Focusing

A robust anomaly detection capability provides the core for

monitoring, but only when this capability is combined with
attention focusing does monitoring become both robust and
efficient. Otherwise, the potential problems of information
overload and too many false alarms may defeat the utility of
the monitoring system.

Although many anomalies can be detected by applying
anomaly models to the behavior reported at individual sen-
sors, monitoring also requires reasoning about interactions
occurring in a system and detecting anomalies in behavior
reported by several sensors.

The attention focusing technique developed here uses two
sources of information: historical data describing nominal
system behavior, and causal information describing which
pairs of sensors are constrained to be correlated, due to the
presence of a dependency. The intuition is that the origin and
extent of an anomaly can be determined if the misbehaving
system parameters and the misbehaving causal dependencies
can be identified.

3.1 Two Additional Measures

While SELMON runs, it computes incremental frequency dis-
tributions for all sensors being monitored. These frequency
distributions can be saved as a method for capturing behav-
ior from any episode of interest. Of particular interest are
historical distributions which correspond to nominal system
behavior.

To identify an anomalous sensor, we apply a distance mea-
sure, defined below, to the frequency distribution which rep-
resents recent behavior to the historical frequency distribution
representing nominal behavior. We call the measure simply
distance. To identify a "broken" causal dependency, we first
apply the same distance measure to the historical frequency
distributions for the cause sensor and the effect sensor. This

reference distance is a weak representation of the correlation
that exists between the values of the two sensors due to the

causal dependency. This reference distance is then compared
to the distance between the frequency distributions based on
recent data of the same cause sensor and effect sensor. The dif-
ference between the reference distance and the recent distance

is the measure of the "brokenness" of the causal dependency.
We call this measure causal distance.
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3.2 Some Definitions

Define a distribution D as the vector d, such that

Vi, 0 _< d_ _< 1

and
n-1

_--_ di = 1
i=0

For a sensor S, we assume that the range of values for the

sensor has been partitioned into n contiguous subranges which
exhaust this range. We construct a frequency distribution as a
vector Ds of length n, where the value of di is the frequency
with which S has displayed a value in the ith subrange.

We define two special types of frequency distribution. Let
F be the random, or flat distribution where Vi, d, = ±. Let

S_ be the set of"spike" distributions where d_ = 1 andVj #

i,dj =0.
If our aim was only to compare different frequency distri-

butions of the same sensor, we could use a distance measure

which required the number of partitions, or bins, in the two
distributions to be equal, and the range of values covered by
the distributions to be the same. However, since our aim is

to be able to compare the frequency distributions of different
sensors, these conditions must be relaxed.

3.3 The Distance Measure

The distance measure is computed by projecting the two dis-
tributions into the two-dimensional space [f, s] in polar coor-
dinates and taking the euclidian distance between the projec-
tions.

Define the "flatness" component f(D) of a distribution as
follows:

i=0

This is simply the sum of the bin-by-bin differences be-
tween the given distribution and F. Note that 0 < f(D) < 1.
Also, f(S,) --+ 1 as n -+ cx_.

Define the "spikeness" component s(D) of a distribution
as:

rt-1

i d

i=0

This is simply the centroid value calculation for the distri-
bution. The weighting factor ¢bwill be explained in a moment.
Once again, 0 < s(D) < 1.

Now take [f, s] to be polar coordinates [r, 0]. This maps
F to the origin and the 6:_ to points along an arc on the unit
circle. See Figure 1.

Note that we take ¢_ = _. This choice of 4_ guarantees

that A(S0, S,_-I) = A(F, S0) = A(F,S,_-I) = 1, and all
other distances in the region which is the range of A are by

inspection < 1.
Insensitivity to the number of bins in the two distributions

and the range of values encoded in the distributions is provided

by the [f, s] projection function, which abstracts away from
these properties of the distributions.

Additional details on desired properties of the distance

measure and how they are satisfied by the function A may be
found in [1].

F ]_.1 So

Figure 1: The function A(D1, D2).

3.4 Results

In this section, we report on the results of applying the dis-
tribution distance measure to the task of focusing attention

in monitoring. The distribution distance measure is used to
identify misbehaving nodes (distance) and arcs (causal dis-
tance) in the causal graph of the system being monitored, or

equivalently, detect and isolate the extent of anomalies in the
system being monitored.

Figure 2 shows a causal graph for a portion of the For-
ward Reactive Control System (FRCS) of the Space Shuttle.
SELMONwas run on seven episodes describing nominal behav-
ior of the FRCS. The frequency distributions collected during
these runs were merged. Reference distances were computed
for sensors participating in causal dependencies.

SELMON was then run on 13 different fault episodes, rep-

resenting faults such as leaks, sensor failures and regulator
failures. Due to space limitations, only one of these episodes
will be examined here; results were similar for all episodes.

In each fault episode, and for each sensor, the distribution
distance measure was applied to the incremental frequency
distribution collected during the episode and the historical fre-

quency distribution from the merged nominal episodes. These
distances were a measure of the "brokenness" of nodes in the

causal graph; i.e., instantiations of the distance measure.
New distances were computed between the distributions

corresponding to sensors participating in causal dependencies.
The differences between the new distances and the reference

distances for the dependencies were a measure of the "bro-
kenness" of arcs in the causal graph; i.e., instantiations of the
causal distance measure.

The episode of interest involves a leak affecting the first
and second manifolds (jets) on the oxidizer side of the FRCS.
The pressures at these two manifolds drop to vapor pressure.
The dependency between these pressures and the pressure in
the propellant tank is severed because the valve between the
propellant tank and the manifolds is closed. Thus there are
two anomalous system parameters (the manifold pressures)
and two anomalous mechanisms (the agreement between the

propellant and manifold pressures when the valve is open).
The distance and causal distance measures computed for

nodes and arcs in the FRCS causal graph reflect this faulty

behavior. See Figure 3. (To visualize how the distribution
distance measure circumscribes the extent of anomalies, the

coloring of nodes and the width of arcs in the figure are cor-
related with the magnitudes of the associated distance and
causal distance scores, respectively.) The apparent anomaly
at the third manifold is due to a known flaw in the training

simulator which generated the data. The explanation for the
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Figure 2: Causal Graph for the Forward Reactive Control
System (FRCS) of the Space Shuttle.
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Figure 3: A leak fault.

apparent helium tank temperature anomaly is more interest-
ing: in response to the leak, the valve between the propellant
tank and the manifolds closes. The closed system now has
a smaller volume, and since the pressure remains the same,
temperature must rise according to the ideal gas law. SELMON
flags this behavior as anomalous, even though the relevant
causal dependency was not available in the model. In this
case, SELMON helped debug an incomplete model. This he-
lium tank temperature behavior was present in the data for all
six leak episodes.

4 Towards Applications

The approach described in this paper has usability advantages
over other forms of model-based reasoning. The overhead in-
volved in constructing the causal and behavioral models of the

system is minimal. The behavioral model is derived directly
from actual data; no off-line modeling is required. The causal
model is of the simplest form, describing only the existence of

dependencies. For the Shuttle RCS, a 198-node causal graph
was constructed in a single one-and-one-half-hour session be-
tween the author and the domain expert.

SELMON is being applied at the NASA Johnson Space Cen-
ter as a monitoring tool for Space Shuttle Operations and
Space Station Operations. Early applications include the one
for the propulsion (PROP) flight control discipline reported
on here, and ones for the thermal (EECOM) and mechanical
(MMACS) flight control disciplines. An operational SELMON
prototype is available for evaluation by all flight control dis-

ciplines, only requiring that a list of sensors "owned" by that
discipline be provided.

At the Jet Propulsion Laboratory, we are looking at the

problem of onboard downlink determination for the Pluto Fast

Flyby project, now in its early design phase. The spacecraft
will have limited communications capacity and it will not be
possible to transmit all onboard-coilected sensor data. Only
four hours of coverage from the Deep Space Network will be
available per week. The challenge is to devise a method for
constructing a suitable summary of a week's worth of sensor
data guaranteed to report on any anomalies which occurred.

The anomaly detection and attention focusing capabilities of
SELMON may be well-suited to this task.

5 Summary

We have described the properties and performance of a dis-
tance measure used to identify misbehavior at sensor loca-

tions and across mechanisms in a system being monitored.
The technique enables the locus of an anomaly to be deter-
mined. This attention focusing capability is combined with a

previously reported anomaly detection capability in a robust,
efficient and informative monitoring system, which is being
applied in mission operations at NASA.
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